1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD$");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112#define	WPI_DEBUG_SET	(wpi_debug != 0)
113
114enum {
115	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127	WPI_DEBUG_ANY		= 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET	0
138#endif
139
140struct wpi_ident {
141	uint16_t	vendor;
142	uint16_t	device;
143	uint16_t	subdevice;
144	const char	*name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148	/* The below entries support ABG regardless of the subid */
149	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151	/* The below entries only support BG */
152	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
161		    const uint8_t [IEEE80211_ADDR_LEN],
162		    const uint8_t [IEEE80211_ADDR_LEN]);
163static void	wpi_vap_delete(struct ieee80211vap *);
164static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165		    void **, bus_size_t, bus_size_t, int);
166static void	wpi_dma_contig_free(struct wpi_dma_info *);
167static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int	wpi_alloc_shared(struct wpi_softc *);
169static void	wpi_free_shared(struct wpi_softc *);
170static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174		    int, int);
175static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void	wpi_mem_lock(struct wpi_softc *);
179static void	wpi_mem_unlock(struct wpi_softc *);
180static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
181static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183		    const uint32_t *, int);
184static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185static int	wpi_alloc_fwmem(struct wpi_softc *);
186static void	wpi_free_fwmem(struct wpi_softc *);
187static int	wpi_load_firmware(struct wpi_softc *);
188static void	wpi_unload_firmware(struct wpi_softc *);
189static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191		    struct wpi_rx_data *);
192static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_notif_intr(struct wpi_softc *);
195static void	wpi_intr(void *);
196static uint8_t	wpi_plcp_signal(int);
197static void	wpi_watchdog(void *);
198static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
199		    struct ieee80211_node *, int);
200static void	wpi_start(struct ifnet *);
201static void	wpi_start_locked(struct ifnet *);
202static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203		    const struct ieee80211_bpf_params *);
204static void	wpi_scan_start(struct ieee80211com *);
205static void	wpi_scan_end(struct ieee80211com *);
206static void	wpi_set_channel(struct ieee80211com *);
207static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
209static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
210static void	wpi_read_eeprom(struct wpi_softc *,
211		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
212static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
213static void	wpi_read_eeprom_group(struct wpi_softc *, int);
214static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215static int	wpi_wme_update(struct ieee80211com *);
216static int	wpi_mrr_setup(struct wpi_softc *);
217static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219#if 0
220static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221#endif
222static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_scan(struct wpi_softc *);
225static int	wpi_config(struct wpi_softc *);
226static void	wpi_stop_master(struct wpi_softc *);
227static int	wpi_power_up(struct wpi_softc *);
228static int	wpi_reset(struct wpi_softc *);
229static void	wpi_hwreset(void *, int);
230static void	wpi_rfreset(void *, int);
231static void	wpi_hw_config(struct wpi_softc *);
232static void	wpi_init(void *);
233static void	wpi_init_locked(struct wpi_softc *, int);
234static void	wpi_stop(struct wpi_softc *);
235static void	wpi_stop_locked(struct wpi_softc *);
236
237static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238		    int);
239static void	wpi_calib_timeout(void *);
240static void	wpi_power_calibration(struct wpi_softc *, int);
241static int	wpi_get_power_index(struct wpi_softc *,
242		    struct wpi_power_group *, struct ieee80211_channel *, int);
243#ifdef WPI_DEBUG
244static const char *wpi_cmd_str(int);
245#endif
246static int wpi_probe(device_t);
247static int wpi_attach(device_t);
248static int wpi_detach(device_t);
249static int wpi_shutdown(device_t);
250static int wpi_suspend(device_t);
251static int wpi_resume(device_t);
252
253
254static device_method_t wpi_methods[] = {
255	/* Device interface */
256	DEVMETHOD(device_probe,		wpi_probe),
257	DEVMETHOD(device_attach,	wpi_attach),
258	DEVMETHOD(device_detach,	wpi_detach),
259	DEVMETHOD(device_shutdown,	wpi_shutdown),
260	DEVMETHOD(device_suspend,	wpi_suspend),
261	DEVMETHOD(device_resume,	wpi_resume),
262
263	{ 0, 0 }
264};
265
266static driver_t wpi_driver = {
267	"wpi",
268	wpi_methods,
269	sizeof (struct wpi_softc)
270};
271
272static devclass_t wpi_devclass;
273
274DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
275
276MODULE_VERSION(wpi, 1);
277
278static const uint8_t wpi_ridx_to_plcp[] = {
279	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
280	/* R1-R4 (ral/ural is R4-R1) */
281	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
282	/* CCK: device-dependent */
283	10, 20, 55, 110
284};
285static const uint8_t wpi_ridx_to_rate[] = {
286	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287	2, 4, 11, 22 /*CCK */
288};
289
290
291static int
292wpi_probe(device_t dev)
293{
294	const struct wpi_ident *ident;
295
296	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
297		if (pci_get_vendor(dev) == ident->vendor &&
298		    pci_get_device(dev) == ident->device) {
299			device_set_desc(dev, ident->name);
300			return 0;
301		}
302	}
303	return ENXIO;
304}
305
306/**
307 * Load the firmare image from disk to the allocated dma buffer.
308 * we also maintain the reference to the firmware pointer as there
309 * is times where we may need to reload the firmware but we are not
310 * in a context that can access the filesystem (ie taskq cause by restart)
311 *
312 * @return 0 on success, an errno on failure
313 */
314static int
315wpi_load_firmware(struct wpi_softc *sc)
316{
317	const struct firmware *fp;
318	struct wpi_dma_info *dma = &sc->fw_dma;
319	const struct wpi_firmware_hdr *hdr;
320	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
321	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
322	int error;
323
324	DPRINTFN(WPI_DEBUG_FIRMWARE,
325	    ("Attempting Loading Firmware from wpi_fw module\n"));
326
327	WPI_UNLOCK(sc);
328
329	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
330		device_printf(sc->sc_dev,
331		    "could not load firmware image 'wpifw'\n");
332		error = ENOENT;
333		WPI_LOCK(sc);
334		goto fail;
335	}
336
337	fp = sc->fw_fp;
338
339	WPI_LOCK(sc);
340
341	/* Validate the firmware is minimum a particular version */
342	if (fp->version < WPI_FW_MINVERSION) {
343	    device_printf(sc->sc_dev,
344			   "firmware version is too old. Need %d, got %d\n",
345			   WPI_FW_MINVERSION,
346			   fp->version);
347	    error = ENXIO;
348	    goto fail;
349	}
350
351	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
352		device_printf(sc->sc_dev,
353		    "firmware file too short: %zu bytes\n", fp->datasize);
354		error = ENXIO;
355		goto fail;
356	}
357
358	hdr = (const struct wpi_firmware_hdr *)fp->data;
359
360	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
361	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
362
363	rtextsz = le32toh(hdr->rtextsz);
364	rdatasz = le32toh(hdr->rdatasz);
365	itextsz = le32toh(hdr->itextsz);
366	idatasz = le32toh(hdr->idatasz);
367	btextsz = le32toh(hdr->btextsz);
368
369	/* check that all firmware segments are present */
370	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
371		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
372		device_printf(sc->sc_dev,
373		    "firmware file too short: %zu bytes\n", fp->datasize);
374		error = ENXIO; /* XXX appropriate error code? */
375		goto fail;
376	}
377
378	/* get pointers to firmware segments */
379	rtext = (const uint8_t *)(hdr + 1);
380	rdata = rtext + rtextsz;
381	itext = rdata + rdatasz;
382	idata = itext + itextsz;
383	btext = idata + idatasz;
384
385	DPRINTFN(WPI_DEBUG_FIRMWARE,
386	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
387	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
388	     (le32toh(hdr->version) & 0xff000000) >> 24,
389	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
390	     (le32toh(hdr->version) & 0x0000ffff),
391	     rtextsz, rdatasz,
392	     itextsz, idatasz, btextsz));
393
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
398	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
399
400	/* sanity checks */
401	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
402	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
403	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
404	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
405	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
406	    (btextsz & 3) != 0) {
407		device_printf(sc->sc_dev, "firmware invalid\n");
408		error = EINVAL;
409		goto fail;
410	}
411
412	/* copy initialization images into pre-allocated DMA-safe memory */
413	memcpy(dma->vaddr, idata, idatasz);
414	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
415
416	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
417
418	/* tell adapter where to find initialization images */
419	wpi_mem_lock(sc);
420	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
421	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
422	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
423	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
424	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
425	wpi_mem_unlock(sc);
426
427	/* load firmware boot code */
428	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
429	    device_printf(sc->sc_dev, "Failed to load microcode\n");
430	    goto fail;
431	}
432
433	/* now press "execute" */
434	WPI_WRITE(sc, WPI_RESET, 0);
435
436	/* wait at most one second for the first alive notification */
437	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
438		device_printf(sc->sc_dev,
439		    "timeout waiting for adapter to initialize\n");
440		goto fail;
441	}
442
443	/* copy runtime images into pre-allocated DMA-sage memory */
444	memcpy(dma->vaddr, rdata, rdatasz);
445	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
446	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
447
448	/* tell adapter where to find runtime images */
449	wpi_mem_lock(sc);
450	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
451	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
452	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
453	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
454	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
455	wpi_mem_unlock(sc);
456
457	/* wait at most one second for the first alive notification */
458	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
459		device_printf(sc->sc_dev,
460		    "timeout waiting for adapter to initialize2\n");
461		goto fail;
462	}
463
464	DPRINTFN(WPI_DEBUG_FIRMWARE,
465	    ("Firmware loaded to driver successfully\n"));
466	return error;
467fail:
468	wpi_unload_firmware(sc);
469	return error;
470}
471
472/**
473 * Free the referenced firmware image
474 */
475static void
476wpi_unload_firmware(struct wpi_softc *sc)
477{
478
479	if (sc->fw_fp) {
480		WPI_UNLOCK(sc);
481		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
482		WPI_LOCK(sc);
483		sc->fw_fp = NULL;
484	}
485}
486
487static int
488wpi_attach(device_t dev)
489{
490	struct wpi_softc *sc = device_get_softc(dev);
491	struct ifnet *ifp;
492	struct ieee80211com *ic;
493	int ac, error, supportsa = 1;
494	uint32_t tmp;
495	const struct wpi_ident *ident;
496	uint8_t macaddr[IEEE80211_ADDR_LEN];
497
498	sc->sc_dev = dev;
499
500	if (bootverbose || WPI_DEBUG_SET)
501	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
502
503	/*
504	 * Some card's only support 802.11b/g not a, check to see if
505	 * this is one such card. A 0x0 in the subdevice table indicates
506	 * the entire subdevice range is to be ignored.
507	 */
508	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
509		if (ident->subdevice &&
510		    pci_get_subdevice(dev) == ident->subdevice) {
511		    supportsa = 0;
512		    break;
513		}
514	}
515
516	/* Create the tasks that can be queued */
517	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
518	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
519
520	WPI_LOCK_INIT(sc);
521
522	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
523	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
524
525	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
526		device_printf(dev, "chip is in D%d power mode "
527		    "-- setting to D0\n", pci_get_powerstate(dev));
528		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
529	}
530
531	/* disable the retry timeout register */
532	pci_write_config(dev, 0x41, 0, 1);
533
534	/* enable bus-mastering */
535	pci_enable_busmaster(dev);
536
537	sc->mem_rid = PCIR_BAR(0);
538	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
539	    RF_ACTIVE);
540	if (sc->mem == NULL) {
541		device_printf(dev, "could not allocate memory resource\n");
542		error = ENOMEM;
543		goto fail;
544	}
545
546	sc->sc_st = rman_get_bustag(sc->mem);
547	sc->sc_sh = rman_get_bushandle(sc->mem);
548
549	sc->irq_rid = 0;
550	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
551	    RF_ACTIVE | RF_SHAREABLE);
552	if (sc->irq == NULL) {
553		device_printf(dev, "could not allocate interrupt resource\n");
554		error = ENOMEM;
555		goto fail;
556	}
557
558	/*
559	 * Allocate DMA memory for firmware transfers.
560	 */
561	if ((error = wpi_alloc_fwmem(sc)) != 0) {
562		printf(": could not allocate firmware memory\n");
563		error = ENOMEM;
564		goto fail;
565	}
566
567	/*
568	 * Put adapter into a known state.
