1/*-
2 * Copyright (c) 2007-2009
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 * Copyright (c) 2008
5 *	Benjamin Close <benjsc@FreeBSD.org>
6 * Copyright (c) 2008 Sam Leffler, Errno Consulting
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*
22 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23 * adapters.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD$");
28
29#include <sys/param.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32#include <sys/mbuf.h>
33#include <sys/kernel.h>
34#include <sys/socket.h>
35#include <sys/systm.h>
36#include <sys/malloc.h>
37#include <sys/bus.h>
38#include <sys/rman.h>
39#include <sys/endian.h>
40#include <sys/firmware.h>
41#include <sys/limits.h>
42#include <sys/module.h>
43#include <sys/queue.h>
44#include <sys/taskqueue.h>
45
46#include <machine/bus.h>
47#include <machine/resource.h>
48#include <machine/clock.h>
49
50#include <dev/pci/pcireg.h>
51#include <dev/pci/pcivar.h>
52
53#include <net/bpf.h>
54#include <net/if.h>
55#include <net/if_arp.h>
56#include <net/ethernet.h>
57#include <net/if_dl.h>
58#include <net/if_media.h>
59#include <net/if_types.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/in_var.h>
64#include <netinet/if_ether.h>
65#include <netinet/ip.h>
66
67#include <net80211/ieee80211_var.h>
68#include <net80211/ieee80211_radiotap.h>
69#include <net80211/ieee80211_regdomain.h>
70#include <net80211/ieee80211_ratectl.h>
71
72#include <dev/iwn/if_iwnreg.h>
73#include <dev/iwn/if_iwnvar.h>
74
75struct iwn_ident {
76	uint16_t	vendor;
77	uint16_t	device;
78	const char	*name;
79};
80
81static const struct iwn_ident iwn_ident_table[] = {
82	{ 0x8086, 0x0082, "Intel Centrino Advanced-N 6205"		},
83	{ 0x8086, 0x0083, "Intel Centrino Wireless-N 1000"		},
84	{ 0x8086, 0x0084, "Intel Centrino Wireless-N 1000"		},
85	{ 0x8086, 0x0085, "Intel Centrino Advanced-N 6205"		},
86	{ 0x8086, 0x0087, "Intel Centrino Advanced-N + WiMAX 6250"	},
87	{ 0x8086, 0x0089, "Intel Centrino Advanced-N + WiMAX 6250"	},
88	{ 0x8086, 0x008a, "Intel Centrino Wireless-N 1030"		},
89	{ 0x8086, 0x008b, "Intel Centrino Wireless-N 1030"		},
90	{ 0x8086, 0x0090, "Intel Centrino Advanced-N 6230"		},
91	{ 0x8086, 0x0091, "Intel Centrino Advanced-N 6230"		},
92	{ 0x8086, 0x0885, "Intel Centrino Wireless-N + WiMAX 6150"	},
93	{ 0x8086, 0x0886, "Intel Centrino Wireless-N + WiMAX 6150"	},
94	{ 0x8086, 0x0896, "Intel Centrino Wireless-N 130"		},
95	{ 0x8086, 0x0887, "Intel Centrino Wireless-N 130"		},
96	{ 0x8086, 0x08ae, "Intel Centrino Wireless-N 100"		},
97	{ 0x8086, 0x08af, "Intel Centrino Wireless-N 100"		},
98	{ 0x8086, 0x4229, "Intel Wireless WiFi Link 4965"		},
99	{ 0x8086, 0x422b, "Intel Centrino Ultimate-N 6300"		},
100	{ 0x8086, 0x422c, "Intel Centrino Advanced-N 6200"		},
101	{ 0x8086, 0x422d, "Intel Wireless WiFi Link 4965"		},
102	{ 0x8086, 0x4230, "Intel Wireless WiFi Link 4965"		},
103	{ 0x8086, 0x4232, "Intel WiFi Link 5100"			},
104	{ 0x8086, 0x4233, "Intel Wireless WiFi Link 4965"		},
105	{ 0x8086, 0x4235, "Intel Ultimate N WiFi Link 5300"		},
106	{ 0x8086, 0x4236, "Intel Ultimate N WiFi Link 5300"		},
107	{ 0x8086, 0x4237, "Intel WiFi Link 5100"			},
108	{ 0x8086, 0x4238, "Intel Centrino Ultimate-N 6300"		},
109	{ 0x8086, 0x4239, "Intel Centrino Advanced-N 6200"		},
110	{ 0x8086, 0x423a, "Intel WiMAX/WiFi Link 5350"			},
111	{ 0x8086, 0x423b, "Intel WiMAX/WiFi Link 5350"			},
112	{ 0x8086, 0x423c, "Intel WiMAX/WiFi Link 5150"			},
113	{ 0x8086, 0x423d, "Intel WiMAX/WiFi Link 5150"			},
114	{ 0, 0, NULL }
115};
116
117static int	iwn_probe(device_t);
118static int	iwn_attach(device_t);
119static int	iwn4965_attach(struct iwn_softc *, uint16_t);
120static int	iwn5000_attach(struct iwn_softc *, uint16_t);
121static void	iwn_radiotap_attach(struct iwn_softc *);
122static void	iwn_sysctlattach(struct iwn_softc *);
123static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
124		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
125		    const uint8_t [IEEE80211_ADDR_LEN],
126		    const uint8_t [IEEE80211_ADDR_LEN]);
127static void	iwn_vap_delete(struct ieee80211vap *);
128static int	iwn_detach(device_t);
129static int	iwn_shutdown(device_t);
130static int	iwn_suspend(device_t);
131static int	iwn_resume(device_t);
132static int	iwn_nic_lock(struct iwn_softc *);
133static int	iwn_eeprom_lock(struct iwn_softc *);
134static int	iwn_init_otprom(struct iwn_softc *);
135static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
136static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
137static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
138		    void **, bus_size_t, bus_size_t);
139static void	iwn_dma_contig_free(struct iwn_dma_info *);
140static int	iwn_alloc_sched(struct iwn_softc *);
141static void	iwn_free_sched(struct iwn_softc *);
142static int	iwn_alloc_kw(struct iwn_softc *);
143static void	iwn_free_kw(struct iwn_softc *);
144static int	iwn_alloc_ict(struct iwn_softc *);
145static void	iwn_free_ict(struct iwn_softc *);
146static int	iwn_alloc_fwmem(struct iwn_softc *);
147static void	iwn_free_fwmem(struct iwn_softc *);
148static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
150static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
151static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
152		    int);
153static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
154static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
155static void	iwn5000_ict_reset(struct iwn_softc *);
156static int	iwn_read_eeprom(struct iwn_softc *,
157		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
158static void	iwn4965_read_eeprom(struct iwn_softc *);
159static void	iwn4965_print_power_group(struct iwn_softc *, int);
160static void	iwn5000_read_eeprom(struct iwn_softc *);
161static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
162static void	iwn_read_eeprom_band(struct iwn_softc *, int);
163static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
164static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
165static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
166		    struct ieee80211_channel *);
167static int	iwn_setregdomain(struct ieee80211com *,
168		    struct ieee80211_regdomain *, int,
169		    struct ieee80211_channel[]);
170static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
171static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
172		    const uint8_t mac[IEEE80211_ADDR_LEN]);
173static void	iwn_newassoc(struct ieee80211_node *, int);
174static int	iwn_media_change(struct ifnet *);
175static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176static void	iwn_calib_timeout(void *);
177static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
178		    struct iwn_rx_data *);
179static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
180		    struct iwn_rx_data *);
181static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
182		    struct iwn_rx_data *);
183static void	iwn5000_rx_calib_results(struct iwn_softc *,
184		    struct iwn_rx_desc *, struct iwn_rx_data *);
185static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
186		    struct iwn_rx_data *);
187static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
188		    struct iwn_rx_data *);
189static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
190		    struct iwn_rx_data *);
191static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
192		    uint8_t);
193static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
194static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
195static void	iwn_notif_intr(struct iwn_softc *);
196static void	iwn_wakeup_intr(struct iwn_softc *);
197static void	iwn_rftoggle_intr(struct iwn_softc *);
198static void	iwn_fatal_intr(struct iwn_softc *);
199static void	iwn_intr(void *);
200static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
201		    uint16_t);
202static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
203		    uint16_t);
204#ifdef notyet
205static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
206#endif
207static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
208		    struct ieee80211_node *);
209static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
210		    struct ieee80211_node *,
211		    const struct ieee80211_bpf_params *params);
212static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
213		    const struct ieee80211_bpf_params *);
214static void	iwn_start(struct ifnet *);
215static void	iwn_start_locked(struct ifnet *);
216static void	iwn_watchdog(void *);
217static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
218static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
219static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
220		    int);
221static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
222		    int);
223static int	iwn_set_link_quality(struct iwn_softc *,
224		    struct ieee80211_node *);
225static int	iwn_add_broadcast_node(struct iwn_softc *, int);
226static int	iwn_updateedca(struct ieee80211com *);
227static void	iwn_update_mcast(struct ifnet *);
228static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
229static int	iwn_set_critical_temp(struct iwn_softc *);
230static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
231static void	iwn4965_power_calibration(struct iwn_softc *, int);
232static int	iwn4965_set_txpower(struct iwn_softc *,
233		    struct ieee80211_channel *, int);
234static int	iwn5000_set_txpower(struct iwn_softc *,
235		    struct ieee80211_channel *, int);
236static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
237static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
238static int	iwn_get_noise(const struct iwn_rx_general_stats *);
239static int	iwn4965_get_temperature(struct iwn_softc *);
240static int	iwn5000_get_temperature(struct iwn_softc *);
241static int	iwn_init_sensitivity(struct iwn_softc *);
242static void	iwn_collect_noise(struct iwn_softc *,
243		    const struct iwn_rx_general_stats *);
244static int	iwn4965_init_gains(struct iwn_softc *);
245static int	iwn5000_init_gains(struct iwn_softc *);
246static int	iwn4965_set_gains(struct iwn_softc *);
247static int	iwn5000_set_gains(struct iwn_softc *);
248static void	iwn_tune_sensitivity(struct iwn_softc *,
249		    const struct iwn_rx_stats *);
250static int	iwn_send_sensitivity(struct iwn_softc *);
251static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
252static int	iwn_send_btcoex(struct iwn_softc *);
253static int	iwn_send_advanced_btcoex(struct iwn_softc *);
254static int	iwn5000_runtime_calib(struct iwn_softc *);
255static int	iwn_config(struct iwn_softc *);
256static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
257static int	iwn_scan(struct iwn_softc *);
258static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
259static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
260static int	iwn_ampdu_rx_start(struct ieee80211_node *,
261		    struct ieee80211_rx_ampdu *, int, int, int);
262static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
263		    struct ieee80211_rx_ampdu *);
264static int	iwn_addba_request(struct ieee80211_node *,
265		    struct ieee80211_tx_ampdu *, int, int, int);
266static int	iwn_addba_response(struct ieee80211_node *,
267		    struct ieee80211_tx_ampdu *, int, int, int);
268static int	iwn_ampdu_tx_start(struct ieee80211com *,
269		    struct ieee80211_node *, uint8_t);
270static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
271		    struct ieee80211_tx_ampdu *);
272static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
273		    struct ieee80211_node *, int, uint8_t, uint16_t);
274static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
275		    uint8_t, uint16_t);
276static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
277		    struct ieee80211_node *, int, uint8_t, uint16_t);
278static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
279		    uint8_t, uint16_t);
280static int	iwn5000_query_calibration(struct iwn_softc *);
281static int	iwn5000_send_calibration(struct iwn_softc *);
282static int	iwn5000_send_wimax_coex(struct iwn_softc *);
283static int	iwn5000_crystal_calib(struct iwn_softc *);
284static int	iwn5000_temp_offset_calib(struct iwn_softc *);
285static int	iwn4965_post_alive(struct iwn_softc *);
286static int	iwn5000_post_alive(struct iwn_softc *);
287static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
288		    int);
289static int	iwn4965_load_firmware(struct iwn_softc *);
290static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
291		    const uint8_t *, int);
292static int	iwn5000_load_firmware(struct iwn_softc *);
293static int	iwn_read_firmware_leg(struct iwn_softc *,
294		    struct iwn_fw_info *);
295static int	iwn_read_firmware_tlv(struct iwn_softc *,
296		    struct iwn_fw_info *, uint16_t);
297static int	iwn_read_firmware(struct iwn_softc *);
298static int	iwn_clock_wait(struct iwn_softc *);
299static int	iwn_apm_init(struct iwn_softc *);
300static void	iwn_apm_stop_master(struct iwn_softc *);
301static void	iwn_apm_stop(struct iwn_softc *);
302static int	iwn4965_nic_config(struct iwn_softc *);
303static int	iwn5000_nic_config(struct iwn_softc *);
304static int	iwn_hw_prepare(struct iwn_softc *);
305static int	iwn_hw_init(struct iwn_softc *);
306static void	iwn_hw_stop(struct iwn_softc *);
307static void	iwn_radio_on(void *, int);
308static void	iwn_radio_off(void *, int);
309static void	iwn_init_locked(struct iwn_softc *);
310static void	iwn_init(void *);
311static void	iwn_stop_locked(struct iwn_softc *);
312static void	iwn_stop(struct iwn_softc *);
313static void	iwn_scan_start(struct ieee80211com *);
314static void	iwn_scan_end(struct ieee80211com *);
315static void	iwn_set_channel(struct ieee80211com *);
316static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
317static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
318static void	iwn_hw_reset(void *, int);
319
320#define IWN_DEBUG
321#ifdef IWN_DEBUG
322enum {
323	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
324	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
325	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
326	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
327	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
328	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
329	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
330	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
331	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
332	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
333	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
334	IWN_DEBUG_LED		= 0x00000800,	/* led management */
335	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
336	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
337	IWN_DEBUG_ANY		= 0xffffffff
338};
339
340#define DPRINTF(sc, m, fmt, ...) do {			\
341	if (sc->sc_debug & (m))				\
342		printf(fmt, __VA_ARGS__);		\
343} while (0)
344
345static const char *
346iwn_intr_str(uint8_t cmd)
347{
348	switch (cmd) {
349	/* Notifications */
350	case IWN_UC_READY:		return "UC_READY";
351	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
352	case IWN_TX_DONE:		return "TX_DONE";
353	case IWN_START_SCAN:		return "START_SCAN";
354	case IWN_STOP_SCAN:		return "STOP_SCAN";
355	case IWN_RX_STATISTICS:		return "RX_STATS";
356	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
357	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
358	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
359	case IWN_RX_PHY:		return "RX_PHY";
360	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
361	case IWN_RX_DONE:		return "RX_DONE";
362
363	/* Command Notifications */
364	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
365	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
366	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
367	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
368	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
369	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
370	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
371	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
372	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
373	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
374	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
375	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
376	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
377	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
378	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
379	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
380	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
381	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
382	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
383	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
384	}
385	return "UNKNOWN INTR NOTIF/CMD";
386}
387#else
388#define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
389#endif
390
391static device_method_t iwn_methods[] = {
392	/* Device interface */
393	DEVMETHOD(device_probe,		iwn_probe),
394	DEVMETHOD(device_attach,	iwn_attach),
395	DEVMETHOD(device_detach,	iwn_detach),
396	DEVMETHOD(device_shutdown,	iwn_shutdown),
397	DEVMETHOD(device_suspend,	iwn_suspend),
398	DEVMETHOD(device_resume,	iwn_resume),
399	{ 0, 0 }
400};
401
402static driver_t iwn_driver = {
403	"iwn",
404	iwn_methods,
405	sizeof(struct iwn_softc)
406};
407static devclass_t iwn_devclass;
408
409DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
410
411MODULE_VERSION(iwn, 1);
412
413MODULE_DEPEND(iwn, firmware, 1, 1, 1);
414MODULE_DEPEND(iwn, pci, 1, 1, 1);
415MODULE_DEPEND(iwn, wlan, 1, 1, 1);
416
417static int
418iwn_probe(device_t dev)
419{
420	const struct iwn_ident *ident;
421
422	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
423		if (pci_get_vendor(dev) == ident->vendor &&
424		    pci_get_device(dev) == ident->device) {
425			device_set_desc(dev, ident->name);
426			return 0;
427		}
428	}
429	return ENXIO;
430}
431
432static int
433iwn_attach(device_t dev)
434{
435	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
436	struct ieee80211com *ic;
437	struct ifnet *ifp;
438	uint32_t reg;
439	int i, error, result;
440	uint8_t macaddr[IEEE80211_ADDR_LEN];
441
442	sc->sc_dev = dev;
443
444	/*
445	 * Get the offset of the PCI Express Capability Structure in PCI
446	 * Configuration Space.
447	 */
448	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
449	if (error != 0) {
450		device_printf(dev, "PCIe capability structure not found!\n");
451		return error;
452	}
453
454	/* Clear device-specific "PCI retry timeout" register (41h). */
455	pci_write_config(dev, 0x41, 0, 1);
456
457	/* Hardware bug workaround. */
458	reg = pci_read_config(dev, PCIR_COMMAND, 1);
459	if (reg & PCIM_CMD_INTxDIS) {
460		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
461		    __func__);
462		reg &= ~PCIM_CMD_INTxDIS;
463		pci_write_config(dev, PCIR_COMMAND, reg, 1);
464	}
465
466	/* Enable bus-mastering. */
467	pci_enable_busmaster(dev);
468
469	sc->mem_rid = PCIR_BAR(0);
470	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
471	    RF_ACTIVE);
472	if (sc->mem == NULL) {
473		device_printf(dev, "can't map mem space\n");
474		error = ENOMEM;
475		return error;
476	}
477	sc->sc_st = rman_get_bustag(sc->mem);
478	sc->sc_sh = rman_get_bushandle(sc->mem);
479
480	sc->irq_rid = 0;
481	if ((result = pci_msi_count(dev)) == 1 &&
482	    pci_alloc_msi(dev, &result) == 0)
483		sc->irq_rid = 1;
484	/* Install interrupt handler. */
485	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
486	    RF_ACTIVE | RF_SHAREABLE);
487	if (sc->irq == NULL) {
488		device_printf(dev, "can't map interrupt\n");
489		error = ENOMEM;
490		goto fail;
491	}
492
493	IWN_LOCK_INIT(sc);
494
495	/* Read hardware revision and attach. */
496	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
497	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
498		error = iwn4965_attach(sc, pci_get_device(dev));
499	else
500		error = iwn5000_attach(sc, pci_get_device(dev));
501	if (error != 0) {
502		device_printf(dev, "could not attach device, error %d\n",
503		    error);
504		goto fail;
505	}
506
507	if ((error = iwn_hw_prepare(sc)) != 0) {
508		device_printf(dev, "hardware not ready, error %d\n", error);
509		goto fail;
510	}
511
512	/* Allocate DMA memory for firmware transfers. */
513	if ((error = iwn_alloc_fwmem(sc)) != 0) {
514		device_printf(dev,
515		    "could not allocate memory for firmware, error %d\n",
516		    error);
517		goto fail;
518	}
519
520	/* Allocate "Keep Warm" page. */
521	if ((error = iwn_alloc_kw(sc)) != 0) {
522		device_printf(dev,
523		    "could not allocate keep warm page, error %d\n", error);
524		goto fail;
525	}
526
527	/* Allocate ICT table for 5000 Series. */
528	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
529	    (error = iwn_alloc_ict(sc)) != 0) {
530		device_printf(dev, "could not allocate ICT table, error %d\n",
531		    error);
532		goto fail;
533	}
534
535	/* Allocate TX scheduler "rings". */
536	if ((error = iwn_alloc_sched(sc)) != 0) {
537		device_printf(dev,
538		    "could not allocate TX scheduler rings, error %d\n", error);
539		goto fail;
540	}
541
542	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
543	for (i = 0; i < sc->ntxqs; i++) {
544		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
545			device_printf(dev,
546			    "could not allocate TX ring %d, error %d\n", i,
547			    error);
548			goto fail;
549		}
550	}
551
552	/* Allocate RX ring. */
553	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
554		device_printf(dev, "could not allocate RX ring, error %d\n",
555		    error);
556		goto fail;
557	}
558
559	/* Clear pending interrupts. */
560	IWN_WRITE(sc, IWN_INT, 0xffffffff);
561
562	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
563	if (ifp == NULL) {
564		device_printf(dev, "can not allocate ifnet structure\n");
565		goto fail;
566	}
567
568	ic = ifp->if_l2com;
569	ic->ic_ifp = ifp;
570	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
571	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
572
573	/* Set device capabilities. */
574	ic->ic_caps =
575		  IEEE80211_C_STA		/* station mode supported */
576		| IEEE80211_C_MONITOR		/* monitor mode supported */
577		| IEEE80211_C_BGSCAN		/* background scanning */
578		| IEEE80211_C_TXPMGT		/* tx power management */
579		| IEEE80211_C_SHSLOT		/* short slot time supported */
580		| IEEE80211_C_WPA
581		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582#if 0
583		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
584#endif
585		| IEEE80211_C_WME		/* WME */
586		;
587
588	/* Read MAC address, channels, etc from EEPROM. */
589	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
590		device_printf(dev, "could not read EEPROM, error %d\n",
591		    error);
592		goto fail;
593	}
594
595	/* Count the number of available chains. */
596	sc->ntxchains =
597	    ((sc->txchainmask >> 2) & 1) +
598	    ((sc->txchainmask >> 1) & 1) +
599	    ((sc->txchainmask >> 0) & 1);
600	sc->nrxchains =
601	    ((sc->rxchainmask >> 2) & 1) +
602	    ((sc->rxchainmask >> 1) & 1) +
603	    ((sc->rxchainmask >> 0) & 1);
604	if (bootverbose) {
605		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
606		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
607		    macaddr, ":");
608	}
609
610	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
611		ic->ic_rxstream = sc->nrxchains;
612		ic->ic_txstream = sc->ntxchains;
613		ic->ic_htcaps =
614			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
615			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
616			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
617			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
618#ifdef notyet
619			| IEEE80211_HTCAP_GREENFIELD
620#if IWN_RBUF_SIZE == 8192
621			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
622#else
623			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
624#endif
625#endif
626			/* s/w capabilities */
627			| IEEE80211_HTC_HT		/* HT operation */
628			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
629#ifdef notyet
630			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
631#endif
632			;
633	}
634
635	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
636	ifp->if_softc = sc;
637	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
638	ifp->if_init = iwn_init;
639	ifp->if_ioctl = iwn_ioctl;
640	ifp->if_start = iwn_start;
641	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
642	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
643	IFQ_SET_READY(&ifp->if_snd);
644
645	ieee80211_ifattach(ic, macaddr);
646	ic->ic_vap_create = iwn_vap_create;
647	ic->ic_vap_delete = iwn_vap_delete;
648	ic->ic_raw_xmit = iwn_raw_xmit;
649	ic->ic_node_alloc = iwn_node_alloc;
650	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
651	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
652	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
653	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
654	sc->sc_addba_request = ic->ic_addba_request;
655	ic->ic_addba_request = iwn_addba_request;
656	sc->sc_addba_response = ic->ic_addba_response;
657	ic->ic_addba_response = iwn_addba_response;
658	sc->sc_addba_stop = ic->ic_addba_stop;
659	ic->ic_addba_stop = iwn_ampdu_tx_stop;
660	ic->ic_newassoc = iwn_newassoc;
661	ic->ic_wme.wme_update = iwn_updateedca;
662	ic->ic_update_mcast = iwn_update_mcast;
663	ic->ic_scan_start = iwn_scan_start;
664	ic->ic_scan_end = iwn_scan_end;
665	ic->ic_set_channel = iwn_set_channel;
666	ic->ic_scan_curchan = iwn_scan_curchan;
667	ic->ic_scan_mindwell = iwn_scan_mindwell;
668	ic->ic_setregdomain = iwn_setregdomain;
669
670	iwn_radiotap_attach(sc);
671
672	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
673	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
674	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
675	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
676	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
677
678	iwn_sysctlattach(sc);
679
680	/*
681	 * Hook our interrupt after all initialization is complete.
682	 */
683	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
684	    NULL, iwn_intr, sc, &sc->sc_ih);
685	if (error != 0) {
686		device_printf(dev, "can't establish interrupt, error %d\n",
687		    error);
688		goto fail;
689	}
690
691	if (bootverbose)
692		ieee80211_announce(ic);
693	return 0;
694fail:
695	iwn_detach(dev);
696	return error;
697}
698
699static int
700iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
701{
702	struct iwn_ops *ops = &sc->ops;
703
704	ops->load_firmware = iwn4965_load_firmware;
705	ops->read_eeprom = iwn4965_read_eeprom;
706	ops->post_alive = iwn4965_post_alive;
707	ops->nic_config = iwn4965_nic_config;
708	ops->update_sched = iwn4965_update_sched;
709	ops->get_temperature = iwn4965_get_temperature;
710	ops->get_rssi = iwn4965_get_rssi;
711	ops->set_txpower = iwn4965_set_txpower;
712	ops->init_gains = iwn4965_init_gains;
713	ops->set_gains = iwn4965_set_gains;
714	ops->add_node = iwn4965_add_node;
715	ops->tx_done = iwn4965_tx_done;
716	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
717	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
718	sc->ntxqs = IWN4965_NTXQUEUES;
719	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
720	sc->ndmachnls = IWN4965_NDMACHNLS;
721	sc->broadcast_id = IWN4965_ID_BROADCAST;
722	sc->rxonsz = IWN4965_RXONSZ;
723	sc->schedsz = IWN4965_SCHEDSZ;
724	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
725	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
726	sc->fwsz = IWN4965_FWSZ;
727	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
728	sc->limits = &iwn4965_sensitivity_limits;
729	sc->fwname = "iwn4965fw";
730	/* Override chains masks, ROM is known to be broken. */
731	sc->txchainmask = IWN_ANT_AB;
732	sc->rxchainmask = IWN_ANT_ABC;
733
734	return 0;
735}
736
737static int
738iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
739{
740	struct iwn_ops *ops = &sc->ops;
741
742	ops->load_firmware = iwn5000_load_firmware;
743	ops->read_eeprom = iwn5000_read_eeprom;
744	ops->post_alive = iwn5000_post_alive;
745	ops->nic_config = iwn5000_nic_config;
746	ops->update_sched = iwn5000_update_sched;
747	ops->get_temperature = iwn5000_get_temperature;
748	ops->get_rssi = iwn5000_get_rssi;
749	ops->set_txpower = iwn5000_set_txpower;
750	ops->init_gains = iwn5000_init_gains;
751	ops->set_gains = iwn5000_set_gains;
752	ops->add_node = iwn5000_add_node;
753	ops->tx_done = iwn5000_tx_done;
754	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
755	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
756	sc->ntxqs = IWN5000_NTXQUEUES;
757	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
758	sc->ndmachnls = IWN5000_NDMACHNLS;
759	sc->broadcast_id = IWN5000_ID_BROADCAST;
760	sc->rxonsz = IWN5000_RXONSZ;
761	sc->schedsz = IWN5000_SCHEDSZ;
762	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
763	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
764	sc->fwsz = IWN5000_FWSZ;
765	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
766	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
767	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
768
769	switch (sc->hw_type) {
770	case IWN_HW_REV_TYPE_5100:
771		sc->limits = &iwn5000_sensitivity_limits;
772		sc->fwname = "iwn5000fw";
773		/* Override chains masks, ROM is known to be broken. */
774		sc->txchainmask = IWN_ANT_B;
775		sc->rxchainmask = IWN_ANT_AB;
776		break;
777	case IWN_HW_REV_TYPE_5150:
778		sc->limits = &iwn5150_sensitivity_limits;
779		sc->fwname = "iwn5150fw";
780		break;
781	case IWN_HW_REV_TYPE_5300:
782	case IWN_HW_REV_TYPE_5350:
783		sc->limits = &iwn5000_sensitivity_limits;
784		sc->fwname = "iwn5000fw";
785		break;
786	case IWN_HW_REV_TYPE_1000:
787		sc->limits = &iwn1000_sensitivity_limits;
788		sc->fwname = "iwn1000fw";
789		break;
790	case IWN_HW_REV_TYPE_6000:
791		sc->limits = &iwn6000_sensitivity_limits;
792		sc->fwname = "iwn6000fw";
793		if (pid == 0x422c || pid == 0x4239) {
794			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
795			/* Override chains masks, ROM is known to be broken. */
796			sc->txchainmask = IWN_ANT_BC;
797			sc->rxchainmask = IWN_ANT_BC;
798		}
799		break;
800	case IWN_HW_REV_TYPE_6050:
801		sc->limits = &iwn6000_sensitivity_limits;
802		sc->fwname = "iwn6050fw";
803		/* Override chains masks, ROM is known to be broken. */
804		sc->txchainmask = IWN_ANT_AB;
805		sc->rxchainmask = IWN_ANT_AB;
806		break;
807	case IWN_HW_REV_TYPE_6005:
808		sc->limits = &iwn6000_sensitivity_limits;
809		if (pid != 0x0082 && pid != 0x0085) {
810			sc->fwname = "iwn6000g2bfw";
811			sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
812		} else
813			sc->fwname = "iwn6000g2afw";
814		break;
815	default:
816		device_printf(sc->sc_dev, "adapter type %d not supported\n",
817		    sc->hw_type);
818		return ENOTSUP;
819	}
820	return 0;
821}
822
823/*
824 * Attach the interface to 802.11 radiotap.
