1/* Parse expressions for GDB.
2
3   Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4   1997, 1998, 1999, 2000, 2001, 2004 Free Software Foundation, Inc.
5
6   Modified from expread.y by the Department of Computer Science at the
7   State University of New York at Buffalo, 1991.
8
9   This file is part of GDB.
10
11   This program is free software; you can redistribute it and/or modify
12   it under the terms of the GNU General Public License as published by
13   the Free Software Foundation; either version 2 of the License, or
14   (at your option) any later version.
15
16   This program is distributed in the hope that it will be useful,
17   but WITHOUT ANY WARRANTY; without even the implied warranty of
18   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19   GNU General Public License for more details.
20
21   You should have received a copy of the GNU General Public License
22   along with this program; if not, write to the Free Software
23   Foundation, Inc., 59 Temple Place - Suite 330,
24   Boston, MA 02111-1307, USA.  */
25
26/* Parse an expression from text in a string,
27   and return the result as a  struct expression  pointer.
28   That structure contains arithmetic operations in reverse polish,
29   with constants represented by operations that are followed by special data.
30   See expression.h for the details of the format.
31   What is important here is that it can be built up sequentially
32   during the process of parsing; the lower levels of the tree always
33   come first in the result.  */
34
35#include <ctype.h>
36
37#include "defs.h"
38#include "gdb_string.h"
39#include "symtab.h"
40#include "gdbtypes.h"
41#include "frame.h"
42#include "expression.h"
43#include "value.h"
44#include "command.h"
45#include "language.h"
46#include "parser-defs.h"
47#include "gdbcmd.h"
48#include "symfile.h"		/* for overlay functions */
49#include "inferior.h"		/* for NUM_PSEUDO_REGS.  NOTE: replace
50				   with "gdbarch.h" when appropriate.  */
51#include "doublest.h"
52#include "gdb_assert.h"
53#include "block.h"
54
55/* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions.  */
57
58const struct exp_descriptor exp_descriptor_standard =
59  {
60    print_subexp_standard,
61    operator_length_standard,
62    op_name_standard,
63    dump_subexp_body_standard,
64    evaluate_subexp_standard
65  };
66
67/* Symbols which architectures can redefine.  */
68
69/* Some systems have routines whose names start with `$'.  Giving this
70   macro a non-zero value tells GDB's expression parser to check for
71   such routines when parsing tokens that begin with `$'.
72
73   On HP-UX, certain system routines (millicode) have names beginning
74   with `$' or `$$'.  For example, `$$dyncall' is a millicode routine
75   that handles inter-space procedure calls on PA-RISC.  */
76#ifndef SYMBOLS_CAN_START_WITH_DOLLAR
77#define SYMBOLS_CAN_START_WITH_DOLLAR (0)
78#endif
79
80
81
82/* Global variables declared in parser-defs.h (and commented there).  */
83struct expression *expout;
84int expout_size;
85int expout_ptr;
86struct block *expression_context_block;
87CORE_ADDR expression_context_pc;
88struct block *innermost_block;
89int arglist_len;
90union type_stack_elt *type_stack;
91int type_stack_depth, type_stack_size;
92char *lexptr;
93char *prev_lexptr;
94char *namecopy;
95int paren_depth;
96int comma_terminates;
97
98static int expressiondebug = 0;
99
100static void free_funcalls (void *ignore);
101
102static void prefixify_expression (struct expression *);
103
104static void prefixify_subexp (struct expression *, struct expression *, int,
105			      int);
106
107static struct expression *parse_exp_in_context (char **, struct block *, int,
108						int);
109
110void _initialize_parse (void);
111
112/* Data structure for saving values of arglist_len for function calls whose
113   arguments contain other function calls.  */
114
115struct funcall
116  {
117    struct funcall *next;
118    int arglist_len;
119  };
120
121static struct funcall *funcall_chain;
122
123/* Begin counting arguments for a function call,
124   saving the data about any containing call.  */
125
126void
127start_arglist (void)
128{
129  struct funcall *new;
130
131  new = (struct funcall *) xmalloc (sizeof (struct funcall));
132  new->next = funcall_chain;
133  new->arglist_len = arglist_len;
134  arglist_len = 0;
135  funcall_chain = new;
136}
137
138/* Return the number of arguments in a function call just terminated,
139   and restore the data for the containing function call.  */
140
141int
142end_arglist (void)
143{
144  int val = arglist_len;
145  struct funcall *call = funcall_chain;
146  funcall_chain = call->next;
147  arglist_len = call->arglist_len;
148  xfree (call);
149  return val;
150}
151
152/* Free everything in the funcall chain.