569	 */
570	if ((error = wpi_reset(sc)) != 0) {
571		device_printf(dev, "could not reset adapter\n");
572		goto fail;
573	}
574
575	wpi_mem_lock(sc);
576	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
577	if (bootverbose || WPI_DEBUG_SET)
578	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
579
580	wpi_mem_unlock(sc);
581
582	/* Allocate shared page */
583	if ((error = wpi_alloc_shared(sc)) != 0) {
584		device_printf(dev, "could not allocate shared page\n");
585		goto fail;
586	}
587
588	/* tx data queues  - 4 for QoS purposes */
589	for (ac = 0; ac < WME_NUM_AC; ac++) {
590		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
591		if (error != 0) {
592		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
593		    goto fail;
594		}
595	}
596
597	/* command queue to talk to the card's firmware */
598	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
599	if (error != 0) {
600		device_printf(dev, "could not allocate command ring\n");
601		goto fail;
602	}
603
604	/* receive data queue */
605	error = wpi_alloc_rx_ring(sc, &sc->rxq);
606	if (error != 0) {
607		device_printf(dev, "could not allocate Rx ring\n");
608		goto fail;
609	}
610
611	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
612	if (ifp == NULL) {
613		device_printf(dev, "can not if_alloc()\n");
614		error = ENOMEM;
615		goto fail;
616	}
617	ic = ifp->if_l2com;
618
619	ic->ic_ifp = ifp;
620	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
621	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
622
623	/* set device capabilities */
624	ic->ic_caps =
625		  IEEE80211_C_STA		/* station mode supported */
626		| IEEE80211_C_MONITOR		/* monitor mode supported */
627		| IEEE80211_C_TXPMGT		/* tx power management */
628		| IEEE80211_C_SHSLOT		/* short slot time supported */
629		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
630		| IEEE80211_C_WPA		/* 802.11i */
631/* XXX looks like WME is partly supported? */
632#if 0
633		| IEEE80211_C_IBSS		/* IBSS mode support */
634		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
635		| IEEE80211_C_WME		/* 802.11e */
636		| IEEE80211_C_HOSTAP		/* Host access point mode */
637#endif
638		;
639
640	/*
641	 * Read in the eeprom and also setup the channels for
642	 * net80211. We don't set the rates as net80211 does this for us
643	 */
644	wpi_read_eeprom(sc, macaddr);
645
646	if (bootverbose || WPI_DEBUG_SET) {
647	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
648	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
649			  sc->type > 1 ? 'B': '?');
650	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
651			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
652	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
653			  supportsa ? "does" : "does not");
654
655	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
656	       what sc->rev really represents - benjsc 20070615 */
657	}
658
659	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660	ifp->if_softc = sc;
661	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662	ifp->if_init = wpi_init;
663	ifp->if_ioctl = wpi_ioctl;
664	ifp->if_start = wpi_start;
665	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
666	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
667	IFQ_SET_READY(&ifp->if_snd);
668
669	ieee80211_ifattach(ic, macaddr);
670	/* override default methods */
671	ic->ic_raw_xmit = wpi_raw_xmit;
672	ic->ic_wme.wme_update = wpi_wme_update;
673	ic->ic_scan_start = wpi_scan_start;
674	ic->ic_scan_end = wpi_scan_end;
675	ic->ic_set_channel = wpi_set_channel;
676	ic->ic_scan_curchan = wpi_scan_curchan;
677	ic->ic_scan_mindwell = wpi_scan_mindwell;
678
679	ic->ic_vap_create = wpi_vap_create;
680	ic->ic_vap_delete = wpi_vap_delete;
681
682	ieee80211_radiotap_attach(ic,
683	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
684		WPI_TX_RADIOTAP_PRESENT,
685	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
686		WPI_RX_RADIOTAP_PRESENT);
687
688	/*
689	 * Hook our interrupt after all initialization is complete.
690	 */
691	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
692	    NULL, wpi_intr, sc, &sc->sc_ih);
693	if (error != 0) {
694		device_printf(dev, "could not set up interrupt\n");
695		goto fail;
696	}
697
698	if (bootverbose)
699		ieee80211_announce(ic);
700#ifdef XXX_DEBUG
701	ieee80211_announce_channels(ic);
702#endif
703	return 0;
704
705fail:	wpi_detach(dev);
706	return ENXIO;
707}
708
709static int
710wpi_detach(device_t dev)
711{
712	struct wpi_softc *sc = device_get_softc(dev);
713	struct ifnet *ifp = sc->sc_ifp;
714	struct ieee80211com *ic;
715	int ac;
716
717	if (ifp != NULL) {
718		ic = ifp->if_l2com;
719
720		ieee80211_draintask(ic, &sc->sc_restarttask);
721		ieee80211_draintask(ic, &sc->sc_radiotask);
722		wpi_stop(sc);
723		callout_drain(&sc->watchdog_to);
724		callout_drain(&sc->calib_to);
725		ieee80211_ifdetach(ic);
726	}
727
728	WPI_LOCK(sc);
729	if (sc->txq[0].data_dmat) {
730		for (ac = 0; ac < WME_NUM_AC; ac++)
731			wpi_free_tx_ring(sc, &sc->txq[ac]);
732
733		wpi_free_tx_ring(sc, &sc->cmdq);
734		wpi_free_rx_ring(sc, &sc->rxq);
735		wpi_free_shared(sc);
736	}
737
738	if (sc->fw_fp != NULL) {
739		wpi_unload_firmware(sc);
740	}
741
742	if (sc->fw_dma.tag)
743		wpi_free_fwmem(sc);
744	WPI_UNLOCK(sc);
745
746	if (sc->irq != NULL) {
747		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
748		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
749	}
750
751	if (sc->mem != NULL)
752		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
753
754	if (ifp != NULL)
755		if_free(ifp);
756
757	WPI_LOCK_DESTROY(sc);
758
759	return 0;
760}
761
762static struct ieee80211vap *
763wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
764    enum ieee80211_opmode opmode, int flags,
765    const uint8_t bssid[IEEE80211_ADDR_LEN],
766    const uint8_t mac[IEEE80211_ADDR_LEN])
767{
768	struct wpi_vap *wvp;
769	struct ieee80211vap *vap;
770
771	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
772		return NULL;
773	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
774	    M_80211_VAP, M_NOWAIT | M_ZERO);
775	if (wvp == NULL)
776		return NULL;
777	vap = &wvp->vap;
778	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
779	/* override with driver methods */
780	wvp->newstate = vap->iv_newstate;
781	vap->iv_newstate = wpi_newstate;
782
783	ieee80211_ratectl_init(vap);
784	/* complete setup */
785	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
786	ic->ic_opmode = opmode;
787	return vap;
788}
789
790static void
791wpi_vap_delete(struct ieee80211vap *vap)
792{
793	struct wpi_vap *wvp = WPI_VAP(vap);
794
795	ieee80211_ratectl_deinit(vap);
796	ieee80211_vap_detach(vap);
797	free(wvp, M_80211_VAP);
798}
799
800static void
801wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802{
803	if (error != 0)
804		return;
805
806	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
807
808	*(bus_addr_t *)arg = segs[0].ds_addr;
809}
810
811/*
812 * Allocates a contiguous block of dma memory of the requested size and
813 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
814 * allocations greater than 4096 may fail. Hence if the requested alignment is
815 * greater we allocate 'alignment' size extra memory and shift the vaddr and
816 * paddr after the dma load. This bypasses the problem at the cost of a little
817 * more memory.
818 */
819static int
820wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
821    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
822{
823	int error;
824	bus_size_t align;
825	bus_size_t reqsize;
826
827	DPRINTFN(WPI_DEBUG_DMA,
828	    ("Size: %zd - alignment %zd\n", size, alignment));
829
830	dma->size = size;
831	dma->tag = NULL;
832
833	if (alignment > 4096) {
834		align = PAGE_SIZE;
835		reqsize = size + alignment;
836	} else {
837		align = alignment;
838		reqsize = size;
839	}
840	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
841	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
842	    NULL, NULL, reqsize,
843	    1, reqsize, flags,
844	    NULL, NULL, &dma->tag);
845	if (error != 0) {
846		device_printf(sc->sc_dev,
847		    "could not create shared page DMA tag\n");
848		goto fail;
849	}
850	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
851	    flags | BUS_DMA_ZERO, &dma->map);
852	if (error != 0) {
853		device_printf(sc->sc_dev,
854		    "could not allocate shared page DMA memory\n");
855		goto fail;
856	}
857
858	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
859	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
860
861	/* Save the original pointers so we can free all the memory */
862	dma->paddr = dma->paddr_start;
863	dma->vaddr = dma->vaddr_start;
864
865	/*
866	 * Check the alignment and increment by 4096 until we get the
867	 * requested alignment. Fail if can't obtain the alignment
868	 * we requested.
869	 */
870	if ((dma->paddr & (alignment -1 )) != 0) {
871		int i;
872
873		for (i = 0; i < alignment / 4096; i++) {
874			if ((dma->paddr & (alignment - 1 )) == 0)
875				break;
876			dma->paddr += 4096;
877			dma->vaddr += 4096;
878		}
879		if (i == alignment / 4096) {
880			device_printf(sc->sc_dev,
881			    "alignment requirement was not satisfied\n");
882			goto fail;
883		}
884	}
885
886	if (error != 0) {
887		device_printf(sc->sc_dev,
888		    "could not load shared page DMA map\n");
889		goto fail;
890	}
891
892	if (kvap != NULL)
893		*kvap = dma->vaddr;
894
895	return 0;
896
897fail:
898	wpi_dma_contig_free(dma);
899	return error;
900}
901
902static void
903wpi_dma_contig_free(struct wpi_dma_info *dma)
904{
905	if (dma->tag) {
906		if (dma->map != NULL) {
907			if (dma->paddr_start != 0) {
908				bus_dmamap_sync(dma->tag, dma->map,
909				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910				bus_dmamap_unload(dma->tag, dma->map);
911			}
912			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
913		}
914		bus_dma_tag_destroy(dma->tag);
915	}
916}
917
918/*
919 * Allocate a shared page between host and NIC.
920 */
921static int
922wpi_alloc_shared(struct wpi_softc *sc)
923{
924	int error;
925
926	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
927	    (void **)&sc->shared, sizeof (struct wpi_shared),
928	    PAGE_SIZE,
929	    BUS_DMA_NOWAIT);
930
931	if (error != 0) {
932		device_printf(sc->sc_dev,
933		    "could not allocate shared area DMA memory\n");
934	}
935
936	return error;
937}
938
939static void
940wpi_free_shared(struct wpi_softc *sc)
941{
942	wpi_dma_contig_free(&sc->shared_dma);
943}
944
945static int
946wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
947{
948
949	int i, error;
950
951	ring->cur = 0;
952
953	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
954	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
955	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
956
957	if (error != 0) {
958		device_printf(sc->sc_dev,
959		    "%s: could not allocate rx ring DMA memory, error %d\n",
960		    __func__, error);
961		goto fail;
962	}
963
964        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
965	    BUS_SPACE_MAXADDR_32BIT,
966            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
967            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
968        if (error != 0) {
969                device_printf(sc->sc_dev,
970		    "%s: bus_dma_tag_create_failed, error %d\n",
971		    __func__, error);
972                goto fail;
973        }
974
975	/*
976	 * Setup Rx buffers.