825 */
826static void
827iwn_radiotap_attach(struct iwn_softc *sc)
828{
829	struct ifnet *ifp = sc->sc_ifp;
830	struct ieee80211com *ic = ifp->if_l2com;
831
832	ieee80211_radiotap_attach(ic,
833	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
834		IWN_TX_RADIOTAP_PRESENT,
835	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
836		IWN_RX_RADIOTAP_PRESENT);
837}
838
839static void
840iwn_sysctlattach(struct iwn_softc *sc)
841{
842	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
843	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
844
845#ifdef IWN_DEBUG
846	sc->sc_debug = 0;
847	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
848	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
849#endif
850}
851
852static struct ieee80211vap *
853iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
854    enum ieee80211_opmode opmode, int flags,
855    const uint8_t bssid[IEEE80211_ADDR_LEN],
856    const uint8_t mac[IEEE80211_ADDR_LEN])
857{
858	struct iwn_vap *ivp;
859	struct ieee80211vap *vap;
860
861	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
862		return NULL;
863	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
864	    M_80211_VAP, M_NOWAIT | M_ZERO);
865	if (ivp == NULL)
866		return NULL;
867	vap = &ivp->iv_vap;
868	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
869	vap->iv_bmissthreshold = 10;		/* override default */
870	/* Override with driver methods. */
871	ivp->iv_newstate = vap->iv_newstate;
872	vap->iv_newstate = iwn_newstate;
873
874	ieee80211_ratectl_init(vap);
875	/* Complete setup. */
876	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
877	ic->ic_opmode = opmode;
878	return vap;
879}
880
881static void
882iwn_vap_delete(struct ieee80211vap *vap)
883{
884	struct iwn_vap *ivp = IWN_VAP(vap);
885
886	ieee80211_ratectl_deinit(vap);
887	ieee80211_vap_detach(vap);
888	free(ivp, M_80211_VAP);
889}
890
891static int
892iwn_detach(device_t dev)
893{
894	struct iwn_softc *sc = device_get_softc(dev);
895	struct ifnet *ifp = sc->sc_ifp;
896	struct ieee80211com *ic;
897	int qid;
898
899	if (ifp != NULL) {
900		ic = ifp->if_l2com;
901
902		ieee80211_draintask(ic, &sc->sc_reinit_task);
903		ieee80211_draintask(ic, &sc->sc_radioon_task);
904		ieee80211_draintask(ic, &sc->sc_radiooff_task);
905
906		iwn_stop(sc);
907		callout_drain(&sc->watchdog_to);
908		callout_drain(&sc->calib_to);
909		ieee80211_ifdetach(ic);
910	}
911
912	/* Uninstall interrupt handler. */
913	if (sc->irq != NULL) {
914		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
915		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
916		if (sc->irq_rid == 1)
917			pci_release_msi(dev);
918	}
919
920	/* Free DMA resources. */
921	iwn_free_rx_ring(sc, &sc->rxq);
922	for (qid = 0; qid < sc->ntxqs; qid++)
923		iwn_free_tx_ring(sc, &sc->txq[qid]);
924	iwn_free_sched(sc);
925	iwn_free_kw(sc);
926	if (sc->ict != NULL)
927		iwn_free_ict(sc);
928	iwn_free_fwmem(sc);
929
930	if (sc->mem != NULL)
931		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
932
933	if (ifp != NULL)
934		if_free(ifp);
935
936	IWN_LOCK_DESTROY(sc);
937	return 0;
938}
939
940static int
941iwn_shutdown(device_t dev)
942{
943	struct iwn_softc *sc = device_get_softc(dev);
944
945	iwn_stop(sc);
946	return 0;
947}
948
949static int
950iwn_suspend(device_t dev)
951{
952	struct iwn_softc *sc = device_get_softc(dev);
953	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
954
955	ieee80211_suspend_all(ic);
956	return 0;
957}
958
959static int
960iwn_resume(device_t dev)
961{
962	struct iwn_softc *sc = device_get_softc(dev);
963	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
964
965	/* Clear device-specific "PCI retry timeout" register (41h). */
966	pci_write_config(dev, 0x41, 0, 1);
967
968	ieee80211_resume_all(ic);
969	return 0;
970}
971
972static int
973iwn_nic_lock(struct iwn_softc *sc)
974{
975	int ntries;
976
977	/* Request exclusive access to NIC. */
978	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
979
980	/* Spin until we actually get the lock. */
981	for (ntries = 0; ntries < 1000; ntries++) {
982		if ((IWN_READ(sc, IWN_GP_CNTRL) &
983		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
984		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
985			return 0;
986		DELAY(10);
987	}
988	return ETIMEDOUT;
989}
990
991static __inline void
992iwn_nic_unlock(struct iwn_softc *sc)
993{
994	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
995}
996
997static __inline uint32_t
998iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
999{
1000	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1001	IWN_BARRIER_READ_WRITE(sc);
1002	return IWN_READ(sc, IWN_PRPH_RDATA);
1003}
1004
1005static __inline void
1006iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1007{
1008	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1009	IWN_BARRIER_WRITE(sc);
1010	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1011}
1012
1013static __inline void
1014iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1015{
1016	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1017}
1018
1019static __inline void
1020iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1021{
1022	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1023}
1024
1025static __inline void
1026iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1027    const uint32_t *data, int count)
1028{
1029	for (; count > 0; count--, data++, addr += 4)
1030		iwn_prph_write(sc, addr, *data);
1031}
1032
1033static __inline uint32_t
1034iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1035{
1036	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1037	IWN_BARRIER_READ_WRITE(sc);
1038	return IWN_READ(sc, IWN_MEM_RDATA);
1039}
1040
1041static __inline void
1042iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1043{
1044	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1045	IWN_BARRIER_WRITE(sc);
1046	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1047}
1048
1049static __inline void
1050iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1051{
1052	uint32_t tmp;
1053
1054	tmp = iwn_mem_read(sc, addr & ~3);
1055	if (addr & 3)
1056		tmp = (tmp & 0x0000ffff) | data << 16;
1057	else
1058		tmp = (tmp & 0xffff0000) | data;
1059	iwn_mem_write(sc, addr & ~3, tmp);
1060}
1061
1062static __inline void
1063iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1064    int count)
1065{
1066	for (; count > 0; count--, addr += 4)
1067		*data++ = iwn_mem_read(sc, addr);
1068}
1069
1070static __inline void
1071iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1072    int count)
1073{
1074	for (; count > 0; count--, addr += 4)
1075		iwn_mem_write(sc, addr, val);
1076}
1077
1078static int
1079iwn_eeprom_lock(struct iwn_softc *sc)
1080{
1081	int i, ntries;
1082
1083	for (i = 0; i < 100; i++) {
1084		/* Request exclusive access to EEPROM. */
1085		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1086		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1087
1088		/* Spin until we actually get the lock. */
1089		for (ntries = 0; ntries < 100; ntries++) {
1090			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1091			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1092				return 0;
1093			DELAY(10);
1094		}
1095	}
1096	return ETIMEDOUT;
1097}
1098
1099static __inline void
1100iwn_eeprom_unlock(struct iwn_softc *sc)
1101{
1102	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1103}
1104
1105/*
1106 * Initialize access by host to One Time Programmable ROM.
1107 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1108 */
1109static int
1110iwn_init_otprom(struct iwn_softc *sc)
1111{
1112	uint16_t prev, base, next;
1113	int count, error;
1114
1115	/* Wait for clock stabilization before accessing prph. */
1116	if ((error = iwn_clock_wait(sc)) != 0)
1117		return error;
1118
1119	if ((error = iwn_nic_lock(sc)) != 0)
1120		return error;
1121	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1122	DELAY(5);
1123	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1124	iwn_nic_unlock(sc);
1125
1126	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1127	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1128		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1129		    IWN_RESET_LINK_PWR_MGMT_DIS);
1130	}
1131	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1132	/* Clear ECC status. */
1133	IWN_SETBITS(sc, IWN_OTP_GP,
1134	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1135
1136	/*
1137	 * Find the block before last block (contains the EEPROM image)
1138	 * for HW without OTP shadow RAM.
1139	 */
1140	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1141		/* Switch to absolute addressing mode. */
1142		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1143		base = prev = 0;
1144		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1145			error = iwn_read_prom_data(sc, base, &next, 2);
1146			if (error != 0)
1147				return error;
1148			if (next == 0)	/* End of linked-list. */
1149				break;
1150			prev = base;
1151			base = le16toh(next);
1152		}
1153		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1154			return EIO;
1155		/* Skip "next" word. */
1156		sc->prom_base = prev + 1;
1157	}
1158	return 0;
1159}
1160
1161static int
1162iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1163{
1164	uint8_t *out = data;
1165	uint32_t val, tmp;
1166	int ntries;
1167
1168	addr += sc->prom_base;
1169	for (; count > 0; count -= 2, addr++) {
1170		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1171		for (ntries = 0; ntries < 10; ntries++) {
1172			val = IWN_READ(sc, IWN_EEPROM);
1173			if (val & IWN_EEPROM_READ_VALID)
1174				break;
1175			DELAY(5);
1176		}
1177		if (ntries == 10) {
1178			device_printf(sc->sc_dev,
1179			    "timeout reading ROM at 0x%x\n", addr);
1180			return ETIMEDOUT;
1181		}
1182		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1183			/* OTPROM, check for ECC errors. */
1184			tmp = IWN_READ(sc, IWN_OTP_GP);
1185			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1186				device_printf(sc->sc_dev,
1187				    "OTPROM ECC error at 0x%x\n", addr);
1188				return EIO;
1189			}
1190			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1191				/* Correctable ECC error, clear bit. */
1192				IWN_SETBITS(sc, IWN_OTP_GP,
1193				    IWN_OTP_GP_ECC_CORR_STTS);
1194			}
1195		}
1196		*out++ = val >> 16;
1197		if (count > 1)
1198			*out++ = val >> 24;
1199	}
1200	return 0;
1201}
1202
1203static void
1204iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1205{
1206	if (error != 0)
1207		return;
1208	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1209	*(bus_addr_t *)arg = segs[0].ds_addr;
1210}
1211
1212static int
1213iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1214    void **kvap, bus_size_t size, bus_size_t alignment)
1215{
1216	int error;
1217
1218	dma->tag = NULL;
1219	dma->size = size;
1220
1221	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1222	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1223	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1224	if (error != 0)
1225		goto fail;
1226
1227	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1228	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1229	if (error != 0)
1230		goto fail;
1231
1232	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1233	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1234	if (error != 0)
1235		goto fail;
1236
1237	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1238
1239	if (kvap != NULL)
1240		*kvap = dma->vaddr;
1241
1242	return 0;
1243
1244fail:	iwn_dma_contig_free(dma);
1245	return error;
1246}
1247
1248static void
1249iwn_dma_contig_free(struct iwn_dma_info *dma)
1250{
1251	if (dma->map != NULL) {
1252		if (dma->vaddr != NULL) {
1253			bus_dmamap_sync(dma->tag, dma->map,
1254			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1255			bus_dmamap_unload(dma->tag, dma->map);
1256			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1257			dma->vaddr = NULL;
1258		}
1259		bus_dmamap_destroy(dma->tag, dma->map);
1260		dma->map = NULL;
1261	}
1262	if (dma->tag != NULL) {
1263		bus_dma_tag_destroy(dma->tag);
1264		dma->tag = NULL;
1265	}
1266}
1267
1268static int
1269iwn_alloc_sched(struct iwn_softc *sc)
1270{
1271	/* TX scheduler rings must be aligned on a 1KB boundary. */
1272	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1273	    sc->schedsz, 1024);
1274}
1275
1276static void
1277iwn_free_sched(struct iwn_softc *sc)
1278{
1279	iwn_dma_contig_free(&sc->sched_dma);
1280}
1281
1282static int
1283iwn_alloc_kw(struct iwn_softc *sc)
1284{
1285	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1286	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1287}
1288
1289static void
1290iwn_free_kw(struct iwn_softc *sc)
1291{
1292	iwn_dma_contig_free(&sc->kw_dma);
1293}
1294
1295static int
1296iwn_alloc_ict(struct iwn_softc *sc)
1297{
1298	/* ICT table must be aligned on a 4KB boundary. */
1299	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1300	    IWN_ICT_SIZE, 4096);
1301}
1302
1303static void
1304iwn_free_ict(struct iwn_softc *sc)
1305{
1306	iwn_dma_contig_free(&sc->ict_dma);
1307}
1308
1309static int
1310iwn_alloc_fwmem(struct iwn_softc *sc)
1311{
1312	/* Must be aligned on a 16-byte boundary. */
1313	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1314}
1315
1316static void
1317iwn_free_fwmem(struct iwn_softc *sc)
1318{
1319	iwn_dma_contig_free(&sc->fw_dma);
1320}
1321
1322static int
1323iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1324{
1325	bus_size_t size;
1326	int i, error;
1327
1328	ring->cur = 0;
1329
1330	/* Allocate RX descriptors (256-byte aligned). */
1331	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1332	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1333	    size, 256);
1334	if (error != 0) {
1335		device_printf(sc->sc_dev,
1336		    "%s: could not allocate RX ring DMA memory, error %d\n",
1337		    __func__, error);
1338		goto fail;
1339	}
1340
1341	/* Allocate RX status area (16-byte aligned). */
1342	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1343	    sizeof (struct iwn_rx_status), 16);
1344	if (error != 0) {
1345		device_printf(sc->sc_dev,
1346		    "%s: could not allocate RX status DMA memory, error %d\n",
1347		    __func__, error);
1348		goto fail;
1349	}
1350
1351	/* Create RX buffer DMA tag. */
1352	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1353	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1354	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1355	    &ring->data_dmat);
1356	if (error != 0) {
1357		device_printf(sc->sc_dev,
1358		    "%s: could not create RX buf DMA tag, error %d\n",
1359		    __func__, error);
1360		goto fail;
1361	}
1362
1363	/*
1364	 * Allocate and map RX buffers.
1365	 */
1366	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1367		struct iwn_rx_data *data = &ring->data[i];
1368		bus_addr_t paddr;
1369
1370		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1371		if (error != 0) {
1372			device_printf(sc->sc_dev,
1373			    "%s: could not create RX buf DMA map, error %d\n",
1374			    __func__, error);
1375			goto fail;
1376		}
1377
1378		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
1379		    IWN_RBUF_SIZE);
1380		if (data->m == NULL) {
1381			device_printf(sc->sc_dev,
1382			    "%s: could not allocate RX mbuf\n", __func__);
1383			error = ENOBUFS;
1384			goto fail;
1385		}
1386
1387		error = bus_dmamap_load(ring->data_dmat, data->map,
1388		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1389		    &paddr, BUS_DMA_NOWAIT);
1390		if (error != 0 && error != EFBIG) {
1391			device_printf(sc->sc_dev,
1392			    "%s: can't not map mbuf, error %d\n", __func__,
1393			    error);
1394			goto fail;
1395		}
1396
1397		/* Set physical address of RX buffer (256-byte aligned). */
1398		ring->desc[i] = htole32(paddr >> 8);
1399	}
1400
1401	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1402	    BUS_DMASYNC_PREWRITE);
1403
1404	return 0;
1405
1406fail:	iwn_free_rx_ring(sc, ring);
1407	return error;
1408}
1409
1410static void
1411iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1412{
1413	int ntries;
1414
1415	if (iwn_nic_lock(sc) == 0) {
1416		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1417		for (ntries = 0; ntries < 1000; ntries++) {
1418			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1419			    IWN_FH_RX_STATUS_IDLE)
1420				break;
1421			DELAY(10);
1422		}
1423		iwn_nic_unlock(sc);
1424	}
1425	ring->cur = 0;
1426	sc->last_rx_valid = 0;
1427}
1428
1429static void
1430iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1431{
1432	int i;
1433
1434	iwn_dma_contig_free(&ring->desc_dma);
1435	iwn_dma_contig_free(&ring->stat_dma);
1436
1437	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1438		struct iwn_rx_data *data = &ring->data[i];
1439
1440		if (data->m != NULL) {
1441			bus_dmamap_sync(ring->data_dmat, data->map,
1442			    BUS_DMASYNC_POSTREAD);
1443			bus_dmamap_unload(ring->data_dmat, data->map);
1444			m_freem(data->m);
1445			data->m = NULL;
1446		}
1447		if (data->map != NULL)
1448			bus_dmamap_destroy(ring->data_dmat, data->map);
1449	}
1450	if (ring->data_dmat != NULL) {
1451		bus_dma_tag_destroy(ring->data_dmat);
1452		ring->data_dmat = NULL;
1453	}
1454}
1455
1456static int
1457iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1458{
1459	bus_addr_t paddr;
1460	bus_size_t size;
1461	int i, error;
1462
1463	ring->qid = qid;
1464	ring->queued = 0;
1465	ring->cur = 0;
1466
1467	/* Allocate TX descriptors (256-byte aligned). */
1468	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1469	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1470	    size, 256);
1471	if (error != 0) {
1472		device_printf(sc->sc_dev,
1473		    "%s: could not allocate TX ring DMA memory, error %d\n",
1474		    __func__, error);
1475		goto fail;
1476	}
1477
1478	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1479	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1480	    size, 4);
1481	if (error != 0) {
1482		device_printf(sc->sc_dev,
1483		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1484		    __func__, error);
1485		goto fail;
1486	}
1487
1488	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1489	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1490	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1491	    &ring->data_dmat);
1492	if (error != 0) {
1493		device_printf(sc->sc_dev,
1494		    "%s: could not create TX buf DMA tag, error %d\n",
1495		    __func__, error);
1496		goto fail;
1497	}
1498
1499	paddr = ring->cmd_dma.paddr;
1500	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1501		struct iwn_tx_data *data = &ring->data[i];
1502
1503		data->cmd_paddr = paddr;
1504		data->scratch_paddr = paddr + 12;
1505		paddr += sizeof (struct iwn_tx_cmd);
1506
1507		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1508		if (error != 0) {
1509			device_printf(sc->sc_dev,
1510			    "%s: could not create TX buf DMA map, error %d\n",
1511			    __func__, error);
1512			goto fail;
1513		}
1514	}
1515	return 0;
1516
1517fail:	iwn_free_tx_ring(sc, ring);
1518	return error;
1519}
1520
1521static void
1522iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1523{
1524	int i;
1525
1526	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1527		struct iwn_tx_data *data = &ring->data[i];
1528
1529		if (data->m != NULL) {
1530			bus_dmamap_sync(ring->data_dmat, data->map,
1531			    BUS_DMASYNC_POSTWRITE);
1532			bus_dmamap_unload(ring->data_dmat, data->map);
1533			m_freem(data->m);
1534			data->m = NULL;
1535		}
1536	}
1537	/* Clear TX descriptors. */
1538	memset(ring->desc, 0, ring->desc_dma.size);
1539	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1540	    BUS_DMASYNC_PREWRITE);
1541	sc->qfullmsk &= ~(1 << ring->qid);
1542	ring->queued = 0;
1543	ring->cur = 0;
1544}
1545
1546static void
1547iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1548{
1549	int i;
1550
1551	iwn_dma_contig_free(&ring->desc_dma);
1552	iwn_dma_contig_free(&ring->cmd_dma);
1553
1554	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1555		struct iwn_tx_data *data = &ring->data[i];
1556
1557		if (data->m != NULL) {
1558			bus_dmamap_sync(ring->data_dmat, data->map,
1559			    BUS_DMASYNC_POSTWRITE);
1560			bus_dmamap_unload(ring->data_dmat, data->map);
1561			m_freem(data->m);
1562		}
1563		if (data->map != NULL)
1564			bus_dmamap_destroy(ring->data_dmat, data->map);
1565	}
1566	if (ring->data_dmat != NULL) {
1567		bus_dma_tag_destroy(ring->data_dmat);
1568		ring->data_dmat = NULL;
1569	}
1570}
1571
1572static void
1573iwn5000_ict_reset(struct iwn_softc *sc)
1574{
1575	/* Disable interrupts. */
1576	IWN_WRITE(sc, IWN_INT_MASK, 0);
1577
1578	/* Reset ICT table. */
1579	memset(sc->ict, 0, IWN_ICT_SIZE);
1580	sc->ict_cur = 0;
1581
1582	/* Set physical address of ICT table (4KB aligned). */
1583	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1584	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1585	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1586
1587	/* Enable periodic RX interrupt. */
1588	sc->int_mask |= IWN_INT_RX_PERIODIC;
1589	/* Switch to ICT interrupt mode in driver. */
1590	sc->sc_flags |= IWN_FLAG_USE_ICT;
1591
1592	/* Re-enable interrupts. */
1593	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1594	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1595}
1596
1597static int
1598iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1599{
1600	struct iwn_ops *ops = &sc->ops;
1601	uint16_t val;
1602	int error;
1603
1604	/* Check whether adapter has an EEPROM or an OTPROM. */
1605	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1606	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1607		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1608	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1609	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1610
1611	/* Adapter has to be powered on for EEPROM access to work. */
1612	if ((error = iwn_apm_init(sc)) != 0) {
1613		device_printf(sc->sc_dev,
1614		    "%s: could not power ON adapter, error %d\n", __func__,
1615		    error);
1616		return error;
1617	}
1618
1619	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1620		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1621		return EIO;
1622	}
1623	if ((error = iwn_eeprom_lock(sc)) != 0) {
1624		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
1625		    __func__, error);
1626		return error;
1627	}
1628	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1629		if ((error = iwn_init_otprom(sc)) != 0) {
1630			device_printf(sc->sc_dev,
1631			    "%s: could not initialize OTPROM, error %d\n",
1632			    __func__, error);
1633			return error;
1634		}
1635	}
1636
1637	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1638	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
1639	/* Check if HT support is bonded out. */
1640	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1641		sc->sc_flags |= IWN_FLAG_HAS_11N;
1642
1643	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1644	sc->rfcfg = le16toh(val);
1645	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1646	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1647	if (sc->txchainmask == 0)
1648		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1649	if (sc->rxchainmask == 0)
1650		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1651
1652	/* Read MAC address. */
1653	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1654
1655	/* Read adapter-specific information from EEPROM. */
1656	ops->read_eeprom(sc);
1657
1658	iwn_apm_stop(sc);	/* Power OFF adapter. */
1659
1660	iwn_eeprom_unlock(sc);
1661	return 0;
1662}
1663
1664static void
1665iwn4965_read_eeprom(struct iwn_softc *sc)
1666{
1667	uint32_t addr;
1668	uint16_t val;
1669	int i;
1670
1671	/* Read regulatory domain (4 ASCII characters). */
1672	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1673
1674	/* Read the list of authorized channels (20MHz ones only). */
1675	for (i = 0; i < 7; i++) {
1676		addr = iwn4965_regulatory_bands[i];
1677		iwn_read_eeprom_channels(sc, i, addr);
1678	}
1679
1680	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1681	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1682	sc->maxpwr2GHz = val & 0xff;
1683	sc->maxpwr5GHz = val >> 8;
1684	/* Check that EEPROM values are within valid range. */
1685	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1686		sc->maxpwr5GHz = 38;
1687	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1688		sc->maxpwr2GHz = 38;
1689	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1690	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1691
1692	/* Read samples for each TX power group. */
1693	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1694	    sizeof sc->bands);
1695
1696	/* Read voltage at which samples were taken. */
1697	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1698	sc->eeprom_voltage = (int16_t)le16toh(val);
1699	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1700	    sc->eeprom_voltage);
1701
1702#ifdef IWN_DEBUG
1703	/* Print samples. */
1704	if (sc->sc_debug & IWN_DEBUG_ANY) {
1705		for (i = 0; i < IWN_NBANDS; i++)
1706			iwn4965_print_power_group(sc, i);
1707	}
1708#endif
1709}
1710
1711#ifdef IWN_DEBUG
1712static void
1713iwn4965_print_power_group(struct iwn_softc *sc, int i)
1714{
1715	struct iwn4965_eeprom_band *band = &sc->bands[i];
1716	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1717	int j, c;
1718
1719	printf("===band %d===\n", i);
1720	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1721	printf("chan1 num=%d\n", chans[0].num);
1722	for (c = 0; c < 2; c++) {
1723		for (j = 0; j < IWN_NSAMPLES; j++) {
1724			printf("chain %d, sample %d: temp=%d gain=%d "
1725			    "power=%d pa_det=%d\n", c, j,
1726			    chans[0].samples[c][j].temp,
1727			    chans[0].samples[c][j].gain,
1728			    chans[0].samples[c][j].power,
1729			    chans[0].samples[c][j].pa_det);
1730		}
1731	}
1732	printf("chan2 num=%d\n", chans[1].num);
1733	for (c = 0; c < 2; c++) {
1734		for (j = 0; j < IWN_NSAMPLES; j++) {
1735			printf("chain %d, sample %d: temp=%d gain=%d "
1736			    "power=%d pa_det=%d\n", c, j,
1737			    chans[1].samples[c][j].temp,
1738			    chans[1].samples[c][j].gain,
1739			    chans[1].samples[c][j].power,
1740			    chans[1].samples[c][j].pa_det);
1741		}
1742	}
1743}
1744#endif
1745
1746static void
1747iwn5000_read_eeprom(struct iwn_softc *sc)
1748{
1749	struct iwn5000_eeprom_calib_hdr hdr;
1750	int32_t volt;
1751	uint32_t base, addr;
1752	uint16_t val;
1753	int i;
1754
1755	/* Read regulatory domain (4 ASCII characters). */
1756	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1757	base = le16toh(val);
1758	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1759	    sc->eeprom_domain, 4);
1760
1761	/* Read the list of authorized channels (20MHz ones only). */
1762	for (i = 0; i < 7; i++) {
1763		if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1764			addr = base + iwn6000_regulatory_bands[i];
1765		else
1766			addr = base + iwn5000_regulatory_bands[i];
1767		iwn_read_eeprom_channels(sc, i, addr);
1768	}
1769
1770	/* Read enhanced TX power information for 6000 Series. */
1771	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1772		iwn_read_eeprom_enhinfo(sc);
1773
1774	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1775	base = le16toh(val);
1776	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1777	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1778	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
1779	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
1780	sc->calib_ver = hdr.version;
1781
1782	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1783		/* Compute temperature offset. */
1784		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1785		sc->eeprom_temp = le16toh(val);
1786		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1787		volt = le16toh(val);
1788		sc->temp_off = sc->eeprom_temp - (volt / -5);
1789		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1790		    sc->eeprom_temp, volt, sc->temp_off);
1791	} else {
1792		/* Read crystal calibration. */
1793		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1794		    &sc->eeprom_crystal, sizeof (uint32_t));
1795		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1796		    le32toh(sc->eeprom_crystal));
1797	}
1798}
1799
1800/*
1801 * Translate EEPROM flags to net80211.