153   Used when there is an error inside parsing.  */
154
155static void
156free_funcalls (void *ignore)
157{
158  struct funcall *call, *next;
159
160  for (call = funcall_chain; call; call = next)
161    {
162      next = call->next;
163      xfree (call);
164    }
165}
166
167/* This page contains the functions for adding data to the  struct expression
168   being constructed.  */
169
170/* Add one element to the end of the expression.  */
171
172/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
173   a register through here */
174
175void
176write_exp_elt (union exp_element expelt)
177{
178  if (expout_ptr >= expout_size)
179    {
180      expout_size *= 2;
181      expout = (struct expression *)
182	xrealloc ((char *) expout, sizeof (struct expression)
183		  + EXP_ELEM_TO_BYTES (expout_size));
184    }
185  expout->elts[expout_ptr++] = expelt;
186}
187
188void
189write_exp_elt_opcode (enum exp_opcode expelt)
190{
191  union exp_element tmp;
192
193  tmp.opcode = expelt;
194
195  write_exp_elt (tmp);
196}
197
198void
199write_exp_elt_sym (struct symbol *expelt)
200{
201  union exp_element tmp;
202
203  tmp.symbol = expelt;
204
205  write_exp_elt (tmp);
206}
207
208void
209write_exp_elt_block (struct block *b)
210{
211  union exp_element tmp;
212  tmp.block = b;
213  write_exp_elt (tmp);
214}
215
216void
217write_exp_elt_longcst (LONGEST expelt)
218{
219  union exp_element tmp;
220
221  tmp.longconst = expelt;
222
223  write_exp_elt (tmp);
224}
225
226void
227write_exp_elt_dblcst (DOUBLEST expelt)
228{
229  union exp_element tmp;
230
231  tmp.doubleconst = expelt;
232
233  write_exp_elt (tmp);
234}
235
236void
237write_exp_elt_type (struct type *expelt)
238{
239  union exp_element tmp;
240
241  tmp.type = expelt;
242
243  write_exp_elt (tmp);
244}
245
246void
247write_exp_elt_intern (struct internalvar *expelt)
248{
249  union exp_element tmp;
250
251  tmp.internalvar = expelt;
252
253  write_exp_elt (tmp);
254}
255
256/* Add a string constant to the end of the expression.
257
258   String constants are stored by first writing an expression element
259   that contains the length of the string, then stuffing the string
260   constant itself into however many expression elements are needed
261   to hold it, and then writing another expression element that contains
262   the length of the string.  I.E. an expression element at each end of
263   the string records the string length, so you can skip over the
264   expression elements containing the actual string bytes from either
265   end of the string.  Note that this also allows gdb to handle
266   strings with embedded null bytes, as is required for some languages.
267
268   Don't be fooled by the fact that the string is null byte terminated,
269   this is strictly for the convenience of debugging gdb itself.  Gdb
270   Gdb does not depend up the string being null terminated, since the
271   actual length is recorded in expression elements at each end of the
272   string.  The null byte is taken into consideration when computing how
273   many expression elements are required to hold the string constant, of
274   course. */
275
276
277void
278write_exp_string (struct stoken str)
279{
280  int len = str.length;
281  int lenelt;
282  char *strdata;
283
284  /* Compute the number of expression elements required to hold the string
285     (including a null byte terminator), along with one expression element
286     at each end to record the actual string length (not including the
287     null byte terminator). */
288
289  lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
290
291  /* Ensure that we have enough available expression elements to store
292     everything. */
293
294  if ((expout_ptr + lenelt) >= expout_size)
295    {
296      expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
297      expout = (struct expression *)
298	xrealloc ((char *) expout, (sizeof (struct expression)
299				    + EXP_ELEM_TO_BYTES (expout_size)));
300    }
301
302  /* Write the leading length expression element (which advances the current
303     expression element index), then write the string constant followed by a
304     terminating null byte, and then write the trailing length expression
305     element. */
306
307  write_exp_elt_longcst ((LONGEST) len);
308  strdata = (char *) &expout->elts[expout_ptr];
309  memcpy (strdata, str.ptr, len);
310  *(strdata + len) = '\0';
311  expout_ptr += lenelt - 2;
312  write_exp_elt_longcst ((LONGEST) len);
313}
314
315/* Add a bitstring constant to the end of the expression.
