1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2006 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21/*
22 * Chips specific device attachment and device info collection
23 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
24 */
25#include "ah.h"
26#include "ah_internal.h"
27#include "ah_devid.h"
28
29#include "ar5211/ar5211.h"
30#include "ar5211/ar5211reg.h"
31#include "ar5211/ar5211phy.h"
32
33#include "ah_eeprom_v3.h"
34
35/* Add static register initialization vectors */
36#include "ar5211/boss.ini"
37
38/*
39 * Structure to hold 11b tuning information for Beanie/Sombrero
40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
41 */
42typedef struct {
43	uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
44	uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
45	uint16_t	channel5111;	/* 11a channel for 5111 */
46} CHAN_INFO_2GHZ;
47
48#define CI_2GHZ_INDEX_CORRECTION 19
49static const CHAN_INFO_2GHZ chan2GHzData[] = {
50	{ 1, 0x46, 96  },	/* 2312 -19 */
51	{ 1, 0x46, 97  },	/* 2317 -18 */
52	{ 1, 0x46, 98  },	/* 2322 -17 */
53	{ 1, 0x46, 99  },	/* 2327 -16 */
54	{ 1, 0x46, 100 },	/* 2332 -15 */
55	{ 1, 0x46, 101 },	/* 2337 -14 */
56	{ 1, 0x46, 102 },	/* 2342 -13 */
57	{ 1, 0x46, 103 },	/* 2347 -12 */
58	{ 1, 0x46, 104 },	/* 2352 -11 */
59	{ 1, 0x46, 105 },	/* 2357 -10 */
60	{ 1, 0x46, 106 },	/* 2362  -9 */
61	{ 1, 0x46, 107 },	/* 2367  -8 */
62	{ 1, 0x46, 108 },	/* 2372  -7 */
63	/* index -6 to 0 are pad to make this a nolookup table */
64	{ 1, 0x46, 116 },	/*       -6 */
65	{ 1, 0x46, 116 },	/*       -5 */
66	{ 1, 0x46, 116 },	/*       -4 */
67	{ 1, 0x46, 116 },	/*       -3 */
68	{ 1, 0x46, 116 },	/*       -2 */
69	{ 1, 0x46, 116 },	/*       -1 */
70	{ 1, 0x46, 116 },	/*        0 */
71	{ 1, 0x46, 116 },	/* 2412   1 */
72	{ 1, 0x46, 117 },	/* 2417   2 */
73	{ 1, 0x46, 118 },	/* 2422   3 */
74	{ 1, 0x46, 119 },	/* 2427   4 */
75	{ 1, 0x46, 120 },	/* 2432   5 */
76	{ 1, 0x46, 121 },	/* 2437   6 */
77	{ 1, 0x46, 122 },	/* 2442   7 */
78	{ 1, 0x46, 123 },	/* 2447   8 */
79	{ 1, 0x46, 124 },	/* 2452   9 */
80	{ 1, 0x46, 125 },	/* 2457  10 */
81	{ 1, 0x46, 126 },	/* 2462  11 */
82	{ 1, 0x46, 127 },	/* 2467  12 */
83	{ 1, 0x46, 128 },	/* 2472  13 */
84	{ 1, 0x44, 124 },	/* 2484  14 */
85	{ 1, 0x46, 136 },	/* 2512  15 */
86	{ 1, 0x46, 140 },	/* 2532  16 */
87	{ 1, 0x46, 144 },	/* 2552  17 */
88	{ 1, 0x46, 148 },	/* 2572  18 */
89	{ 1, 0x46, 152 },	/* 2592  19 */
90	{ 1, 0x46, 156 },	/* 2612  20 */
91	{ 1, 0x46, 160 },	/* 2632  21 */
92	{ 1, 0x46, 164 },	/* 2652  22 */
93	{ 1, 0x46, 168 },	/* 2672  23 */
94	{ 1, 0x46, 172 },	/* 2692  24 */
95	{ 1, 0x46, 176 },	/* 2712  25 */
96	{ 1, 0x46, 180 } 	/* 2732  26 */
97};
98
99/* Power timeouts in usec to wait for chip to wake-up. */
100#define POWER_UP_TIME	2000
101
102#define	DELAY_PLL_SETTLE	300		/* 300 us */
103#define	DELAY_BASE_ACTIVATE	100		/* 100 us */
104
105#define NUM_RATES	8
106
107static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
108static HAL_BOOL ar5211SetChannel(struct ath_hal *,
109		const struct ieee80211_channel *);
110static int16_t ar5211RunNoiseFloor(struct ath_hal *,
111		uint8_t runTime, int16_t startingNF);
112static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
113		struct ieee80211_channel *chan);
114static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
115		const struct ieee80211_channel *chan);
116static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
117		const struct ieee80211_channel *chan);
118static void ar5211SetPowerTable(struct ath_hal *,
119		PCDACS_EEPROM *pSrcStruct, uint16_t channel);
120static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
121		const struct ieee80211_channel *);