1802 */
1803static uint32_t
1804iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1805{
1806	uint32_t nflags;
1807
1808	nflags = 0;
1809	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1810		nflags |= IEEE80211_CHAN_PASSIVE;
1811	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1812		nflags |= IEEE80211_CHAN_NOADHOC;
1813	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1814		nflags |= IEEE80211_CHAN_DFS;
1815		/* XXX apparently IBSS may still be marked */
1816		nflags |= IEEE80211_CHAN_NOADHOC;
1817	}
1818
1819	return nflags;
1820}
1821
1822static void
1823iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1824{
1825	struct ifnet *ifp = sc->sc_ifp;
1826	struct ieee80211com *ic = ifp->if_l2com;
1827	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1828	const struct iwn_chan_band *band = &iwn_bands[n];
1829	struct ieee80211_channel *c;
1830	uint8_t chan;
1831	int i, nflags;
1832
1833	for (i = 0; i < band->nchan; i++) {
1834		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1835			DPRINTF(sc, IWN_DEBUG_RESET,
1836			    "skip chan %d flags 0x%x maxpwr %d\n",
1837			    band->chan[i], channels[i].flags,
1838			    channels[i].maxpwr);
1839			continue;
1840		}
1841		chan = band->chan[i];
1842		nflags = iwn_eeprom_channel_flags(&channels[i]);
1843
1844		c = &ic->ic_channels[ic->ic_nchans++];
1845		c->ic_ieee = chan;
1846		c->ic_maxregpower = channels[i].maxpwr;
1847		c->ic_maxpower = 2*c->ic_maxregpower;
1848
1849		if (n == 0) {	/* 2GHz band */
1850			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1851			/* G =>'s B is supported */
1852			c->ic_flags = IEEE80211_CHAN_B | nflags;
1853			c = &ic->ic_channels[ic->ic_nchans++];
1854			c[0] = c[-1];
1855			c->ic_flags = IEEE80211_CHAN_G | nflags;
1856		} else {	/* 5GHz band */
1857			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1858			c->ic_flags = IEEE80211_CHAN_A | nflags;
1859		}
1860
1861		/* Save maximum allowed TX power for this channel. */
1862		sc->maxpwr[chan] = channels[i].maxpwr;
1863
1864		DPRINTF(sc, IWN_DEBUG_RESET,
1865		    "add chan %d flags 0x%x maxpwr %d\n", chan,
1866		    channels[i].flags, channels[i].maxpwr);
1867
1868		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
1869			/* add HT20, HT40 added separately */
1870			c = &ic->ic_channels[ic->ic_nchans++];
1871			c[0] = c[-1];
1872			c->ic_flags |= IEEE80211_CHAN_HT20;
1873		}
1874	}
1875}
1876
1877static void
1878iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1879{
1880	struct ifnet *ifp = sc->sc_ifp;
1881	struct ieee80211com *ic = ifp->if_l2com;
1882	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1883	const struct iwn_chan_band *band = &iwn_bands[n];
1884	struct ieee80211_channel *c, *cent, *extc;
1885	uint8_t chan;
1886	int i, nflags;
1887
1888	if (!(sc->sc_flags & IWN_FLAG_HAS_11N))
1889		return;
1890
1891	for (i = 0; i < band->nchan; i++) {
1892		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1893			DPRINTF(sc, IWN_DEBUG_RESET,
1894			    "skip chan %d flags 0x%x maxpwr %d\n",
1895			    band->chan[i], channels[i].flags,
1896			    channels[i].maxpwr);
1897			continue;
1898		}
1899		chan = band->chan[i];
1900		nflags = iwn_eeprom_channel_flags(&channels[i]);
1901
1902		/*
1903		 * Each entry defines an HT40 channel pair; find the
1904		 * center channel, then the extension channel above.
1905		 */
1906		cent = ieee80211_find_channel_byieee(ic, chan,
1907		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1908		if (cent == NULL) {	/* XXX shouldn't happen */
1909			device_printf(sc->sc_dev,
1910			    "%s: no entry for channel %d\n", __func__, chan);
1911			continue;
1912		}
1913		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1914		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1915		if (extc == NULL) {
1916			DPRINTF(sc, IWN_DEBUG_RESET,
1917			    "%s: skip chan %d, extension channel not found\n",
1918			    __func__, chan);
1919			continue;
1920		}
1921
1922		DPRINTF(sc, IWN_DEBUG_RESET,
1923		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1924		    chan, channels[i].flags, channels[i].maxpwr);
1925
1926		c = &ic->ic_channels[ic->ic_nchans++];
1927		c[0] = cent[0];
1928		c->ic_extieee = extc->ic_ieee;
1929		c->ic_flags &= ~IEEE80211_CHAN_HT;
1930		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
1931		c = &ic->ic_channels[ic->ic_nchans++];
1932		c[0] = extc[0];
1933		c->ic_extieee = cent->ic_ieee;
1934		c->ic_flags &= ~IEEE80211_CHAN_HT;
1935		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
1936	}
1937}
1938
1939static void
1940iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1941{
1942	struct ifnet *ifp = sc->sc_ifp;
1943	struct ieee80211com *ic = ifp->if_l2com;
1944
1945	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1946	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1947
1948	if (n < 5)
1949		iwn_read_eeprom_band(sc, n);
1950	else
1951		iwn_read_eeprom_ht40(sc, n);
1952	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1953}
1954
1955static struct iwn_eeprom_chan *
1956iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
1957{
1958	int band, chan, i, j;
1959
1960	if (IEEE80211_IS_CHAN_HT40(c)) {
1961		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
1962		if (IEEE80211_IS_CHAN_HT40D(c))
1963			chan = c->ic_extieee;
1964		else
1965			chan = c->ic_ieee;
1966		for (i = 0; i < iwn_bands[band].nchan; i++) {
1967			if (iwn_bands[band].chan[i] == chan)
1968				return &sc->eeprom_channels[band][i];
1969		}
1970	} else {
1971		for (j = 0; j < 5; j++) {
1972			for (i = 0; i < iwn_bands[j].nchan; i++) {
1973				if (iwn_bands[j].chan[i] == c->ic_ieee)
1974					return &sc->eeprom_channels[j][i];
1975			}
1976		}
1977	}
1978	return NULL;
1979}
1980
1981/*
1982 * Enforce flags read from EEPROM.
1983 */
1984static int
1985iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1986    int nchan, struct ieee80211_channel chans[])
1987{
1988	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1989	int i;
1990
1991	for (i = 0; i < nchan; i++) {
1992		struct ieee80211_channel *c = &chans[i];
1993		struct iwn_eeprom_chan *channel;
1994
1995		channel = iwn_find_eeprom_channel(sc, c);
1996		if (channel == NULL) {
1997			if_printf(ic->ic_ifp,
1998			    "%s: invalid channel %u freq %u/0x%x\n",
1999			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2000			return EINVAL;
2001		}
2002		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2003	}
2004
2005	return 0;
2006}
2007
2008static void
2009iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2010{
2011	struct iwn_eeprom_enhinfo enhinfo[35];
2012	struct ifnet *ifp = sc->sc_ifp;
2013	struct ieee80211com *ic = ifp->if_l2com;
2014	struct ieee80211_channel *c;
2015	uint16_t val, base;
2016	int8_t maxpwr;
2017	uint8_t flags;
2018	int i, j;
2019
2020	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2021	base = le16toh(val);
2022	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2023	    enhinfo, sizeof enhinfo);
2024
2025	for (i = 0; i < nitems(enhinfo); i++) {
2026		flags = enhinfo[i].flags;
2027		if (!(flags & IWN_ENHINFO_VALID))
2028			continue;	/* Skip invalid entries. */
2029
2030		maxpwr = 0;
2031		if (sc->txchainmask & IWN_ANT_A)
2032			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2033		if (sc->txchainmask & IWN_ANT_B)
2034			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2035		if (sc->txchainmask & IWN_ANT_C)
2036			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2037		if (sc->ntxchains == 2)
2038			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2039		else if (sc->ntxchains == 3)
2040			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2041
2042		for (j = 0; j < ic->ic_nchans; j++) {
2043			c = &ic->ic_channels[j];
2044			if ((flags & IWN_ENHINFO_5GHZ)) {
2045				if (!IEEE80211_IS_CHAN_A(c))
2046					continue;
2047			} else if ((flags & IWN_ENHINFO_OFDM)) {
2048				if (!IEEE80211_IS_CHAN_G(c))
2049					continue;
2050			} else if (!IEEE80211_IS_CHAN_B(c))
2051				continue;
2052			if ((flags & IWN_ENHINFO_HT40)) {
2053				if (!IEEE80211_IS_CHAN_HT40(c))
2054					continue;
2055			} else {
2056				if (IEEE80211_IS_CHAN_HT40(c))
2057					continue;
2058			}
2059			if (enhinfo[i].chan != 0 &&
2060			    enhinfo[i].chan != c->ic_ieee)
2061				continue;
2062
2063			DPRINTF(sc, IWN_DEBUG_RESET,
2064			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2065			    c->ic_flags, maxpwr / 2);
2066			c->ic_maxregpower = maxpwr / 2;
2067			c->ic_maxpower = maxpwr;
2068		}
2069	}
2070}
2071
2072static struct ieee80211_node *
2073iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2074{
2075	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2076}
2077
2078static __inline int
2079rate2plcp(int rate)
2080{
2081	switch (rate & 0xff) {
2082	case 12:	return 0xd;
2083	case 18:	return 0xf;
2084	case 24:	return 0x5;
2085	case 36:	return 0x7;
2086	case 48:	return 0x9;
2087	case 72:	return 0xb;
2088	case 96:	return 0x1;
2089	case 108:	return 0x3;
2090	case 2:		return 10;
2091	case 4:		return 20;
2092	case 11:	return 55;
2093	case 22:	return 110;
2094	}
2095	return 0;
2096}
2097
2098static void
2099iwn_newassoc(struct ieee80211_node *ni, int isnew)
2100{
2101#define	RV(v)	((v) & IEEE80211_RATE_VAL)
2102	struct ieee80211com *ic = ni->ni_ic;
2103	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2104	struct iwn_node *wn = (void *)ni;
2105	uint8_t txant1, txant2;
2106	int i, plcp, rate, ridx;
2107
2108	/* Use the first valid TX antenna. */
2109	txant1 = IWN_LSB(sc->txchainmask);
2110	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2111
2112	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2113		ridx = ni->ni_rates.rs_nrates - 1;
2114		for (i = ni->ni_htrates.rs_nrates - 1; i >= 0; i--) {
2115			plcp = RV(ni->ni_htrates.rs_rates[i]) | IWN_RFLAG_MCS;
2116			if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2117				plcp |= IWN_RFLAG_HT40;
2118				if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2119					plcp |= IWN_RFLAG_SGI;
2120			} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20)
2121				plcp |= IWN_RFLAG_SGI;
2122			if (RV(ni->ni_htrates.rs_rates[i]) > 7)
2123				plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2124			else
2125				plcp |= IWN_RFLAG_ANT(txant1);
2126			if (ridx >= 0) {
2127				rate = RV(ni->ni_rates.rs_rates[ridx]);
2128				wn->ridx[rate] = plcp;
2129			}
2130			wn->ridx[IEEE80211_RATE_MCS | i] = plcp;
2131			ridx--;
2132		}
2133	} else {
2134		for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
2135			rate = RV(ni->ni_rates.rs_rates[i]);
2136			plcp = rate2plcp(rate);
2137			ridx = ic->ic_rt->rateCodeToIndex[rate];
2138			if (ridx < IWN_RIDX_OFDM6 &&
2139			    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2140				plcp |= IWN_RFLAG_CCK;
2141			plcp |= IWN_RFLAG_ANT(txant1);
2142			wn->ridx[rate] = htole32(plcp);
2143		}
2144	}
2145#undef	RV
2146}
2147
2148static int
2149iwn_media_change(struct ifnet *ifp)
2150{
2151	int error;
2152
2153	error = ieee80211_media_change(ifp);
2154	/* NB: only the fixed rate can change and that doesn't need a reset */
2155	return (error == ENETRESET ? 0 : error);
2156}
2157
2158static int
2159iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2160{
2161	struct iwn_vap *ivp = IWN_VAP(vap);
2162	struct ieee80211com *ic = vap->iv_ic;
2163	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2164	int error = 0;
2165
2166	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2167	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2168
2169	IEEE80211_UNLOCK(ic);
2170	IWN_LOCK(sc);
2171	callout_stop(&sc->calib_to);
2172
2173	switch (nstate) {
2174	case IEEE80211_S_ASSOC:
2175		if (vap->iv_state != IEEE80211_S_RUN)
2176			break;
2177		/* FALLTHROUGH */
2178	case IEEE80211_S_AUTH:
2179		if (vap->iv_state == IEEE80211_S_AUTH)
2180			break;
2181
2182		/*
2183		 * !AUTH -> AUTH transition requires state reset to handle
2184		 * reassociations correctly.
2185		 */
2186		sc->rxon.associd = 0;
2187		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2188		sc->calib.state = IWN_CALIB_STATE_INIT;
2189
2190		if ((error = iwn_auth(sc, vap)) != 0) {
2191			device_printf(sc->sc_dev,
2192			    "%s: could not move to auth state\n", __func__);
2193		}
2194		break;
2195
2196	case IEEE80211_S_RUN:
2197		/*
2198		 * RUN -> RUN transition; Just restart the timers.
2199		 */
2200		if (vap->iv_state == IEEE80211_S_RUN) {
2201			sc->calib_cnt = 0;
2202			break;
2203		}
2204
2205		/*
2206		 * !RUN -> RUN requires setting the association id
2207		 * which is done with a firmware cmd.  We also defer
2208		 * starting the timers until that work is done.
2209		 */
2210		if ((error = iwn_run(sc, vap)) != 0) {
2211			device_printf(sc->sc_dev,
2212			    "%s: could not move to run state\n", __func__);
2213		}
2214		break;
2215
2216	case IEEE80211_S_INIT:
2217		sc->calib.state = IWN_CALIB_STATE_INIT;
2218		break;
2219
2220	default:
2221		break;
2222	}
2223	IWN_UNLOCK(sc);
2224	IEEE80211_LOCK(ic);
2225	if (error != 0)
2226		return error;
2227	return ivp->iv_newstate(vap, nstate, arg);
2228}
2229
2230static void
2231iwn_calib_timeout(void *arg)
2232{
2233	struct iwn_softc *sc = arg;
2234
2235	IWN_LOCK_ASSERT(sc);
2236
2237	/* Force automatic TX power calibration every 60 secs. */
2238	if (++sc->calib_cnt >= 120) {
2239		uint32_t flags = 0;
2240
2241		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2242		    "sending request for statistics");
2243		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2244		    sizeof flags, 1);
2245		sc->calib_cnt = 0;
2246	}
2247	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2248	    sc);
2249}
2250
2251/*
2252 * Process an RX_PHY firmware notification.  This is usually immediately
2253 * followed by an MPDU_RX_DONE notification.
2254 */
2255static void
2256iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2257    struct iwn_rx_data *data)
2258{
2259	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2260
2261	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2262	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2263
2264	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2265	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2266	sc->last_rx_valid = 1;
2267}
2268
2269/*
2270 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2271 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2272 */
2273static void
2274iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2275    struct iwn_rx_data *data)
2276{
2277	struct iwn_ops *ops = &sc->ops;
2278	struct ifnet *ifp = sc->sc_ifp;
2279	struct ieee80211com *ic = ifp->if_l2com;
2280	struct iwn_rx_ring *ring = &sc->rxq;
2281	struct ieee80211_frame *wh;
2282	struct ieee80211_node *ni;
2283	struct mbuf *m, *m1;
2284	struct iwn_rx_stat *stat;
2285	caddr_t head;
2286	bus_addr_t paddr;
2287	uint32_t flags;
2288	int error, len, rssi, nf;
2289
2290	if (desc->type == IWN_MPDU_RX_DONE) {
2291		/* Check for prior RX_PHY notification. */
2292		if (!sc->last_rx_valid) {
2293			DPRINTF(sc, IWN_DEBUG_ANY,
2294			    "%s: missing RX_PHY\n", __func__);
2295			return;
2296		}
2297		stat = &sc->last_rx_stat;
2298	} else
2299		stat = (struct iwn_rx_stat *)(desc + 1);
2300
2301	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2302
2303	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2304		device_printf(sc->sc_dev,
2305		    "%s: invalid RX statistic header, len %d\n", __func__,
2306		    stat->cfg_phy_len);
2307		return;
2308	}
2309	if (desc->type == IWN_MPDU_RX_DONE) {
2310		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2311		head = (caddr_t)(mpdu + 1);
2312		len = le16toh(mpdu->len);
2313	} else {
2314		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2315		len = le16toh(stat->len);
2316	}
2317
2318	flags = le32toh(*(uint32_t *)(head + len));
2319
2320	/* Discard frames with a bad FCS early. */
2321	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2322		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2323		    __func__, flags);
2324		ifp->if_ierrors++;
2325		return;
2326	}
2327	/* Discard frames that are too short. */
2328	if (len < sizeof (*wh)) {
2329		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2330		    __func__, len);
2331		ifp->if_ierrors++;
2332		return;
2333	}
2334
2335	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2336	if (m1 == NULL) {
2337		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2338		    __func__);
2339		ifp->if_ierrors++;
2340		return;
2341	}
2342	bus_dmamap_unload(ring->data_dmat, data->map);
2343
2344	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2345	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2346	if (error != 0 && error != EFBIG) {
2347		device_printf(sc->sc_dev,
2348		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2349		m_freem(m1);
2350
2351		/* Try to reload the old mbuf. */
2352		error = bus_dmamap_load(ring->data_dmat, data->map,
2353		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2354		    &paddr, BUS_DMA_NOWAIT);
2355		if (error != 0 && error != EFBIG) {
2356			panic("%s: could not load old RX mbuf", __func__);
2357		}
2358		/* Physical address may have changed. */
2359		ring->desc[ring->cur] = htole32(paddr >> 8);
2360		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2361		    BUS_DMASYNC_PREWRITE);
2362		ifp->if_ierrors++;
2363		return;
2364	}
2365
2366	m = data->m;
2367	data->m = m1;
2368	/* Update RX descriptor. */
2369	ring->desc[ring->cur] = htole32(paddr >> 8);
2370	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2371	    BUS_DMASYNC_PREWRITE);
2372
2373	/* Finalize mbuf. */
2374	m->m_pkthdr.rcvif = ifp;
2375	m->m_data = head;
2376	m->m_pkthdr.len = m->m_len = len;
2377
2378	/* Grab a reference to the source node. */
2379	wh = mtod(m, struct ieee80211_frame *);
2380	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2381	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2382	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2383
2384	rssi = ops->get_rssi(sc, stat);
2385
2386	if (ieee80211_radiotap_active(ic)) {
2387		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2388
2389		tap->wr_flags = 0;
2390		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2391			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2392		tap->wr_dbm_antsignal = (int8_t)rssi;
2393		tap->wr_dbm_antnoise = (int8_t)nf;
2394		tap->wr_tsft = stat->tstamp;
2395		switch (stat->rate) {
2396		/* CCK rates. */
2397		case  10: tap->wr_rate =   2; break;
2398		case  20: tap->wr_rate =   4; break;
2399		case  55: tap->wr_rate =  11; break;
2400		case 110: tap->wr_rate =  22; break;
2401		/* OFDM rates. */
2402		case 0xd: tap->wr_rate =  12; break;
2403		case 0xf: tap->wr_rate =  18; break;
2404		case 0x5: tap->wr_rate =  24; break;
2405		case 0x7: tap->wr_rate =  36; break;
2406		case 0x9: tap->wr_rate =  48; break;
2407		case 0xb: tap->wr_rate =  72; break;
2408		case 0x1: tap->wr_rate =  96; break;
2409		case 0x3: tap->wr_rate = 108; break;
2410		/* Unknown rate: should not happen. */
2411		default:  tap->wr_rate =   0;
2412		}
2413	}
2414
2415	IWN_UNLOCK(sc);
2416
2417	/* Send the frame to the 802.11 layer. */
2418	if (ni != NULL) {
2419		if (ni->ni_flags & IEEE80211_NODE_HT)
2420			m->m_flags |= M_AMPDU;
2421		(void)ieee80211_input(ni, m, rssi - nf, nf);
2422		/* Node is no longer needed. */
2423		ieee80211_free_node(ni);
2424	} else
2425		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2426
2427	IWN_LOCK(sc);
2428}
2429
2430/* Process an incoming Compressed BlockAck. */
2431static void
2432iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2433    struct iwn_rx_data *data)
2434{
2435	struct iwn_ops *ops = &sc->ops;
2436	struct ifnet *ifp = sc->sc_ifp;
2437	struct iwn_node *wn;
2438	struct ieee80211_node *ni;
2439	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2440	struct iwn_tx_ring *txq;
2441	struct iwn_tx_data *txdata;
2442	struct ieee80211_tx_ampdu *tap;
2443	struct mbuf *m;
2444	uint64_t bitmap;
2445	uint16_t ssn;
2446	uint8_t tid;
2447	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
2448
2449	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2450
2451	qid = le16toh(ba->qid);
2452	txq = &sc->txq[ba->qid];
2453	tap = sc->qid2tap[ba->qid];
2454	tid = WME_AC_TO_TID(tap->txa_ac);
2455	wn = (void *)tap->txa_ni;
2456
2457	res = NULL;
2458	ssn = 0;
2459	if (!IEEE80211_AMPDU_RUNNING(tap)) {
2460		res = tap->txa_private;
2461		ssn = tap->txa_start & 0xfff;
2462	}
2463
2464	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
2465		txdata = &txq->data[txq->read];
2466
2467		/* Unmap and free mbuf. */
2468		bus_dmamap_sync(txq->data_dmat, txdata->map,
2469		    BUS_DMASYNC_POSTWRITE);
2470		bus_dmamap_unload(txq->data_dmat, txdata->map);
2471		m = txdata->m, txdata->m = NULL;
2472		ni = txdata->ni, txdata->ni = NULL;
2473
2474		KASSERT(ni != NULL, ("no node"));
2475		KASSERT(m != NULL, ("no mbuf"));
2476
2477		if (m->m_flags & M_TXCB)
2478			ieee80211_process_callback(ni, m, 1);
2479
2480		m_freem(m);
2481		ieee80211_free_node(ni);
2482
2483		txq->queued--;
2484		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
2485	}
2486
2487	if (txq->queued == 0 && res != NULL) {
2488		iwn_nic_lock(sc);
2489		ops->ampdu_tx_stop(sc, qid, tid, ssn);
2490		iwn_nic_unlock(sc);
2491		sc->qid2tap[qid] = NULL;
2492		free(res, M_DEVBUF);
2493		return;
2494	}
2495
2496	if (wn->agg[tid].bitmap == 0)
2497		return;
2498
2499	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
2500	if (shift < 0)
2501		shift += 0x100;
2502
2503	if (wn->agg[tid].nframes > (64 - shift))
2504		return;
2505
2506	ni = tap->txa_ni;
2507	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
2508	for (i = 0; bitmap; i++) {
2509		if ((bitmap & 1) == 0) {
2510			ifp->if_oerrors++;
2511			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2512			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2513		} else {
2514			ifp->if_opackets++;
2515			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2516			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2517		}
2518		bitmap >>= 1;
2519	}
2520}
2521
2522/*
2523 * Process a CALIBRATION_RESULT notification sent by the initialization
2524 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2525 */
2526static void
2527iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2528    struct iwn_rx_data *data)
2529{
2530	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2531	int len, idx = -1;
2532
2533	/* Runtime firmware should not send such a notification. */
2534	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2535		return;
2536
2537	len = (le32toh(desc->len) & 0x3fff) - 4;
2538	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2539
2540	switch (calib->code) {
2541	case IWN5000_PHY_CALIB_DC:
2542		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
2543		    (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2544		     sc->hw_type >= IWN_HW_REV_TYPE_6000) &&
2545		     sc->hw_type != IWN_HW_REV_TYPE_6050)
2546			idx = 0;
2547		break;
2548	case IWN5000_PHY_CALIB_LO:
2549		idx = 1;
2550		break;
2551	case IWN5000_PHY_CALIB_TX_IQ:
2552		idx = 2;
2553		break;
2554	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2555		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2556		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2557			idx = 3;
2558		break;
2559	case IWN5000_PHY_CALIB_BASE_BAND:
2560		idx = 4;
2561		break;
2562	}
2563	if (idx == -1)	/* Ignore other results. */
2564		return;
2565
2566	/* Save calibration result. */
2567	if (sc->calibcmd[idx].buf != NULL)
2568		free(sc->calibcmd[idx].buf, M_DEVBUF);
2569	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2570	if (sc->calibcmd[idx].buf == NULL) {
2571		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2572		    "not enough memory for calibration result %d\n",
2573		    calib->code);
2574		return;
2575	}
2576	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2577	    "saving calibration result code=%d len=%d\n", calib->code, len);
2578	sc->calibcmd[idx].len = len;
2579	memcpy(sc->calibcmd[idx].buf, calib, len);
2580}
2581
2582/*
2583 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2584 * The latter is sent by the firmware after each received beacon.