977	 */
978	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
979		struct wpi_rx_data *data = &ring->data[i];
980		struct mbuf *m;
981		bus_addr_t paddr;
982
983		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
984		if (error != 0) {
985			device_printf(sc->sc_dev,
986			    "%s: bus_dmamap_create failed, error %d\n",
987			    __func__, error);
988			goto fail;
989		}
990		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
991		if (m == NULL) {
992			device_printf(sc->sc_dev,
993			   "%s: could not allocate rx mbuf\n", __func__);
994			error = ENOMEM;
995			goto fail;
996		}
997		/* map page */
998		error = bus_dmamap_load(ring->data_dmat, data->map,
999		    mtod(m, caddr_t), MJUMPAGESIZE,
1000		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1001		if (error != 0 && error != EFBIG) {
1002			device_printf(sc->sc_dev,
1003			    "%s: bus_dmamap_load failed, error %d\n",
1004			    __func__, error);
1005			m_freem(m);
1006			error = ENOMEM;	/* XXX unique code */
1007			goto fail;
1008		}
1009		bus_dmamap_sync(ring->data_dmat, data->map,
1010		    BUS_DMASYNC_PREWRITE);
1011
1012		data->m = m;
1013		ring->desc[i] = htole32(paddr);
1014	}
1015	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1016	    BUS_DMASYNC_PREWRITE);
1017	return 0;
1018fail:
1019	wpi_free_rx_ring(sc, ring);
1020	return error;
1021}
1022
1023static void
1024wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1025{
1026	int ntries;
1027
1028	wpi_mem_lock(sc);
1029
1030	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1031
1032	for (ntries = 0; ntries < 100; ntries++) {
1033		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1034			break;
1035		DELAY(10);
1036	}
1037
1038	wpi_mem_unlock(sc);
1039
1040#ifdef WPI_DEBUG
1041	if (ntries == 100 && wpi_debug > 0)
1042		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1043#endif
1044
1045	ring->cur = 0;
1046}
1047
1048static void
1049wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1050{
1051	int i;
1052
1053	wpi_dma_contig_free(&ring->desc_dma);
1054
1055	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1056		struct wpi_rx_data *data = &ring->data[i];
1057
1058		if (data->m != NULL) {
1059			bus_dmamap_sync(ring->data_dmat, data->map,
1060			    BUS_DMASYNC_POSTREAD);
1061			bus_dmamap_unload(ring->data_dmat, data->map);
1062			m_freem(data->m);
1063		}
1064		if (data->map != NULL)
1065			bus_dmamap_destroy(ring->data_dmat, data->map);
1066	}
1067}
1068
1069static int
1070wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1071	int qid)
1072{
1073	struct wpi_tx_data *data;
1074	int i, error;
1075
1076	ring->qid = qid;
1077	ring->count = count;
1078	ring->queued = 0;
1079	ring->cur = 0;
1080	ring->data = NULL;
1081
1082	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1083		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1084		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1085
1086	if (error != 0) {
1087	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1088	    goto fail;
1089	}
1090
1091	/* update shared page with ring's base address */
1092	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1093
1094	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1095		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1096		BUS_DMA_NOWAIT);
1097
1098	if (error != 0) {
1099		device_printf(sc->sc_dev,
1100		    "could not allocate tx command DMA memory\n");
1101		goto fail;
1102	}
1103
1104	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1105	    M_NOWAIT | M_ZERO);
1106	if (ring->data == NULL) {
1107		device_printf(sc->sc_dev,
1108		    "could not allocate tx data slots\n");
1109		goto fail;
1110	}
1111
1112	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1113	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1114	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1115	    &ring->data_dmat);
1116	if (error != 0) {
1117		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1118		goto fail;
1119	}
1120
1121	for (i = 0; i < count; i++) {
1122		data = &ring->data[i];
1123
1124		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1125		if (error != 0) {
1126			device_printf(sc->sc_dev,
1127			    "could not create tx buf DMA map\n");
1128			goto fail;
1129		}
1130		bus_dmamap_sync(ring->data_dmat, data->map,
1131		    BUS_DMASYNC_PREWRITE);
1132	}
1133
1134	return 0;
1135
1136fail:
1137	wpi_free_tx_ring(sc, ring);
1138	return error;
1139}
1140
1141static void
1142wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1143{
1144	struct wpi_tx_data *data;
1145	int i, ntries;
1146
1147	wpi_mem_lock(sc);
1148
1149	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1150	for (ntries = 0; ntries < 100; ntries++) {
1151		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1152			break;
1153		DELAY(10);
1154	}
1155#ifdef WPI_DEBUG
1156	if (ntries == 100 && wpi_debug > 0)
1157		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1158		    ring->qid);
1159#endif
1160	wpi_mem_unlock(sc);
1161
1162	for (i = 0; i < ring->count; i++) {
1163		data = &ring->data[i];
1164
1165		if (data->m != NULL) {
1166			bus_dmamap_unload(ring->data_dmat, data->map);
1167			m_freem(data->m);
1168			data->m = NULL;
1169		}
1170	}
1171
1172	ring->queued = 0;
1173	ring->cur = 0;
1174}
1175
1176static void
1177wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1178{
1179	struct wpi_tx_data *data;
1180	int i;
1181
1182	wpi_dma_contig_free(&ring->desc_dma);
1183	wpi_dma_contig_free(&ring->cmd_dma);
1184
1185	if (ring->data != NULL) {
1186		for (i = 0; i < ring->count; i++) {
1187			data = &ring->data[i];
1188
1189			if (data->m != NULL) {
1190				bus_dmamap_sync(ring->data_dmat, data->map,
1191				    BUS_DMASYNC_POSTWRITE);
1192				bus_dmamap_unload(ring->data_dmat, data->map);
1193				m_freem(data->m);
1194				data->m = NULL;
1195			}
1196		}
1197		free(ring->data, M_DEVBUF);
1198	}
1199
1200	if (ring->data_dmat != NULL)
1201		bus_dma_tag_destroy(ring->data_dmat);
1202}
1203
1204static int
1205wpi_shutdown(device_t dev)
1206{
1207	struct wpi_softc *sc = device_get_softc(dev);
1208
1209	WPI_LOCK(sc);
1210	wpi_stop_locked(sc);
1211	wpi_unload_firmware(sc);
1212	WPI_UNLOCK(sc);
1213
1214	return 0;
1215}
1216
1217static int
1218wpi_suspend(device_t dev)
1219{
1220	struct wpi_softc *sc = device_get_softc(dev);
1221	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1222
1223	ieee80211_suspend_all(ic);
1224	return 0;
1225}
1226
1227static int
1228wpi_resume(device_t dev)
1229{
1230	struct wpi_softc *sc = device_get_softc(dev);
1231	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1232
1233	pci_write_config(dev, 0x41, 0, 1);
1234
1235	ieee80211_resume_all(ic);
1236	return 0;
1237}
1238
1239/**
1240 * Called by net80211 when ever there is a change to 80211 state machine
1241 */
1242static int
1243wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1244{
1245	struct wpi_vap *wvp = WPI_VAP(vap);
1246	struct ieee80211com *ic = vap->iv_ic;
1247	struct ifnet *ifp = ic->ic_ifp;
1248	struct wpi_softc *sc = ifp->if_softc;
1249	int error;
1250
1251	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1252		ieee80211_state_name[vap->iv_state],
1253		ieee80211_state_name[nstate], sc->flags));
1254
1255	IEEE80211_UNLOCK(ic);
1256	WPI_LOCK(sc);
1257	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1258		/*
1259		 * On !INIT -> SCAN transitions, we need to clear any possible
1260		 * knowledge about associations.
1261		 */
1262		error = wpi_config(sc);
1263		if (error != 0) {
1264			device_printf(sc->sc_dev,
1265			    "%s: device config failed, error %d\n",
1266			    __func__, error);
1267		}
1268	}
1269	if (nstate == IEEE80211_S_AUTH ||
1270	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1271		/*
1272		 * The node must be registered in the firmware before auth.
1273		 * Also the associd must be cleared on RUN -> ASSOC
1274		 * transitions.
1275		 */
1276		error = wpi_auth(sc, vap);
1277		if (error != 0) {
1278			device_printf(sc->sc_dev,
1279			    "%s: could not move to auth state, error %d\n",
1280			    __func__, error);
1281		}
1282	}
1283	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1284		error = wpi_run(sc, vap);
1285		if (error != 0) {
1286			device_printf(sc->sc_dev,
1287			    "%s: could not move to run state, error %d\n",
1288			    __func__, error);
1289		}
1290	}
1291	if (nstate == IEEE80211_S_RUN) {
1292		/* RUN -> RUN transition; just restart the timers */
1293		wpi_calib_timeout(sc);
1294		/* XXX split out rate control timer */
1295	}
1296	WPI_UNLOCK(sc);
1297	IEEE80211_LOCK(ic);
1298	return wvp->newstate(vap, nstate, arg);
1299}
1300
1301/*
1302 * Grab exclusive access to NIC memory.
1303 */
1304static void
1305wpi_mem_lock(struct wpi_softc *sc)
1306{
1307	int ntries;
1308	uint32_t tmp;
1309
1310	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1311	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1312
1313	/* spin until we actually get the lock */
1314	for (ntries = 0; ntries < 100; ntries++) {
1315		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1316			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1317			break;
1318		DELAY(10);
1319	}
1320	if (ntries == 100)
1321		device_printf(sc->sc_dev, "could not lock memory\n");
1322}
1323
1324/*
1325 * Release lock on NIC memory.
1326 */
1327static void
1328wpi_mem_unlock(struct wpi_softc *sc)
1329{
1330	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1331	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1332}
1333
1334static uint32_t
1335wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1336{
1337	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1338	return WPI_READ(sc, WPI_READ_MEM_DATA);
1339}
1340
1341static void
1342wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1343{
1344	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1345	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1346}
1347
1348static void
1349wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1350    const uint32_t *data, int wlen)
1351{
1352	for (; wlen > 0; wlen--, data++, addr+=4)
1353		wpi_mem_write(sc, addr, *data);
1354}
1355
1356/*
1357 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1358 * using the traditional bit-bang method. Data is read up until len bytes have
1359 * been obtained.
1360 */
1361static uint16_t
1362wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1363{
1364	int ntries;
1365	uint32_t val;
1366	uint8_t *out = data;
1367
1368	wpi_mem_lock(sc);
1369
1370	for (; len > 0; len -= 2, addr++) {
1371		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1372
1373		for (ntries = 0; ntries < 10; ntries++) {
1374			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1375				break;
1376			DELAY(5);
1377		}
1378
1379		if (ntries == 10) {
1380			device_printf(sc->sc_dev, "could not read EEPROM\n");
1381			return ETIMEDOUT;
1382		}
1383
1384		*out++= val >> 16;
1385		if (len > 1)
1386			*out ++= val >> 24;
1387	}
1388
1389	wpi_mem_unlock(sc);
1390
1391	return 0;
1392}
1393
1394/*
1395 * The firmware text and data segments are transferred to the NIC using DMA.
1396 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1397 * where to find it.  Once the NIC has copied the firmware into its internal
1398 * memory, we can free our local copy in the driver.
1399 */
1400static int
1401wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1402{
1403	int error, ntries;
1404
1405	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1406
1407	size /= sizeof(uint32_t);
1408
1409	wpi_mem_lock(sc);
1410
1411	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1412	    (const uint32_t *)fw, size);
1413
1414	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1415	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1416	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1417
1418	/* run microcode */
1419	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1420
1421	/* wait while the adapter is busy copying the firmware */
1422	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1423		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1424		DPRINTFN(WPI_DEBUG_HW,
1425		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1426		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1427		if (status & WPI_TX_IDLE(6)) {
1428			DPRINTFN(WPI_DEBUG_HW,
1429			    ("Status Match! - ntries = %d\n", ntries));
1430			break;
1431		}
1432		DELAY(10);
1433	}
1434	if (ntries == 1000) {
1435		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1436		error = ETIMEDOUT;
1437	}
1438
1439	/* start the microcode executing */
1440	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1441
1442	wpi_mem_unlock(sc);
1443
1444	return (error);
1445}
1446
1447static void
1448wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1449	struct wpi_rx_data *data)
1450{
1451	struct ifnet *ifp = sc->sc_ifp;
1452	struct ieee80211com *ic = ifp->if_l2com;
1453	struct wpi_rx_ring *ring = &sc->rxq;
1454	struct wpi_rx_stat *stat;
1455	struct wpi_rx_head *head;
1456	struct wpi_rx_tail *tail;
1457	struct ieee80211_node *ni;
1458	struct mbuf *m, *mnew;
1459	bus_addr_t paddr;
1460	int error;
1461
1462	stat = (struct wpi_rx_stat *)(desc + 1);
1463
1464	if (stat->len > WPI_STAT_MAXLEN) {
1465		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1466		ifp->if_ierrors++;
1467		return;
1468	}
1469
1470	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1471	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1472	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1473
1474	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1475	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1476	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1477	    (uintmax_t)le64toh(tail->tstamp)));
1478
1479	/* discard Rx frames with bad CRC early */
1480	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1481		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1482		    le32toh(tail->flags)));
1483		ifp->if_ierrors++;
1484		return;
1485	}
1486	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1487		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1488		    le16toh(head->len)));
1489		ifp->if_ierrors++;
1490		return;
1491	}
1492
1493	/* XXX don't need mbuf, just dma buffer */
1494	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1495	if (mnew == NULL) {
1496		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1497		    __func__));
1498		ifp->if_ierrors++;
1499		return;
1500	}
1501	bus_dmamap_unload(ring->data_dmat, data->map);
1502
1503	error = bus_dmamap_load(ring->data_dmat, data->map,
1504	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1505	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1506	if (error != 0 && error != EFBIG) {
1507		device_printf(sc->sc_dev,
1508		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1509		m_freem(mnew);
1510		ifp->if_ierrors++;
1511		return;
1512	}
1513	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1514
1515	/* finalize mbuf and swap in new one */
1516	m = data->m;
1517	m->m_pkthdr.rcvif = ifp;
1518	m->m_data = (caddr_t)(head + 1);
1519	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1520
1521	data->m = mnew;
1522	/* update Rx descriptor */
1523	ring->desc[ring->cur] = htole32(paddr);
1524
1525	if (ieee80211_radiotap_active(ic)) {
1526		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1527
1528		tap->wr_flags = 0;
1529		tap->wr_chan_freq =
1530			htole16(ic->ic_channels[head->chan].ic_freq);
1531		tap->wr_chan_flags =
1532			htole16(ic->ic_channels[head->chan].ic_flags);
1533		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1534		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1535		tap->wr_tsft = tail->tstamp;
1536		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1537		switch (head->rate) {
1538		/* CCK rates */
1539		case  10: tap->wr_rate =   2; break;
1540		case  20: tap->wr_rate =   4; break;
1541		case  55: tap->wr_rate =  11; break;
1542		case 110: tap->wr_rate =  22; break;
1543		/* OFDM rates */
1544		case 0xd: tap->wr_rate =  12; break;
1545		case 0xf: tap->wr_rate =  18; break;
1546		case 0x5: tap->wr_rate =  24; break;
1547		case 0x7: tap->wr_rate =  36; break;
1548		case 0x9: tap->wr_rate =  48; break;
1549		case 0xb: tap->wr_rate =  72; break;
1550		case 0x1: tap->wr_rate =  96; break;
1551		case 0x3: tap->wr_rate = 108; break;
1552		/* unknown rate: should not happen */
1553		default:  tap->wr_rate =   0;
1554		}
1555		if (le16toh(head->flags) & 0x4)
1556			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1557	}
1558
1559	WPI_UNLOCK(sc);
1560
1561	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1562	if (ni != NULL) {
1563		(void) ieee80211_input(ni, m, stat->rssi, 0);
1564		ieee80211_free_node(ni);
1565	} else
1566		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1567
1568	WPI_LOCK(sc);
1569}
1570
1571static void
1572wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1573{
1574	struct ifnet *ifp = sc->sc_ifp;
1575	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1576	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1577	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1578	struct ieee80211_node *ni = txdata->ni;
1579	struct ieee80211vap *vap = ni->ni_vap;
1580	int retrycnt = 0;
1581
1582	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1583	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1584	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1585	    le32toh(stat->status)));
1586
1587	/*
1588	 * Update rate control statistics for the node.