122static void ar5211SetRateTable(struct ath_hal *,
123		RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
124		uint16_t numChannels, const struct ieee80211_channel *chan);
125static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
126		const PCDACS_EEPROM *pSrcStruct);
127static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
128		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
129static uint16_t ar5211GetInterpolatedValue(uint16_t target,
130		uint16_t srcLeft, uint16_t srcRight,
131		uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
132static void ar5211GetLowerUpperValues(uint16_t value,
133		const uint16_t *pList, uint16_t listSize,
134		uint16_t *pLowerValue, uint16_t *pUpperValue);
135static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
136		uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
137		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
138
139static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
140static void ar5211RequestRfgain(struct ath_hal *);
141static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
142static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
143static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
144static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
145
146/*
147 * Places the device in and out of reset and then places sane
148 * values in the registers based on EEPROM config, initialization
149 * vectors (as determined by the mode), and station configuration
150 *
151 * bChannelChange is used to preserve DMA/PCU registers across
152 * a HW Reset during channel change.
153 */
154HAL_BOOL
155ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
156	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
157	HAL_STATUS *status)
158{
159uint32_t softLedCfg, softLedState;
160#define	N(a)	(sizeof (a) /sizeof (a[0]))
161#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
162	struct ath_hal_5211 *ahp = AH5211(ah);
163	HAL_CHANNEL_INTERNAL *ichan;
164	uint32_t i, ledstate;
165	HAL_STATUS ecode;
166	int q;
167
168	uint32_t		data, synthDelay;
169	uint32_t		macStaId1;
170	uint16_t		modesIndex = 0, freqIndex = 0;
171	uint32_t		saveFrameSeqCount[AR_NUM_DCU];
172	uint32_t		saveTsfLow = 0, saveTsfHigh = 0;
173	uint32_t		saveDefAntenna;
174
175	HALDEBUG(ah, HAL_DEBUG_RESET,
176	     "%s: opmode %u channel %u/0x%x %s channel\n",
177	     __func__, opmode, chan->ic_freq, chan->ic_flags,
178	     bChannelChange ? "change" : "same");
179
180	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
181	/*
182	 * Map public channel to private.
183	 */
184	ichan = ath_hal_checkchannel(ah, chan);
185	if (ichan == AH_NULL)
186		FAIL(HAL_EINVAL);
187	switch (opmode) {
188	case HAL_M_STA:
189	case HAL_M_IBSS:
190	case HAL_M_HOSTAP:
191	case HAL_M_MONITOR:
192		break;
193	default:
194		HALDEBUG(ah, HAL_DEBUG_ANY,
195		    "%s: invalid operating mode %u\n", __func__, opmode);
196		FAIL(HAL_EINVAL);
197		break;
198	}
199	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
200
201	/* Preserve certain DMA hardware registers on a channel change */
202	if (bChannelChange) {
203		/*
204		 * Need to save/restore the TSF because of an issue
205		 * that accelerates the TSF during a chip reset.
206		 *
207		 * We could use system timer routines to more
208		 * accurately restore the TSF, but
209		 * 1. Timer routines on certain platforms are
210		 *	not accurate enough (e.g. 1 ms resolution).
211		 * 2. It would still not be accurate.
212		 *
213		 * The most important aspect of this workaround,
214		 * is that, after reset, the TSF is behind
215		 * other STAs TSFs.  This will allow the STA to
216		 * properly resynchronize its TSF in adhoc mode.