2585 */
2586static void
2587iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2588    struct iwn_rx_data *data)
2589{
2590	struct iwn_ops *ops = &sc->ops;
2591	struct ifnet *ifp = sc->sc_ifp;
2592	struct ieee80211com *ic = ifp->if_l2com;
2593	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2594	struct iwn_calib_state *calib = &sc->calib;
2595	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2596	int temp;
2597
2598	/* Ignore statistics received during a scan. */
2599	if (vap->iv_state != IEEE80211_S_RUN ||
2600	    (ic->ic_flags & IEEE80211_F_SCAN))
2601		return;
2602
2603	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2604
2605	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
2606	    __func__, desc->type);
2607	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2608
2609	/* Test if temperature has changed. */
2610	if (stats->general.temp != sc->rawtemp) {
2611		/* Convert "raw" temperature to degC. */
2612		sc->rawtemp = stats->general.temp;
2613		temp = ops->get_temperature(sc);
2614		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2615		    __func__, temp);
2616
2617		/* Update TX power if need be (4965AGN only). */
2618		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2619			iwn4965_power_calibration(sc, temp);
2620	}
2621
2622	if (desc->type != IWN_BEACON_STATISTICS)
2623		return;	/* Reply to a statistics request. */
2624
2625	sc->noise = iwn_get_noise(&stats->rx.general);
2626	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2627
2628	/* Test that RSSI and noise are present in stats report. */
2629	if (le32toh(stats->rx.general.flags) != 1) {
2630		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2631		    "received statistics without RSSI");
2632		return;
2633	}
2634
2635	if (calib->state == IWN_CALIB_STATE_ASSOC)
2636		iwn_collect_noise(sc, &stats->rx.general);
2637	else if (calib->state == IWN_CALIB_STATE_RUN)
2638		iwn_tune_sensitivity(sc, &stats->rx);
2639}
2640
2641/*
2642 * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2643 * and 5000 adapters have different incompatible TX status formats.
2644 */
2645static void
2646iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2647    struct iwn_rx_data *data)
2648{
2649	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2650	struct iwn_tx_ring *ring;
2651	int qid;
2652
2653	qid = desc->qid & 0xf;
2654	ring = &sc->txq[qid];
2655
2656	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2657	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2658	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2659	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2660	    le32toh(stat->status));
2661
2662	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2663	if (qid >= sc->firstaggqueue) {
2664		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2665		    &stat->status);
2666	} else {
2667		iwn_tx_done(sc, desc, stat->ackfailcnt,
2668		    le32toh(stat->status) & 0xff);
2669	}
2670}
2671
2672static void
2673iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2674    struct iwn_rx_data *data)
2675{
2676	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2677	struct iwn_tx_ring *ring;
2678	int qid;
2679
2680	qid = desc->qid & 0xf;
2681	ring = &sc->txq[qid];
2682
2683	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2684	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2685	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2686	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2687	    le32toh(stat->status));
2688
2689#ifdef notyet
2690	/* Reset TX scheduler slot. */
2691	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2692#endif
2693
2694	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2695	if (qid >= sc->firstaggqueue) {
2696		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2697		    &stat->status);
2698	} else {
2699		iwn_tx_done(sc, desc, stat->ackfailcnt,
2700		    le16toh(stat->status) & 0xff);
2701	}
2702}
2703
2704/*
2705 * Adapter-independent backend for TX_DONE firmware notifications.
2706 */
2707static void
2708iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2709    uint8_t status)
2710{
2711	struct ifnet *ifp = sc->sc_ifp;
2712	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2713	struct iwn_tx_data *data = &ring->data[desc->idx];
2714	struct mbuf *m;
2715	struct ieee80211_node *ni;
2716	struct ieee80211vap *vap;
2717
2718	KASSERT(data->ni != NULL, ("no node"));
2719
2720	/* Unmap and free mbuf. */
2721	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2722	bus_dmamap_unload(ring->data_dmat, data->map);
2723	m = data->m, data->m = NULL;
2724	ni = data->ni, data->ni = NULL;
2725	vap = ni->ni_vap;
2726
2727	if (m->m_flags & M_TXCB) {
2728		/*
2729		 * Channels marked for "radar" require traffic to be received
2730		 * to unlock before we can transmit.  Until traffic is seen
2731		 * any attempt to transmit is returned immediately with status
2732		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2733		 * happen on first authenticate after scanning.  To workaround
2734		 * this we ignore a failure of this sort in AUTH state so the
2735		 * 802.11 layer will fall back to using a timeout to wait for
2736		 * the AUTH reply.  This allows the firmware time to see
2737		 * traffic so a subsequent retry of AUTH succeeds.  It's
2738		 * unclear why the firmware does not maintain state for
2739		 * channels recently visited as this would allow immediate
2740		 * use of the channel after a scan (where we see traffic).
2741		 */
2742		if (status == IWN_TX_FAIL_TX_LOCKED &&
2743		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2744			ieee80211_process_callback(ni, m, 0);
2745		else
2746			ieee80211_process_callback(ni, m,
2747			    (status & IWN_TX_FAIL) != 0);
2748	}
2749
2750	/*
2751	 * Update rate control statistics for the node.
2752	 */
2753	if (status & IWN_TX_FAIL) {
2754		ifp->if_oerrors++;
2755		ieee80211_ratectl_tx_complete(vap, ni,
2756		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2757	} else {
2758		ifp->if_opackets++;
2759		ieee80211_ratectl_tx_complete(vap, ni,
2760		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2761	}
2762	m_freem(m);
2763	ieee80211_free_node(ni);
2764
2765	sc->sc_tx_timer = 0;
2766	if (--ring->queued < IWN_TX_RING_LOMARK) {
2767		sc->qfullmsk &= ~(1 << ring->qid);
2768		if (sc->qfullmsk == 0 &&
2769		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2770			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2771			iwn_start_locked(ifp);
2772		}
2773	}
2774}
2775
2776/*
2777 * Process a "command done" firmware notification.  This is where we wakeup
2778 * processes waiting for a synchronous command completion.
2779 */
2780static void
2781iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2782{
2783	struct iwn_tx_ring *ring = &sc->txq[4];
2784	struct iwn_tx_data *data;
2785
2786	if ((desc->qid & 0xf) != 4)
2787		return;	/* Not a command ack. */
2788
2789	data = &ring->data[desc->idx];
2790
2791	/* If the command was mapped in an mbuf, free it. */
2792	if (data->m != NULL) {
2793		bus_dmamap_sync(ring->data_dmat, data->map,
2794		    BUS_DMASYNC_POSTWRITE);
2795		bus_dmamap_unload(ring->data_dmat, data->map);
2796		m_freem(data->m);
2797		data->m = NULL;
2798	}
2799	wakeup(&ring->desc[desc->idx]);
2800}
2801
2802static void
2803iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
2804    void *stat)
2805{
2806	struct iwn_ops *ops = &sc->ops;
2807	struct ifnet *ifp = sc->sc_ifp;
2808	struct iwn_tx_ring *ring = &sc->txq[qid];
2809	struct iwn_tx_data *data;
2810	struct mbuf *m;
2811	struct iwn_node *wn;
2812	struct ieee80211_node *ni;
2813	struct ieee80211_tx_ampdu *tap;
2814	uint64_t bitmap;
2815	uint32_t *status = stat;
2816	uint16_t *aggstatus = stat;
2817	uint16_t ssn;
2818	uint8_t tid;
2819	int bit, i, lastidx, *res, seqno, shift, start;
2820
2821#ifdef NOT_YET
2822	if (nframes == 1) {
2823		if ((*status & 0xff) != 1 && (*status & 0xff) != 2)
2824			printf("ieee80211_send_bar()\n");
2825	}
2826#endif
2827
2828	bitmap = 0;
2829	start = idx;
2830	for (i = 0; i < nframes; i++) {
2831		if (le16toh(aggstatus[i * 2]) & 0xc)
2832			continue;
2833
2834		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
2835		bit = idx - start;
2836		shift = 0;
2837		if (bit >= 64) {
2838			shift = 0x100 - idx + start;
2839			bit = 0;
2840			start = idx;
2841		} else if (bit <= -64)
2842			bit = 0x100 - start + idx;
2843		else if (bit < 0) {
2844			shift = start - idx;
2845			start = idx;
2846			bit = 0;
2847		}
2848		bitmap = bitmap << shift;
2849		bitmap |= 1ULL << bit;
2850	}
2851	tap = sc->qid2tap[qid];
2852	tid = WME_AC_TO_TID(tap->txa_ac);
2853	wn = (void *)tap->txa_ni;
2854	wn->agg[tid].bitmap = bitmap;
2855	wn->agg[tid].startidx = start;
2856	wn->agg[tid].nframes = nframes;
2857
2858	res = NULL;
2859	ssn = 0;
2860	if (!IEEE80211_AMPDU_RUNNING(tap)) {
2861		res = tap->txa_private;
2862		ssn = tap->txa_start & 0xfff;
2863	}
2864
2865	seqno = le32toh(*(status + nframes)) & 0xfff;
2866	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
2867		data = &ring->data[ring->read];
2868
2869		/* Unmap and free mbuf. */
2870		bus_dmamap_sync(ring->data_dmat, data->map,
2871		    BUS_DMASYNC_POSTWRITE);
2872		bus_dmamap_unload(ring->data_dmat, data->map);
2873		m = data->m, data->m = NULL;
2874		ni = data->ni, data->ni = NULL;
2875
2876		KASSERT(ni != NULL, ("no node"));
2877		KASSERT(m != NULL, ("no mbuf"));
2878
2879		if (m->m_flags & M_TXCB)
2880			ieee80211_process_callback(ni, m, 1);
2881
2882		m_freem(m);
2883		ieee80211_free_node(ni);
2884
2885		ring->queued--;
2886		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
2887	}
2888
2889	if (ring->queued == 0 && res != NULL) {
2890		iwn_nic_lock(sc);
2891		ops->ampdu_tx_stop(sc, qid, tid, ssn);
2892		iwn_nic_unlock(sc);
2893		sc->qid2tap[qid] = NULL;
2894		free(res, M_DEVBUF);
2895		return;
2896	}
2897
2898	sc->sc_tx_timer = 0;
2899	if (ring->queued < IWN_TX_RING_LOMARK) {
2900		sc->qfullmsk &= ~(1 << ring->qid);
2901		if (sc->qfullmsk == 0 &&
2902		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2903			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2904			iwn_start_locked(ifp);
2905		}
2906	}
2907}
2908
2909/*
2910 * Process an INT_FH_RX or INT_SW_RX interrupt.
2911 */
2912static void
2913iwn_notif_intr(struct iwn_softc *sc)
2914{
2915	struct iwn_ops *ops = &sc->ops;
2916	struct ifnet *ifp = sc->sc_ifp;
2917	struct ieee80211com *ic = ifp->if_l2com;
2918	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2919	uint16_t hw;
2920
2921	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2922	    BUS_DMASYNC_POSTREAD);
2923
2924	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2925	while (sc->rxq.cur != hw) {
2926		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2927		struct iwn_rx_desc *desc;
2928
2929		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2930		    BUS_DMASYNC_POSTREAD);
2931		desc = mtod(data->m, struct iwn_rx_desc *);
2932
2933		DPRINTF(sc, IWN_DEBUG_RECV,
2934		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2935		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2936		    desc->type, iwn_intr_str(desc->type),
2937		    le16toh(desc->len));
2938
2939		if (!(desc->qid & 0x80))	/* Reply to a command. */
2940			iwn_cmd_done(sc, desc);
2941
2942		switch (desc->type) {
2943		case IWN_RX_PHY:
2944			iwn_rx_phy(sc, desc, data);
2945			break;
2946
2947		case IWN_RX_DONE:		/* 4965AGN only. */
2948		case IWN_MPDU_RX_DONE:
2949			/* An 802.11 frame has been received. */
2950			iwn_rx_done(sc, desc, data);
2951			break;
2952
2953		case IWN_RX_COMPRESSED_BA:
2954			/* A Compressed BlockAck has been received. */
2955			iwn_rx_compressed_ba(sc, desc, data);
2956			break;
2957
2958		case IWN_TX_DONE:
2959			/* An 802.11 frame has been transmitted. */
2960			ops->tx_done(sc, desc, data);
2961			break;
2962
2963		case IWN_RX_STATISTICS:
2964		case IWN_BEACON_STATISTICS:
2965			iwn_rx_statistics(sc, desc, data);
2966			break;
2967
2968		case IWN_BEACON_MISSED:
2969		{
2970			struct iwn_beacon_missed *miss =
2971			    (struct iwn_beacon_missed *)(desc + 1);
2972			int misses;
2973
2974			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2975			    BUS_DMASYNC_POSTREAD);
2976			misses = le32toh(miss->consecutive);
2977
2978			DPRINTF(sc, IWN_DEBUG_STATE,
2979			    "%s: beacons missed %d/%d\n", __func__,
2980			    misses, le32toh(miss->total));
2981			/*
2982			 * If more than 5 consecutive beacons are missed,
2983			 * reinitialize the sensitivity state machine.
2984			 */
2985			if (vap->iv_state == IEEE80211_S_RUN &&
2986			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2987				if (misses > 5)
2988					(void)iwn_init_sensitivity(sc);
2989				if (misses >= vap->iv_bmissthreshold) {
2990					IWN_UNLOCK(sc);
2991					ieee80211_beacon_miss(ic);
2992					IWN_LOCK(sc);
2993				}
2994			}
2995			break;
2996		}
2997		case IWN_UC_READY:
2998		{
2999			struct iwn_ucode_info *uc =
3000			    (struct iwn_ucode_info *)(desc + 1);
3001
3002			/* The microcontroller is ready. */
3003			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3004			    BUS_DMASYNC_POSTREAD);
3005			DPRINTF(sc, IWN_DEBUG_RESET,
3006			    "microcode alive notification version=%d.%d "
3007			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3008			    uc->subtype, le32toh(uc->valid));
3009
3010			if (le32toh(uc->valid) != 1) {
3011				device_printf(sc->sc_dev,
3012				    "microcontroller initialization failed");
3013				break;
3014			}
3015			if (uc->subtype == IWN_UCODE_INIT) {
3016				/* Save microcontroller report. */
3017				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3018			}
3019			/* Save the address of the error log in SRAM. */
3020			sc->errptr = le32toh(uc->errptr);
3021			break;
3022		}
3023		case IWN_STATE_CHANGED:
3024		{
3025			uint32_t *status = (uint32_t *)(desc + 1);
3026
3027			/*
3028			 * State change allows hardware switch change to be
3029			 * noted. However, we handle this in iwn_intr as we
3030			 * get both the enable/disble intr.
3031			 */
3032			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3033			    BUS_DMASYNC_POSTREAD);
3034			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
3035			    le32toh(*status));
3036			break;
3037		}
3038		case IWN_START_SCAN:
3039		{
3040			struct iwn_start_scan *scan =
3041			    (struct iwn_start_scan *)(desc + 1);
3042
3043			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3044			    BUS_DMASYNC_POSTREAD);
3045			DPRINTF(sc, IWN_DEBUG_ANY,
3046			    "%s: scanning channel %d status %x\n",
3047			    __func__, scan->chan, le32toh(scan->status));
3048			break;
3049		}
3050		case IWN_STOP_SCAN:
3051		{
3052			struct iwn_stop_scan *scan =
3053			    (struct iwn_stop_scan *)(desc + 1);
3054
3055			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3056			    BUS_DMASYNC_POSTREAD);
3057			DPRINTF(sc, IWN_DEBUG_STATE,
3058			    "scan finished nchan=%d status=%d chan=%d\n",
3059			    scan->nchan, scan->status, scan->chan);
3060
3061			IWN_UNLOCK(sc);
3062			ieee80211_scan_next(vap);
3063			IWN_LOCK(sc);
3064			break;
3065		}
3066		case IWN5000_CALIBRATION_RESULT:
3067			iwn5000_rx_calib_results(sc, desc, data);
3068			break;
3069
3070		case IWN5000_CALIBRATION_DONE:
3071			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3072			wakeup(sc);
3073			break;
3074		}
3075
3076		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3077	}
3078
3079	/* Tell the firmware what we have processed. */
3080	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3081	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3082}
3083
3084/*
3085 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3086 * from power-down sleep mode.
3087 */
3088static void
3089iwn_wakeup_intr(struct iwn_softc *sc)
3090{
3091	int qid;
3092
3093	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3094	    __func__);
3095
3096	/* Wakeup RX and TX rings. */
3097	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3098	for (qid = 0; qid < sc->ntxqs; qid++) {
3099		struct iwn_tx_ring *ring = &sc->txq[qid];
3100		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3101	}
3102}
3103
3104static void
3105iwn_rftoggle_intr(struct iwn_softc *sc)
3106{
3107	struct ifnet *ifp = sc->sc_ifp;
3108	struct ieee80211com *ic = ifp->if_l2com;
3109	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3110
3111	IWN_LOCK_ASSERT(sc);
3112
3113	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3114	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3115	if (tmp & IWN_GP_CNTRL_RFKILL)
3116		ieee80211_runtask(ic, &sc->sc_radioon_task);
3117	else
3118		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3119}
3120
3121/*
3122 * Dump the error log of the firmware when a firmware panic occurs.  Although
3123 * we can't debug the firmware because it is neither open source nor free, it
3124 * can help us to identify certain classes of problems.
3125 */
3126static void
3127iwn_fatal_intr(struct iwn_softc *sc)
3128{
3129	struct iwn_fw_dump dump;
3130	int i;
3131
3132	IWN_LOCK_ASSERT(sc);
3133
3134	/* Force a complete recalibration on next init. */
3135	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3136
3137	/* Check that the error log address is valid. */
3138	if (sc->errptr < IWN_FW_DATA_BASE ||
3139	    sc->errptr + sizeof (dump) >
3140	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3141		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3142		    sc->errptr);
3143		return;
3144	}
3145	if (iwn_nic_lock(sc) != 0) {
3146		printf("%s: could not read firmware error log\n", __func__);
3147		return;
3148	}
3149	/* Read firmware error log from SRAM. */
3150	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3151	    sizeof (dump) / sizeof (uint32_t));
3152	iwn_nic_unlock(sc);
3153
3154	if (dump.valid == 0) {
3155		printf("%s: firmware error log is empty\n", __func__);
3156		return;
3157	}
3158	printf("firmware error log:\n");
3159	printf("  error type      = \"%s\" (0x%08X)\n",
3160	    (dump.id < nitems(iwn_fw_errmsg)) ?
3161		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3162	    dump.id);
3163	printf("  program counter = 0x%08X\n", dump.pc);
3164	printf("  source line     = 0x%08X\n", dump.src_line);
3165	printf("  error data      = 0x%08X%08X\n",
3166	    dump.error_data[0], dump.error_data[1]);
3167	printf("  branch link     = 0x%08X%08X\n",
3168	    dump.branch_link[0], dump.branch_link[1]);
3169	printf("  interrupt link  = 0x%08X%08X\n",
3170	    dump.interrupt_link[0], dump.interrupt_link[1]);
3171	printf("  time            = %u\n", dump.time[0]);
3172
3173	/* Dump driver status (TX and RX rings) while we're here. */
3174	printf("driver status:\n");
3175	for (i = 0; i < sc->ntxqs; i++) {
3176		struct iwn_tx_ring *ring = &sc->txq[i];
3177		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3178		    i, ring->qid, ring->cur, ring->queued);
3179	}
3180	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3181}
3182
3183static void
3184iwn_intr(void *arg)
3185{
3186	struct iwn_softc *sc = arg;
3187	struct ifnet *ifp = sc->sc_ifp;
3188	uint32_t r1, r2, tmp;
3189
3190	IWN_LOCK(sc);
3191
3192#if !defined(__HAIKU__)
3193	/* Disable interrupts. */
3194	IWN_WRITE(sc, IWN_INT_MASK, 0);
3195
3196	/* Read interrupts from ICT (fast) or from registers (slow). */
3197	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3198		tmp = 0;
3199		while (sc->ict[sc->ict_cur] != 0) {
3200			tmp |= sc->ict[sc->ict_cur];
3201			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3202			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3203		}
3204		tmp = le32toh(tmp);
3205		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3206			tmp = 0;
3207		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3208			tmp |= 0x8000;
3209		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3210		r2 = 0;	/* Unused. */
3211	} else {
3212		r1 = IWN_READ(sc, IWN_INT);
3213		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3214			return;	/* Hardware gone! */
3215		r2 = IWN_READ(sc, IWN_FH_INT);
3216	}
3217#else
3218	r1 = atomic_get((int32 *)&sc->sc_intr_status_1);
3219	r2 = atomic_get((int32 *)&sc->sc_intr_status_2);
3220#endif
3221
3222	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
3223
3224	if (r1 == 0 && r2 == 0)
3225		goto done;	/* Interrupt not for us. */
3226
3227	/* Acknowledge interrupts. */
3228	IWN_WRITE(sc, IWN_INT, r1);
3229	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3230		IWN_WRITE(sc, IWN_FH_INT, r2);
3231
3232	if (r1 & IWN_INT_RF_TOGGLED) {
3233		iwn_rftoggle_intr(sc);
3234		goto done;
3235	}
3236	if (r1 & IWN_INT_CT_REACHED) {
3237		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3238		    __func__);
3239	}
3240	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3241		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3242		    __func__);
3243		/* Dump firmware error log and stop. */
3244		iwn_fatal_intr(sc);
3245		ifp->if_flags &= ~IFF_UP;
3246		iwn_stop_locked(sc);
3247		goto done;
3248	}
3249	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3250	    (r2 & IWN_FH_INT_RX)) {
3251		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3252			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3253				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3254			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3255			    IWN_INT_PERIODIC_DIS);
3256			iwn_notif_intr(sc);
3257			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3258				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3259				    IWN_INT_PERIODIC_ENA);
3260			}
3261		} else
3262			iwn_notif_intr(sc);
3263	}
3264
3265	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3266		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3267			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3268		wakeup(sc);	/* FH DMA transfer completed. */
3269	}
3270
3271	if (r1 & IWN_INT_ALIVE)
3272		wakeup(sc);	/* Firmware is alive. */
3273
3274	if (r1 & IWN_INT_WAKEUP)
3275		iwn_wakeup_intr(sc);
3276
3277done:
3278	/* Re-enable interrupts. */
3279	if (ifp->if_flags & IFF_UP)
3280		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3281
3282	IWN_UNLOCK(sc);
3283}
3284
3285/*
3286 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3287 * 5000 adapters use a slightly different format).