1589	 * XXX we should not count mgmt frames since they're always sent at
1590	 * the lowest available bit-rate.
1591	 * XXX frames w/o ACK shouldn't be used either
1592	 */
1593	if (stat->ntries > 0) {
1594		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1595		retrycnt = 1;
1596	}
1597	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1598	    &retrycnt, NULL);
1599
1600	/* XXX oerrors should only count errors !maxtries */
1601	if ((le32toh(stat->status) & 0xff) != 1)
1602		ifp->if_oerrors++;
1603	else
1604		ifp->if_opackets++;
1605
1606	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1607	bus_dmamap_unload(ring->data_dmat, txdata->map);
1608	/* XXX handle M_TXCB? */
1609	m_freem(txdata->m);
1610	txdata->m = NULL;
1611	ieee80211_free_node(txdata->ni);
1612	txdata->ni = NULL;
1613
1614	ring->queued--;
1615
1616	sc->sc_tx_timer = 0;
1617	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1618	wpi_start_locked(ifp);
1619}
1620
1621static void
1622wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1623{
1624	struct wpi_tx_ring *ring = &sc->cmdq;
1625	struct wpi_tx_data *data;
1626
1627	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1628				 "type=%s len=%d\n", desc->qid, desc->idx,
1629				 desc->flags, wpi_cmd_str(desc->type),
1630				 le32toh(desc->len)));
1631
1632	if ((desc->qid & 7) != 4)
1633		return;	/* not a command ack */
1634
1635	data = &ring->data[desc->idx];
1636
1637	/* if the command was mapped in a mbuf, free it */
1638	if (data->m != NULL) {
1639		bus_dmamap_unload(ring->data_dmat, data->map);
1640		m_freem(data->m);
1641		data->m = NULL;
1642	}
1643
1644	sc->flags &= ~WPI_FLAG_BUSY;
1645	wakeup(&ring->cmd[desc->idx]);
1646}
1647
1648static void
1649wpi_notif_intr(struct wpi_softc *sc)
1650{
1651	struct ifnet *ifp = sc->sc_ifp;
1652	struct ieee80211com *ic = ifp->if_l2com;
1653	struct wpi_rx_desc *desc;
1654	struct wpi_rx_data *data;
1655	uint32_t hw;
1656
1657	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1658	    BUS_DMASYNC_POSTREAD);
1659
1660	hw = le32toh(sc->shared->next);
1661	while (sc->rxq.cur != hw) {
1662		data = &sc->rxq.data[sc->rxq.cur];
1663
1664		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1665		    BUS_DMASYNC_POSTREAD);
1666		desc = (void *)data->m->m_ext.ext_buf;
1667
1668		DPRINTFN(WPI_DEBUG_NOTIFY,
1669			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1670			  desc->qid,
1671			  desc->idx,
1672			  desc->flags,
1673			  desc->type,
1674			  le32toh(desc->len)));
1675
1676		if (!(desc->qid & 0x80))	/* reply to a command */
1677			wpi_cmd_intr(sc, desc);
1678
1679		switch (desc->type) {
1680		case WPI_RX_DONE:
1681			/* a 802.11 frame was received */
1682			wpi_rx_intr(sc, desc, data);
1683			break;
1684
1685		case WPI_TX_DONE:
1686			/* a 802.11 frame has been transmitted */
1687			wpi_tx_intr(sc, desc);
1688			break;
1689
1690		case WPI_UC_READY:
1691		{
1692			struct wpi_ucode_info *uc =
1693				(struct wpi_ucode_info *)(desc + 1);
1694
1695			/* the microcontroller is ready */
1696			DPRINTF(("microcode alive notification version %x "
1697				"alive %x\n", le32toh(uc->version),
1698				le32toh(uc->valid)));
1699
1700			if (le32toh(uc->valid) != 1) {
1701				device_printf(sc->sc_dev,
1702				    "microcontroller initialization failed\n");
1703				wpi_stop_locked(sc);
1704			}
1705			break;
1706		}
1707		case WPI_STATE_CHANGED:
1708		{
1709			uint32_t *status = (uint32_t *)(desc + 1);
1710
1711			/* enabled/disabled notification */
1712			DPRINTF(("state changed to %x\n", le32toh(*status)));
1713
1714			if (le32toh(*status) & 1) {
1715				device_printf(sc->sc_dev,
1716				    "Radio transmitter is switched off\n");
1717				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1718				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1719				/* Disable firmware commands */
1720				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1721			}
1722			break;
1723		}
1724		case WPI_START_SCAN:
1725		{
1726#ifdef WPI_DEBUG
1727			struct wpi_start_scan *scan =
1728				(struct wpi_start_scan *)(desc + 1);
1729#endif
1730
1731			DPRINTFN(WPI_DEBUG_SCANNING,
1732				 ("scanning channel %d status %x\n",
1733			    scan->chan, le32toh(scan->status)));
1734			break;
1735		}
1736		case WPI_STOP_SCAN:
1737		{
1738#ifdef WPI_DEBUG
1739			struct wpi_stop_scan *scan =
1740				(struct wpi_stop_scan *)(desc + 1);
1741#endif
1742			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1743
1744			DPRINTFN(WPI_DEBUG_SCANNING,
1745			    ("scan finished nchan=%d status=%d chan=%d\n",
1746			     scan->nchan, scan->status, scan->chan));
1747
1748			sc->sc_scan_timer = 0;
1749			ieee80211_scan_next(vap);
1750			break;
1751		}
1752		case WPI_MISSED_BEACON:
1753		{
1754			struct wpi_missed_beacon *beacon =
1755				(struct wpi_missed_beacon *)(desc + 1);
1756			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1757
1758			if (le32toh(beacon->consecutive) >=
1759			    vap->iv_bmissthreshold) {
1760				DPRINTF(("Beacon miss: %u >= %u\n",
1761					 le32toh(beacon->consecutive),
1762					 vap->iv_bmissthreshold));
1763				ieee80211_beacon_miss(ic);
1764			}
1765			break;
1766		}
1767		}
1768
1769		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1770	}
1771
1772	/* tell the firmware what we have processed */
1773	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1774	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1775}
1776
1777static void
1778wpi_intr(void *arg)
1779{
1780	struct wpi_softc *sc = arg;
1781	uint32_t r;
1782
1783	WPI_LOCK(sc);
1784
1785#if !defined(__HAIKU__)
1786	r = WPI_READ(sc, WPI_INTR);
1787	if (r == 0 || r == 0xffffffff) {
1788		WPI_UNLOCK(sc);
1789		return;
1790	}
1791
1792	/* disable interrupts */
1793	WPI_WRITE(sc, WPI_MASK, 0);
1794#else
1795	r = atomic_get((int32 *)&sc->sc_intr_status);
1796#endif
1797
1798	/* ack interrupts */
1799	WPI_WRITE(sc, WPI_INTR, r);
1800
1801	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1802		struct ifnet *ifp = sc->sc_ifp;
1803		struct ieee80211com *ic = ifp->if_l2com;
1804		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1805
1806		device_printf(sc->sc_dev, "fatal firmware error\n");
1807		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1808				"(Hardware Error)"));
1809		if (vap != NULL)
1810			ieee80211_cancel_scan(vap);
1811		ieee80211_runtask(ic, &sc->sc_restarttask);
1812		sc->flags &= ~WPI_FLAG_BUSY;
1813		WPI_UNLOCK(sc);
1814		return;
1815	}
1816
1817	if (r & WPI_RX_INTR)
1818		wpi_notif_intr(sc);
1819
1820	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1821		wakeup(sc);
1822
1823	/* re-enable interrupts */
1824	if (sc->sc_ifp->if_flags & IFF_UP)
1825		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1826
1827	WPI_UNLOCK(sc);
1828}
1829
1830static uint8_t
1831wpi_plcp_signal(int rate)
1832{
1833	switch (rate) {
1834	/* CCK rates (returned values are device-dependent) */
1835	case 2:		return 10;
1836	case 4:		return 20;
1837	case 11:	return 55;
1838	case 22:	return 110;
1839
1840	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1841	/* R1-R4 (ral/ural is R4-R1) */
1842	case 12:	return 0xd;
1843	case 18:	return 0xf;
1844	case 24:	return 0x5;
1845	case 36:	return 0x7;
1846	case 48:	return 0x9;
1847	case 72:	return 0xb;
1848	case 96:	return 0x1;
1849	case 108:	return 0x3;
1850
1851	/* unsupported rates (should not get there) */
1852	default:	return 0;
1853	}
1854}
1855
1856/* quickly determine if a given rate is CCK or OFDM */
1857#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1858
1859/*
1860 * Construct the data packet for a transmit buffer and acutally put
1861 * the buffer onto the transmit ring, kicking the card to process the
1862 * the buffer.