316
317   Bitstring constants are stored by first writing an expression element
318   that contains the length of the bitstring (in bits), then stuffing the
319   bitstring constant itself into however many expression elements are
320   needed to hold it, and then writing another expression element that
321   contains the length of the bitstring.  I.E. an expression element at
322   each end of the bitstring records the bitstring length, so you can skip
323   over the expression elements containing the actual bitstring bytes from
324   either end of the bitstring. */
325
326void
327write_exp_bitstring (struct stoken str)
328{
329  int bits = str.length;	/* length in bits */
330  int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
331  int lenelt;
332  char *strdata;
333
334  /* Compute the number of expression elements required to hold the bitstring,
335     along with one expression element at each end to record the actual
336     bitstring length in bits. */
337
338  lenelt = 2 + BYTES_TO_EXP_ELEM (len);
339
340  /* Ensure that we have enough available expression elements to store
341     everything. */
342
343  if ((expout_ptr + lenelt) >= expout_size)
344    {
345      expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
346      expout = (struct expression *)
347	xrealloc ((char *) expout, (sizeof (struct expression)
348				    + EXP_ELEM_TO_BYTES (expout_size)));
349    }
350
351  /* Write the leading length expression element (which advances the current
352     expression element index), then write the bitstring constant, and then
353     write the trailing length expression element. */
354
355  write_exp_elt_longcst ((LONGEST) bits);
356  strdata = (char *) &expout->elts[expout_ptr];
357  memcpy (strdata, str.ptr, len);
358  expout_ptr += lenelt - 2;
359  write_exp_elt_longcst ((LONGEST) bits);
360}
361
362/* Add the appropriate elements for a minimal symbol to the end of
363   the expression.  The rationale behind passing in text_symbol_type and
364   data_symbol_type was so that Modula-2 could pass in WORD for
365   data_symbol_type.  Perhaps it still is useful to have those types vary
366   based on the language, but they no longer have names like "int", so
367   the initial rationale is gone.  */
368
369static struct type *msym_text_symbol_type;
370static struct type *msym_data_symbol_type;
371static struct type *msym_unknown_symbol_type;
372
373void
374write_exp_msymbol (struct minimal_symbol *msymbol,
375		   struct type *text_symbol_type,
376		   struct type *data_symbol_type)
377{
378  CORE_ADDR addr;
379
380  write_exp_elt_opcode (OP_LONG);
381  /* Let's make the type big enough to hold a 64-bit address.  */
382  write_exp_elt_type (builtin_type_CORE_ADDR);
383
384  addr = SYMBOL_VALUE_ADDRESS (msymbol);
385  if (overlay_debugging)
386    addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
387  write_exp_elt_longcst ((LONGEST) addr);
388
389  write_exp_elt_opcode (OP_LONG);
390
391  write_exp_elt_opcode (UNOP_MEMVAL);
392  switch (msymbol->type)
393    {
394    case mst_text:
395    case mst_file_text:
396    case mst_solib_trampoline:
397      write_exp_elt_type (msym_text_symbol_type);
398      break;
399
400    case mst_data:
401    case mst_file_data:
402    case mst_bss:
403    case mst_file_bss:
404      write_exp_elt_type (msym_data_symbol_type);
405      break;
406
407    default:
408      write_exp_elt_type (msym_unknown_symbol_type);
409      break;
410    }
411  write_exp_elt_opcode (UNOP_MEMVAL);
412}
413
414/* Recognize tokens that start with '$'.  These include:
415
416   $regname     A native register name or a "standard
417   register name".
418
419   $variable    A convenience variable with a name chosen
420   by the user.
421
422   $digits              Value history with index <digits>, starting
423   from the first value which has index 1.
424
425   $$digits     Value history with index <digits> relative
426   to the last value.  I.E. $$0 is the last
427   value, $$1 is the one previous to that, $$2
428   is the one previous to $$1, etc.
429
430   $ | $0 | $$0 The last value in the value history.
431
432   $$           An abbreviation for the second to the last
433   value in the value history, I.E. $$1
434
435 */
436
437void
438write_dollar_variable (struct stoken str)
439{
440  /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
441     and $$digits (equivalent to $<-digits> if you could type that). */
442
443  int negate = 0;
444  int i = 1;
445  /* Double dollar means negate the number and add -1 as well.
446     Thus $$ alone means -1.  */
447  if (str.length >= 2 && str.ptr[1] == '$')
448    {
449      negate = 1;
450      i = 2;
451    }
452  if (i == str.length)
453    {
454      /* Just dollars (one or two) */
455      i = -negate;
456      goto handle_last;
457    }
458  /* Is the rest of the token digits?  */
459  for (; i < str.length; i++)
460    if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
461      break;
462  if (i == str.length)
463    {
464      i = atoi (str.ptr + 1 + negate);
465      if (negate)
466	i = -i;
467      goto handle_last;
468    }
469
470  /* Handle tokens that refer to machine registers:
471     $ followed by a register name.  */
472  i = frame_map_name_to_regnum (deprecated_selected_frame,
473				str.ptr + 1, str.length - 1);
474  if (i >= 0)
475    goto handle_register;
476
477  if (SYMBOLS_CAN_START_WITH_DOLLAR)
478    {
479      struct symbol *sym = NULL;
480      struct minimal_symbol *msym = NULL;
481
482      /* On HP-UX, certain system routines (millicode) have names beginning
483	 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
484	 calls on PA-RISC. Check for those, first. */
485
486      /* This code is not enabled on non HP-UX systems, since worst case
487	 symbol table lookup performance is awful, to put it mildly. */
488
489      sym = lookup_symbol (copy_name (str), (struct block *) NULL,
490			   VAR_DOMAIN, (int *) NULL, (struct symtab **) NULL);
491      if (sym)
492	{
493	  write_exp_elt_opcode (OP_VAR_VALUE);
494	  write_exp_elt_block (block_found);	/* set by lookup_symbol */
495	  write_exp_elt_sym (sym);
496	  write_exp_elt_opcode (OP_VAR_VALUE);
497	  return;
498	}
499      msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
500      if (msym)
501	{
502	  write_exp_msymbol (msym,
503			     lookup_function_type (builtin_type_int),
504			     builtin_type_int);
505	  return;
506	}
507    }
508
509  /* Any other names starting in $ are debugger internal variables.  */
510
511  write_exp_elt_opcode (OP_INTERNALVAR);
512  write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
513  write_exp_elt_opcode (OP_INTERNALVAR);
514  return;
515handle_last:
516  write_exp_elt_opcode (OP_LAST);
517  write_exp_elt_longcst ((LONGEST) i);
518  write_exp_elt_opcode (OP_LAST);
519  return;
520handle_register:
521  write_exp_elt_opcode (OP_REGISTER);
522  write_exp_elt_longcst (i);
523  write_exp_elt_opcode (OP_REGISTER);
524  return;
525}
526
527
528/* Parse a string that is possibly a namespace / nested class
529   specification, i.e., something of the form A::B::C::x.  Input
530   (NAME) is the entire string; LEN is the current valid length; the
531   output is a string, TOKEN, which points to the largest recognized
532   prefix which is a series of namespaces or classes.  CLASS_PREFIX is
533   another output, which records whether a nested class spec was
534   recognized (= 1) or a fully qualified variable name was found (=
535   0).  ARGPTR is side-effected (if non-NULL) to point to beyond the
536   string recognized and consumed by this routine.