3288 */
3289static void
3290iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3291    uint16_t len)
3292{
3293	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3294
3295	*w = htole16(len + 8);
3296	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3297	    BUS_DMASYNC_PREWRITE);
3298	if (idx < IWN_SCHED_WINSZ) {
3299		*(w + IWN_TX_RING_COUNT) = *w;
3300		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3301		    BUS_DMASYNC_PREWRITE);
3302	}
3303}
3304
3305static void
3306iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3307    uint16_t len)
3308{
3309	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3310
3311	*w = htole16(id << 12 | (len + 8));
3312	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3313	    BUS_DMASYNC_PREWRITE);
3314	if (idx < IWN_SCHED_WINSZ) {
3315		*(w + IWN_TX_RING_COUNT) = *w;
3316		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3317		    BUS_DMASYNC_PREWRITE);
3318	}
3319}
3320
3321#ifdef notyet
3322static void
3323iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3324{
3325	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3326
3327	*w = (*w & htole16(0xf000)) | htole16(1);
3328	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3329	    BUS_DMASYNC_PREWRITE);
3330	if (idx < IWN_SCHED_WINSZ) {
3331		*(w + IWN_TX_RING_COUNT) = *w;
3332		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3333		    BUS_DMASYNC_PREWRITE);
3334	}
3335}
3336#endif
3337
3338static int
3339iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3340{
3341	struct iwn_ops *ops = &sc->ops;
3342	const struct ieee80211_txparam *tp;
3343	struct ieee80211vap *vap = ni->ni_vap;
3344	struct ieee80211com *ic = ni->ni_ic;
3345	struct iwn_node *wn = (void *)ni;
3346	struct iwn_tx_ring *ring;
3347	struct iwn_tx_desc *desc;
3348	struct iwn_tx_data *data;
3349	struct iwn_tx_cmd *cmd;
3350	struct iwn_cmd_data *tx;
3351	struct ieee80211_frame *wh;
3352	struct ieee80211_key *k = NULL;
3353	struct mbuf *m1;
3354	uint32_t flags;
3355	uint16_t qos;
3356	u_int hdrlen;
3357	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3358	uint8_t tid, ridx, txant, type;
3359	int ac, i, totlen, error, pad, nsegs = 0, rate;
3360
3361	IWN_LOCK_ASSERT(sc);
3362
3363	wh = mtod(m, struct ieee80211_frame *);
3364	hdrlen = ieee80211_anyhdrsize(wh);
3365	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3366
3367	/* Select EDCA Access Category and TX ring for this frame. */
3368	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3369		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
3370		tid = qos & IEEE80211_QOS_TID;
3371	} else {
3372		qos = 0;
3373		tid = 0;
3374	}
3375	ac = M_WME_GETAC(m);
3376	if (m->m_flags & M_AMPDU_MPDU) {
3377		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
3378
3379		if (!IEEE80211_AMPDU_RUNNING(tap)) {
3380			m_freem(m);
3381			return EINVAL;
3382		}
3383
3384		ac = *(int *)tap->txa_private;
3385		*(uint16_t *)wh->i_seq =
3386		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
3387		ni->ni_txseqs[tid]++;
3388	}
3389	ring = &sc->txq[ac];
3390	desc = &ring->desc[ring->cur];
3391	data = &ring->data[ring->cur];
3392
3393	/* Choose a TX rate index. */
3394	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
3395	if (type == IEEE80211_FC0_TYPE_MGT)
3396		rate = tp->mgmtrate;
3397	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
3398		rate = tp->mcastrate;
3399	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3400		rate = tp->ucastrate;
3401	else {
3402		/* XXX pass pktlen */
3403		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3404		rate = ni->ni_txrate;
3405	}
3406	ridx = ic->ic_rt->rateCodeToIndex[rate];
3407
3408	/* Encrypt the frame if need be. */
3409	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3410		/* Retrieve key for TX. */
3411		k = ieee80211_crypto_encap(ni, m);
3412		if (k == NULL) {
3413			m_freem(m);
3414			return ENOBUFS;
3415		}
3416		/* 802.11 header may have moved. */
3417		wh = mtod(m, struct ieee80211_frame *);
3418	}
3419	totlen = m->m_pkthdr.len;
3420
3421	if (ieee80211_radiotap_active_vap(vap)) {
3422		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3423
3424		tap->wt_flags = 0;
3425		tap->wt_rate = rate;
3426		if (k != NULL)
3427			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3428
3429		ieee80211_radiotap_tx(vap, m);
3430	}
3431
3432	/* Prepare TX firmware command. */
3433	cmd = &ring->cmd[ring->cur];
3434	cmd->code = IWN_CMD_TX_DATA;
3435	cmd->flags = 0;
3436	cmd->qid = ring->qid;
3437	cmd->idx = ring->cur;
3438
3439	tx = (struct iwn_cmd_data *)cmd->data;
3440	/* NB: No need to clear tx, all fields are reinitialized here. */
3441	tx->scratch = 0;	/* clear "scratch" area */
3442
3443	flags = 0;
3444	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3445		/* Unicast frame, check if an ACK is expected. */
3446		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3447		    IEEE80211_QOS_ACKPOLICY_NOACK)
3448			flags |= IWN_TX_NEED_ACK;
3449	}
3450	if ((wh->i_fc[0] &
3451	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3452	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3453		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3454
3455	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3456		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3457
3458	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3459	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3460		/* NB: Group frames are sent using CCK in 802.11b/g. */
3461		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
3462			flags |= IWN_TX_NEED_RTS;
3463		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3464		    ridx >= IWN_RIDX_OFDM6) {
3465			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3466				flags |= IWN_TX_NEED_CTS;
3467			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3468				flags |= IWN_TX_NEED_RTS;
3469		}
3470		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3471			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3472				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3473				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3474				flags |= IWN_TX_NEED_PROTECTION;
3475			} else
3476				flags |= IWN_TX_FULL_TXOP;
3477		}
3478	}
3479
3480	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3481	    type != IEEE80211_FC0_TYPE_DATA)
3482		tx->id = sc->broadcast_id;
3483	else
3484		tx->id = wn->id;
3485
3486	if (type == IEEE80211_FC0_TYPE_MGT) {
3487		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3488
3489		/* Tell HW to set timestamp in probe responses. */
3490		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3491			flags |= IWN_TX_INSERT_TSTAMP;
3492		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3493		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3494			tx->timeout = htole16(3);
3495		else
3496			tx->timeout = htole16(2);
3497	} else
3498		tx->timeout = htole16(0);
3499
3500	if (hdrlen & 3) {
3501		/* First segment length must be a multiple of 4. */
3502		flags |= IWN_TX_NEED_PADDING;
3503		pad = 4 - (hdrlen & 3);
3504	} else
3505		pad = 0;
3506
3507	tx->len = htole16(totlen);
3508	tx->tid = tid;
3509	tx->rts_ntries = 60;
3510	tx->data_ntries = 15;
3511	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3512	tx->rate = wn->ridx[rate];
3513	if (tx->id == sc->broadcast_id) {
3514		/* Group or management frame. */
3515		tx->linkq = 0;
3516		/* XXX Alternate between antenna A and B? */
3517		txant = IWN_LSB(sc->txchainmask);
3518		tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3519	} else {
3520		tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
3521		flags |= IWN_TX_LINKQ;	/* enable MRR */
3522	}
3523	/* Set physical address of "scratch area". */
3524	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3525	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3526
3527	/* Copy 802.11 header in TX command. */
3528	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3529
3530	/* Trim 802.11 header. */
3531	m_adj(m, hdrlen);
3532	tx->security = 0;
3533	tx->flags = htole32(flags);
3534
3535	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3536	    &nsegs, BUS_DMA_NOWAIT);
3537	if (error != 0) {
3538		if (error != EFBIG) {
3539			device_printf(sc->sc_dev,
3540			    "%s: can't map mbuf (error %d)\n", __func__, error);
3541			m_freem(m);
3542			return error;
3543		}
3544		/* Too many DMA segments, linearize mbuf. */
3545		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3546		if (m1 == NULL) {
3547			device_printf(sc->sc_dev,
3548			    "%s: could not defrag mbuf\n", __func__);
3549			m_freem(m);
3550			return ENOBUFS;
3551		}
3552		m = m1;
3553
3554		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3555		    segs, &nsegs, BUS_DMA_NOWAIT);
3556		if (error != 0) {
3557			device_printf(sc->sc_dev,
3558			    "%s: can't map mbuf (error %d)\n", __func__, error);
3559			m_freem(m);
3560			return error;
3561		}
3562	}
3563
3564	data->m = m;
3565	data->ni = ni;
3566
3567	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3568	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3569
3570	/* Fill TX descriptor. */
3571	desc->nsegs = 1;
3572	if (m->m_len != 0)
3573		desc->nsegs += nsegs;
3574	/* First DMA segment is used by the TX command. */
3575	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3576	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3577	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3578	/* Other DMA segments are for data payload. */
3579	seg = &segs[0];
3580	for (i = 1; i <= nsegs; i++) {
3581		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3582		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3583		    seg->ds_len << 4);
3584		seg++;
3585	}
3586
3587	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3588	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3589	    BUS_DMASYNC_PREWRITE);
3590	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3591	    BUS_DMASYNC_PREWRITE);
3592
3593	/* Update TX scheduler. */
3594	if (ring->qid >= sc->firstaggqueue)
3595		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3596
3597	/* Kick TX ring. */
3598	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3599	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3600
3601	/* Mark TX ring as full if we reach a certain threshold. */
3602	if (++ring->queued > IWN_TX_RING_HIMARK)
3603		sc->qfullmsk |= 1 << ring->qid;
3604
3605	return 0;
3606}
3607
3608static int
3609iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3610    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3611{
3612	struct iwn_ops *ops = &sc->ops;
3613	struct ifnet *ifp = sc->sc_ifp;
3614	struct ieee80211vap *vap = ni->ni_vap;
3615	struct ieee80211com *ic = ifp->if_l2com;
3616	struct iwn_tx_cmd *cmd;
3617	struct iwn_cmd_data *tx;
3618	struct ieee80211_frame *wh;
3619	struct iwn_tx_ring *ring;
3620	struct iwn_tx_desc *desc;
3621	struct iwn_tx_data *data;
3622	struct mbuf *m1;
3623	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3624	uint32_t flags;
3625	u_int hdrlen;
3626	int ac, totlen, error, pad, nsegs = 0, i, rate;
3627	uint8_t ridx, type, txant;
3628
3629	IWN_LOCK_ASSERT(sc);
3630
3631	wh = mtod(m, struct ieee80211_frame *);
3632	hdrlen = ieee80211_anyhdrsize(wh);
3633	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3634
3635	ac = params->ibp_pri & 3;
3636
3637	ring = &sc->txq[ac];
3638	desc = &ring->desc[ring->cur];
3639	data = &ring->data[ring->cur];
3640
3641	/* Choose a TX rate index. */
3642	rate = params->ibp_rate0;
3643	ridx = ic->ic_rt->rateCodeToIndex[rate];
3644	if (ridx == (uint8_t)-1) {
3645		/* XXX fall back to mcast/mgmt rate? */
3646		m_freem(m);
3647		return EINVAL;
3648	}
3649
3650	totlen = m->m_pkthdr.len;
3651
3652	/* Prepare TX firmware command. */
3653	cmd = &ring->cmd[ring->cur];
3654	cmd->code = IWN_CMD_TX_DATA;
3655	cmd->flags = 0;
3656	cmd->qid = ring->qid;
3657	cmd->idx = ring->cur;
3658
3659	tx = (struct iwn_cmd_data *)cmd->data;
3660	/* NB: No need to clear tx, all fields are reinitialized here. */
3661	tx->scratch = 0;	/* clear "scratch" area */
3662
3663	flags = 0;
3664	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3665		flags |= IWN_TX_NEED_ACK;
3666	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3667		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3668			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3669			flags &= ~IWN_TX_NEED_RTS;
3670			flags |= IWN_TX_NEED_PROTECTION;
3671		} else
3672			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3673	}
3674	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3675		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3676			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3677			flags &= ~IWN_TX_NEED_CTS;
3678			flags |= IWN_TX_NEED_PROTECTION;
3679		} else
3680			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3681	}
3682	if (type == IEEE80211_FC0_TYPE_MGT) {
3683		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3684
3685		/* Tell HW to set timestamp in probe responses. */
3686		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3687			flags |= IWN_TX_INSERT_TSTAMP;
3688
3689		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3690		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3691			tx->timeout = htole16(3);
3692		else
3693			tx->timeout = htole16(2);
3694	} else
3695		tx->timeout = htole16(0);
3696
3697	if (hdrlen & 3) {
3698		/* First segment length must be a multiple of 4. */
3699		flags |= IWN_TX_NEED_PADDING;
3700		pad = 4 - (hdrlen & 3);
3701	} else
3702		pad = 0;
3703
3704	if (ieee80211_radiotap_active_vap(vap)) {
3705		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3706
3707		tap->wt_flags = 0;
3708		tap->wt_rate = rate;
3709
3710		ieee80211_radiotap_tx(vap, m);
3711	}
3712
3713	tx->len = htole16(totlen);
3714	tx->tid = 0;
3715	tx->id = sc->broadcast_id;
3716	tx->rts_ntries = params->ibp_try1;
3717	tx->data_ntries = params->ibp_try0;
3718	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3719	tx->rate = htole32(rate2plcp(rate));
3720	if (ridx < IWN_RIDX_OFDM6 &&
3721	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3722		tx->rate |= htole32(IWN_RFLAG_CCK);
3723	/* Group or management frame. */
3724	tx->linkq = 0;
3725	txant = IWN_LSB(sc->txchainmask);
3726	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3727	/* Set physical address of "scratch area". */
3728	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3729	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3730
3731	/* Copy 802.11 header in TX command. */
3732	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3733
3734	/* Trim 802.11 header. */
3735	m_adj(m, hdrlen);
3736	tx->security = 0;
3737	tx->flags = htole32(flags);
3738
3739	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3740	    &nsegs, BUS_DMA_NOWAIT);
3741	if (error != 0) {
3742		if (error != EFBIG) {
3743			device_printf(sc->sc_dev,
3744			    "%s: can't map mbuf (error %d)\n", __func__, error);
3745			m_freem(m);
3746			return error;
3747		}
3748		/* Too many DMA segments, linearize mbuf. */
3749		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3750		if (m1 == NULL) {
3751			device_printf(sc->sc_dev,
3752			    "%s: could not defrag mbuf\n", __func__);
3753			m_freem(m);
3754			return ENOBUFS;
3755		}
3756		m = m1;
3757
3758		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3759		    segs, &nsegs, BUS_DMA_NOWAIT);
3760		if (error != 0) {
3761			device_printf(sc->sc_dev,
3762			    "%s: can't map mbuf (error %d)\n", __func__, error);
3763			m_freem(m);
3764			return error;
3765		}
3766	}
3767
3768	data->m = m;
3769	data->ni = ni;
3770
3771	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3772	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3773
3774	/* Fill TX descriptor. */
3775	desc->nsegs = 1;
3776	if (m->m_len != 0)
3777		desc->nsegs += nsegs;
3778	/* First DMA segment is used by the TX command. */
3779	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3780	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3781	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3782	/* Other DMA segments are for data payload. */
3783	seg = &segs[0];
3784	for (i = 1; i <= nsegs; i++) {
3785		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3786		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3787		    seg->ds_len << 4);
3788		seg++;
3789	}
3790
3791	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3792	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3793	    BUS_DMASYNC_PREWRITE);
3794	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3795	    BUS_DMASYNC_PREWRITE);
3796
3797	/* Update TX scheduler. */
3798	if (ring->qid >= sc->firstaggqueue)
3799		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3800
3801	/* Kick TX ring. */
3802	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3803	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3804
3805	/* Mark TX ring as full if we reach a certain threshold. */
3806	if (++ring->queued > IWN_TX_RING_HIMARK)
3807		sc->qfullmsk |= 1 << ring->qid;
3808
3809	return 0;
3810}
3811
3812static int
3813iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3814    const struct ieee80211_bpf_params *params)
3815{
3816	struct ieee80211com *ic = ni->ni_ic;
3817	struct ifnet *ifp = ic->ic_ifp;
3818	struct iwn_softc *sc = ifp->if_softc;
3819	int error = 0;
3820
3821	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3822		ieee80211_free_node(ni);
3823		m_freem(m);
3824		return ENETDOWN;
3825	}
3826
3827	IWN_LOCK(sc);
3828	if (params == NULL) {
3829		/*
3830		 * Legacy path; interpret frame contents to decide
3831		 * precisely how to send the frame.
3832		 */
3833		error = iwn_tx_data(sc, m, ni);
3834	} else {
3835		/*
3836		 * Caller supplied explicit parameters to use in
3837		 * sending the frame.
3838		 */
3839		error = iwn_tx_data_raw(sc, m, ni, params);
3840	}
3841	if (error != 0) {
3842		/* NB: m is reclaimed on tx failure */
3843		ieee80211_free_node(ni);
3844		ifp->if_oerrors++;
3845	}
3846	sc->sc_tx_timer = 5;
3847
3848	IWN_UNLOCK(sc);
3849	return error;
3850}
3851
3852static void
3853iwn_start(struct ifnet *ifp)
3854{
3855	struct iwn_softc *sc = ifp->if_softc;
3856
3857	IWN_LOCK(sc);
3858	iwn_start_locked(ifp);
3859	IWN_UNLOCK(sc);
3860}
3861
3862static void
3863iwn_start_locked(struct ifnet *ifp)
3864{
3865	struct iwn_softc *sc = ifp->if_softc;
3866	struct ieee80211_node *ni;
3867	struct mbuf *m;
3868
3869	IWN_LOCK_ASSERT(sc);
3870
3871	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3872	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
3873		return;
3874
3875	for (;;) {
3876		if (sc->qfullmsk != 0) {
3877			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3878			break;
3879		}
3880		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3881		if (m == NULL)
3882			break;
3883		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3884		if (iwn_tx_data(sc, m, ni) != 0) {
3885			ieee80211_free_node(ni);
3886			ifp->if_oerrors++;
3887			continue;
3888		}
3889		sc->sc_tx_timer = 5;
3890	}
3891}
3892
3893static void
3894iwn_watchdog(void *arg)
3895{
3896	struct iwn_softc *sc = arg;
3897	struct ifnet *ifp = sc->sc_ifp;
3898	struct ieee80211com *ic = ifp->if_l2com;
3899
3900	IWN_LOCK_ASSERT(sc);
3901
3902	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
3903
3904	if (sc->sc_tx_timer > 0) {
3905		if (--sc->sc_tx_timer == 0) {
3906			if_printf(ifp, "device timeout\n");
3907			ieee80211_runtask(ic, &sc->sc_reinit_task);
3908			return;
3909		}
3910	}
3911	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
3912}
3913
3914static int
3915iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3916{
3917	struct iwn_softc *sc = ifp->if_softc;
3918	struct ieee80211com *ic = ifp->if_l2com;
3919	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3920	struct ifreq *ifr = (struct ifreq *) data;
3921	int error = 0, startall = 0, stop = 0;
3922
3923	switch (cmd) {
3924	case SIOCGIFADDR:
3925		error = ether_ioctl(ifp, cmd, data);
3926		break;
3927	case SIOCSIFFLAGS:
3928		IWN_LOCK(sc);
3929		if (ifp->if_flags & IFF_UP) {
3930			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3931				iwn_init_locked(sc);
3932				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3933					startall = 1;
3934				else
3935					stop = 1;
3936			}
3937		} else {
3938			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3939				iwn_stop_locked(sc);
3940		}
3941		IWN_UNLOCK(sc);
3942		if (startall)
3943			ieee80211_start_all(ic);
3944		else if (vap != NULL && stop)
3945			ieee80211_stop(vap);
3946		break;
3947	case SIOCGIFMEDIA:
3948		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3949		break;
3950	default:
3951		error = EINVAL;
3952		break;
3953	}
3954	return error;
3955}
3956
3957/*
3958 * Send a command to the firmware.
3959 */
3960static int
3961iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3962{
3963	struct iwn_tx_ring *ring = &sc->txq[4];
3964	struct iwn_tx_desc *desc;
3965	struct iwn_tx_data *data;
3966	struct iwn_tx_cmd *cmd;
3967	struct mbuf *m;
3968	bus_addr_t paddr;
3969	int totlen, error;
3970
3971	if (async == 0)
3972		IWN_LOCK_ASSERT(sc);
3973
3974	desc = &ring->desc[ring->cur];
3975	data = &ring->data[ring->cur];
3976	totlen = 4 + size;
3977
3978	if (size > sizeof cmd->data) {
3979		/* Command is too large to fit in a descriptor. */
3980		if (totlen > MCLBYTES)
3981			return EINVAL;
3982		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3983		if (m == NULL)
3984			return ENOMEM;
3985		cmd = mtod(m, struct iwn_tx_cmd *);
3986		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3987		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3988		if (error != 0) {
3989			m_freem(m);
3990			return error;
3991		}
3992		data->m = m;
3993	} else {
3994		cmd = &ring->cmd[ring->cur];
3995		paddr = data->cmd_paddr;
3996	}
3997
3998	cmd->code = code;
3999	cmd->flags = 0;
4000	cmd->qid = ring->qid;
4001	cmd->idx = ring->cur;
4002	memcpy(cmd->data, buf, size);
4003
4004	desc->nsegs = 1;
4005	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4006	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4007
4008	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4009	    __func__, iwn_intr_str(cmd->code), cmd->code,
4010	    cmd->flags, cmd->qid, cmd->idx);
4011
4012	if (size > sizeof cmd->data) {
4013		bus_dmamap_sync(ring->data_dmat, data->map,
4014		    BUS_DMASYNC_PREWRITE);
4015	} else {
4016		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4017		    BUS_DMASYNC_PREWRITE);
4018	}
4019	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4020	    BUS_DMASYNC_PREWRITE);
4021
4022	/* Kick command ring. */
4023	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4024	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4025
4026	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
4027}
4028
4029static int
4030iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4031{
4032	struct iwn4965_node_info hnode;
4033	caddr_t src, dst;
4034
4035	/*
4036	 * We use the node structure for 5000 Series internally (it is
4037	 * a superset of the one for 4965AGN). We thus copy the common
4038	 * fields before sending the command.
4039	 */
4040	src = (caddr_t)node;
4041	dst = (caddr_t)&hnode;
4042	memcpy(dst, src, 48);
4043	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4044	memcpy(dst + 48, src + 72, 20);
4045	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4046}
4047
4048static int
4049iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4050{
4051	/* Direct mapping. */
4052	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4053}
4054
4055static int
4056iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4057{
4058#define	RV(v)	((v) & IEEE80211_RATE_VAL)
4059	struct iwn_node *wn = (void *)ni;
4060	struct ieee80211_rateset *rs = &ni->ni_rates;
4061	struct iwn_cmd_link_quality linkq;
4062	uint8_t txant;
4063	int i, rate, txrate;
4064
4065	/* Use the first valid TX antenna. */
4066	txant = IWN_LSB(sc->txchainmask);
4067
4068	memset(&linkq, 0, sizeof linkq);
4069	linkq.id = wn->id;
4070	linkq.antmsk_1stream = txant;
4071	linkq.antmsk_2stream = IWN_ANT_AB;
4072	linkq.ampdu_max = 64;
4073	linkq.ampdu_threshold = 3;
4074	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4075
4076	/* Start at highest available bit-rate. */
4077	if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4078		txrate = ni->ni_htrates.rs_nrates - 1;
4079	else
4080		txrate = rs->rs_nrates - 1;
4081	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4082		if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4083			rate = IEEE80211_RATE_MCS | txrate;
4084		else
4085			rate = RV(rs->rs_rates[txrate]);
4086		linkq.retry[i] = wn->ridx[rate];
4087
4088		if ((le32toh(wn->ridx[rate]) & IWN_RFLAG_MCS) &&
4089		    RV(le32toh(wn->ridx[rate])) > 7)
4090			linkq.mimo = i + 1;
4091
4092		/* Next retry at immediate lower bit-rate. */
4093		if (txrate > 0)
4094			txrate--;
4095	}
4096	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4097#undef	RV
4098}
4099
4100/*
4101 * Broadcast node is used to send group-addressed and management frames.
4102 */
4103static int
4104iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4105{
4106	struct iwn_ops *ops = &sc->ops;
4107	struct ifnet *ifp = sc->sc_ifp;
4108	struct ieee80211com *ic = ifp->if_l2com;
4109	struct iwn_node_info node;
4110	struct iwn_cmd_link_quality linkq;
4111	uint8_t txant;
4112	int i, error;
4113
4114	memset(&node, 0, sizeof node);
4115	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4116	node.id = sc->broadcast_id;
4117	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4118	if ((error = ops->add_node(sc, &node, async)) != 0)
4119		return error;
4120
4121	/* Use the first valid TX antenna. */
4122	txant = IWN_LSB(sc->txchainmask);
4123
4124	memset(&linkq, 0, sizeof linkq);
4125	linkq.id = sc->broadcast_id;
4126	linkq.antmsk_1stream = txant;
4127	linkq.antmsk_2stream = IWN_ANT_AB;
4128	linkq.ampdu_max = 64;
4129	linkq.ampdu_threshold = 3;
4130	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4131
4132	/* Use lowest mandatory bit-rate. */
4133	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4134		linkq.retry[0] = htole32(0xd);
4135	else
4136		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
4137	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
4138	/* Use same bit-rate for all TX retries. */
4139	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4140		linkq.retry[i] = linkq.retry[0];
4141	}
4142	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4143}
4144
4145static int
4146iwn_updateedca(struct ieee80211com *ic)
4147{
4148#define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4149	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4150	struct iwn_edca_params cmd;
4151	int aci;
4152
4153	memset(&cmd, 0, sizeof cmd);
4154	cmd.flags = htole32(IWN_EDCA_UPDATE);
4155	for (aci = 0; aci < WME_NUM_AC; aci++) {
4156		const struct wmeParams *ac =
4157		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
4158		cmd.ac[aci].aifsn = ac->wmep_aifsn;
4159		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
4160		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
4161		cmd.ac[aci].txoplimit =
4162		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
4163	}
4164	IEEE80211_UNLOCK(ic);
4165	IWN_LOCK(sc);
4166	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4167	IWN_UNLOCK(sc);
4168	IEEE80211_LOCK(ic);
4169	return 0;
4170#undef IWN_EXP2
4171}
4172
4173static void
4174iwn_update_mcast(struct ifnet *ifp)
4175{
4176	/* Ignore */
4177}
4178
4179static void
4180iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4181{
4182	struct iwn_cmd_led led;
4183
4184	/* Clear microcode LED ownership. */
4185	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4186
4187	led.which = which;
4188	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4189	led.off = off;
4190	led.on = on;
4191	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4192}
4193
4194/*
4195 * Set the critical temperature at which the firmware will stop the radio
4196 * and notify us.
4197 */
4198static int
4199iwn_set_critical_temp(struct iwn_softc *sc)
4200{
4201	struct iwn_critical_temp crit;
4202	int32_t temp;
4203
4204	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4205
4206	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4207		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4208	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4209		temp = IWN_CTOK(110);
4210	else
4211		temp = 110;
4212	memset(&crit, 0, sizeof crit);
4213	crit.tempR = htole32(temp);
4214	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
4215	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4216}
4217
4218static int
4219iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4220{
4221	struct iwn_cmd_timing cmd;
4222	uint64_t val, mod;
4223
4224	memset(&cmd, 0, sizeof cmd);
4225	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
4226	cmd.bintval = htole16(ni->ni_intval);
4227	cmd.lintval = htole16(10);
4228
4229	/* Compute remaining time until next beacon. */
4230	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4231	mod = le64toh(cmd.tstamp) % val;
4232	cmd.binitval = htole32((uint32_t)(val - mod));
4233
4234	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
4235	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
4236
4237	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4238}
4239
4240static void
4241iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4242{
4243	struct ifnet *ifp = sc->sc_ifp;
4244	struct ieee80211com *ic = ifp->if_l2com;
4245
4246	/* Adjust TX power if need be (delta >= 3 degC). */
4247	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
4248	    __func__, sc->temp, temp);
4249	if (abs(temp - sc->temp) >= 3) {
4250		/* Record temperature of last calibration. */
4251		sc->temp = temp;
4252		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
4253	}
4254}
4255
4256/*
4257 * Set TX power for current channel (each rate has its own power settings).
4258 * This function takes into account the regulatory information from EEPROM,
4259 * the current temperature and the current voltage.