1863 */
1864static int
1865wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1866	int ac)
1867{
1868	struct ieee80211vap *vap = ni->ni_vap;
1869	struct ifnet *ifp = sc->sc_ifp;
1870	struct ieee80211com *ic = ifp->if_l2com;
1871	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1872	struct wpi_tx_ring *ring = &sc->txq[ac];
1873	struct wpi_tx_desc *desc;
1874	struct wpi_tx_data *data;
1875	struct wpi_tx_cmd *cmd;
1876	struct wpi_cmd_data *tx;
1877	struct ieee80211_frame *wh;
1878	const struct ieee80211_txparam *tp;
1879	struct ieee80211_key *k;
1880	struct mbuf *mnew;
1881	int i, error, nsegs, rate, hdrlen, ismcast;
1882	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1883
1884	desc = &ring->desc[ring->cur];
1885	data = &ring->data[ring->cur];
1886
1887	wh = mtod(m0, struct ieee80211_frame *);
1888
1889	hdrlen = ieee80211_hdrsize(wh);
1890	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1891
1892	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1893		k = ieee80211_crypto_encap(ni, m0);
1894		if (k == NULL) {
1895			m_freem(m0);
1896			return ENOBUFS;
1897		}
1898		/* packet header may have moved, reset our local pointer */
1899		wh = mtod(m0, struct ieee80211_frame *);
1900	}
1901
1902	cmd = &ring->cmd[ring->cur];
1903	cmd->code = WPI_CMD_TX_DATA;
1904	cmd->flags = 0;
1905	cmd->qid = ring->qid;
1906	cmd->idx = ring->cur;
1907
1908	tx = (struct wpi_cmd_data *)cmd->data;
1909	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1910	tx->timeout = htole16(0);
1911	tx->ofdm_mask = 0xff;
1912	tx->cck_mask = 0x0f;
1913	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1914	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1915	tx->len = htole16(m0->m_pkthdr.len);
1916
1917	if (!ismcast) {
1918		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1919		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1920			tx->flags |= htole32(WPI_TX_NEED_ACK);
1921		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1922			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1923			tx->rts_ntries = 7;
1924		}
1925	}
1926	/* pick a rate */
1927	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1928	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1929		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1930		/* tell h/w to set timestamp in probe responses */
1931		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1932			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1933		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1934		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1935			tx->timeout = htole16(3);
1936		else
1937			tx->timeout = htole16(2);
1938		rate = tp->mgmtrate;
1939	} else if (ismcast) {
1940		rate = tp->mcastrate;
1941	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1942		rate = tp->ucastrate;
1943	} else {
1944		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1945		rate = ni->ni_txrate;
1946	}
1947	tx->rate = wpi_plcp_signal(rate);
1948
1949	/* be very persistant at sending frames out */
1950#if 0
1951	tx->data_ntries = tp->maxretry;
1952#else
1953	tx->data_ntries = 15;		/* XXX way too high */
1954#endif
1955
1956	if (ieee80211_radiotap_active_vap(vap)) {
1957		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1958		tap->wt_flags = 0;
1959		tap->wt_rate = rate;
1960		tap->wt_hwqueue = ac;
1961		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1962			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1963
1964		ieee80211_radiotap_tx(vap, m0);
1965	}
1966
1967	/* save and trim IEEE802.11 header */
1968	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1969	m_adj(m0, hdrlen);
1970
1971	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1972	    &nsegs, BUS_DMA_NOWAIT);
1973	if (error != 0 && error != EFBIG) {
1974		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1975		    error);
1976		m_freem(m0);
1977		return error;
1978	}
1979	if (error != 0) {
1980		/* XXX use m_collapse */
1981		mnew = m_defrag(m0, M_DONTWAIT);
1982		if (mnew == NULL) {
1983			device_printf(sc->sc_dev,
1984			    "could not defragment mbuf\n");
1985			m_freem(m0);
1986			return ENOBUFS;
1987		}
1988		m0 = mnew;
1989
1990		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1991		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1992		if (error != 0) {
1993			device_printf(sc->sc_dev,
1994			    "could not map mbuf (error %d)\n", error);
1995			m_freem(m0);
1996			return error;
1997		}
1998	}
1999
2000	data->m = m0;
2001	data->ni = ni;
2002
2003	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2004	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2005
2006	/* first scatter/gather segment is used by the tx data command */
2007	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2008	    (1 + nsegs) << 24);
2009	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2010	    ring->cur * sizeof (struct wpi_tx_cmd));
2011	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2012	for (i = 1; i <= nsegs; i++) {
2013		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2014		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2015	}
2016
2017	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2018	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2019	    BUS_DMASYNC_PREWRITE);
2020
2021	ring->queued++;
2022
2023	/* kick ring */
2024	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2025	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2026
2027	return 0;
2028}
2029
2030/**
2031 * Process data waiting to be sent on the IFNET output queue
2032 */
2033static void
2034wpi_start(struct ifnet *ifp)
2035{
2036	struct wpi_softc *sc = ifp->if_softc;
2037
2038	WPI_LOCK(sc);
2039	wpi_start_locked(ifp);
2040	WPI_UNLOCK(sc);
2041}
2042
2043static void
2044wpi_start_locked(struct ifnet *ifp)
2045{
2046	struct wpi_softc *sc = ifp->if_softc;
2047	struct ieee80211_node *ni;
2048	struct mbuf *m;
2049	int ac;
2050
2051	WPI_LOCK_ASSERT(sc);
2052
2053	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2054		return;
2055
2056	for (;;) {
2057		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2058		if (m == NULL)
2059			break;
2060		ac = M_WME_GETAC(m);
2061		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2062			/* there is no place left in this ring */
2063			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2064			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2065			break;
2066		}
2067		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2068		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2069			ieee80211_free_node(ni);
2070			ifp->if_oerrors++;
2071			break;
2072		}
2073		sc->sc_tx_timer = 5;
2074	}
2075}
2076
2077static int
2078wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2079	const struct ieee80211_bpf_params *params)
2080{
2081	struct ieee80211com *ic = ni->ni_ic;
2082	struct ifnet *ifp = ic->ic_ifp;
2083	struct wpi_softc *sc = ifp->if_softc;
2084
2085	/* prevent management frames from being sent if we're not ready */
2086	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2087		m_freem(m);
2088		ieee80211_free_node(ni);
2089		return ENETDOWN;
2090	}
2091	WPI_LOCK(sc);
2092
2093	/* management frames go into ring 0 */
2094	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2095		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2096		m_freem(m);
2097		WPI_UNLOCK(sc);
2098		ieee80211_free_node(ni);
2099		return ENOBUFS;		/* XXX */
2100	}
2101
2102	ifp->if_opackets++;
2103	if (wpi_tx_data(sc, m, ni, 0) != 0)
2104		goto bad;
2105	sc->sc_tx_timer = 5;
2106	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2107
2108	WPI_UNLOCK(sc);
2109	return 0;
2110bad:
2111	ifp->if_oerrors++;
2112	WPI_UNLOCK(sc);
2113	ieee80211_free_node(ni);
2114	return EIO;		/* XXX */
2115}
2116
2117static int
2118wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2119{
2120	struct wpi_softc *sc = ifp->if_softc;
2121	struct ieee80211com *ic = ifp->if_l2com;
2122	struct ifreq *ifr = (struct ifreq *) data;
2123	int error = 0, startall = 0;
2124
2125	switch (cmd) {
2126	case SIOCSIFFLAGS:
2127		WPI_LOCK(sc);
2128		if ((ifp->if_flags & IFF_UP)) {
2129			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2130				wpi_init_locked(sc, 0);
2131				startall = 1;
2132			}
2133		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2134			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2135			wpi_stop_locked(sc);
2136		WPI_UNLOCK(sc);
2137		if (startall)
2138			ieee80211_start_all(ic);
2139		break;
2140	case SIOCGIFMEDIA:
2141		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2142		break;
2143	case SIOCGIFADDR:
2144		error = ether_ioctl(ifp, cmd, data);
2145		break;
2146	default:
2147		error = EINVAL;
2148		break;
2149	}
2150	return error;
2151}
2152
2153/*
2154 * Extract various information from EEPROM.
2155 */
2156static void
2157wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2158{
2159	int i;
2160
2161	/* read the hardware capabilities, revision and SKU type */
2162	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2163	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2164	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2165
2166	/* read the regulatory domain */
2167	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2168
2169	/* read in the hw MAC address */
2170	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2171
2172	/* read the list of authorized channels */
2173	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2174		wpi_read_eeprom_channels(sc,i);
2175
2176	/* read the power level calibration info for each group */
2177	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2178		wpi_read_eeprom_group(sc,i);
2179}
2180
2181/*
2182 * Send a command to the firmware.
2183 */
2184static int
2185wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2186{
2187	struct wpi_tx_ring *ring = &sc->cmdq;
2188	struct wpi_tx_desc *desc;
2189	struct wpi_tx_cmd *cmd;
2190
2191#ifdef WPI_DEBUG
2192	if (!async) {
2193		WPI_LOCK_ASSERT(sc);
2194	}
2195#endif
2196
2197	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2198		    async));
2199
2200	if (sc->flags & WPI_FLAG_BUSY) {
2201		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2202		    __func__, code);
2203		return EAGAIN;
2204	}
2205	sc->flags|= WPI_FLAG_BUSY;
2206
2207	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2208	    code, size));
2209
2210	desc = &ring->desc[ring->cur];
2211	cmd = &ring->cmd[ring->cur];
2212
2213	cmd->code = code;
2214	cmd->flags = 0;
2215	cmd->qid = ring->qid;
2216	cmd->idx = ring->cur;
2217	memcpy(cmd->data, buf, size);
2218
2219	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2220	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2221		ring->cur * sizeof (struct wpi_tx_cmd));
2222	desc->segs[0].len  = htole32(4 + size);
2223
2224	/* kick cmd ring */
2225	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2226	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2227
2228	if (async) {
2229		sc->flags &= ~ WPI_FLAG_BUSY;
2230		return 0;
2231	}
2232
2233	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2234}
2235
2236static int
2237wpi_wme_update(struct ieee80211com *ic)
2238{
2239#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2240#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2241	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2242	const struct wmeParams *wmep;
2243	struct wpi_wme_setup wme;
2244	int ac;
2245
2246	/* don't override default WME values if WME is not actually enabled */
2247	if (!(ic->ic_flags & IEEE80211_F_WME))
2248		return 0;
2249
2250	wme.flags = 0;
2251	for (ac = 0; ac < WME_NUM_AC; ac++) {
2252		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2253		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2254		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2255		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2256		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2257
2258		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2259		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2260		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2261	}
2262	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2263#undef WPI_USEC
2264#undef WPI_EXP2
2265}
2266
2267/*
2268 * Configure h/w multi-rate retries.
2269 */
2270static int
2271wpi_mrr_setup(struct wpi_softc *sc)
2272{
2273	struct ifnet *ifp = sc->sc_ifp;
2274	struct ieee80211com *ic = ifp->if_l2com;
2275	struct wpi_mrr_setup mrr;
2276	int i, error;
2277
2278	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2279
2280	/* CCK rates (not used with 802.11a) */
2281	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2282		mrr.rates[i].flags = 0;
2283		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2284		/* fallback to the immediate lower CCK rate (if any) */
2285		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2286		/* try one time at this rate before falling back to "next" */
2287		mrr.rates[i].ntries = 1;
2288	}
2289
2290	/* OFDM rates (not used with 802.11b) */
2291	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2292		mrr.rates[i].flags = 0;
2293		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2294		/* fallback to the immediate lower OFDM rate (if any) */
2295		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2296		mrr.rates[i].next = (i == WPI_OFDM6) ?
2297		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2298			WPI_OFDM6 : WPI_CCK2) :
2299		    i - 1;
2300		/* try one time at this rate before falling back to "next" */
2301		mrr.rates[i].ntries = 1;
2302	}
2303
2304	/* setup MRR for control frames */
2305	mrr.which = WPI_MRR_CTL;
2306	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2307	if (error != 0) {
2308		device_printf(sc->sc_dev,
2309		    "could not setup MRR for control frames\n");
2310		return error;
2311	}
2312
2313	/* setup MRR for data frames */
2314	mrr.which = WPI_MRR_DATA;
2315	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2316	if (error != 0) {
2317		device_printf(sc->sc_dev,
2318		    "could not setup MRR for data frames\n");
2319		return error;
2320	}
2321
2322	return 0;
2323}
2324
2325static void
2326wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2327{
2328	struct wpi_cmd_led led;
2329
2330	led.which = which;
2331	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2332	led.off = off;
2333	led.on = on;
2334
2335	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2336}
2337
2338static void
2339wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2340{
2341	struct wpi_cmd_tsf tsf;
2342	uint64_t val, mod;
2343
2344	memset(&tsf, 0, sizeof tsf);
2345	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2346	tsf.bintval = htole16(ni->ni_intval);
2347	tsf.lintval = htole16(10);
2348
2349	/* compute remaining time until next beacon */
2350	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2351	mod = le64toh(tsf.tstamp) % val;
2352	tsf.binitval = htole32((uint32_t)(val - mod));
2353
2354	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2355		device_printf(sc->sc_dev, "could not enable TSF\n");
2356}
2357
2358#if 0
2359/*
2360 * Build a beacon frame that the firmware will broadcast periodically in
2361 * IBSS or HostAP modes.