537
538   The return value is a pointer to the symbol for the base class or
539   variable if found, or NULL if not found.  Callers must check this
540   first -- if NULL, the outputs may not be correct.
541
542   This function is used c-exp.y.  This is used specifically to get
543   around HP aCC (and possibly other compilers), which insists on
544   generating names with embedded colons for namespace or nested class
545   members.
546
547   (Argument LEN is currently unused. 1997-08-27)
548
549   Callers must free memory allocated for the output string TOKEN.  */
550
551static const char coloncolon[2] =
552{':', ':'};
553
554struct symbol *
555parse_nested_classes_for_hpacc (char *name, int len, char **token,
556				int *class_prefix, char **argptr)
557{
558  /* Comment below comes from decode_line_1 which has very similar
559     code, which is called for "break" command parsing. */
560
561  /* We have what looks like a class or namespace
562     scope specification (A::B), possibly with many
563     levels of namespaces or classes (A::B::C::D).
564
565     Some versions of the HP ANSI C++ compiler (as also possibly
566     other compilers) generate class/function/member names with
567     embedded double-colons if they are inside namespaces. To
568     handle this, we loop a few times, considering larger and
569     larger prefixes of the string as though they were single
570     symbols.  So, if the initially supplied string is
571     A::B::C::D::foo, we have to look up "A", then "A::B",
572     then "A::B::C", then "A::B::C::D", and finally
573     "A::B::C::D::foo" as single, monolithic symbols, because
574     A, B, C or D may be namespaces.
575
576     Note that namespaces can nest only inside other
577     namespaces, and not inside classes.  So we need only
578     consider *prefixes* of the string; there is no need to look up
579     "B::C" separately as a symbol in the previous example. */
580
581  char *p;
582  char *start, *end;
583  char *prefix = NULL;
584  char *tmp;
585  struct symbol *sym_class = NULL;
586  struct symbol *sym_var = NULL;
587  struct type *t;
588  int prefix_len = 0;
589  int done = 0;
590  char *q;
591
592  /* Check for HP-compiled executable -- in other cases
593     return NULL, and caller must default to standard GDB
594     behaviour. */
595
596  if (!deprecated_hp_som_som_object_present)
597    return (struct symbol *) NULL;
598
599  p = name;
600
601  /* Skip over whitespace and possible global "::" */
602  while (*p && (*p == ' ' || *p == '\t'))
603    p++;
604  if (p[0] == ':' && p[1] == ':')
605    p += 2;
606  while (*p && (*p == ' ' || *p == '\t'))
607    p++;
608
609  while (1)
610    {
611      /* Get to the end of the next namespace or class spec. */
612      /* If we're looking at some non-token, fail immediately */
613      start = p;
614      if (!(isalpha (*p) || *p == '$' || *p == '_'))
615	return (struct symbol *) NULL;
616      p++;
617      while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
618	p++;
619
620      if (*p == '<')
621	{
622	  /* If we have the start of a template specification,
623	     scan right ahead to its end */
624	  q = find_template_name_end (p);
625	  if (q)
626	    p = q;
627	}
628
629      end = p;
630
631      /* Skip over "::" and whitespace for next time around */
632      while (*p && (*p == ' ' || *p == '\t'))
633	p++;
634      if (p[0] == ':' && p[1] == ':')
635	p += 2;
636      while (*p && (*p == ' ' || *p == '\t'))
637	p++;
638
639      /* Done with tokens? */
640      if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
641	done = 1;
642
643      tmp = (char *) alloca (prefix_len + end - start + 3);
644      if (prefix)
645	{
646	  memcpy (tmp, prefix, prefix_len);
647	  memcpy (tmp + prefix_len, coloncolon, 2);
648	  memcpy (tmp + prefix_len + 2, start, end - start);
649	  tmp[prefix_len + 2 + end - start] = '\000';
650	}
651      else
652	{
653	  memcpy (tmp, start, end - start);
654	  tmp[end - start] = '\000';
655	}
656
657      prefix = tmp;
658      prefix_len = strlen (prefix);
659
660      /* See if the prefix we have now is something we know about */
661
662      if (!done)
663	{
664	  /* More tokens to process, so this must be a class/namespace */
665	  sym_class = lookup_symbol (prefix, 0, STRUCT_DOMAIN,
666				     0, (struct symtab **) NULL);
667	}
668      else
669	{
670	  /* No more tokens, so try as a variable first */
671	  sym_var = lookup_symbol (prefix, 0, VAR_DOMAIN,
672				   0, (struct symtab **) NULL);
673	  /* If failed, try as class/namespace */
674	  if (!sym_var)
675	    sym_class = lookup_symbol (prefix, 0, STRUCT_DOMAIN,