4260 */
4261static int
4262iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4263    int async)
4264{
4265/* Fixed-point arithmetic division using a n-bit fractional part. */
4266#define fdivround(a, b, n)	\
4267	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4268/* Linear interpolation. */
4269#define interpolate(x, x1, y1, x2, y2, n)	\
4270	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4271
4272	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4273	struct iwn_ucode_info *uc = &sc->ucode_info;
4274	struct iwn4965_cmd_txpower cmd;
4275	struct iwn4965_eeprom_chan_samples *chans;
4276	const uint8_t *rf_gain, *dsp_gain;
4277	int32_t vdiff, tdiff;
4278	int i, c, grp, maxpwr;
4279	uint8_t chan;
4280
4281	/* Retrieve current channel from last RXON. */
4282	chan = sc->rxon.chan;
4283	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
4284	    chan);
4285
4286	memset(&cmd, 0, sizeof cmd);
4287	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4288	cmd.chan = chan;
4289
4290	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4291		maxpwr   = sc->maxpwr5GHz;
4292		rf_gain  = iwn4965_rf_gain_5ghz;
4293		dsp_gain = iwn4965_dsp_gain_5ghz;
4294	} else {
4295		maxpwr   = sc->maxpwr2GHz;
4296		rf_gain  = iwn4965_rf_gain_2ghz;
4297		dsp_gain = iwn4965_dsp_gain_2ghz;
4298	}
4299
4300	/* Compute voltage compensation. */
4301	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4302	if (vdiff > 0)
4303		vdiff *= 2;
4304	if (abs(vdiff) > 2)
4305		vdiff = 0;
4306	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4307	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4308	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
4309
4310	/* Get channel attenuation group. */
4311	if (chan <= 20)		/* 1-20 */
4312		grp = 4;
4313	else if (chan <= 43)	/* 34-43 */
4314		grp = 0;
4315	else if (chan <= 70)	/* 44-70 */
4316		grp = 1;
4317	else if (chan <= 124)	/* 71-124 */
4318		grp = 2;
4319	else			/* 125-200 */
4320		grp = 3;
4321	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4322	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
4323
4324	/* Get channel sub-band. */
4325	for (i = 0; i < IWN_NBANDS; i++)
4326		if (sc->bands[i].lo != 0 &&
4327		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4328			break;
4329	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4330		return EINVAL;
4331	chans = sc->bands[i].chans;
4332	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4333	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
4334
4335	for (c = 0; c < 2; c++) {
4336		uint8_t power, gain, temp;
4337		int maxchpwr, pwr, ridx, idx;
4338
4339		power = interpolate(chan,
4340		    chans[0].num, chans[0].samples[c][1].power,
4341		    chans[1].num, chans[1].samples[c][1].power, 1);
4342		gain  = interpolate(chan,
4343		    chans[0].num, chans[0].samples[c][1].gain,
4344		    chans[1].num, chans[1].samples[c][1].gain, 1);
4345		temp  = interpolate(chan,
4346		    chans[0].num, chans[0].samples[c][1].temp,
4347		    chans[1].num, chans[1].samples[c][1].temp, 1);
4348		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4349		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
4350		    __func__, c, power, gain, temp);
4351
4352		/* Compute temperature compensation. */
4353		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4354		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4355		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
4356		    __func__, tdiff, sc->temp, temp);
4357
4358		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4359			/* Convert dBm to half-dBm. */
4360			maxchpwr = sc->maxpwr[chan] * 2;
4361			if ((ridx / 8) & 1)
4362				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4363
4364			pwr = maxpwr;
4365
4366			/* Adjust TX power based on rate. */
4367			if ((ridx % 8) == 5)
4368				pwr -= 15;	/* OFDM48: -7.5dB */
4369			else if ((ridx % 8) == 6)
4370				pwr -= 17;	/* OFDM54: -8.5dB */
4371			else if ((ridx % 8) == 7)
4372				pwr -= 20;	/* OFDM60: -10dB */
4373			else
4374				pwr -= 10;	/* Others: -5dB */
4375
4376			/* Do not exceed channel max TX power. */
4377			if (pwr > maxchpwr)
4378				pwr = maxchpwr;
4379
4380			idx = gain - (pwr - power) - tdiff - vdiff;
4381			if ((ridx / 8) & 1)	/* MIMO */
4382				idx += (int32_t)le32toh(uc->atten[grp][c]);
4383
4384			if (cmd.band == 0)
4385				idx += 9;	/* 5GHz */
4386			if (ridx == IWN_RIDX_MAX)
4387				idx += 5;	/* CCK */
4388
4389			/* Make sure idx stays in a valid range. */
4390			if (idx < 0)
4391				idx = 0;
4392			else if (idx > IWN4965_MAX_PWR_INDEX)
4393				idx = IWN4965_MAX_PWR_INDEX;
4394
4395			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4396			    "%s: Tx chain %d, rate idx %d: power=%d\n",
4397			    __func__, c, ridx, idx);
4398			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4399			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4400		}
4401	}
4402
4403	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4404	    "%s: set tx power for chan %d\n", __func__, chan);
4405	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4406
4407#undef interpolate
4408#undef fdivround
4409}
4410
4411static int
4412iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4413    int async)
4414{
4415	struct iwn5000_cmd_txpower cmd;
4416
4417	/*
4418	 * TX power calibration is handled automatically by the firmware
4419	 * for 5000 Series.
4420	 */
4421	memset(&cmd, 0, sizeof cmd);
4422	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4423	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4424	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4425	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
4426	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4427}
4428
4429/*
4430 * Retrieve the maximum RSSI (in dBm) among receivers.
4431 */
4432static int
4433iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4434{
4435	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4436	uint8_t mask, agc;
4437	int rssi;
4438
4439	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4440	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4441
4442	rssi = 0;
4443	if (mask & IWN_ANT_A)
4444		rssi = MAX(rssi, phy->rssi[0]);
4445	if (mask & IWN_ANT_B)
4446		rssi = MAX(rssi, phy->rssi[2]);
4447	if (mask & IWN_ANT_C)
4448		rssi = MAX(rssi, phy->rssi[4]);
4449
4450	DPRINTF(sc, IWN_DEBUG_RECV,
4451	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
4452	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
4453	    rssi - agc - IWN_RSSI_TO_DBM);
4454	return rssi - agc - IWN_RSSI_TO_DBM;
4455}
4456
4457static int
4458iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4459{
4460	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4461	uint8_t agc;
4462	int rssi;
4463
4464	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4465
4466	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4467		   le16toh(phy->rssi[1]) & 0xff);
4468	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4469
4470	DPRINTF(sc, IWN_DEBUG_RECV,
4471	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
4472	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4473	    rssi - agc - IWN_RSSI_TO_DBM);
4474	return rssi - agc - IWN_RSSI_TO_DBM;
4475}
4476
4477/*
4478 * Retrieve the average noise (in dBm) among receivers.
4479 */
4480static int
4481iwn_get_noise(const struct iwn_rx_general_stats *stats)
4482{
4483	int i, total, nbant, noise;
4484
4485	total = nbant = 0;
4486	for (i = 0; i < 3; i++) {
4487		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4488			continue;
4489		total += noise;
4490		nbant++;
4491	}
4492	/* There should be at least one antenna but check anyway. */
4493	return (nbant == 0) ? -127 : (total / nbant) - 107;
4494}
4495
4496/*
4497 * Compute temperature (in degC) from last received statistics.
4498 */
4499static int
4500iwn4965_get_temperature(struct iwn_softc *sc)
4501{
4502	struct iwn_ucode_info *uc = &sc->ucode_info;
4503	int32_t r1, r2, r3, r4, temp;
4504
4505	r1 = le32toh(uc->temp[0].chan20MHz);
4506	r2 = le32toh(uc->temp[1].chan20MHz);
4507	r3 = le32toh(uc->temp[2].chan20MHz);
4508	r4 = le32toh(sc->rawtemp);
4509
4510	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4511		return 0;
4512
4513	/* Sign-extend 23-bit R4 value to 32-bit. */
4514	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4515	/* Compute temperature in Kelvin. */
4516	temp = (259 * (r4 - r2)) / (r3 - r1);
4517	temp = (temp * 97) / 100 + 8;
4518
4519	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4520	    IWN_KTOC(temp));
4521	return IWN_KTOC(temp);
4522}
4523
4524static int
4525iwn5000_get_temperature(struct iwn_softc *sc)
4526{
4527	int32_t temp;
4528
4529	/*
4530	 * Temperature is not used by the driver for 5000 Series because
4531	 * TX power calibration is handled by firmware.
4532	 */
4533	temp = le32toh(sc->rawtemp);
4534	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4535		temp = (temp / -5) + sc->temp_off;
4536		temp = IWN_KTOC(temp);
4537	}
4538	return temp;
4539}
4540
4541/*
4542 * Initialize sensitivity calibration state machine.
4543 */
4544static int
4545iwn_init_sensitivity(struct iwn_softc *sc)
4546{
4547	struct iwn_ops *ops = &sc->ops;
4548	struct iwn_calib_state *calib = &sc->calib;
4549	uint32_t flags;
4550	int error;
4551
4552	/* Reset calibration state machine. */
4553	memset(calib, 0, sizeof (*calib));
4554	calib->state = IWN_CALIB_STATE_INIT;
4555	calib->cck_state = IWN_CCK_STATE_HIFA;
4556	/* Set initial correlation values. */
4557	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4558	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4559	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4560	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4561	calib->cck_x4      = 125;
4562	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4563	calib->energy_cck  = sc->limits->energy_cck;
4564
4565	/* Write initial sensitivity. */
4566	if ((error = iwn_send_sensitivity(sc)) != 0)
4567		return error;
4568
4569	/* Write initial gains. */
4570	if ((error = ops->init_gains(sc)) != 0)
4571		return error;
4572
4573	/* Request statistics at each beacon interval. */
4574	flags = 0;
4575	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
4576	    __func__);
4577	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4578}
4579
4580/*
4581 * Collect noise and RSSI statistics for the first 20 beacons received
4582 * after association and use them to determine connected antennas and
4583 * to set differential gains.
4584 */
4585static void
4586iwn_collect_noise(struct iwn_softc *sc,
4587    const struct iwn_rx_general_stats *stats)
4588{
4589	struct iwn_ops *ops = &sc->ops;
4590	struct iwn_calib_state *calib = &sc->calib;
4591	uint32_t val;
4592	int i;
4593
4594	/* Accumulate RSSI and noise for all 3 antennas. */
4595	for (i = 0; i < 3; i++) {
4596		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4597		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4598	}
4599	/* NB: We update differential gains only once after 20 beacons. */
4600	if (++calib->nbeacons < 20)
4601		return;
4602
4603	/* Determine highest average RSSI. */
4604	val = MAX(calib->rssi[0], calib->rssi[1]);
4605	val = MAX(calib->rssi[2], val);
4606
4607	/* Determine which antennas are connected. */
4608	sc->chainmask = sc->rxchainmask;
4609	for (i = 0; i < 3; i++)
4610		if (val - calib->rssi[i] > 15 * 20)
4611			sc->chainmask &= ~(1 << i);
4612	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4613	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4614	    __func__, sc->rxchainmask, sc->chainmask);
4615
4616	/* If none of the TX antennas are connected, keep at least one. */
4617	if ((sc->chainmask & sc->txchainmask) == 0)
4618		sc->chainmask |= IWN_LSB(sc->txchainmask);
4619
4620	(void)ops->set_gains(sc);
4621	calib->state = IWN_CALIB_STATE_RUN;
4622
4623#ifdef notyet
4624	/* XXX Disable RX chains with no antennas connected. */
4625	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4626	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4627#endif
4628
4629#if 0
4630	/* XXX: not yet */
4631	/* Enable power-saving mode if requested by user. */
4632	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4633		(void)iwn_set_pslevel(sc, 0, 3, 1);
4634#endif
4635}
4636
4637static int
4638iwn4965_init_gains(struct iwn_softc *sc)
4639{
4640	struct iwn_phy_calib_gain cmd;
4641
4642	memset(&cmd, 0, sizeof cmd);
4643	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4644	/* Differential gains initially set to 0 for all 3 antennas. */
4645	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4646	    "%s: setting initial differential gains\n", __func__);
4647	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4648}
4649
4650static int
4651iwn5000_init_gains(struct iwn_softc *sc)
4652{
4653	struct iwn_phy_calib cmd;
4654
4655	memset(&cmd, 0, sizeof cmd);
4656	cmd.code = sc->reset_noise_gain;
4657	cmd.ngroups = 1;
4658	cmd.isvalid = 1;
4659	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4660	    "%s: setting initial differential gains\n", __func__);
4661	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4662}
4663
4664static int
4665iwn4965_set_gains(struct iwn_softc *sc)
4666{
4667	struct iwn_calib_state *calib = &sc->calib;
4668	struct iwn_phy_calib_gain cmd;
4669	int i, delta, noise;
4670
4671	/* Get minimal noise among connected antennas. */
4672	noise = INT_MAX;	/* NB: There's at least one antenna. */
4673	for (i = 0; i < 3; i++)
4674		if (sc->chainmask & (1 << i))
4675			noise = MIN(calib->noise[i], noise);
4676
4677	memset(&cmd, 0, sizeof cmd);
4678	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4679	/* Set differential gains for connected antennas. */
4680	for (i = 0; i < 3; i++) {
4681		if (sc->chainmask & (1 << i)) {
4682			/* Compute attenuation (in unit of 1.5dB). */
4683			delta = (noise - (int32_t)calib->noise[i]) / 30;
4684			/* NB: delta <= 0 */
4685			/* Limit to [-4.5dB,0]. */
4686			cmd.gain[i] = MIN(abs(delta), 3);
4687			if (delta < 0)
4688				cmd.gain[i] |= 1 << 2;	/* sign bit */
4689		}
4690	}
4691	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4692	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4693	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4694	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4695}
4696
4697static int
4698iwn5000_set_gains(struct iwn_softc *sc)
4699{
4700	struct iwn_calib_state *calib = &sc->calib;
4701	struct iwn_phy_calib_gain cmd;
4702	int i, ant, div, delta;
4703
4704	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4705	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4706
4707	memset(&cmd, 0, sizeof cmd);
4708	cmd.code = sc->noise_gain;
4709	cmd.ngroups = 1;
4710	cmd.isvalid = 1;
4711	/* Get first available RX antenna as referential. */
4712	ant = IWN_LSB(sc->rxchainmask);
4713	/* Set differential gains for other antennas. */
4714	for (i = ant + 1; i < 3; i++) {
4715		if (sc->chainmask & (1 << i)) {
4716			/* The delta is relative to antenna "ant". */
4717			delta = ((int32_t)calib->noise[ant] -
4718			    (int32_t)calib->noise[i]) / div;
4719			/* Limit to [-4.5dB,+4.5dB]. */
4720			cmd.gain[i - 1] = MIN(abs(delta), 3);
4721			if (delta < 0)
4722				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4723		}
4724	}
4725	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4726	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4727	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4728	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4729}
4730
4731/*
4732 * Tune RF RX sensitivity based on the number of false alarms detected
4733 * during the last beacon period.
4734 */
4735static void
4736iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4737{
4738#define inc(val, inc, max)			\
4739	if ((val) < (max)) {			\
4740		if ((val) < (max) - (inc))	\
4741			(val) += (inc);		\
4742		else				\
4743			(val) = (max);		\
4744		needs_update = 1;		\
4745	}
4746#define dec(val, dec, min)			\
4747	if ((val) > (min)) {			\
4748		if ((val) > (min) + (dec))	\
4749			(val) -= (dec);		\
4750		else				\
4751			(val) = (min);		\
4752		needs_update = 1;		\
4753	}
4754
4755	const struct iwn_sensitivity_limits *limits = sc->limits;
4756	struct iwn_calib_state *calib = &sc->calib;
4757	uint32_t val, rxena, fa;
4758	uint32_t energy[3], energy_min;
4759	uint8_t noise[3], noise_ref;
4760	int i, needs_update = 0;
4761
4762	/* Check that we've been enabled long enough. */
4763	if ((rxena = le32toh(stats->general.load)) == 0)
4764		return;
4765
4766	/* Compute number of false alarms since last call for OFDM. */
4767	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4768	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4769	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4770
4771	/* Save counters values for next call. */
4772	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4773	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4774
4775	if (fa > 50 * rxena) {
4776		/* High false alarm count, decrease sensitivity. */
4777		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4778		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4779		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4780		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4781		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4782		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4783
4784	} else if (fa < 5 * rxena) {
4785		/* Low false alarm count, increase sensitivity. */
4786		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4787		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4788		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4789		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4790		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4791		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4792	}
4793
4794	/* Compute maximum noise among 3 receivers. */
4795	for (i = 0; i < 3; i++)
4796		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4797	val = MAX(noise[0], noise[1]);
4798	val = MAX(noise[2], val);
4799	/* Insert it into our samples table. */
4800	calib->noise_samples[calib->cur_noise_sample] = val;
4801	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4802
4803	/* Compute maximum noise among last 20 samples. */
4804	noise_ref = calib->noise_samples[0];
4805	for (i = 1; i < 20; i++)
4806		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4807
4808	/* Compute maximum energy among 3 receivers. */
4809	for (i = 0; i < 3; i++)
4810		energy[i] = le32toh(stats->general.energy[i]);
4811	val = MIN(energy[0], energy[1]);
4812	val = MIN(energy[2], val);
4813	/* Insert it into our samples table. */
4814	calib->energy_samples[calib->cur_energy_sample] = val;
4815	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4816
4817	/* Compute minimum energy among last 10 samples. */
4818	energy_min = calib->energy_samples[0];
4819	for (i = 1; i < 10; i++)
4820		energy_min = MAX(energy_min, calib->energy_samples[i]);
4821	energy_min += 6;
4822
4823	/* Compute number of false alarms since last call for CCK. */
4824	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4825	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4826	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4827
4828	/* Save counters values for next call. */
4829	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4830	calib->fa_cck = le32toh(stats->cck.fa);
4831
4832	if (fa > 50 * rxena) {
4833		/* High false alarm count, decrease sensitivity. */
4834		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4835		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4836		calib->cck_state = IWN_CCK_STATE_HIFA;
4837		calib->low_fa = 0;
4838
4839		if (calib->cck_x4 > 160) {
4840			calib->noise_ref = noise_ref;
4841			if (calib->energy_cck > 2)
4842				dec(calib->energy_cck, 2, energy_min);
4843		}
4844		if (calib->cck_x4 < 160) {
4845			calib->cck_x4 = 161;
4846			needs_update = 1;
4847		} else
4848			inc(calib->cck_x4, 3, limits->max_cck_x4);
4849
4850		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4851
4852	} else if (fa < 5 * rxena) {
4853		/* Low false alarm count, increase sensitivity. */
4854		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4855		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4856		calib->cck_state = IWN_CCK_STATE_LOFA;
4857		calib->low_fa++;
4858
4859		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4860		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4861		     calib->low_fa > 100)) {
4862			inc(calib->energy_cck, 2, limits->min_energy_cck);
4863			dec(calib->cck_x4,     3, limits->min_cck_x4);
4864			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4865		}
4866	} else {
4867		/* Not worth to increase or decrease sensitivity. */
4868		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4869		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4870		calib->low_fa = 0;
4871		calib->noise_ref = noise_ref;
4872
4873		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4874			/* Previous interval had many false alarms. */
4875			dec(calib->energy_cck, 8, energy_min);
4876		}
4877		calib->cck_state = IWN_CCK_STATE_INIT;
4878	}
4879
4880	if (needs_update)
4881		(void)iwn_send_sensitivity(sc);
4882#undef dec
4883#undef inc
4884}
4885
4886static int
4887iwn_send_sensitivity(struct iwn_softc *sc)
4888{
4889	struct iwn_calib_state *calib = &sc->calib;
4890	struct iwn_enhanced_sensitivity_cmd cmd;
4891	int len;
4892
4893	memset(&cmd, 0, sizeof cmd);
4894	len = sizeof (struct iwn_sensitivity_cmd);
4895	cmd.which = IWN_SENSITIVITY_WORKTBL;
4896	/* OFDM modulation. */
4897	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4898	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4899	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4900	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4901	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4902	cmd.energy_ofdm_th     = htole16(62);
4903	/* CCK modulation. */
4904	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4905	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4906	cmd.energy_cck         = htole16(calib->energy_cck);
4907	/* Barker modulation: use default values. */
4908	cmd.corr_barker        = htole16(190);
4909	cmd.corr_barker_mrc    = htole16(390);
4910
4911	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4912	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4913	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4914	    calib->ofdm_mrc_x4, calib->cck_x4,
4915	    calib->cck_mrc_x4, calib->energy_cck);
4916
4917	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4918		goto send;
4919	/* Enhanced sensitivity settings. */
4920	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4921	cmd.ofdm_det_slope_mrc = htole16(668);
4922	cmd.ofdm_det_icept_mrc = htole16(4);
4923	cmd.ofdm_det_slope     = htole16(486);
4924	cmd.ofdm_det_icept     = htole16(37);
4925	cmd.cck_det_slope_mrc  = htole16(853);
4926	cmd.cck_det_icept_mrc  = htole16(4);
4927	cmd.cck_det_slope      = htole16(476);
4928	cmd.cck_det_icept      = htole16(99);
4929send:
4930	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4931}
4932
4933/*
4934 * Set STA mode power saving level (between 0 and 5).
4935 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4936 */
4937static int
4938iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4939{
4940	struct iwn_pmgt_cmd cmd;
4941	const struct iwn_pmgt *pmgt;
4942	uint32_t max, skip_dtim;
4943	uint32_t reg;
4944	int i;
4945
4946	/* Select which PS parameters to use. */
4947	if (dtim <= 2)
4948		pmgt = &iwn_pmgt[0][level];
4949	else if (dtim <= 10)
4950		pmgt = &iwn_pmgt[1][level];
4951	else
4952		pmgt = &iwn_pmgt[2][level];
4953
4954	memset(&cmd, 0, sizeof cmd);
4955	if (level != 0)	/* not CAM */
4956		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4957	if (level == 5)
4958		cmd.flags |= htole16(IWN_PS_FAST_PD);
4959	/* Retrieve PCIe Active State Power Management (ASPM). */
4960	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4961	if (!(reg & 0x1))	/* L0s Entry disabled. */
4962		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4963	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4964	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4965
4966	if (dtim == 0) {
4967		dtim = 1;
4968		skip_dtim = 0;
4969	} else
4970		skip_dtim = pmgt->skip_dtim;
4971	if (skip_dtim != 0) {
4972		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4973		max = pmgt->intval[4];
4974		if (max == (uint32_t)-1)
4975			max = dtim * (skip_dtim + 1);
4976		else if (max > dtim)
4977			max = (max / dtim) * dtim;
4978	} else
4979		max = dtim;
4980	for (i = 0; i < 5; i++)
4981		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4982
4983	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4984	    level);
4985	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4986}
4987
4988static int
4989iwn_send_btcoex(struct iwn_softc *sc)
4990{
4991	struct iwn_bluetooth cmd;
4992
4993	memset(&cmd, 0, sizeof cmd);
4994	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4995	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4996	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4997	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
4998	    __func__);
4999	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
5000}
5001
5002static int
5003iwn_send_advanced_btcoex(struct iwn_softc *sc)
5004{
5005	static const uint32_t btcoex_3wire[12] = {
5006		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
5007		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
5008		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
5009	};
5010	struct iwn6000_btcoex_config btconfig;
5011	struct iwn_btcoex_priotable btprio;
5012	struct iwn_btcoex_prot btprot;
5013	int error, i;
5014
5015	memset(&btconfig, 0, sizeof btconfig);
5016	btconfig.flags = 145;
5017	btconfig.max_kill = 5;
5018	btconfig.bt3_t7_timer = 1;
5019	btconfig.kill_ack = htole32(0xffff0000);
5020	btconfig.kill_cts = htole32(0xffff0000);
5021	btconfig.sample_time = 2;
5022	btconfig.bt3_t2_timer = 0xc;
5023	for (i = 0; i < 12; i++)
5024		btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
5025	btconfig.valid = htole16(0xff);
5026	btconfig.prio_boost = 0xf0;
5027	DPRINTF(sc, IWN_DEBUG_RESET,
5028	    "%s: configuring advanced bluetooth coexistence\n", __func__);
5029	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
5030	if (error != 0)
5031		return error;
5032
5033	memset(&btprio, 0, sizeof btprio);
5034	btprio.calib_init1 = 0x6;
5035	btprio.calib_init2 = 0x7;
5036	btprio.calib_periodic_low1 = 0x2;
5037	btprio.calib_periodic_low2 = 0x3;
5038	btprio.calib_periodic_high1 = 0x4;
5039	btprio.calib_periodic_high2 = 0x5;
5040	btprio.dtim = 0x6;
5041	btprio.scan52 = 0x8;
5042	btprio.scan24 = 0xa;
5043	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
5044	    1);
5045	if (error != 0)
5046		return error;
5047
5048	/* Force BT state machine change. */
5049	memset(&btprot, 0, sizeof btprio);
5050	btprot.open = 1;
5051	btprot.type = 1;
5052	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5053	if (error != 0)
5054		return error;
5055	btprot.open = 0;
5056	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5057}
5058
5059static int
5060iwn5000_runtime_calib(struct iwn_softc *sc)
5061{
5062	struct iwn5000_calib_config cmd;
5063
5064	memset(&cmd, 0, sizeof cmd);
5065	cmd.ucode.once.enable = 0xffffffff;
5066	cmd.ucode.once.start = IWN5000_CALIB_DC;
5067	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5068	    "%s: configuring runtime calibration\n", __func__);
5069	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
5070}
5071
5072static int
5073iwn_config(struct iwn_softc *sc)
5074{
5075	struct iwn_ops *ops = &sc->ops;
5076	struct ifnet *ifp = sc->sc_ifp;
5077	struct ieee80211com *ic = ifp->if_l2com;
5078	uint32_t txmask;
5079	uint16_t rxchain;
5080	int error;
5081
5082	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
5083		/* Set radio temperature sensor offset. */
5084		error = iwn5000_temp_offset_calib(sc);
5085		if (error != 0) {
5086			device_printf(sc->sc_dev,
5087			    "%s: could not set temperature offset\n", __func__);
5088			return error;
5089		}
5090	}
5091
5092	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5093		/* Configure runtime DC calibration. */
5094		error = iwn5000_runtime_calib(sc);
5095		if (error != 0) {
5096			device_printf(sc->sc_dev,
5097			    "%s: could not configure runtime calibration\n",
5098			    __func__);
5099			return error;
5100		}
5101	}
5102
5103	/* Configure valid TX chains for >=5000 Series. */
5104	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
5105		txmask = htole32(sc->txchainmask);
5106		DPRINTF(sc, IWN_DEBUG_RESET,
5107		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
5108		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
5109		    sizeof txmask, 0);
5110		if (error != 0) {
5111			device_printf(sc->sc_dev,
5112			    "%s: could not configure valid TX chains, "
5113			    "error %d\n", __func__, error);
5114			return error;
5115		}
5116	}
5117
5118	/* Configure bluetooth coexistence. */
5119	if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
5120		error = iwn_send_advanced_btcoex(sc);
5121	else
5122		error = iwn_send_btcoex(sc);
5123	if (error != 0) {
5124		device_printf(sc->sc_dev,
5125		    "%s: could not configure bluetooth coexistence, error %d\n",
5126		    __func__, error);
5127		return error;
5128	}
5129
5130	/* Set mode, channel, RX filter and enable RX. */
5131	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5132	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
5133	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
5134	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
5135	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5136	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
5137		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5138	switch (ic->ic_opmode) {
5139	case IEEE80211_M_STA:
5140		sc->rxon.mode = IWN_MODE_STA;
5141		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5142		break;
5143	case IEEE80211_M_MONITOR:
5144		sc->rxon.mode = IWN_MODE_MONITOR;
5145		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5146		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5147		break;
5148	default:
5149		/* Should not get there. */
5150		break;
5151	}
5152	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
5153	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
5154	sc->rxon.ht_single_mask = 0xff;
5155	sc->rxon.ht_dual_mask = 0xff;
5156	sc->rxon.ht_triple_mask = 0xff;
5157	rxchain =
5158	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5159	    IWN_RXCHAIN_MIMO_COUNT(2) |
5160	    IWN_RXCHAIN_IDLE_COUNT(2);
5161	sc->rxon.rxchain = htole16(rxchain);
5162	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
5163	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5164	if (error != 0) {
5165		device_printf(sc->sc_dev, "%s: RXON command failed\n",
5166		    __func__);
5167		return error;
5168	}
5169
5170	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
5171		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
5172		    __func__);
5173		return error;
5174	}
5175
5176	/* Configuration has changed, set TX power accordingly. */
5177	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
5178		device_printf(sc->sc_dev, "%s: could not set TX power\n",
5179		    __func__);
5180		return error;
5181	}
5182
5183	if ((error = iwn_set_critical_temp(sc)) != 0) {
5184		device_printf(sc->sc_dev,
5185		    "%s: could not set critical temperature\n", __func__);
5186		return error;
5187	}
5188
5189	/* Set power saving level to CAM during initialization. */
5190	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5191		device_printf(sc->sc_dev,
5192		    "%s: could not set power saving level\n", __func__);
5193		return error;
5194	}
5195	return 0;
5196}
5197
5198/*
5199 * Add an ssid element to a frame.