217		 */
218		saveTsfLow  = OS_REG_READ(ah, AR_TSF_L32);
219		saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
220
221		/* Read frame sequence count */
222		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
223			saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
224		} else {
225			for (i = 0; i < AR_NUM_DCU; i++)
226				saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
227		}
228		if (!IEEE80211_IS_CHAN_DFS(chan))
229			chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
230	}
231
232	/*
233	 * Preserve the antenna on a channel change
234	 */
235	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
236	if (saveDefAntenna == 0)
237		saveDefAntenna = 1;
238
239	/* Save hardware flag before chip reset clears the register */
240	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
241
242	/* Save led state from pci config register */
243	ledstate = OS_REG_READ(ah, AR_PCICFG) &
244		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
245		 AR_PCICFG_LEDSLOW);
246	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
247	softLedState = OS_REG_READ(ah, AR_GPIODO);
248
249	if (!ar5211ChipReset(ah, chan)) {
250		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
251		FAIL(HAL_EIO);
252	}
253
254	/* Setup the indices for the next set of register array writes */
255	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
256		freqIndex = 1;
257		if (IEEE80211_IS_CHAN_TURBO(chan))
258			modesIndex = 2;
259		else if (IEEE80211_IS_CHAN_A(chan))
260			modesIndex = 1;
261		else {
262			HALDEBUG(ah, HAL_DEBUG_ANY,
263			    "%s: invalid channel %u/0x%x\n",
264			    __func__, chan->ic_freq, chan->ic_flags);
265			FAIL(HAL_EINVAL);
266		}
267	} else {
268		freqIndex = 2;
269		if (IEEE80211_IS_CHAN_B(chan))
270			modesIndex = 3;
271		else if (IEEE80211_IS_CHAN_PUREG(chan))
272			modesIndex = 4;
273		else {
274			HALDEBUG(ah, HAL_DEBUG_ANY,
275			    "%s: invalid channel %u/0x%x\n",
276			    __func__, chan->ic_freq, chan->ic_flags);
277			FAIL(HAL_EINVAL);
278		}
279	}
280
281	/* Set correct Baseband to analog shift setting to access analog chips. */
282	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
283		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
284	} else {
285		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
286	}
287
288	/* Write parameters specific to AR5211 */
289	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
290		if (IEEE80211_IS_CHAN_2GHZ(chan) &&
291		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
292			HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
293			uint32_t ob2GHz, db2GHz;
294
295			if (IEEE80211_IS_CHAN_CCK(chan)) {
296				ob2GHz = ee->ee_ob2GHz[0];
297				db2GHz = ee->ee_db2GHz[0];
298			} else {
299				ob2GHz = ee->ee_ob2GHz[1];
300				db2GHz = ee->ee_db2GHz[1];
301			}
302			ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
303			db2GHz = ath_hal_reverseBits(db2GHz, 3);
304			ar5211Mode2_4[25][freqIndex] =
305				(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
306					((ob2GHz << 6) & 0xC0);
307			ar5211Mode2_4[26][freqIndex] =
308				(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
309					(((ob2GHz >> 2) & 0x1) |
310					 ((db2GHz << 1) & 0x0E));
311		}
312		for (i = 0; i < N(ar5211Mode2_4); i++)
313			OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
314				ar5211Mode2_4[i][freqIndex]);
315	}
316
317	/* Write the analog registers 6 and 7 before other config */
318	ar5211SetRf6and7(ah, chan);
319
320	/* Write registers that vary across all modes */
321	for (i = 0; i < N(ar5211Modes); i++)
322		OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
323
324	/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
325	for (i = 0; i < N(ar5211BB_RfGain); i++)
326		OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
327
328	/* Write Common Array Parameters */
329	for (i = 0; i < N(ar5211Common); i++) {
330		uint32_t reg = ar5211Common[i][0];
331		/* On channel change, don't reset the PCU registers */
332		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
333			OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
334	}
335
336	/* Fix pre-AR5211 register values, this includes AR5311s. */
337	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
338		/*
339		 * The TX and RX latency values have changed locations
340		 * within the USEC register in AR5211.  Since they're
341		 * set via the .ini, for both AR5211 and AR5311, they
342		 * are written properly here for AR5311.
343		 */
344		data = OS_REG_READ(ah, AR_USEC);
345		/* Must be 0 for proper write in AR5311 */
346		HALASSERT((data & 0x00700000) == 0);
347		OS_REG_WRITE(ah, AR_USEC,
348			(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
349			((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
350		/* The following registers exist only on AR5311. */
351		OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
352
353		/* Set proper ADC & DAC delays for AR5311. */
354		OS_REG_WRITE(ah, 0x00009878, 0x00000008);
355
356		/* Enable the PCU FIFO corruption ECO on AR5311. */
357		OS_REG_WRITE(ah, AR_DIAG_SW,
358			OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
359	}
360
361	/* Restore certain DMA hardware registers on a channel change */
362	if (bChannelChange) {
363		/* Restore TSF */
364		OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
365		OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
366
367		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
368			OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
369		} else {
370			for (i = 0; i < AR_NUM_DCU; i++)
371				OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
372		}
373	}
374
375	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
376	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
377		| macStaId1
378	);
379	ar5211SetOperatingMode(ah, opmode);
380
381	/* Restore previous led state */
382	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
383	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
384	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
385
386	/* Restore previous antenna */
387	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
388
389	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
390	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
391
392	/* Restore bmiss rssi & count thresholds */
393	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
394
395	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
396
397	/*
398	 * for pre-Production Oahu only.