676				       0, (struct symtab **) NULL);
677	}
678
679      if (sym_var ||
680	  (sym_class &&
681	   (t = check_typedef (SYMBOL_TYPE (sym_class)),
682	    (TYPE_CODE (t) == TYPE_CODE_STRUCT
683	     || TYPE_CODE (t) == TYPE_CODE_UNION))))
684	{
685	  /* We found a valid token */
686	  *token = (char *) xmalloc (prefix_len + 1);
687	  memcpy (*token, prefix, prefix_len);
688	  (*token)[prefix_len] = '\000';
689	  break;
690	}
691
692      /* No variable or class/namespace found, no more tokens */
693      if (done)
694	return (struct symbol *) NULL;
695    }
696
697  /* Out of loop, so we must have found a valid token */
698  if (sym_var)
699    *class_prefix = 0;
700  else
701    *class_prefix = 1;
702
703  if (argptr)
704    *argptr = done ? p : end;
705
706  return sym_var ? sym_var : sym_class;		/* found */
707}
708
709char *
710find_template_name_end (char *p)
711{
712  int depth = 1;
713  int just_seen_right = 0;
714  int just_seen_colon = 0;
715  int just_seen_space = 0;
716
717  if (!p || (*p != '<'))
718    return 0;
719
720  while (*++p)
721    {
722      switch (*p)
723	{
724	case '\'':
725	case '\"':
726	case '{':
727	case '}':
728	  /* In future, may want to allow these?? */
729	  return 0;
730	case '<':
731	  depth++;		/* start nested template */
732	  if (just_seen_colon || just_seen_right || just_seen_space)
733	    return 0;		/* but not after : or :: or > or space */
734	  break;
735	case '>':
736	  if (just_seen_colon || just_seen_right)
737	    return 0;		/* end a (nested?) template */
738	  just_seen_right = 1;	/* but not after : or :: */
739	  if (--depth == 0)	/* also disallow >>, insist on > > */
740	    return ++p;		/* if outermost ended, return */
741	  break;
742	case ':':
743	  if (just_seen_space || (just_seen_colon > 1))
744	    return 0;		/* nested class spec coming up */
745	  just_seen_colon++;	/* we allow :: but not :::: */
746	  break;
747	case ' ':
748	  break;
749	default:
750	  if (!((*p >= 'a' && *p <= 'z') ||	/* allow token chars */
751		(*p >= 'A' && *p <= 'Z') ||
752		(*p >= '0' && *p <= '9') ||
753		(*p == '_') || (*p == ',') ||	/* commas for template args */
754		(*p == '&') || (*p == '*') ||	/* pointer and ref types */
755		(*p == '(') || (*p == ')') ||	/* function types */
756		(*p == '[') || (*p == ']')))	/* array types */
757	    return 0;
758	}
759      if (*p != ' ')
760	just_seen_space = 0;
761      if (*p != ':')
762	just_seen_colon = 0;
763      if (*p != '>')
764	just_seen_right = 0;
765    }
766  return 0;
767}
768
769
770
771/* Return a null-terminated temporary copy of the name
772   of a string token.  */
773
774char *
775copy_name (struct stoken token)
776{
777  memcpy (namecopy, token.ptr, token.length);
778  namecopy[token.length] = 0;
779  return namecopy;
780}
781
782/* Reverse an expression from suffix form (in which it is constructed)
783   to prefix form (in which we can conveniently print or execute it).  */
784
785static void
786prefixify_expression (struct expression *expr)
787{
788  int len =
789  sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
790  struct expression *temp;
791  int inpos = expr->nelts, outpos = 0;
792
793  temp = (struct expression *) alloca (len);
794
795  /* Copy the original expression into temp.  */
796  memcpy (temp, expr, len);
797
798  prefixify_subexp (temp, expr, inpos, outpos);
799}
800
801/* Return the number of exp_elements in the postfix subexpression
802   of EXPR whose operator is at index ENDPOS - 1 in EXPR.  */
803
804int
805length_of_subexp (struct expression *expr, int endpos)
806{
807  int oplen, args, i;
808
809  operator_length (expr, endpos, &oplen, &args);
810
811  while (args > 0)
812    {
813      oplen += length_of_subexp (expr, endpos - oplen);
814      args--;
815    }
816
817  return oplen;
818}
819
820/* Sets *OPLENP to the length of the operator whose (last) index is
821   ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
822   operator takes.  */
823
824void
825operator_length (struct expression *expr, int endpos, int *oplenp, int *argsp)
826{
827  expr->language_defn->la_exp_desc->operator_length (expr, endpos,
828						     oplenp, argsp);
829}
830
831/* Default value for operator_length in exp_descriptor vectors.  */
832
833void
834operator_length_standard (struct expression *expr, int endpos,
835			  int *oplenp, int *argsp)
836{
837  int oplen = 1;
838  int args = 0;
839  int i;
840
841  if (endpos < 1)
842    error ("?error in operator_length_standard");
843
844  i = (int) expr->elts[endpos - 1].opcode;
845
846  switch (i)
847    {
848      /* C++  */
849    case OP_SCOPE:
850      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
851      oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
852      break;
853
854    case OP_LONG:
855    case OP_DOUBLE:
856    case OP_VAR_VALUE:
857      oplen = 4;
858      break;
859
860    case OP_TYPE:
861    case OP_BOOL:
862    case OP_LAST:
863    case OP_REGISTER:
864    case OP_INTERNALVAR:
865      oplen = 3;
866      break;
867
868    case OP_COMPLEX:
869      oplen = 1;
870      args = 2;
871      break;
872
873    case OP_FUNCALL:
874    case OP_F77_UNDETERMINED_ARGLIST:
875      oplen = 3;
876      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
877      break;
878
879    case OP_OBJC_MSGCALL:	/* Objective C message (method) call */
880      oplen = 4;
881      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
882      break;
883
884    case UNOP_MAX:
885    case UNOP_MIN:
886      oplen = 3;
887      break;
888
889    case BINOP_VAL:
890    case UNOP_CAST:
891    case UNOP_MEMVAL:
892      oplen = 3;
893      args = 1;
894      break;
895
896    case UNOP_ABS:
897    case UNOP_CAP:
898    case UNOP_CHR:
899    case UNOP_FLOAT:
900    case UNOP_HIGH:
901    case UNOP_ODD:
902    case UNOP_ORD:
903    case UNOP_TRUNC:
904      oplen = 1;
905      args = 1;
906      break;
907
908    case OP_LABELED:
909    case STRUCTOP_STRUCT:
910    case STRUCTOP_PTR:
911      args = 1;
912      /* fall through */
913    case OP_M2_STRING:
914    case OP_STRING:
915    case OP_OBJC_NSSTRING:	/* Objective C Foundation Class NSString constant */
916    case OP_OBJC_SELECTOR:	/* Objective C "@selector" pseudo-op */
917    case OP_NAME:
918    case OP_EXPRSTRING:
919      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
920      oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
921      break;
922
923    case OP_BITSTRING:
924      oplen = longest_to_int (expr->elts[endpos - 2].longconst);
925      oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
926      oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
927      break;
928
929    case OP_ARRAY:
930      oplen = 4;
931      args = longest_to_int (expr->elts[endpos - 2].longconst);
932      args -= longest_to_int (expr->elts[endpos - 3].longconst);
933      args += 1;
934      break;
935
936    case TERNOP_COND:
937    case TERNOP_SLICE:
938    case TERNOP_SLICE_COUNT:
939      args = 3;
940      break;
941
942      /* Modula-2 */
943    case MULTI_SUBSCRIPT:
944      oplen = 3;
945      args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
946      break;
947
948    case BINOP_ASSIGN_MODIFY:
949      oplen = 3;
950      args = 2;
951      break;
952
953      /* C++ */
954    case OP_THIS:
955    case OP_OBJC_SELF:
956      oplen = 2;
957      break;
958
959    default:
960      args = 1 + (i < (int) BINOP_END);
961    }
962
963  *oplenp = oplen;
964  *argsp = args;
965}
966
967/* Copy the subexpression ending just before index INEND in INEXPR
968   into OUTEXPR, starting at index OUTBEG.
969   In the process, convert it from suffix to prefix form.  */
970
971static void
972prefixify_subexp (struct expression *inexpr,
973		  struct expression *outexpr, int inend, int outbeg)
974{
975  int oplen;
976  int args;
977  int i;
978  int *arglens;
979  enum exp_opcode opcode;
980
981  operator_length (inexpr, inend, &oplen, &args);
982
983  /* Copy the final operator itself, from the end of the input
984     to the beginning of the output.  */
985  inend -= oplen;
986  memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
987	  EXP_ELEM_TO_BYTES (oplen));
988  outbeg += oplen;
989
990  /* Find the lengths of the arg subexpressions.  */
991  arglens = (int *) alloca (args * sizeof (int));
992  for (i = args - 1; i >= 0; i--)
993    {
994      oplen = length_of_subexp (inexpr, inend);
995      arglens[i] = oplen;
996      inend -= oplen;
997    }
998
999  /* Now copy each subexpression, preserving the order of
1000     the subexpressions, but prefixifying each one.
1001     In this loop, inend starts at the beginning of
1002     the expression this level is working on
1003     and marches forward over the arguments.
1004     outbeg does similarly in the output.  */
1005  for (i = 0; i < args; i++)
1006    {
1007      oplen = arglens[i];
1008      inend += oplen;
1009      prefixify_subexp (inexpr, outexpr, inend, outbeg);
1010      outbeg += oplen;
1011    }
1012}
1013
1014/* This page contains the two entry points to this file.  */
1015
1016/* Read an expression from the string *STRINGPTR points to,
1017   parse it, and return a pointer to a  struct expression  that we malloc.