5200 */
5201static uint8_t *
5202ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
5203{
5204	*frm++ = IEEE80211_ELEMID_SSID;
5205	*frm++ = len;
5206	memcpy(frm, ssid, len);
5207	return frm + len;
5208}
5209
5210static int
5211iwn_scan(struct iwn_softc *sc)
5212{
5213	struct ifnet *ifp = sc->sc_ifp;
5214	struct ieee80211com *ic = ifp->if_l2com;
5215	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
5216	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
5217	struct iwn_scan_hdr *hdr;
5218	struct iwn_cmd_data *tx;
5219	struct iwn_scan_essid *essid;
5220	struct iwn_scan_chan *chan;
5221	struct ieee80211_frame *wh;
5222	struct ieee80211_rateset *rs;
5223	struct ieee80211_channel *c;
5224	uint8_t *buf, *frm;
5225	uint16_t rxchain;
5226	uint8_t txant;
5227	int buflen, error;
5228
5229	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5230	if (buf == NULL) {
5231		device_printf(sc->sc_dev,
5232		    "%s: could not allocate buffer for scan command\n",
5233		    __func__);
5234		return ENOMEM;
5235	}
5236	hdr = (struct iwn_scan_hdr *)buf;
5237	/*
5238	 * Move to the next channel if no frames are received within 10ms
5239	 * after sending the probe request.
5240	 */
5241	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5242	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5243
5244	/* Select antennas for scanning. */
5245	rxchain =
5246	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5247	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5248	    IWN_RXCHAIN_DRIVER_FORCE;
5249	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
5250	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5251		/* Ant A must be avoided in 5GHz because of an HW bug. */
5252		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5253	} else	/* Use all available RX antennas. */
5254		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5255	hdr->rxchain = htole16(rxchain);
5256	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5257
5258	tx = (struct iwn_cmd_data *)(hdr + 1);
5259	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5260	tx->id = sc->broadcast_id;
5261	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5262
5263	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
5264		/* Send probe requests at 6Mbps. */
5265		tx->rate = htole32(0xd);
5266		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5267	} else {
5268		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5269		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5270		    sc->rxon.associd && sc->rxon.chan > 14)
5271			tx->rate = htole32(0xd);
5272		else {
5273			/* Send probe requests at 1Mbps. */
5274			tx->rate = htole32(10 | IWN_RFLAG_CCK);
5275		}
5276		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5277	}
5278	/* Use the first valid TX antenna. */
5279	txant = IWN_LSB(sc->txchainmask);
5280	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
5281
5282	essid = (struct iwn_scan_essid *)(tx + 1);
5283	if (ss->ss_ssid[0].len != 0) {
5284		essid[0].id = IEEE80211_ELEMID_SSID;
5285		essid[0].len = ss->ss_ssid[0].len;
5286		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
5287	}
5288	/*
5289	 * Build a probe request frame.  Most of the following code is a
5290	 * copy & paste of what is done in net80211.
5291	 */
5292	wh = (struct ieee80211_frame *)(essid + 20);
5293	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5294	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5295	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5296	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
5297	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
5298	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
5299	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5300	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5301
5302	frm = (uint8_t *)(wh + 1);
5303	frm = ieee80211_add_ssid(frm, NULL, 0);
5304	frm = ieee80211_add_rates(frm, rs);
5305	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5306		frm = ieee80211_add_xrates(frm, rs);
5307	if (ic->ic_htcaps & IEEE80211_HTC_HT)
5308		frm = ieee80211_add_htcap(frm, ni);
5309
5310	/* Set length of probe request. */
5311	tx->len = htole16(frm - (uint8_t *)wh);
5312
5313	c = ic->ic_curchan;
5314	chan = (struct iwn_scan_chan *)frm;
5315	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5316	chan->flags = 0;
5317	if (ss->ss_nssid > 0)
5318		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5319	chan->dsp_gain = 0x6e;
5320	if (IEEE80211_IS_CHAN_5GHZ(c) &&
5321	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5322		chan->rf_gain = 0x3b;
5323		chan->active  = htole16(24);
5324		chan->passive = htole16(110);
5325		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5326	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
5327		chan->rf_gain = 0x3b;
5328		chan->active  = htole16(24);
5329		if (sc->rxon.associd)
5330			chan->passive = htole16(78);
5331		else
5332			chan->passive = htole16(110);
5333		hdr->crc_threshold = 0xffff;
5334	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5335		chan->rf_gain = 0x28;
5336		chan->active  = htole16(36);
5337		chan->passive = htole16(120);
5338		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5339	} else {
5340		chan->rf_gain = 0x28;
5341		chan->active  = htole16(36);
5342		if (sc->rxon.associd)
5343			chan->passive = htole16(88);
5344		else
5345			chan->passive = htole16(120);
5346		hdr->crc_threshold = 0xffff;
5347	}
5348
5349	DPRINTF(sc, IWN_DEBUG_STATE,
5350	    "%s: chan %u flags 0x%x rf_gain 0x%x "
5351	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
5352	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
5353	    chan->active, chan->passive);
5354
5355	hdr->nchan++;
5356	chan++;
5357	buflen = (uint8_t *)chan - buf;
5358	hdr->len = htole16(buflen);
5359
5360	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
5361	    hdr->nchan);
5362	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5363	free(buf, M_DEVBUF);
5364	return error;
5365}
5366
5367static int
5368iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
5369{
5370	struct iwn_ops *ops = &sc->ops;
5371	struct ifnet *ifp = sc->sc_ifp;
5372	struct ieee80211com *ic = ifp->if_l2com;
5373	struct ieee80211_node *ni = vap->iv_bss;
5374	int error;
5375
5376	/* Update adapter configuration. */
5377	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5378	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5379	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5380	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5381		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5382	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5383		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5384	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5385		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5386	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5387		sc->rxon.cck_mask  = 0;
5388		sc->rxon.ofdm_mask = 0x15;
5389	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5390		sc->rxon.cck_mask  = 0x03;
5391		sc->rxon.ofdm_mask = 0;
5392	} else {
5393		/* Assume 802.11b/g. */
5394		sc->rxon.cck_mask  = 0x0f;
5395		sc->rxon.ofdm_mask = 0x15;
5396	}
5397	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
5398	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
5399	    sc->rxon.ofdm_mask);
5400	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5401	if (error != 0) {
5402		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
5403		    __func__, error);
5404		return error;
5405	}
5406
5407	/* Configuration has changed, set TX power accordingly. */
5408	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5409		device_printf(sc->sc_dev,
5410		    "%s: could not set TX power, error %d\n", __func__, error);
5411		return error;
5412	}
5413	/*
5414	 * Reconfiguring RXON clears the firmware nodes table so we must
5415	 * add the broadcast node again.
5416	 */
5417	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5418		device_printf(sc->sc_dev,
5419		    "%s: could not add broadcast node, error %d\n", __func__,
5420		    error);
5421		return error;
5422	}
5423	return 0;
5424}
5425
5426static int
5427iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
5428{
5429	struct iwn_ops *ops = &sc->ops;
5430	struct ifnet *ifp = sc->sc_ifp;
5431	struct ieee80211com *ic = ifp->if_l2com;
5432	struct ieee80211_node *ni = vap->iv_bss;
5433	struct iwn_node_info node;
5434	uint32_t htflags = 0;
5435	int error;
5436
5437	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5438		/* Link LED blinks while monitoring. */
5439		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
5440		return 0;
5441	}
5442	if ((error = iwn_set_timing(sc, ni)) != 0) {
5443		device_printf(sc->sc_dev,
5444		    "%s: could not set timing, error %d\n", __func__, error);
5445		return error;
5446	}
5447
5448	/* Update adapter configuration. */
5449	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5450	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5451	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5452	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5453	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5454		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5455	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5456		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5457	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5458		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5459	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5460		sc->rxon.cck_mask  = 0;
5461		sc->rxon.ofdm_mask = 0x15;
5462	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5463		sc->rxon.cck_mask  = 0x03;
5464		sc->rxon.ofdm_mask = 0;
5465	} else {
5466		/* Assume 802.11b/g. */
5467		sc->rxon.cck_mask  = 0x0f;
5468		sc->rxon.ofdm_mask = 0x15;
5469	}
5470	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5471		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
5472		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
5473			switch (ic->ic_curhtprotmode) {
5474			case IEEE80211_HTINFO_OPMODE_HT20PR:
5475				htflags |= IWN_RXON_HT_MODEPURE40;
5476				break;
5477			default:
5478				htflags |= IWN_RXON_HT_MODEMIXED;
5479				break;
5480			}
5481		}
5482		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
5483			htflags |= IWN_RXON_HT_HT40MINUS;
5484	}
5485	sc->rxon.flags |= htole32(htflags);
5486	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5487	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
5488	    sc->rxon.chan, sc->rxon.flags);
5489	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5490	if (error != 0) {
5491		device_printf(sc->sc_dev,
5492		    "%s: could not update configuration, error %d\n", __func__,
5493		    error);
5494		return error;
5495	}
5496
5497	/* Configuration has changed, set TX power accordingly. */
5498	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5499		device_printf(sc->sc_dev,
5500		    "%s: could not set TX power, error %d\n", __func__, error);
5501		return error;
5502	}
5503
5504	/* Fake a join to initialize the TX rate. */
5505	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5506	iwn_newassoc(ni, 1);
5507
5508	/* Add BSS node. */
5509	memset(&node, 0, sizeof node);
5510	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5511	node.id = IWN_ID_BSS;
5512	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5513		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
5514		case IEEE80211_HTCAP_SMPS_ENA:
5515			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
5516			break;
5517		case IEEE80211_HTCAP_SMPS_DYNAMIC:
5518			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
5519			break;
5520		}
5521		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5522		    IWN_AMDPU_DENSITY(5));	/* 4us */
5523		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
5524			node.htflags |= htole32(IWN_NODE_HT40);
5525	}
5526	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
5527	error = ops->add_node(sc, &node, 1);
5528	if (error != 0) {
5529		device_printf(sc->sc_dev,
5530		    "%s: could not add BSS node, error %d\n", __func__, error);
5531		return error;
5532	}
5533	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
5534	    __func__, node.id);
5535	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5536		device_printf(sc->sc_dev,
5537		    "%s: could not setup link quality for node %d, error %d\n",
5538		    __func__, node.id, error);
5539		return error;
5540	}
5541
5542	if ((error = iwn_init_sensitivity(sc)) != 0) {
5543		device_printf(sc->sc_dev,
5544		    "%s: could not set sensitivity, error %d\n", __func__,
5545		    error);
5546		return error;
5547	}
5548	/* Start periodic calibration timer. */
5549	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5550	sc->calib_cnt = 0;
5551	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
5552	    sc);
5553
5554	/* Link LED always on while associated. */
5555	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5556	return 0;
5557}
5558
5559/*
5560 * This function is called by upper layer when an ADDBA request is received
5561 * from another STA and before the ADDBA response is sent.
5562 */
5563static int
5564iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
5565    int baparamset, int batimeout, int baseqctl)
5566{
5567#define MS(_v, _f)	(((_v) & _f) >> _f##_S)
5568	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5569	struct iwn_ops *ops = &sc->ops;
5570	struct iwn_node *wn = (void *)ni;
5571	struct iwn_node_info node;
5572	uint16_t ssn;
5573	uint8_t tid;
5574	int error;
5575
5576	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
5577	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
5578
5579	memset(&node, 0, sizeof node);
5580	node.id = wn->id;
5581	node.control = IWN_NODE_UPDATE;
5582	node.flags = IWN_FLAG_SET_ADDBA;
5583	node.addba_tid = tid;
5584	node.addba_ssn = htole16(ssn);
5585	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5586	    wn->id, tid, ssn);
5587	error = ops->add_node(sc, &node, 1);
5588	if (error != 0)
5589		return error;
5590	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
5591#undef MS
5592}
5593
5594/*
5595 * This function is called by upper layer on teardown of an HT-immediate
5596 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5597 */
5598static void
5599iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
5600{
5601	struct ieee80211com *ic = ni->ni_ic;
5602	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5603	struct iwn_ops *ops = &sc->ops;
5604	struct iwn_node *wn = (void *)ni;
5605	struct iwn_node_info node;
5606	uint8_t tid;
5607
5608	/* XXX: tid as an argument */
5609	for (tid = 0; tid < WME_NUM_TID; tid++) {
5610		if (&ni->ni_rx_ampdu[tid] == rap)
5611			break;
5612	}
5613
5614	memset(&node, 0, sizeof node);
5615	node.id = wn->id;
5616	node.control = IWN_NODE_UPDATE;
5617	node.flags = IWN_FLAG_SET_DELBA;
5618	node.delba_tid = tid;
5619	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5620	(void)ops->add_node(sc, &node, 1);
5621	sc->sc_ampdu_rx_stop(ni, rap);
5622}
5623
5624static int
5625iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5626    int dialogtoken, int baparamset, int batimeout)
5627{
5628	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5629	int qid;
5630
5631	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
5632		if (sc->qid2tap[qid] == NULL)
5633			break;
5634	}
5635	if (qid == sc->ntxqs) {
5636		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
5637		    __func__);
5638		return 0;
5639	}
5640	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
5641	if (tap->txa_private == NULL) {
5642		device_printf(sc->sc_dev,
5643		    "%s: failed to alloc TX aggregation structure\n", __func__);
5644		return 0;
5645	}
5646	sc->qid2tap[qid] = tap;
5647	*(int *)tap->txa_private = qid;
5648	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5649	    batimeout);
5650}
5651
5652static int
5653iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5654    int code, int baparamset, int batimeout)
5655{
5656	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5657	int qid = *(int *)tap->txa_private;
5658	uint8_t tid = WME_AC_TO_TID(tap->txa_ac);
5659	int ret;
5660
5661	if (code == IEEE80211_STATUS_SUCCESS) {
5662		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
5663		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
5664		if (ret != 1)
5665			return ret;
5666	} else {
5667		sc->qid2tap[qid] = NULL;
5668		free(tap->txa_private, M_DEVBUF);
5669		tap->txa_private = NULL;
5670	}
5671	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
5672}
5673
5674/*
5675 * This function is called by upper layer when an ADDBA response is received
5676 * from another STA.
5677 */
5678static int
5679iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5680    uint8_t tid)
5681{
5682	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[TID_TO_WME_AC(tid)];
5683	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5684	struct iwn_ops *ops = &sc->ops;
5685	struct iwn_node *wn = (void *)ni;
5686	struct iwn_node_info node;
5687	int error, qid;
5688
5689	/* Enable TX for the specified RA/TID. */
5690	wn->disable_tid &= ~(1 << tid);
5691	memset(&node, 0, sizeof node);
5692	node.id = wn->id;
5693	node.control = IWN_NODE_UPDATE;
5694	node.flags = IWN_FLAG_SET_DISABLE_TID;
5695	node.disable_tid = htole16(wn->disable_tid);
5696	error = ops->add_node(sc, &node, 1);
5697	if (error != 0)
5698		return 0;
5699
5700	if ((error = iwn_nic_lock(sc)) != 0)
5701		return 0;
5702	qid = *(int *)tap->txa_private;
5703	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
5704	    __func__, wn->id, tid, tap->txa_start, qid);
5705	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
5706	iwn_nic_unlock(sc);
5707
5708	iwn_set_link_quality(sc, ni);
5709	return 1;
5710}
5711
5712static void
5713iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
5714{
5715	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5716	struct iwn_ops *ops = &sc->ops;
5717	uint8_t tid = WME_AC_TO_TID(tap->txa_ac);
5718	int qid;
5719
5720	sc->sc_addba_stop(ni, tap);
5721
5722	if (tap->txa_private == NULL)
5723		return;
5724
5725	qid = *(int *)tap->txa_private;
5726	if (sc->txq[qid].queued != 0)
5727		return;
5728	if (iwn_nic_lock(sc) != 0)
5729		return;
5730	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
5731	iwn_nic_unlock(sc);
5732	sc->qid2tap[qid] = NULL;
5733	free(tap->txa_private, M_DEVBUF);
5734	tap->txa_private = NULL;
5735}
5736
5737static void
5738iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5739    int qid, uint8_t tid, uint16_t ssn)
5740{
5741	struct iwn_node *wn = (void *)ni;
5742
5743	/* Stop TX scheduler while we're changing its configuration. */
5744	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5745	    IWN4965_TXQ_STATUS_CHGACT);
5746
5747	/* Assign RA/TID translation to the queue. */
5748	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5749	    wn->id << 4 | tid);
5750
5751	/* Enable chain-building mode for the queue. */
5752	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5753
5754	/* Set starting sequence number from the ADDBA request. */
5755	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5756	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5757	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5758
5759	/* Set scheduler window size. */
5760	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5761	    IWN_SCHED_WINSZ);
5762	/* Set scheduler frame limit. */
5763	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5764	    IWN_SCHED_LIMIT << 16);
5765
5766	/* Enable interrupts for the queue. */
5767	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5768
5769	/* Mark the queue as active. */
5770	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5771	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5772	    iwn_tid2fifo[tid] << 1);
5773}
5774
5775static void
5776iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5777{
5778	/* Stop TX scheduler while we're changing its configuration. */
5779	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5780	    IWN4965_TXQ_STATUS_CHGACT);
5781
5782	/* Set starting sequence number from the ADDBA request. */
5783	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5784	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5785
5786	/* Disable interrupts for the queue. */
5787	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5788
5789	/* Mark the queue as inactive. */
5790	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5791	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5792}
5793
5794static void
5795iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5796    int qid, uint8_t tid, uint16_t ssn)
5797{
5798	struct iwn_node *wn = (void *)ni;
5799
5800	/* Stop TX scheduler while we're changing its configuration. */
5801	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5802	    IWN5000_TXQ_STATUS_CHGACT);
5803
5804	/* Assign RA/TID translation to the queue. */
5805	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5806	    wn->id << 4 | tid);
5807
5808	/* Enable chain-building mode for the queue. */
5809	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5810
5811	/* Enable aggregation for the queue. */
5812	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5813
5814	/* Set starting sequence number from the ADDBA request. */
5815	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5816	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5817	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5818
5819	/* Set scheduler window size and frame limit. */
5820	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5821	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5822
5823	/* Enable interrupts for the queue. */
5824	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5825
5826	/* Mark the queue as active. */
5827	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5828	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5829}
5830
5831static void
5832iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5833{
5834	/* Stop TX scheduler while we're changing its configuration. */
5835	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5836	    IWN5000_TXQ_STATUS_CHGACT);
5837
5838	/* Disable aggregation for the queue. */
5839	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5840
5841	/* Set starting sequence number from the ADDBA request. */
5842	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5843	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5844
5845	/* Disable interrupts for the queue. */
5846	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5847
5848	/* Mark the queue as inactive. */
5849	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5850	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5851}
5852
5853/*
5854 * Query calibration tables from the initialization firmware.  We do this
5855 * only once at first boot.  Called from a process context.
5856 */
5857static int
5858iwn5000_query_calibration(struct iwn_softc *sc)
5859{
5860	struct iwn5000_calib_config cmd;
5861	int error;
5862
5863	memset(&cmd, 0, sizeof cmd);
5864	cmd.ucode.once.enable = 0xffffffff;
5865	cmd.ucode.once.start  = 0xffffffff;
5866	cmd.ucode.once.send   = 0xffffffff;
5867	cmd.ucode.flags       = 0xffffffff;
5868	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5869	    __func__);
5870	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5871	if (error != 0)
5872		return error;
5873
5874	/* Wait at most two seconds for calibration to complete. */
5875	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5876		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
5877	return error;
5878}
5879
5880/*
5881 * Send calibration results to the runtime firmware.  These results were
5882 * obtained on first boot from the initialization firmware.
5883 */
5884static int
5885iwn5000_send_calibration(struct iwn_softc *sc)
5886{
5887	int idx, error;
5888
5889	for (idx = 0; idx < 5; idx++) {
5890		if (sc->calibcmd[idx].buf == NULL)
5891			continue;	/* No results available. */
5892		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5893		    "send calibration result idx=%d len=%d\n", idx,
5894		    sc->calibcmd[idx].len);
5895		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5896		    sc->calibcmd[idx].len, 0);
5897		if (error != 0) {
5898			device_printf(sc->sc_dev,
5899			    "%s: could not send calibration result, error %d\n",
5900			    __func__, error);
5901			return error;
5902		}
5903	}
5904	return 0;
5905}
5906
5907static int
5908iwn5000_send_wimax_coex(struct iwn_softc *sc)
5909{
5910	struct iwn5000_wimax_coex wimax;
5911
5912#ifdef notyet
5913	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5914		/* Enable WiMAX coexistence for combo adapters. */
5915		wimax.flags =
5916		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5917		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5918		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5919		    IWN_WIMAX_COEX_ENABLE;
5920		memcpy(wimax.events, iwn6050_wimax_events,
5921		    sizeof iwn6050_wimax_events);
5922	} else
5923#endif
5924	{
5925		/* Disable WiMAX coexistence. */
5926		wimax.flags = 0;
5927		memset(wimax.events, 0, sizeof wimax.events);
5928	}
5929	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5930	    __func__);
5931	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5932}
5933
5934static int
5935iwn5000_crystal_calib(struct iwn_softc *sc)
5936{
5937	struct iwn5000_phy_calib_crystal cmd;
5938
5939	memset(&cmd, 0, sizeof cmd);
5940	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5941	cmd.ngroups = 1;
5942	cmd.isvalid = 1;
5943	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5944	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5945	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
5946	    cmd.cap_pin[0], cmd.cap_pin[1]);
5947	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5948}
5949
5950static int
5951iwn5000_temp_offset_calib(struct iwn_softc *sc)
5952{
5953	struct iwn5000_phy_calib_temp_offset cmd;
5954
5955	memset(&cmd, 0, sizeof cmd);
5956	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
5957	cmd.ngroups = 1;
5958	cmd.isvalid = 1;
5959	if (sc->eeprom_temp != 0)
5960		cmd.offset = htole16(sc->eeprom_temp);
5961	else
5962		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5963	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
5964	    le16toh(cmd.offset));
5965	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5966}
5967
5968/*
5969 * This function is called after the runtime firmware notifies us of its
5970 * readiness (called in a process context).
5971 */
5972static int
5973iwn4965_post_alive(struct iwn_softc *sc)
5974{
5975	int error, qid;
5976
5977	if ((error = iwn_nic_lock(sc)) != 0)
5978		return error;
5979
5980	/* Clear TX scheduler state in SRAM. */
5981	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5982	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5983	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5984
5985	/* Set physical address of TX scheduler rings (1KB aligned). */
5986	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5987
5988	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5989
5990	/* Disable chain mode for all our 16 queues. */
5991	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5992
5993	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5994		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5995		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5996
5997		/* Set scheduler window size. */
5998		iwn_mem_write(sc, sc->sched_base +
5999		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
6000		/* Set scheduler frame limit. */
6001		iwn_mem_write(sc, sc->sched_base +
6002		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6003		    IWN_SCHED_LIMIT << 16);
6004	}
6005
6006	/* Enable interrupts for all our 16 queues. */
6007	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6008	/* Identify TX FIFO rings (0-7). */
6009	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6010
6011	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6012	for (qid = 0; qid < 7; qid++) {
6013		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6014		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6015		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6016	}
6017	iwn_nic_unlock(sc);
6018	return 0;
6019}
6020
6021/*
6022 * This function is called after the initialization or runtime firmware
6023 * notifies us of its readiness (called in a process context).
6024 */
6025static int
6026iwn5000_post_alive(struct iwn_softc *sc)
6027{
6028	int error, qid;
6029
6030#ifndef __HAIKU__
6031	/* Switch to using ICT interrupt mode. */
6032	iwn5000_ict_reset(sc);
6033#endif
6034
6035	if ((error = iwn_nic_lock(sc)) != 0)
6036		return error;
6037
6038	/* Clear TX scheduler state in SRAM. */
6039	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6040	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6041	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6042
6043	/* Set physical address of TX scheduler rings (1KB aligned). */
6044	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6045
6046	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6047
6048	/* Enable chain mode for all queues, except command queue. */
6049	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6050	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6051
6052	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6053		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6054		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6055
6056		iwn_mem_write(sc, sc->sched_base +
6057		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6058		/* Set scheduler window size and frame limit. */
6059		iwn_mem_write(sc, sc->sched_base +
6060		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6061		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6062	}
6063
6064	/* Enable interrupts for all our 20 queues. */
6065	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6066	/* Identify TX FIFO rings (0-7). */
6067	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6068
6069	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6070	for (qid = 0; qid < 7; qid++) {
6071		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6072		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6073		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6074	}
6075	iwn_nic_unlock(sc);
6076
6077	/* Configure WiMAX coexistence for combo adapters. */
6078	error = iwn5000_send_wimax_coex(sc);
6079	if (error != 0) {
6080		device_printf(sc->sc_dev,
6081		    "%s: could not configure WiMAX coexistence, error %d\n",
6082		    __func__, error);
6083		return error;
6084	}
6085	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6086		/* Perform crystal calibration. */
6087		error = iwn5000_crystal_calib(sc);
6088		if (error != 0) {
6089			device_printf(sc->sc_dev,
6090			    "%s: crystal calibration failed, error %d\n",
6091			    __func__, error);
6092			return error;
6093		}
6094	}
6095	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6096		/* Query calibration from the initialization firmware. */
6097		if ((error = iwn5000_query_calibration(sc)) != 0) {
6098			device_printf(sc->sc_dev,
6099			    "%s: could not query calibration, error %d\n",
6100			    __func__, error);
6101			return error;
6102		}
6103		/*
6104		 * We have the calibration results now, reboot with the
6105		 * runtime firmware (call ourselves recursively!)
6106		 */
6107		iwn_hw_stop(sc);
6108		error = iwn_hw_init(sc);
6109	} else {
6110		/* Send calibration results to runtime firmware. */
6111		error = iwn5000_send_calibration(sc);
6112	}
6113	return error;
6114}
6115
6116/*
6117 * The firmware boot code is small and is intended to be copied directly into
6118 * the NIC internal memory (no DMA transfer).