2362 */
2363static int
2364wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2365{
2366	struct ifnet *ifp = sc->sc_ifp;
2367	struct ieee80211com *ic = ifp->if_l2com;
2368	struct wpi_tx_ring *ring = &sc->cmdq;
2369	struct wpi_tx_desc *desc;
2370	struct wpi_tx_data *data;
2371	struct wpi_tx_cmd *cmd;
2372	struct wpi_cmd_beacon *bcn;
2373	struct ieee80211_beacon_offsets bo;
2374	struct mbuf *m0;
2375	bus_addr_t physaddr;
2376	int error;
2377
2378	desc = &ring->desc[ring->cur];
2379	data = &ring->data[ring->cur];
2380
2381	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2382	if (m0 == NULL) {
2383		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2384		return ENOMEM;
2385	}
2386
2387	cmd = &ring->cmd[ring->cur];
2388	cmd->code = WPI_CMD_SET_BEACON;
2389	cmd->flags = 0;
2390	cmd->qid = ring->qid;
2391	cmd->idx = ring->cur;
2392
2393	bcn = (struct wpi_cmd_beacon *)cmd->data;
2394	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2395	bcn->id = WPI_ID_BROADCAST;
2396	bcn->ofdm_mask = 0xff;
2397	bcn->cck_mask = 0x0f;
2398	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2399	bcn->len = htole16(m0->m_pkthdr.len);
2400	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2401		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2402	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2403
2404	/* save and trim IEEE802.11 header */
2405	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2406	m_adj(m0, sizeof (struct ieee80211_frame));
2407
2408	/* assume beacon frame is contiguous */
2409	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2410	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2411	if (error != 0) {
2412		device_printf(sc->sc_dev, "could not map beacon\n");
2413		m_freem(m0);
2414		return error;
2415	}
2416
2417	data->m = m0;
2418
2419	/* first scatter/gather segment is used by the beacon command */
2420	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2421	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2422		ring->cur * sizeof (struct wpi_tx_cmd));
2423	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2424	desc->segs[1].addr = htole32(physaddr);
2425	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2426
2427	/* kick cmd ring */
2428	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2429	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2430
2431	return 0;
2432}
2433#endif
2434
2435static int
2436wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2437{
2438	struct ieee80211com *ic = vap->iv_ic;
2439	struct ieee80211_node *ni = vap->iv_bss;
2440	struct wpi_node_info node;
2441	int error;
2442
2443
2444	/* update adapter's configuration */
2445	sc->config.associd = 0;
2446	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2447	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2448	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2449	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2450		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2451		    WPI_CONFIG_24GHZ);
2452	} else {
2453		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2454		    WPI_CONFIG_24GHZ);
2455	}
2456	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2457		sc->config.cck_mask  = 0;
2458		sc->config.ofdm_mask = 0x15;
2459	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2460		sc->config.cck_mask  = 0x03;
2461		sc->config.ofdm_mask = 0;
2462	} else {
2463		/* XXX assume 802.11b/g */
2464		sc->config.cck_mask  = 0x0f;
2465		sc->config.ofdm_mask = 0x15;
2466	}
2467
2468	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2469		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2470	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2471		sizeof (struct wpi_config), 1);
2472	if (error != 0) {
2473		device_printf(sc->sc_dev, "could not configure\n");
2474		return error;
2475	}
2476
2477	/* configuration has changed, set Tx power accordingly */
2478	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2479		device_printf(sc->sc_dev, "could not set Tx power\n");
2480		return error;
2481	}
2482
2483	/* add default node */
2484	memset(&node, 0, sizeof node);
2485	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2486	node.id = WPI_ID_BSS;
2487	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2488	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2489	node.action = htole32(WPI_ACTION_SET_RATE);
2490	node.antenna = WPI_ANTENNA_BOTH;
2491	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2492	if (error != 0)
2493		device_printf(sc->sc_dev, "could not add BSS node\n");
2494
2495	return (error);
2496}
2497
2498static int
2499wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2500{
2501	struct ieee80211com *ic = vap->iv_ic;
2502	struct ieee80211_node *ni = vap->iv_bss;
2503	int error;
2504
2505	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2506		/* link LED blinks while monitoring */
2507		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2508		return 0;
2509	}
2510
2511	wpi_enable_tsf(sc, ni);
2512
2513	/* update adapter's configuration */
2514	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2515	/* short preamble/slot time are negotiated when associating */
2516	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2517	    WPI_CONFIG_SHSLOT);
2518	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2519		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2520	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2521		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2522	sc->config.filter |= htole32(WPI_FILTER_BSS);
2523
2524	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2525
2526	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2527		    sc->config.flags));
2528	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2529		    wpi_config), 1);
2530	if (error != 0) {
2531		device_printf(sc->sc_dev, "could not update configuration\n");
2532		return error;
2533	}
2534
2535	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2536	if (error != 0) {
2537		device_printf(sc->sc_dev, "could set txpower\n");
2538		return error;
2539	}
2540
2541	/* link LED always on while associated */
2542	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2543
2544	/* start automatic rate control timer */
2545	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2546
2547	return (error);
2548}
2549
2550/*
2551 * Send a scan request to the firmware.  Since this command is huge, we map it
2552 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2553 * much of this code is similar to that in wpi_cmd but because we must manually
2554 * construct the probe & channels, we duplicate what's needed here. XXX In the
2555 * future, this function should be modified to use wpi_cmd to help cleanup the
2556 * code base.
2557 */
2558static int
2559wpi_scan(struct wpi_softc *sc)
2560{
2561	struct ifnet *ifp = sc->sc_ifp;
2562	struct ieee80211com *ic = ifp->if_l2com;
2563	struct ieee80211_scan_state *ss = ic->ic_scan;
2564	struct wpi_tx_ring *ring = &sc->cmdq;
2565	struct wpi_tx_desc *desc;
2566	struct wpi_tx_data *data;
2567	struct wpi_tx_cmd *cmd;
2568	struct wpi_scan_hdr *hdr;
2569	struct wpi_scan_chan *chan;
2570	struct ieee80211_frame *wh;
2571	struct ieee80211_rateset *rs;
2572	struct ieee80211_channel *c;
2573	enum ieee80211_phymode mode;
2574	uint8_t *frm;
2575	int nrates, pktlen, error, i, nssid;
2576	bus_addr_t physaddr;
2577
2578	desc = &ring->desc[ring->cur];
2579	data = &ring->data[ring->cur];
2580
2581	data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2582	if (data->m == NULL) {
2583		device_printf(sc->sc_dev,
2584		    "could not allocate mbuf for scan command\n");
2585		return ENOMEM;
2586	}
2587
2588	cmd = mtod(data->m, struct wpi_tx_cmd *);
2589	cmd->code = WPI_CMD_SCAN;
2590	cmd->flags = 0;
2591	cmd->qid = ring->qid;
2592	cmd->idx = ring->cur;
2593
2594	hdr = (struct wpi_scan_hdr *)cmd->data;
2595	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2596
2597	/*
2598	 * Move to the next channel if no packets are received within 5 msecs
2599	 * after sending the probe request (this helps to reduce the duration
2600	 * of active scans).
2601	 */
2602	hdr->quiet = htole16(5);
2603	hdr->threshold = htole16(1);
2604
2605	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2606		/* send probe requests at 6Mbps */
2607		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2608
2609		/* Enable crc checking */
2610		hdr->promotion = htole16(1);
2611	} else {
2612		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2613		/* send probe requests at 1Mbps */
2614		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2615	}
2616	hdr->tx.id = WPI_ID_BROADCAST;
2617	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2618	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2619
2620	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2621	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2622	for (i = 0; i < nssid; i++) {
2623		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2624		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2625		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2626		    hdr->scan_essids[i].esslen);
2627#ifdef WPI_DEBUG
2628		if (wpi_debug & WPI_DEBUG_SCANNING) {
2629			printf("Scanning Essid: ");
2630			ieee80211_print_essid(hdr->scan_essids[i].essid,
2631			    hdr->scan_essids[i].esslen);
2632			printf("\n");
2633		}
2634#endif
2635	}
2636
2637	/*
2638	 * Build a probe request frame.  Most of the following code is a
2639	 * copy & paste of what is done in net80211.
2640	 */
2641	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2642	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2643		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2644	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2645	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2646	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2647	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2648	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2649	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2650
2651	frm = (uint8_t *)(wh + 1);
2652
2653	/* add essid IE, the hardware will fill this in for us */
2654	*frm++ = IEEE80211_ELEMID_SSID;
2655	*frm++ = 0;
2656
2657	mode = ieee80211_chan2mode(ic->ic_curchan);
2658	rs = &ic->ic_sup_rates[mode];
2659
2660	/* add supported rates IE */
2661	*frm++ = IEEE80211_ELEMID_RATES;
2662	nrates = rs->rs_nrates;
2663	if (nrates > IEEE80211_RATE_SIZE)
2664		nrates = IEEE80211_RATE_SIZE;
2665	*frm++ = nrates;
2666	memcpy(frm, rs->rs_rates, nrates);
2667	frm += nrates;
2668
2669	/* add supported xrates IE */
2670	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2671		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2672		*frm++ = IEEE80211_ELEMID_XRATES;
2673		*frm++ = nrates;
2674		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2675		frm += nrates;
2676	}
2677
2678	/* setup length of probe request */
2679	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2680
2681	/*
2682	 * Construct information about the channel that we
2683	 * want to scan. The firmware expects this to be directly
2684	 * after the scan probe request
2685	 */
2686	c = ic->ic_curchan;
2687	chan = (struct wpi_scan_chan *)frm;
2688	chan->chan = ieee80211_chan2ieee(ic, c);
2689	chan->flags = 0;
2690	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2691		chan->flags |= WPI_CHAN_ACTIVE;
2692		if (nssid != 0)
2693			chan->flags |= WPI_CHAN_DIRECT;
2694	}
2695	chan->gain_dsp = 0x6e; /* Default level */
2696	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2697		chan->active = htole16(10);
2698		chan->passive = htole16(ss->ss_maxdwell);
2699		chan->gain_radio = 0x3b;
2700	} else {
2701		chan->active = htole16(20);
2702		chan->passive = htole16(ss->ss_maxdwell);
2703		chan->gain_radio = 0x28;
2704	}
2705
2706	DPRINTFN(WPI_DEBUG_SCANNING,
2707	    ("Scanning %u Passive: %d\n",
2708	     chan->chan,
2709	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2710
2711	hdr->nchan++;
2712	chan++;
2713
2714	frm += sizeof (struct wpi_scan_chan);
2715#if 0
2716	// XXX All Channels....
2717	for (c  = &ic->ic_channels[1];
2718	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2719		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2720			continue;
2721
2722		chan->chan = ieee80211_chan2ieee(ic, c);
2723		chan->flags = 0;
2724		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2725		    chan->flags |= WPI_CHAN_ACTIVE;
2726		    if (ic->ic_des_ssid[0].len != 0)
2727			chan->flags |= WPI_CHAN_DIRECT;
2728		}
2729		chan->gain_dsp = 0x6e; /* Default level */
2730		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2731			chan->active = htole16(10);
2732			chan->passive = htole16(110);
2733			chan->gain_radio = 0x3b;
2734		} else {
2735			chan->active = htole16(20);
2736			chan->passive = htole16(120);
2737			chan->gain_radio = 0x28;
2738		}
2739
2740		DPRINTFN(WPI_DEBUG_SCANNING,
2741			 ("Scanning %u Passive: %d\n",
2742			  chan->chan,
2743			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2744
2745		hdr->nchan++;
2746		chan++;
2747
2748		frm += sizeof (struct wpi_scan_chan);
2749	}
2750#endif
2751
2752	hdr->len = htole16(frm - (uint8_t *)hdr);
2753	pktlen = frm - (uint8_t *)cmd;
2754
2755	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2756	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2757	if (error != 0) {
2758		device_printf(sc->sc_dev, "could not map scan command\n");
2759		m_freem(data->m);
2760		data->m = NULL;
2761		return error;
2762	}
2763
2764	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2765	desc->segs[0].addr = htole32(physaddr);
2766	desc->segs[0].len  = htole32(pktlen);
2767
2768	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2769	    BUS_DMASYNC_PREWRITE);
2770	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2771
2772	/* kick cmd ring */
2773	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2774	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2775
2776	sc->sc_scan_timer = 5;
2777	return 0;	/* will be notified async. of failure/success */
2778}
2779
2780/**
2781 * Configure the card to listen to a particular channel, this transisions the
2782 * card in to being able to receive frames from remote devices.