1018   Use block BLOCK as the lexical context for variable names;
1019   if BLOCK is zero, use the block of the selected stack frame.
1020   Meanwhile, advance *STRINGPTR to point after the expression,
1021   at the first nonwhite character that is not part of the expression
1022   (possibly a null character).
1023
1024   If COMMA is nonzero, stop if a comma is reached.  */
1025
1026struct expression *
1027parse_exp_1 (char **stringptr, struct block *block, int comma)
1028{
1029  return parse_exp_in_context (stringptr, block, comma, 0);
1030}
1031
1032/* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1033   no value is expected from the expression.  */
1034
1035static struct expression *
1036parse_exp_in_context (char **stringptr, struct block *block, int comma,
1037		      int void_context_p)
1038{
1039  struct cleanup *old_chain;
1040
1041  lexptr = *stringptr;
1042  prev_lexptr = NULL;
1043
1044  paren_depth = 0;
1045  type_stack_depth = 0;
1046
1047  comma_terminates = comma;
1048
1049  if (lexptr == 0 || *lexptr == 0)
1050    error_no_arg ("expression to compute");
1051
1052  old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1053  funcall_chain = 0;
1054
1055  if (block)
1056    {
1057      expression_context_block = block;
1058      expression_context_pc = BLOCK_START (block);
1059    }
1060  else
1061    expression_context_block = get_selected_block (&expression_context_pc);
1062
1063  namecopy = (char *) alloca (strlen (lexptr) + 1);
1064  expout_size = 10;
1065  expout_ptr = 0;
1066  expout = (struct expression *)
1067    xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1068  expout->language_defn = current_language;
1069  make_cleanup (free_current_contents, &expout);
1070
1071  if (current_language->la_parser ())
1072    current_language->la_error (NULL);
1073
1074  discard_cleanups (old_chain);
1075
1076  /* Record the actual number of expression elements, and then
1077     reallocate the expression memory so that we free up any
1078     excess elements. */
1079
1080  expout->nelts = expout_ptr;
1081  expout = (struct expression *)
1082    xrealloc ((char *) expout,
1083	      sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1084
1085  /* Convert expression from postfix form as generated by yacc
1086     parser, to a prefix form. */
1087
1088  if (expressiondebug)
1089    dump_raw_expression (expout, gdb_stdlog,
1090			 "before conversion to prefix form");
1091
1092  prefixify_expression (expout);
1093
1094  current_language->la_post_parser (&expout, void_context_p);
1095
1096  if (expressiondebug)
1097    dump_prefix_expression (expout, gdb_stdlog);
1098
1099  *stringptr = lexptr;
1100  return expout;
1101}
1102
1103/* Parse STRING as an expression, and complain if this fails
1104   to use up all of the contents of STRING.  */
1105
1106struct expression *
1107parse_expression (char *string)
1108{
1109  struct expression *exp;
1110  exp = parse_exp_1 (&string, 0, 0);
1111  if (*string)
1112    error ("Junk after end of expression.");
1113  return exp;
1114}
1115
1116
1117/* As for parse_expression, except that if VOID_CONTEXT_P, then
1118   no value is expected from the expression.  */
1119
1120struct expression *
1121parse_expression_in_context (char *string, int void_context_p)
1122{
1123  struct expression *exp;
1124  exp = parse_exp_in_context (&string, 0, 0, void_context_p);
1125  if (*string != '\000')
1126    error ("Junk after end of expression.");
1127  return exp;
1128}
1129
1130/* A post-parser that does nothing */
1131
1132void
1133null_post_parser (struct expression **exp, int void_context_p)
1134{
1135}
1136
1137/* Stuff for maintaining a stack of types.  Currently just used by C, but
1138   probably useful for any language which declares its types "backwards".  */
1139
1140static void
1141check_type_stack_depth (void)
1142{
1143  if (type_stack_depth == type_stack_size)
1144    {
1145      type_stack_size *= 2;
1146      type_stack = (union type_stack_elt *)
1147	xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1148    }
1149}
1150
1151void
1152push_type (enum type_pieces tp)
1153{
1154  check_type_stack_depth ();
1155  type_stack[type_stack_depth++].piece = tp;
1156}
1157
1158void
1159push_type_int (int n)
1160{
1161  check_type_stack_depth ();
1162  type_stack[type_stack_depth++].int_val = n;
1163}
1164
1165void
1166push_type_address_space (char *string)
1167{
1168  push_type_int (address_space_name_to_int (string));
1169}
1170
1171enum type_pieces
1172pop_type (void)
1173{
1174  if (type_stack_depth)
1175    return type_stack[--type_stack_depth].piece;
1176  return tp_end;
1177}
1178
1179int
1180pop_type_int (void)
1181{
1182  if (type_stack_depth)
1183    return type_stack[--type_stack_depth].int_val;
1184  /* "Can't happen".  */
1185  return 0;
1186}
1187
1188/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1189   as modified by all the stuff on the stack.  */
1190struct type *