6119 */
6120static int
6121iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6122{
6123	int error, ntries;
6124
6125	size /= sizeof (uint32_t);
6126
6127	if ((error = iwn_nic_lock(sc)) != 0)
6128		return error;
6129
6130	/* Copy microcode image into NIC memory. */
6131	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6132	    (const uint32_t *)ucode, size);
6133
6134	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6135	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6136	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6137
6138	/* Start boot load now. */
6139	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6140
6141	/* Wait for transfer to complete. */
6142	for (ntries = 0; ntries < 1000; ntries++) {
6143		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6144		    IWN_BSM_WR_CTRL_START))
6145			break;
6146		DELAY(10);
6147	}
6148	if (ntries == 1000) {
6149		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6150		    __func__);
6151		iwn_nic_unlock(sc);
6152		return ETIMEDOUT;
6153	}
6154
6155	/* Enable boot after power up. */
6156	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6157
6158	iwn_nic_unlock(sc);
6159	return 0;
6160}
6161
6162static int
6163iwn4965_load_firmware(struct iwn_softc *sc)
6164{
6165	struct iwn_fw_info *fw = &sc->fw;
6166	struct iwn_dma_info *dma = &sc->fw_dma;
6167	int error;
6168
6169	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6170	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6171	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6172	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6173	    fw->init.text, fw->init.textsz);
6174	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6175
6176	/* Tell adapter where to find initialization sections. */
6177	if ((error = iwn_nic_lock(sc)) != 0)
6178		return error;
6179	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6180	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6181	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6182	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6183	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6184	iwn_nic_unlock(sc);
6185
6186	/* Load firmware boot code. */
6187	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6188	if (error != 0) {
6189		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6190		    __func__);
6191		return error;
6192	}
6193	/* Now press "execute". */
6194	IWN_WRITE(sc, IWN_RESET, 0);
6195
6196	/* Wait at most one second for first alive notification. */
6197	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6198		device_printf(sc->sc_dev,
6199		    "%s: timeout waiting for adapter to initialize, error %d\n",
6200		    __func__, error);
6201		return error;
6202	}
6203
6204	/* Retrieve current temperature for initial TX power calibration. */
6205	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6206	sc->temp = iwn4965_get_temperature(sc);
6207
6208	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6209	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6210	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6211	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6212	    fw->main.text, fw->main.textsz);
6213	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6214
6215	/* Tell adapter where to find runtime sections. */
6216	if ((error = iwn_nic_lock(sc)) != 0)
6217		return error;
6218	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6219	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6220	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6221	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6222	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6223	    IWN_FW_UPDATED | fw->main.textsz);
6224	iwn_nic_unlock(sc);
6225
6226	return 0;
6227}
6228
6229static int
6230iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6231    const uint8_t *section, int size)
6232{
6233	struct iwn_dma_info *dma = &sc->fw_dma;
6234	int error;
6235
6236	/* Copy firmware section into pre-allocated DMA-safe memory. */
6237	memcpy(dma->vaddr, section, size);
6238	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6239
6240	if ((error = iwn_nic_lock(sc)) != 0)
6241		return error;
6242
6243	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6244	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6245
6246	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6247	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6248	    IWN_LOADDR(dma->paddr));
6249	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6250	    IWN_HIADDR(dma->paddr) << 28 | size);
6251	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6252	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6253	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6254	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6255
6256	/* Kick Flow Handler to start DMA transfer. */
6257	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6258	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6259
6260	iwn_nic_unlock(sc);
6261
6262	/* Wait at most five seconds for FH DMA transfer to complete. */
6263	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
6264}
6265
6266static int
6267iwn5000_load_firmware(struct iwn_softc *sc)
6268{
6269	struct iwn_fw_part *fw;
6270	int error;
6271
6272	/* Load the initialization firmware on first boot only. */
6273	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6274	    &sc->fw.main : &sc->fw.init;
6275
6276	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6277	    fw->text, fw->textsz);
6278	if (error != 0) {
6279		device_printf(sc->sc_dev,
6280		    "%s: could not load firmware %s section, error %d\n",
6281		    __func__, ".text", error);
6282		return error;
6283	}
6284	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6285	    fw->data, fw->datasz);
6286	if (error != 0) {
6287		device_printf(sc->sc_dev,
6288		    "%s: could not load firmware %s section, error %d\n",
6289		    __func__, ".data", error);
6290		return error;
6291	}
6292
6293	/* Now press "execute". */
6294	IWN_WRITE(sc, IWN_RESET, 0);
6295	return 0;
6296}
6297
6298/*
6299 * Extract text and data sections from a legacy firmware image.
6300 */
6301static int
6302iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6303{
6304	const uint32_t *ptr;
6305	size_t hdrlen = 24;
6306	uint32_t rev;
6307
6308	ptr = (const uint32_t *)fw->data;
6309	rev = le32toh(*ptr++);
6310
6311	/* Check firmware API version. */
6312	if (IWN_FW_API(rev) <= 1) {
6313		device_printf(sc->sc_dev,
6314		    "%s: bad firmware, need API version >=2\n", __func__);
6315		return EINVAL;
6316	}
6317	if (IWN_FW_API(rev) >= 3) {
6318		/* Skip build number (version 2 header). */
6319		hdrlen += 4;
6320		ptr++;
6321	}
6322	if (fw->size < hdrlen) {
6323		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6324		    __func__, fw->size);
6325		return EINVAL;
6326	}
6327	fw->main.textsz = le32toh(*ptr++);
6328	fw->main.datasz = le32toh(*ptr++);
6329	fw->init.textsz = le32toh(*ptr++);
6330	fw->init.datasz = le32toh(*ptr++);
6331	fw->boot.textsz = le32toh(*ptr++);
6332
6333	/* Check that all firmware sections fit. */
6334	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6335	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6336		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6337		    __func__, fw->size);
6338		return EINVAL;
6339	}
6340
6341	/* Get pointers to firmware sections. */
6342	fw->main.text = (const uint8_t *)ptr;
6343	fw->main.data = fw->main.text + fw->main.textsz;
6344	fw->init.text = fw->main.data + fw->main.datasz;
6345	fw->init.data = fw->init.text + fw->init.textsz;
6346	fw->boot.text = fw->init.data + fw->init.datasz;
6347	return 0;
6348}
6349
6350/*
6351 * Extract text and data sections from a TLV firmware image.
6352 */
6353static int
6354iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6355    uint16_t alt)
6356{
6357	const struct iwn_fw_tlv_hdr *hdr;
6358	const struct iwn_fw_tlv *tlv;
6359	const uint8_t *ptr, *end;
6360	uint64_t altmask;
6361	uint32_t len, tmp;
6362
6363	if (fw->size < sizeof (*hdr)) {
6364		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6365		    __func__, fw->size);
6366		return EINVAL;
6367	}
6368	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6369	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6370		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
6371		    __func__, le32toh(hdr->signature));
6372		return EINVAL;
6373	}
6374	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
6375	    le32toh(hdr->build));
6376
6377	/*
6378	 * Select the closest supported alternative that is less than
6379	 * or equal to the specified one.
6380	 */
6381	altmask = le64toh(hdr->altmask);
6382	while (alt > 0 && !(altmask & (1ULL << alt)))
6383		alt--;	/* Downgrade. */
6384	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
6385
6386	ptr = (const uint8_t *)(hdr + 1);
6387	end = (const uint8_t *)(fw->data + fw->size);
6388
6389	/* Parse type-length-value fields. */
6390	while (ptr + sizeof (*tlv) <= end) {
6391		tlv = (const struct iwn_fw_tlv *)ptr;
6392		len = le32toh(tlv->len);
6393
6394		ptr += sizeof (*tlv);
6395		if (ptr + len > end) {
6396			device_printf(sc->sc_dev,
6397			    "%s: firmware too short: %zu bytes\n", __func__,
6398			    fw->size);
6399			return EINVAL;
6400		}
6401		/* Skip other alternatives. */
6402		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6403			goto next;
6404
6405		switch (le16toh(tlv->type)) {
6406		case IWN_FW_TLV_MAIN_TEXT:
6407			fw->main.text = ptr;
6408			fw->main.textsz = len;
6409			break;
6410		case IWN_FW_TLV_MAIN_DATA:
6411			fw->main.data = ptr;
6412			fw->main.datasz = len;
6413			break;
6414		case IWN_FW_TLV_INIT_TEXT:
6415			fw->init.text = ptr;
6416			fw->init.textsz = len;
6417			break;
6418		case IWN_FW_TLV_INIT_DATA:
6419			fw->init.data = ptr;
6420			fw->init.datasz = len;
6421			break;
6422		case IWN_FW_TLV_BOOT_TEXT:
6423			fw->boot.text = ptr;
6424			fw->boot.textsz = len;
6425			break;
6426		case IWN_FW_TLV_ENH_SENS:
6427			if (!len)
6428				sc->sc_flags |= IWN_FLAG_ENH_SENS;
6429			break;
6430		case IWN_FW_TLV_PHY_CALIB:
6431			tmp = htole32(*ptr);
6432			if (tmp < 253) {
6433				sc->reset_noise_gain = tmp;
6434				sc->noise_gain = tmp + 1;
6435			}
6436			break;
6437		default:
6438			DPRINTF(sc, IWN_DEBUG_RESET,
6439			    "TLV type %d not handled\n", le16toh(tlv->type));
6440			break;
6441		}
6442 next:		/* TLV fields are 32-bit aligned. */
6443		ptr += (len + 3) & ~3;
6444	}
6445	return 0;
6446}
6447
6448static int
6449iwn_read_firmware(struct iwn_softc *sc)
6450{
6451	struct iwn_fw_info *fw = &sc->fw;
6452	int error;
6453
6454	IWN_UNLOCK(sc);
6455
6456	memset(fw, 0, sizeof (*fw));
6457
6458	/* Read firmware image from filesystem. */
6459	sc->fw_fp = firmware_get(sc->fwname);
6460	if (sc->fw_fp == NULL) {
6461		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
6462		    __func__, sc->fwname);
6463		IWN_LOCK(sc);
6464		return EINVAL;
6465	}
6466	IWN_LOCK(sc);
6467
6468	fw->size = sc->fw_fp->datasize;
6469	fw->data = (const uint8_t *)sc->fw_fp->data;
6470	if (fw->size < sizeof (uint32_t)) {
6471		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6472		    __func__, fw->size);
6473		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6474		sc->fw_fp = NULL;
6475		return EINVAL;
6476	}
6477
6478	/* Retrieve text and data sections. */
6479	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6480		error = iwn_read_firmware_leg(sc, fw);
6481	else
6482		error = iwn_read_firmware_tlv(sc, fw, 1);
6483	if (error != 0) {
6484		device_printf(sc->sc_dev,
6485		    "%s: could not read firmware sections, error %d\n",
6486		    __func__, error);
6487		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6488		sc->fw_fp = NULL;
6489		return error;
6490	}
6491
6492	/* Make sure text and data sections fit in hardware memory. */
6493	if (fw->main.textsz > sc->fw_text_maxsz ||
6494	    fw->main.datasz > sc->fw_data_maxsz ||
6495	    fw->init.textsz > sc->fw_text_maxsz ||
6496	    fw->init.datasz > sc->fw_data_maxsz ||
6497	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6498	    (fw->boot.textsz & 3) != 0) {
6499		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
6500		    __func__);
6501		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6502		sc->fw_fp = NULL;
6503		return EINVAL;
6504	}
6505
6506	/* We can proceed with loading the firmware. */
6507	return 0;
6508}
6509
6510static int
6511iwn_clock_wait(struct iwn_softc *sc)
6512{
6513	int ntries;
6514
6515	/* Set "initialization complete" bit. */
6516	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6517
6518	/* Wait for clock stabilization. */
6519	for (ntries = 0; ntries < 2500; ntries++) {
6520		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6521			return 0;
6522		DELAY(10);
6523	}
6524	device_printf(sc->sc_dev,
6525	    "%s: timeout waiting for clock stabilization\n", __func__);
6526	return ETIMEDOUT;
6527}
6528
6529static int
6530iwn_apm_init(struct iwn_softc *sc)
6531{
6532	uint32_t reg;
6533	int error;
6534
6535	/* Disable L0s exit timer (NMI bug workaround). */
6536	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6537	/* Don't wait for ICH L0s (ICH bug workaround). */
6538	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6539
6540	/* Set FH wait threshold to max (HW bug under stress workaround). */
6541	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6542
6543	/* Enable HAP INTA to move adapter from L1a to L0s. */
6544	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6545
6546	/* Retrieve PCIe Active State Power Management (ASPM). */
6547	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6548	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6549	if (reg & 0x02)	/* L1 Entry enabled. */
6550		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6551	else
6552		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6553
6554	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6555	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6556		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6557
6558	/* Wait for clock stabilization before accessing prph. */
6559	if ((error = iwn_clock_wait(sc)) != 0)
6560		return error;
6561
6562	if ((error = iwn_nic_lock(sc)) != 0)
6563		return error;
6564	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6565		/* Enable DMA and BSM (Bootstrap State Machine). */
6566		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6567		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6568		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6569	} else {
6570		/* Enable DMA. */
6571		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6572		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6573	}
6574	DELAY(20);
6575	/* Disable L1-Active. */
6576	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6577	iwn_nic_unlock(sc);
6578
6579	return 0;
6580}
6581
6582static void
6583iwn_apm_stop_master(struct iwn_softc *sc)
6584{
6585	int ntries;
6586
6587	/* Stop busmaster DMA activity. */
6588	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6589	for (ntries = 0; ntries < 100; ntries++) {
6590		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6591			return;
6592		DELAY(10);
6593	}
6594	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
6595}
6596
6597static void
6598iwn_apm_stop(struct iwn_softc *sc)
6599{
6600	iwn_apm_stop_master(sc);
6601
6602	/* Reset the entire device. */
6603	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6604	DELAY(10);
6605	/* Clear "initialization complete" bit. */
6606	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6607}
6608
6609static int
6610iwn4965_nic_config(struct iwn_softc *sc)
6611{
6612	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6613		/*
6614		 * I don't believe this to be correct but this is what the
6615		 * vendor driver is doing. Probably the bits should not be
6616		 * shifted in IWN_RFCFG_*.
6617		 */
6618		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6619		    IWN_RFCFG_TYPE(sc->rfcfg) |
6620		    IWN_RFCFG_STEP(sc->rfcfg) |
6621		    IWN_RFCFG_DASH(sc->rfcfg));
6622	}
6623	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6624	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6625	return 0;
6626}
6627
6628static int
6629iwn5000_nic_config(struct iwn_softc *sc)
6630{
6631	uint32_t tmp;
6632	int error;
6633
6634	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6635		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6636		    IWN_RFCFG_TYPE(sc->rfcfg) |
6637		    IWN_RFCFG_STEP(sc->rfcfg) |
6638		    IWN_RFCFG_DASH(sc->rfcfg));
6639	}
6640	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6641	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6642
6643	if ((error = iwn_nic_lock(sc)) != 0)
6644		return error;
6645	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6646
6647	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6648		/*
6649		 * Select first Switching Voltage Regulator (1.32V) to
6650		 * solve a stability issue related to noisy DC2DC line
6651		 * in the silicon of 1000 Series.
6652		 */
6653		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6654		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6655		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6656		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6657	}
6658	iwn_nic_unlock(sc);
6659
6660	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6661		/* Use internal power amplifier only. */
6662		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6663	}
6664	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6665	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6666		/* Indicate that ROM calibration version is >=6. */
6667		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6668	}
6669	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6670		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6671	return 0;
6672}
6673
6674/*
6675 * Take NIC ownership over Intel Active Management Technology (AMT).
6676 */
6677static int
6678iwn_hw_prepare(struct iwn_softc *sc)
6679{
6680	int ntries;
6681
6682	/* Check if hardware is ready. */
6683	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6684	for (ntries = 0; ntries < 5; ntries++) {
6685		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6686		    IWN_HW_IF_CONFIG_NIC_READY)
6687			return 0;
6688		DELAY(10);
6689	}
6690
6691	/* Hardware not ready, force into ready state. */
6692	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6693	for (ntries = 0; ntries < 15000; ntries++) {
6694		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6695		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6696			break;
6697		DELAY(10);
6698	}
6699	if (ntries == 15000)
6700		return ETIMEDOUT;
6701
6702	/* Hardware should be ready now. */
6703	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6704	for (ntries = 0; ntries < 5; ntries++) {
6705		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6706		    IWN_HW_IF_CONFIG_NIC_READY)
6707			return 0;
6708		DELAY(10);
6709	}
6710	return ETIMEDOUT;
6711}
6712
6713static int
6714iwn_hw_init(struct iwn_softc *sc)
6715{
6716	struct iwn_ops *ops = &sc->ops;
6717	int error, chnl, qid;
6718
6719	/* Clear pending interrupts. */
6720	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6721
6722	if ((error = iwn_apm_init(sc)) != 0) {
6723		device_printf(sc->sc_dev,
6724		    "%s: could not power ON adapter, error %d\n", __func__,
6725		    error);
6726		return error;
6727	}
6728
6729	/* Select VMAIN power source. */
6730	if ((error = iwn_nic_lock(sc)) != 0)
6731		return error;
6732	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6733	iwn_nic_unlock(sc);
6734
6735	/* Perform adapter-specific initialization. */
6736	if ((error = ops->nic_config(sc)) != 0)
6737		return error;
6738
6739	/* Initialize RX ring. */
6740	if ((error = iwn_nic_lock(sc)) != 0)
6741		return error;
6742	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6743	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6744	/* Set physical address of RX ring (256-byte aligned). */
6745	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6746	/* Set physical address of RX status (16-byte aligned). */
6747	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6748	/* Enable RX. */
6749	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6750	    IWN_FH_RX_CONFIG_ENA           |
6751	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6752	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6753	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6754	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6755	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6756	iwn_nic_unlock(sc);
6757	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6758
6759	if ((error = iwn_nic_lock(sc)) != 0)
6760		return error;
6761
6762	/* Initialize TX scheduler. */
6763	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6764
6765	/* Set physical address of "keep warm" page (16-byte aligned). */
6766	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6767
6768	/* Initialize TX rings. */
6769	for (qid = 0; qid < sc->ntxqs; qid++) {
6770		struct iwn_tx_ring *txq = &sc->txq[qid];
6771
6772		/* Set physical address of TX ring (256-byte aligned). */
6773		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6774		    txq->desc_dma.paddr >> 8);
6775	}
6776	iwn_nic_unlock(sc);
6777
6778	/* Enable DMA channels. */
6779	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6780		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6781		    IWN_FH_TX_CONFIG_DMA_ENA |
6782		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6783	}
6784
6785	/* Clear "radio off" and "commands blocked" bits. */
6786	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6787	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6788
6789	/* Clear pending interrupts. */
6790	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6791	/* Enable interrupt coalescing. */
6792	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6793	/* Enable interrupts. */
6794	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6795
6796	/* _Really_ make sure "radio off" bit is cleared! */
6797	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6798	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6799
6800	/* Enable shadow registers. */
6801	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6802		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6803
6804	if ((error = ops->load_firmware(sc)) != 0) {
6805		device_printf(sc->sc_dev,
6806		    "%s: could not load firmware, error %d\n", __func__,
6807		    error);
6808		return error;
6809	}
6810	/* Wait at most one second for firmware alive notification. */
6811	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6812		device_printf(sc->sc_dev,
6813		    "%s: timeout waiting for adapter to initialize, error %d\n",
6814		    __func__, error);
6815		return error;
6816	}
6817	/* Do post-firmware initialization. */
6818	return ops->post_alive(sc);
6819}
6820
6821static void
6822iwn_hw_stop(struct iwn_softc *sc)
6823{
6824	int chnl, qid, ntries;
6825
6826	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6827
6828	/* Disable interrupts. */
6829	IWN_WRITE(sc, IWN_INT_MASK, 0);
6830	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6831	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6832	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6833
6834	/* Make sure we no longer hold the NIC lock. */
6835	iwn_nic_unlock(sc);
6836
6837	/* Stop TX scheduler. */
6838	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6839
6840	/* Stop all DMA channels. */
6841	if (iwn_nic_lock(sc) == 0) {
6842		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6843			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6844			for (ntries = 0; ntries < 200; ntries++) {
6845				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6846				    IWN_FH_TX_STATUS_IDLE(chnl))
6847					break;
6848				DELAY(10);
6849			}
6850		}
6851		iwn_nic_unlock(sc);
6852	}
6853
6854	/* Stop RX ring. */
6855	iwn_reset_rx_ring(sc, &sc->rxq);
6856
6857	/* Reset all TX rings. */
6858	for (qid = 0; qid < sc->ntxqs; qid++)
6859		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6860
6861	if (iwn_nic_lock(sc) == 0) {
6862		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6863		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6864		iwn_nic_unlock(sc);
6865	}
6866	DELAY(5);
6867	/* Power OFF adapter. */
6868	iwn_apm_stop(sc);
6869}
6870
6871static void
6872iwn_radio_on(void *arg0, int pending)
6873{
6874	struct iwn_softc *sc = arg0;
6875	struct ifnet *ifp = sc->sc_ifp;
6876	struct ieee80211com *ic = ifp->if_l2com;
6877	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6878
6879	if (vap != NULL) {
6880		iwn_init(sc);
6881		ieee80211_init(vap);
6882	}
6883}
6884
6885static void
6886iwn_radio_off(void *arg0, int pending)
6887{
6888	struct iwn_softc *sc = arg0;
6889	struct ifnet *ifp = sc->sc_ifp;
6890	struct ieee80211com *ic = ifp->if_l2com;
6891	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6892
6893	iwn_stop(sc);
6894	if (vap != NULL)
6895		ieee80211_stop(vap);
6896
6897	/* Enable interrupts to get RF toggle notification. */
6898	IWN_LOCK(sc);
6899	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6900	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6901	IWN_UNLOCK(sc);
6902}
6903
6904static void
6905iwn_init_locked(struct iwn_softc *sc)
6906{
6907	struct ifnet *ifp = sc->sc_ifp;
6908	int error;
6909
6910	IWN_LOCK_ASSERT(sc);
6911
6912	if ((error = iwn_hw_prepare(sc)) != 0) {
6913		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
6914		    __func__, error);
6915		goto fail;
6916	}
6917
6918	/* Initialize interrupt mask to default value. */
6919	sc->int_mask = IWN_INT_MASK_DEF;
6920	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6921
6922	/* Check that the radio is not disabled by hardware switch. */
6923	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6924		device_printf(sc->sc_dev,
6925		    "radio is disabled by hardware switch\n");
6926		/* Enable interrupts to get RF toggle notifications. */
6927		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6928		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6929		return;
6930	}
6931
6932	/* Read firmware images from the filesystem. */
6933	if ((error = iwn_read_firmware(sc)) != 0) {
6934		device_printf(sc->sc_dev,
6935		    "%s: could not read firmware, error %d\n", __func__,
6936		    error);
6937		goto fail;
6938	}
6939
6940	/* Initialize hardware and upload firmware. */
6941	error = iwn_hw_init(sc);
6942	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6943	sc->fw_fp = NULL;
6944	if (error != 0) {
6945		device_printf(sc->sc_dev,
6946		    "%s: could not initialize hardware, error %d\n", __func__,
6947		    error);
6948		goto fail;
6949	}
6950
6951	/* Configure adapter now that it is ready. */
6952	if ((error = iwn_config(sc)) != 0) {
6953		device_printf(sc->sc_dev,
6954		    "%s: could not configure device, error %d\n", __func__,
6955		    error);
6956		goto fail;
6957	}
6958
6959	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6960	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6961
6962	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
6963	return;
6964
6965fail:	iwn_stop_locked(sc);
6966}
6967
6968static void
6969iwn_init(void *arg)
6970{
6971	struct iwn_softc *sc = arg;
6972	struct ifnet *ifp = sc->sc_ifp;
6973	struct ieee80211com *ic = ifp->if_l2com;
6974
6975	IWN_LOCK(sc);
6976	iwn_init_locked(sc);
6977	IWN_UNLOCK(sc);
6978
6979	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6980		ieee80211_start_all(ic);
6981}
6982
6983static void
6984iwn_stop_locked(struct iwn_softc *sc)
6985{
6986	struct ifnet *ifp = sc->sc_ifp;
6987
6988	IWN_LOCK_ASSERT(sc);
6989
6990	sc->sc_tx_timer = 0;
6991	callout_stop(&sc->watchdog_to);
6992	callout_stop(&sc->calib_to);
6993	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6994
6995	/* Power OFF hardware. */
6996	iwn_hw_stop(sc);
6997}
6998
6999static void
7000iwn_stop(struct iwn_softc *sc)
7001{
7002	IWN_LOCK(sc);
7003	iwn_stop_locked(sc);
7004	IWN_UNLOCK(sc);
7005}
7006
7007/*
7008 * Callback from net80211 to start a scan.
7009 */
7010static void
7011iwn_scan_start(struct ieee80211com *ic)
7012{
7013	struct ifnet *ifp = ic->ic_ifp;
7014	struct iwn_softc *sc = ifp->if_softc;
7015
7016	IWN_LOCK(sc);
7017	/* make the link LED blink while we're scanning */
7018	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
7019	IWN_UNLOCK(sc);
7020}
7021
7022/*
7023 * Callback from net80211 to terminate a scan.
7024 */
7025static void
7026iwn_scan_end(struct ieee80211com *ic)
7027{
7028	struct ifnet *ifp = ic->ic_ifp;
7029	struct iwn_softc *sc = ifp->if_softc;
7030	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7031
7032	IWN_LOCK(sc);
7033	if (vap->iv_state == IEEE80211_S_RUN) {
7034		/* Set link LED to ON status if we are associated */
7035		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7036	}
7037	IWN_UNLOCK(sc);
7038}
7039
7040/*
7041 * Callback from net80211 to force a channel change.
7042 */
7043static void
7044iwn_set_channel(struct ieee80211com *ic)
7045{
7046	const struct ieee80211_channel *c = ic->ic_curchan;
7047	struct ifnet *ifp = ic->ic_ifp;
7048	struct iwn_softc *sc = ifp->if_softc;
7049	int error;
7050
7051	IWN_LOCK(sc);
7052	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
7053	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
7054	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
7055	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
7056
7057	/*
7058	 * Only need to set the channel in Monitor mode. AP scanning and auth
7059	 * are already taken care of by their respective firmware commands.
7060	 */
7061	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7062		error = iwn_config(sc);
7063		if (error != 0)
7064		device_printf(sc->sc_dev,
7065		    "%s: error %d settting channel\n", __func__, error);
7066	}
7067	IWN_UNLOCK(sc);
7068}
7069
7070/*
7071 * Callback from net80211 to start scanning of the current channel.
7072 */
7073static void
7074iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
7075{
7076	struct ieee80211vap *vap = ss->ss_vap;
7077	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
7078	int error;
7079
7080	IWN_LOCK(sc);
7081	error = iwn_scan(sc);
7082	IWN_UNLOCK(sc);
7083	if (error != 0)
7084		ieee80211_cancel_scan(vap);
7085}
7086
7087/*
7088 * Callback from net80211 to handle the minimum dwell time being met.
7089 * The intent is to terminate the scan but we just let the firmware
7090 * notify us when it's finished as we have no safe way to abort it.
7091 */
7092static void
7093iwn_scan_mindwell(struct ieee80211_scan_state *ss)
7094{
7095	/* NB: don't try to abort scan; wait for firmware to finish */
7096}
7097
7098static void
7099iwn_hw_reset(void *arg0, int pending)
7100{
7101	struct iwn_softc *sc = arg0;
7102	struct ifnet *ifp = sc->sc_ifp;
7103	struct ieee80211com *ic = ifp->if_l2com;
7104
7105	iwn_stop(sc);
7106	iwn_init(sc);
7107	ieee80211_notify_radio(ic, 1);
7108}
7109