399	 * Disable clock gating in all DMA blocks. Helps when using
400	 * 11B and AES but results in higher power consumption.
401	 */
402	if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
403	    AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
404		OS_REG_WRITE(ah, AR_CFG,
405			OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
406	}
407
408	/* Setup the transmit power values. */
409	if (!ar5211SetTransmitPower(ah, chan)) {
410		HALDEBUG(ah, HAL_DEBUG_ANY,
411		    "%s: error init'ing transmit power\n", __func__);
412		FAIL(HAL_EIO);
413	}
414
415	/*
416	 * Configurable OFDM spoofing for 11n compatibility; used
417	 * only when operating in station mode.
418	 */
419	if (opmode != HAL_M_HOSTAP &&
420	    (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
421		/* NB: override the .ini setting */
422		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
423			AR_PHY_FRAME_CTL_ERR_SERV,
424			MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
425	}
426
427	/* Setup board specific options for EEPROM version 3 */
428	ar5211SetBoardValues(ah, chan);
429
430	if (!ar5211SetChannel(ah, chan)) {
431		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
432		    __func__);
433		FAIL(HAL_EIO);
434	}
435
436	/* Activate the PHY */
437	if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
438	    IEEE80211_IS_CHAN_2GHZ(chan))
439		OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
440	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
441
442	/*
443	 * Wait for the frequency synth to settle (synth goes on
444	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
445	 * Value is in 100ns increments.
446	 */
447	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
448	if (IEEE80211_IS_CHAN_CCK(chan)) {
449		synthDelay = (4 * data) / 22;
450	} else {
451		synthDelay = data / 10;
452	}
453	/*
454	 * There is an issue if the AP starts the calibration before
455	 * the baseband timeout completes.  This could result in the
456	 * rxclear false triggering.  Add an extra delay to ensure this
457	 * this does not happen.
458	 */
459	OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
460
461	/* Calibrate the AGC and wait for completion. */
462	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
463		 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
464	(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
465
466	/* Perform noise floor and set status */
467	if (!ar5211CalNoiseFloor(ah, chan)) {
468		if (!IEEE80211_IS_CHAN_CCK(chan))
469			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
470		HALDEBUG(ah, HAL_DEBUG_ANY,
471		    "%s: noise floor calibration failed\n", __func__);
472		FAIL(HAL_EIO);
473	}
474
475	/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
476	if (ahp->ah_calibrationTime != 0) {
477		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
478			AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
479		ahp->ah_bIQCalibration = AH_TRUE;
480	}
481
482	/* set 1:1 QCU to DCU mapping for all queues */
483	for (q = 0; q < AR_NUM_DCU; q++)
484		OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
485
486	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
487		ar5211ResetTxQueue(ah, q);
488
489	/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
490	OS_REG_WRITE(ah, AR_IMR_S0,
491		 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
492		 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
493	OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
494	OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
495
496	/*
497	 * GBL_EIFS must always be written after writing
498	 *		to any QCUMASK register.
499	 */
500	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
501
502	/* Now set up the Interrupt Mask Register and save it for future use */
503	OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
504	ahp->ah_maskReg = INIT_INTERRUPT_MASK;
505
506	/* Enable bus error interrupts */
507	OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
508		 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
509
510	/* Enable interrupts specific to AP */
511	if (opmode == HAL_M_HOSTAP) {
512		OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
513		ahp->ah_maskReg |= AR_IMR_MIB;
514	}
515
516	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
517		ar5211EnableRfKill(ah);
518
519	/*
520	 * Writing to AR_BEACON will start timers. Hence it should
521	 * be the last register to be written. Do not reset tsf, do
522	 * not enable beacons at this point, but preserve other values
523	 * like beaconInterval.