1191follow_types (struct type *follow_type)
1192{
1193  int done = 0;
1194  int make_const = 0;
1195  int make_volatile = 0;
1196  int make_addr_space = 0;
1197  int array_size;
1198  struct type *range_type;
1199
1200  while (!done)
1201    switch (pop_type ())
1202      {
1203      case tp_end:
1204	done = 1;
1205	if (make_const)
1206	  follow_type = make_cv_type (make_const,
1207				      TYPE_VOLATILE (follow_type),
1208				      follow_type, 0);
1209	if (make_volatile)
1210	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1211				      make_volatile,
1212				      follow_type, 0);
1213	if (make_addr_space)
1214	  follow_type = make_type_with_address_space (follow_type,
1215						      make_addr_space);
1216	make_const = make_volatile = 0;
1217	make_addr_space = 0;
1218	break;
1219      case tp_const:
1220	make_const = 1;
1221	break;
1222      case tp_volatile:
1223	make_volatile = 1;
1224	break;
1225      case tp_space_identifier:
1226	make_addr_space = pop_type_int ();
1227	break;
1228      case tp_pointer:
1229	follow_type = lookup_pointer_type (follow_type);
1230	if (make_const)
1231	  follow_type = make_cv_type (make_const,
1232				      TYPE_VOLATILE (follow_type),
1233				      follow_type, 0);
1234	if (make_volatile)
1235	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1236				      make_volatile,
1237				      follow_type, 0);
1238	if (make_addr_space)
1239	  follow_type = make_type_with_address_space (follow_type,
1240						      make_addr_space);
1241	make_const = make_volatile = 0;
1242	make_addr_space = 0;
1243	break;
1244      case tp_reference:
1245	follow_type = lookup_reference_type (follow_type);
1246	if (make_const)
1247	  follow_type = make_cv_type (make_const,
1248				      TYPE_VOLATILE (follow_type),
1249				      follow_type, 0);
1250	if (make_volatile)
1251	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1252				      make_volatile,
1253				      follow_type, 0);
1254	if (make_addr_space)
1255	  follow_type = make_type_with_address_space (follow_type,
1256						      make_addr_space);
1257	make_const = make_volatile = 0;
1258	make_addr_space = 0;
1259	break;
1260      case tp_array:
1261	array_size = pop_type_int ();
1262	/* FIXME-type-allocation: need a way to free this type when we are
1263	   done with it.  */
1264	range_type =
1265	  create_range_type ((struct type *) NULL,
1266			     builtin_type_int, 0,
1267			     array_size >= 0 ? array_size - 1 : 0);
1268	follow_type =
1269	  create_array_type ((struct type *) NULL,
1270			     follow_type, range_type);
1271	if (array_size < 0)
1272	  TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
1273	    = BOUND_CANNOT_BE_DETERMINED;
1274	break;
1275      case tp_function:
1276	/* FIXME-type-allocation: need a way to free this type when we are
1277	   done with it.  */
1278	follow_type = lookup_function_type (follow_type);
1279	break;
1280      }
1281  return follow_type;
1282}
1283
1284static void build_parse (void);
1285static void
1286build_parse (void)
1287{
1288  int i;
1289
1290  msym_text_symbol_type =
1291    init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1292  TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1293  msym_data_symbol_type =
1294    init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1295	       "<data variable, no debug info>", NULL);
1296  msym_unknown_symbol_type =
1297    init_type (TYPE_CODE_INT, 1, 0,
1298	       "<variable (not text or data), no debug info>",
1299	       NULL);
1300}
1301
1302/* This function avoids direct calls to fprintf
1303   in the parser generated debug code.  */
1304void
1305parser_fprintf (FILE *x, const char *y, ...)
1306{
1307  va_list args;
1308  va_start (args, y);
1309  if (x == stderr)
1310    vfprintf_unfiltered (gdb_stderr, y, args);
1311  else
1312    {
1313      fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1314      vfprintf_unfiltered (gdb_stderr, y, args);
1315    }
1316  va_end (args);
1317}
1318
1319void
1320_initialize_parse (void)
1321{
1322  type_stack_size = 80;
1323  type_stack_depth = 0;
1324  type_stack = (union type_stack_elt *)
1325    xmalloc (type_stack_size * sizeof (*type_stack));
1326
1327  build_parse ();
1328
1329  /* FIXME - For the moment, handle types by swapping them in and out.
1330     Should be using the per-architecture data-pointer and a large
1331     struct. */
1332  DEPRECATED_REGISTER_GDBARCH_SWAP (msym_text_symbol_type);
1333  DEPRECATED_REGISTER_GDBARCH_SWAP (msym_data_symbol_type);
1334  DEPRECATED_REGISTER_GDBARCH_SWAP (msym_unknown_symbol_type);
1335  deprecated_register_gdbarch_swap (NULL, 0, build_parse);
1336
1337  deprecated_add_show_from_set
1338    (add_set_cmd ("expression", class_maintenance, var_zinteger,
1339		  (char *) &expressiondebug,
1340		  "Set expression debugging.\n\
1341When non-zero, the internal representation of expressions will be printed.",
1342		  &setdebuglist),
1343     &showdebuglist);
1344}
1345