2783 */
2784static int
2785wpi_config(struct wpi_softc *sc)
2786{
2787	struct ifnet *ifp = sc->sc_ifp;
2788	struct ieee80211com *ic = ifp->if_l2com;
2789	struct wpi_power power;
2790	struct wpi_bluetooth bluetooth;
2791	struct wpi_node_info node;
2792	int error;
2793
2794	/* set power mode */
2795	memset(&power, 0, sizeof power);
2796	power.flags = htole32(WPI_POWER_CAM|0x8);
2797	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2798	if (error != 0) {
2799		device_printf(sc->sc_dev, "could not set power mode\n");
2800		return error;
2801	}
2802
2803	/* configure bluetooth coexistence */
2804	memset(&bluetooth, 0, sizeof bluetooth);
2805	bluetooth.flags = 3;
2806	bluetooth.lead = 0xaa;
2807	bluetooth.kill = 1;
2808	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2809	    0);
2810	if (error != 0) {
2811		device_printf(sc->sc_dev,
2812		    "could not configure bluetooth coexistence\n");
2813		return error;
2814	}
2815
2816	/* configure adapter */
2817	memset(&sc->config, 0, sizeof (struct wpi_config));
2818	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2819	/*set default channel*/
2820	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2821	sc->config.flags = htole32(WPI_CONFIG_TSF);
2822	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2823		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2824		    WPI_CONFIG_24GHZ);
2825	}
2826	sc->config.filter = 0;
2827	switch (ic->ic_opmode) {
2828	case IEEE80211_M_STA:
2829	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2830		sc->config.mode = WPI_MODE_STA;
2831		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2832		break;
2833	case IEEE80211_M_IBSS:
2834	case IEEE80211_M_AHDEMO:
2835		sc->config.mode = WPI_MODE_IBSS;
2836		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2837					     WPI_FILTER_MULTICAST);
2838		break;
2839	case IEEE80211_M_HOSTAP:
2840		sc->config.mode = WPI_MODE_HOSTAP;
2841		break;
2842	case IEEE80211_M_MONITOR:
2843		sc->config.mode = WPI_MODE_MONITOR;
2844		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2845			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2846		break;
2847	default:
2848		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2849		return EINVAL;
2850	}
2851	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2852	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2853	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2854		sizeof (struct wpi_config), 0);
2855	if (error != 0) {
2856		device_printf(sc->sc_dev, "configure command failed\n");
2857		return error;
2858	}
2859
2860	/* configuration has changed, set Tx power accordingly */
2861	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2862	    device_printf(sc->sc_dev, "could not set Tx power\n");
2863	    return error;
2864	}
2865
2866	/* add broadcast node */
2867	memset(&node, 0, sizeof node);
2868	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2869	node.id = WPI_ID_BROADCAST;
2870	node.rate = wpi_plcp_signal(2);
2871	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2872	if (error != 0) {
2873		device_printf(sc->sc_dev, "could not add broadcast node\n");
2874		return error;
2875	}
2876
2877	/* Setup rate scalling */
2878	error = wpi_mrr_setup(sc);
2879	if (error != 0) {
2880		device_printf(sc->sc_dev, "could not setup MRR\n");
2881		return error;
2882	}
2883
2884	return 0;
2885}
2886
2887static void
2888wpi_stop_master(struct wpi_softc *sc)
2889{
2890	uint32_t tmp;
2891	int ntries;
2892
2893	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2894
2895	tmp = WPI_READ(sc, WPI_RESET);
2896	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2897
2898	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2899	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2900		return;	/* already asleep */
2901
2902	for (ntries = 0; ntries < 100; ntries++) {
2903		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2904			break;
2905		DELAY(10);
2906	}
2907	if (ntries == 100) {
2908		device_printf(sc->sc_dev, "timeout waiting for master\n");
2909	}
2910}
2911
2912static int
2913wpi_power_up(struct wpi_softc *sc)
2914{
2915	uint32_t tmp;
2916	int ntries;
2917
2918	wpi_mem_lock(sc);
2919	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2920	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2921	wpi_mem_unlock(sc);
2922
2923	for (ntries = 0; ntries < 5000; ntries++) {
2924		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2925			break;
2926		DELAY(10);
2927	}
2928	if (ntries == 5000) {
2929		device_printf(sc->sc_dev,
2930		    "timeout waiting for NIC to power up\n");
2931		return ETIMEDOUT;
2932	}
2933	return 0;
2934}
2935
2936static int
2937wpi_reset(struct wpi_softc *sc)
2938{
2939	uint32_t tmp;
2940	int ntries;
2941
2942	DPRINTFN(WPI_DEBUG_HW,
2943	    ("Resetting the card - clearing any uploaded firmware\n"));
2944
2945	/* clear any pending interrupts */
2946	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2947
2948	tmp = WPI_READ(sc, WPI_PLL_CTL);
2949	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2950
2951	tmp = WPI_READ(sc, WPI_CHICKEN);
2952	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2953
2954	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2955	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2956
2957	/* wait for clock stabilization */
2958	for (ntries = 0; ntries < 25000; ntries++) {
2959		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2960			break;
2961		DELAY(10);
2962	}
2963	if (ntries == 25000) {
2964		device_printf(sc->sc_dev,
2965		    "timeout waiting for clock stabilization\n");
2966		return ETIMEDOUT;
2967	}
2968
2969	/* initialize EEPROM */
2970	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2971
2972	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2973		device_printf(sc->sc_dev, "EEPROM not found\n");
2974		return EIO;
2975	}
2976	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2977
2978	return 0;
2979}
2980
2981static void
2982wpi_hw_config(struct wpi_softc *sc)
2983{
2984	uint32_t rev, hw;
2985
2986	/* voodoo from the Linux "driver".. */
2987	hw = WPI_READ(sc, WPI_HWCONFIG);
2988
2989	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2990	if ((rev & 0xc0) == 0x40)
2991		hw |= WPI_HW_ALM_MB;
2992	else if (!(rev & 0x80))
2993		hw |= WPI_HW_ALM_MM;
2994
2995	if (sc->cap == 0x80)
2996		hw |= WPI_HW_SKU_MRC;
2997
2998	hw &= ~WPI_HW_REV_D;
2999	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3000		hw |= WPI_HW_REV_D;
3001
3002	if (sc->type > 1)
3003		hw |= WPI_HW_TYPE_B;
3004
3005	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3006}
3007
3008static void
3009wpi_rfkill_resume(struct wpi_softc *sc)
3010{
3011	struct ifnet *ifp = sc->sc_ifp;
3012	struct ieee80211com *ic = ifp->if_l2com;
3013	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3014	int ntries;
3015
3016	/* enable firmware again */
3017	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3018	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3019
3020	/* wait for thermal sensors to calibrate */
3021	for (ntries = 0; ntries < 1000; ntries++) {
3022		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3023			break;
3024		DELAY(10);
3025	}
3026
3027	if (ntries == 1000) {
3028		device_printf(sc->sc_dev,
3029		    "timeout waiting for thermal calibration\n");
3030		return;
3031	}
3032	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3033
3034	if (wpi_config(sc) != 0) {
3035		device_printf(sc->sc_dev, "device config failed\n");
3036		return;
3037	}
3038
3039	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3040	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3041	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3042
3043	if (vap != NULL) {
3044		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3045			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3046				ieee80211_beacon_miss(ic);
3047				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3048			} else
3049				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3050		} else {
3051			ieee80211_scan_next(vap);
3052			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3053		}
3054	}
3055
3056	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3057}
3058
3059static void
3060wpi_init_locked(struct wpi_softc *sc, int force)
3061{
3062	struct ifnet *ifp = sc->sc_ifp;
3063	uint32_t tmp;
3064	int ntries, qid;
3065
3066	wpi_stop_locked(sc);
3067	(void)wpi_reset(sc);
3068
3069	wpi_mem_lock(sc);
3070	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3071	DELAY(20);
3072	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3073	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3074	wpi_mem_unlock(sc);
3075
3076	(void)wpi_power_up(sc);
3077	wpi_hw_config(sc);
3078
3079	/* init Rx ring */
3080	wpi_mem_lock(sc);
3081	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3082	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3083	    offsetof(struct wpi_shared, next));
3084	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3085	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3086	wpi_mem_unlock(sc);
3087
3088	/* init Tx rings */
3089	wpi_mem_lock(sc);
3090	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3091	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3092	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3093	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3094	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3095	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3096	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3097
3098	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3099	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3100
3101	for (qid = 0; qid < 6; qid++) {
3102		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3103		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3104		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3105	}
3106	wpi_mem_unlock(sc);
3107
3108	/* clear "radio off" and "disable command" bits (reversed logic) */
3109	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3110	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3111	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3112
3113	/* clear any pending interrupts */
3114	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3115
3116	/* enable interrupts */
3117	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3118
3119	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3120	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3121
3122	if ((wpi_load_firmware(sc)) != 0) {
3123	    device_printf(sc->sc_dev,
3124		"A problem occurred loading the firmware to the driver\n");
3125	    return;
3126	}
3127
3128	/* At this point the firmware is up and running. If the hardware
3129	 * RF switch is turned off thermal calibration will fail, though
3130	 * the card is still happy to continue to accept commands, catch
3131	 * this case and schedule a task to watch for it to be turned on.
3132	 */
3133	wpi_mem_lock(sc);
3134	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3135	wpi_mem_unlock(sc);
3136
3137	if (!(tmp & 0x1)) {
3138		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3139		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3140		goto out;
3141	}
3142
3143	/* wait for thermal sensors to calibrate */
3144	for (ntries = 0; ntries < 1000; ntries++) {
3145		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3146			break;
3147		DELAY(10);
3148	}
3149
3150	if (ntries == 1000) {
3151		device_printf(sc->sc_dev,
3152		    "timeout waiting for thermal sensors calibration\n");
3153		return;
3154	}
3155	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3156
3157	if (wpi_config(sc) != 0) {
3158		device_printf(sc->sc_dev, "device config failed\n");
3159		return;
3160	}
3161
3162	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3163	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3164out:
3165	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3166}
3167
3168static void
3169wpi_init(void *arg)
3170{
3171	struct wpi_softc *sc = arg;
3172	struct ifnet *ifp = sc->sc_ifp;
3173	struct ieee80211com *ic = ifp->if_l2com;
3174
3175	WPI_LOCK(sc);
3176	wpi_init_locked(sc, 0);
3177	WPI_UNLOCK(sc);
3178
3179	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3180		ieee80211_start_all(ic);		/* start all vaps */
3181}
3182
3183static void
3184wpi_stop_locked(struct wpi_softc *sc)
3185{
3186	struct ifnet *ifp = sc->sc_ifp;
3187	uint32_t tmp;
3188	int ac;
3189
3190	sc->sc_tx_timer = 0;
3191	sc->sc_scan_timer = 0;
3192	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3193	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3194	callout_stop(&sc->watchdog_to);
3195	callout_stop(&sc->calib_to);
3196
3197
3198	/* disable interrupts */
3199	WPI_WRITE(sc, WPI_MASK, 0);
3200	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3201	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3202	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3203
3204	wpi_mem_lock(sc);
3205	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3206	wpi_mem_unlock(sc);
3207
3208	/* reset all Tx rings */
3209	for (ac = 0; ac < 4; ac++)
3210		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3211	wpi_reset_tx_ring(sc, &sc->cmdq);
3212
3213	/* reset Rx ring */
3214	wpi_reset_rx_ring(sc, &sc->rxq);
3215
3216	wpi_mem_lock(sc);
3217	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3218	wpi_mem_unlock(sc);
3219
3220	DELAY(5);
3221
3222	wpi_stop_master(sc);
3223
3224	tmp = WPI_READ(sc, WPI_RESET);
3225	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3226	sc->flags &= ~WPI_FLAG_BUSY;
3227}
3228
3229static void
3230wpi_stop(struct wpi_softc *sc)
3231{
3232	WPI_LOCK(sc);
3233	wpi_stop_locked(sc);
3234	WPI_UNLOCK(sc);
3235}
3236
3237static void
3238wpi_calib_timeout(void *arg)
3239{
3240	struct wpi_softc *sc = arg;
3241	struct ifnet *ifp = sc->sc_ifp;
3242	struct ieee80211com *ic = ifp->if_l2com;
3243	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3244	int temp;
3245
3246	if (vap->iv_state != IEEE80211_S_RUN)
3247		return;
3248
3249	/* update sensor data */
3250	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3251	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3252
3253	wpi_power_calibration(sc, temp);
3254
3255	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3256}
3257
3258/*
3259 * This function is called periodically (every 60 seconds) to adjust output
3260 * power to temperature changes.
3261 */
3262static void
3263wpi_power_calibration(struct wpi_softc *sc, int temp)
3264{
3265	struct ifnet *ifp = sc->sc_ifp;
3266	struct ieee80211com *ic = ifp->if_l2com;
3267	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3268
3269	/* sanity-check read value */
3270	if (temp < -260 || temp > 25) {
3271		/* this can't be correct, ignore */
3272		DPRINTFN(WPI_DEBUG_TEMP,
3273		    ("out-of-range temperature reported: %d\n", temp));
3274		return;
3275	}
3276
3277	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3278
3279	/* adjust Tx power if need be */
3280	if (abs(temp - sc->temp) <= 6)
3281		return;
3282
3283	sc->temp = temp;
3284
3285	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3286		/* just warn, too bad for the automatic calibration... */
3287		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3288	}
3289}
3290
3291/**
3292 * Read the eeprom to find out what channels are valid for the given
3293 * band and update net80211 with what we find.
3294 */
3295static void
3296wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3297{
3298	struct ifnet *ifp = sc->sc_ifp;
3299	struct ieee80211com *ic = ifp->if_l2com;
3300	const struct wpi_chan_band *band = &wpi_bands[n];
3301	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3302	struct ieee80211_channel *c;
3303	int chan, i, passive;
3304
3305	wpi_read_prom_data(sc, band->addr, channels,
3306	    band->nchan * sizeof (struct wpi_eeprom_chan));
3307
3308	for (i = 0; i < band->nchan; i++) {
3309		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3310			DPRINTFN(WPI_DEBUG_HW,
3311			    ("Channel Not Valid: %d, band %d\n",
3312			     band->chan[i],n));
3313			continue;
3314		}
3315
3316		passive = 0;
3317		chan = band->chan[i];
3318		c = &ic->ic_channels[ic->ic_nchans++];
3319
3320		/* is active scan allowed on this channel? */
3321		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3322			passive = IEEE80211_CHAN_PASSIVE;
3323		}
3324
3325		if (n == 0) {	/* 2GHz band */
3326			c->ic_ieee = chan;
3327			c->ic_freq = ieee80211_ieee2mhz(chan,
3328			    IEEE80211_CHAN_2GHZ);
3329			c->ic_flags = IEEE80211_CHAN_B | passive;
3330
3331			c = &ic->ic_channels[ic->ic_nchans++];
3332			c->ic_ieee = chan;
3333			c->ic_freq = ieee80211_ieee2mhz(chan,
3334			    IEEE80211_CHAN_2GHZ);
3335			c->ic_flags = IEEE80211_CHAN_G | passive;
3336
3337		} else {	/* 5GHz band */
3338			/*
3339			 * Some 3945ABG adapters support channels 7, 8, 11
3340			 * and 12 in the 2GHz *and* 5GHz bands.
3341			 * Because of limitations in our net80211(9) stack,
3342			 * we can't support these channels in 5GHz band.
3343			 * XXX not true; just need to map to proper frequency
3344			 */
3345			if (chan <= 14)
3346				continue;
3347
3348			c->ic_ieee = chan;
3349			c->ic_freq = ieee80211_ieee2mhz(chan,
3350			    IEEE80211_CHAN_5GHZ);
3351			c->ic_flags = IEEE80211_CHAN_A | passive;
3352		}
3353
3354		/* save maximum allowed power for this channel */
3355		sc->maxpwr[chan] = channels[i].maxpwr;
3356
3357#if 0
3358		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3359		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3360		//ic->ic_channels[chan].ic_minpower...
3361		//ic->ic_channels[chan].ic_maxregtxpower...
3362#endif
3363
3364		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3365		    " passive=%d, offset %d\n", chan, c->ic_freq,
3366		    channels[i].flags, sc->maxpwr[chan],
3367		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3368		    ic->ic_nchans));
3369	}
3370}
3371
3372static void
3373wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3374{
3375	struct wpi_power_group *group = &sc->groups[n];
3376	struct wpi_eeprom_group rgroup;
3377	int i;
3378
3379	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3380	    sizeof rgroup);
3381
3382	/* save power group information */
3383	group->chan   = rgroup.chan;
3384	group->maxpwr = rgroup.maxpwr;
3385	/* temperature at which the samples were taken */
3386	group->temp   = (int16_t)le16toh(rgroup.temp);
3387
3388	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3389		    group->chan, group->maxpwr, group->temp));
3390
3391	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3392		group->samples[i].index = rgroup.samples[i].index;
3393		group->samples[i].power = rgroup.samples[i].power;
3394
3395		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3396			    group->samples[i].index, group->samples[i].power));
3397	}
3398}
3399
3400/*
3401 * Update Tx power to match what is defined for channel `c'.
3402 */
3403static int
3404wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3405{
3406	struct ifnet *ifp = sc->sc_ifp;
3407	struct ieee80211com *ic = ifp->if_l2com;
3408	struct wpi_power_group *group;
3409	struct wpi_cmd_txpower txpower;
3410	u_int chan;
3411	int i;
3412
3413	/* get channel number */
3414	chan = ieee80211_chan2ieee(ic, c);
3415
3416	/* find the power group to which this channel belongs */
3417	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3418		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3419			if (chan <= group->chan)
3420				break;
3421	} else
3422		group = &sc->groups[0];
3423
3424	memset(&txpower, 0, sizeof txpower);
3425	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3426	txpower.channel = htole16(chan);
3427
3428	/* set Tx power for all OFDM and CCK rates */
3429	for (i = 0; i <= 11 ; i++) {
3430		/* retrieve Tx power for this channel/rate combination */
3431		int idx = wpi_get_power_index(sc, group, c,
3432		    wpi_ridx_to_rate[i]);
3433
3434		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3435
3436		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3437			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3438			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3439		} else {
3440			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3441			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3442		}
3443		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3444			    chan, wpi_ridx_to_rate[i], idx));
3445	}
3446
3447	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3448}
3449
3450/*
3451 * Determine Tx power index for a given channel/rate combination.
3452 * This takes into account the regulatory information from EEPROM and the
3453 * current temperature.
3454 */
3455static int
3456wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3457    struct ieee80211_channel *c, int rate)
3458{
3459/* fixed-point arithmetic division using a n-bit fractional part */
3460#define fdivround(a, b, n)      \
3461	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3462
3463/* linear interpolation */
3464#define interpolate(x, x1, y1, x2, y2, n)       \
3465	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3466
3467	struct ifnet *ifp = sc->sc_ifp;
3468	struct ieee80211com *ic = ifp->if_l2com;
3469	struct wpi_power_sample *sample;
3470	int pwr, idx;
3471	u_int chan;
3472
3473	/* get channel number */
3474	chan = ieee80211_chan2ieee(ic, c);
3475
3476	/* default power is group's maximum power - 3dB */
3477	pwr = group->maxpwr / 2;
3478
3479	/* decrease power for highest OFDM rates to reduce distortion */
3480	switch (rate) {
3481		case 72:	/* 36Mb/s */
3482			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3483			break;
3484		case 96:	/* 48Mb/s */
3485			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3486			break;
3487		case 108:	/* 54Mb/s */
3488			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3489			break;
3490	}
3491
3492	/* never exceed channel's maximum allowed Tx power */
3493	pwr = min(pwr, sc->maxpwr[chan]);
3494
3495	/* retrieve power index into gain tables from samples */
3496	for (sample = group->samples; sample < &group->samples[3]; sample++)
3497		if (pwr > sample[1].power)
3498			break;
3499	/* fixed-point linear interpolation using a 19-bit fractional part */
3500	idx = interpolate(pwr, sample[0].power, sample[0].index,
3501	    sample[1].power, sample[1].index, 19);
3502
3503	/*
3504	 *  Adjust power index based on current temperature
3505	 *	- if colder than factory-calibrated: decreate output power
3506	 *	- if warmer than factory-calibrated: increase output power
3507	 */
3508	idx -= (sc->temp - group->temp) * 11 / 100;
3509
3510	/* decrease power for CCK rates (-5dB) */
3511	if (!WPI_RATE_IS_OFDM(rate))
3512		idx += 10;
3513
3514	/* keep power index in a valid range */
3515	if (idx < 0)
3516		return 0;
3517	if (idx > WPI_MAX_PWR_INDEX)
3518		return WPI_MAX_PWR_INDEX;
3519	return idx;
3520
3521#undef interpolate
3522#undef fdivround
3523}
3524
3525/**
3526 * Called by net80211 framework to indicate that a scan
3527 * is starting. This function doesn't actually do the scan,
3528 * wpi_scan_curchan starts things off. This function is more
3529 * of an early warning from the framework we should get ready
3530 * for the scan.
3531 */
3532static void
3533wpi_scan_start(struct ieee80211com *ic)
3534{
3535	struct ifnet *ifp = ic->ic_ifp;
3536	struct wpi_softc *sc = ifp->if_softc;
3537
3538	WPI_LOCK(sc);
3539	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3540	WPI_UNLOCK(sc);
3541}
3542
3543/**
3544 * Called by the net80211 framework, indicates that the
3545 * scan has ended. If there is a scan in progress on the card
3546 * then it should be aborted.
3547 */
3548static void
3549wpi_scan_end(struct ieee80211com *ic)
3550{
3551	/* XXX ignore */
3552}
3553
3554/**
3555 * Called by the net80211 framework to indicate to the driver
3556 * that the channel should be changed
3557 */
3558static void
3559wpi_set_channel(struct ieee80211com *ic)
3560{
3561	struct ifnet *ifp = ic->ic_ifp;
3562	struct wpi_softc *sc = ifp->if_softc;
3563	int error;
3564
3565	/*
3566	 * Only need to set the channel in Monitor mode. AP scanning and auth
3567	 * are already taken care of by their respective firmware commands.
3568	 */
3569	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3570		WPI_LOCK(sc);
3571		error = wpi_config(sc);
3572		WPI_UNLOCK(sc);
3573		if (error != 0)
3574			device_printf(sc->sc_dev,
3575			    "error %d settting channel\n", error);
3576	}
3577}
3578
3579/**
3580 * Called by net80211 to indicate that we need to scan the current
3581 * channel. The channel is previously be set via the wpi_set_channel
3582 * callback.
3583 */
3584static void
3585wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3586{
3587	struct ieee80211vap *vap = ss->ss_vap;
3588	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3589	struct wpi_softc *sc = ifp->if_softc;
3590
3591	WPI_LOCK(sc);
3592	if (wpi_scan(sc))
3593		ieee80211_cancel_scan(vap);
3594	WPI_UNLOCK(sc);
3595}
3596
3597/**
3598 * Called by the net80211 framework to indicate
3599 * the minimum dwell time has been met, terminate the scan.
3600 * We don't actually terminate the scan as the firmware will notify
3601 * us when it's finished and we have no way to interrupt it.
3602 */
3603static void
3604wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3605{
3606	/* NB: don't try to abort scan; wait for firmware to finish */
3607}
3608
3609static void
3610wpi_hwreset(void *arg, int pending)
3611{
3612	struct wpi_softc *sc = arg;
3613
3614	WPI_LOCK(sc);
3615	wpi_init_locked(sc, 0);
3616	WPI_UNLOCK(sc);
3617}
3618
3619static void
3620wpi_rfreset(void *arg, int pending)
3621{
3622	struct wpi_softc *sc = arg;
3623
3624	WPI_LOCK(sc);
3625	wpi_rfkill_resume(sc);
3626	WPI_UNLOCK(sc);
3627}
3628
3629/*
3630 * Allocate DMA-safe memory for firmware transfer.
3631 */
3632static int
3633wpi_alloc_fwmem(struct wpi_softc *sc)
3634{
3635	/* allocate enough contiguous space to store text and data */
3636	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3637	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3638	    BUS_DMA_NOWAIT);
3639}
3640
3641static void
3642wpi_free_fwmem(struct wpi_softc *sc)
3643{
3644	wpi_dma_contig_free(&sc->fw_dma);
3645}
3646
3647/**
3648 * Called every second, wpi_watchdog used by the watch dog timer
3649 * to check that the card is still alive
3650 */
3651static void
3652wpi_watchdog(void *arg)
3653{
3654	struct wpi_softc *sc = arg;
3655	struct ifnet *ifp = sc->sc_ifp;
3656	struct ieee80211com *ic = ifp->if_l2com;
3657	uint32_t tmp;
3658
3659	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3660
3661	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3662		/* No need to lock firmware memory */
3663		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3664
3665		if ((tmp & 0x1) == 0) {
3666			/* Radio kill switch is still off */
3667			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3668			return;
3669		}
3670
3671		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3672		ieee80211_runtask(ic, &sc->sc_radiotask);
3673		return;
3674	}
3675
3676	if (sc->sc_tx_timer > 0) {
3677		if (--sc->sc_tx_timer == 0) {
3678			device_printf(sc->sc_dev,"device timeout\n");
3679			ifp->if_oerrors++;
3680			ieee80211_runtask(ic, &sc->sc_restarttask);
3681		}
3682	}
3683	if (sc->sc_scan_timer > 0) {
3684		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3685		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3686			device_printf(sc->sc_dev,"scan timeout\n");
3687			ieee80211_cancel_scan(vap);
3688			ieee80211_runtask(ic, &sc->sc_restarttask);
3689		}
3690	}
3691
3692	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3693		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3694}
3695
3696#ifdef WPI_DEBUG
3697static const char *wpi_cmd_str(int cmd)
3698{
3699	switch (cmd) {
3700	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3701	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3702	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3703	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3704	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3705	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3706	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3707	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3708	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3709	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3710	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3711	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3712	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3713	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3714
3715	default:
3716		KASSERT(1, ("Unknown Command: %d\n", cmd));
3717		return "UNKNOWN CMD";	/* Make the compiler happy */
3718	}
3719}
3720#endif
3721
3722MODULE_DEPEND(wpi, pci,  1, 1, 1);
3723MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3724MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3725