524	 */
525	OS_REG_WRITE(ah, AR_BEACON,
526		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
527
528	/* Restore user-specified slot time and timeouts */
529	if (ahp->ah_sifstime != (u_int) -1)
530		ar5211SetSifsTime(ah, ahp->ah_sifstime);
531	if (ahp->ah_slottime != (u_int) -1)
532		ar5211SetSlotTime(ah, ahp->ah_slottime);
533	if (ahp->ah_acktimeout != (u_int) -1)
534		ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
535	if (ahp->ah_ctstimeout != (u_int) -1)
536		ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
537	if (AH_PRIVATE(ah)->ah_diagreg != 0)
538		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
539
540	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
541
542	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
543
544	return AH_TRUE;
545bad:
546	if (status != AH_NULL)
547		*status = ecode;
548	return AH_FALSE;
549#undef FAIL
550#undef N
551}
552
553/*
554 * Places the PHY and Radio chips into reset.  A full reset
555 * must be called to leave this state.  The PCI/MAC/PCU are
556 * not placed into reset as we must receive interrupt to
557 * re-enable the hardware.
558 */
559HAL_BOOL
560ar5211PhyDisable(struct ath_hal *ah)
561{
562	return ar5211SetResetReg(ah, AR_RC_BB);
563}
564
565/*
566 * Places all of hardware into reset
567 */
568HAL_BOOL
569ar5211Disable(struct ath_hal *ah)
570{
571	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
572		return AH_FALSE;
573	/*
574	 * Reset the HW - PCI must be reset after the rest of the
575	 * device has been reset.
576	 */
577	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
578		return AH_FALSE;
579	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
580
581	return AH_TRUE;
582}
583
584/*
585 * Places the hardware into reset and then pulls it out of reset
586 *
587 * Only write the PLL if we're changing to or from CCK mode
588 *
589 * Attach calls with channelFlags = 0, as the coldreset should have
590 * us in the correct mode and we cannot check the hwchannel flags.
591 */
592HAL_BOOL
593ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
594{
595	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
596		return AH_FALSE;
597
598	/* NB: called from attach with chan null */
599	if (chan != AH_NULL) {
600		/* Set CCK and Turbo modes correctly */
601		OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
602		    AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
603		if (IEEE80211_IS_CHAN_B(chan)) {
604			OS_REG_WRITE(ah, AR5211_PHY_MODE,
605			    AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
606			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
607			/* Wait for the PLL to settle */
608			OS_DELAY(DELAY_PLL_SETTLE);
609		} else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
610			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
611			OS_DELAY(DELAY_PLL_SETTLE);
612			OS_REG_WRITE(ah, AR5211_PHY_MODE,
613			    AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
614				AR5211_PHY_MODE_RF2GHZ :
615				AR5211_PHY_MODE_RF5GHZ));
616		}
617	}
618
619	/*
620	 * Reset the HW - PCI must be reset after the rest of the
621	 * device has been reset
622	 */
623	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
624		return AH_FALSE;
625	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
626
627	/* Bring out of sleep mode (AGAIN) */
628	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
629		return AH_FALSE;
630
631	/* Clear warm reset register */
632	return ar5211SetResetReg(ah, 0);
633}
634
635/*
636 * Recalibrate the lower PHY chips to account for temperature/environment
637 * changes.
638 */
639HAL_BOOL
640ar5211PerCalibrationN(struct ath_hal *ah,  struct ieee80211_channel *chan,
641	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
642{
643	struct ath_hal_5211 *ahp = AH5211(ah);
644	HAL_CHANNEL_INTERNAL *ichan;
645	int32_t qCoff, qCoffDenom;
646	uint32_t data;
647	int32_t iqCorrMeas;
648	int32_t iCoff, iCoffDenom;
649	uint32_t powerMeasQ, powerMeasI;
650
651	ichan = ath_hal_checkchannel(ah, chan);
652	if (ichan == AH_NULL) {
653		HALDEBUG(ah, HAL_DEBUG_ANY,
654		    "%s: invalid channel %u/0x%x; no mapping\n",
655		    __func__, chan->ic_freq, chan->ic_flags);
656		return AH_FALSE;
657	}
658	/* IQ calibration in progress. Check to see if it has finished. */
659	if (ahp->ah_bIQCalibration &&
660	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
661		/* IQ Calibration has finished. */
662		ahp->ah_bIQCalibration = AH_FALSE;
663
664		/* Read calibration results. */
665		powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
666		powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
667		iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
668
669		/*
670		 * Prescale these values to remove 64-bit operation requirement at the loss
671		 * of a little precision.
672		 */
673		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
674		qCoffDenom = powerMeasQ / 64;
675
676		/* Protect against divide-by-0. */
677		if (iCoffDenom != 0 && qCoffDenom != 0) {
678			iCoff = (-iqCorrMeas) / iCoffDenom;
679			/* IQCORR_Q_I_COFF is a signed 6 bit number */
680			iCoff = iCoff & 0x3f;
681
682			qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
683			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
684			qCoff = qCoff & 0x1f;
685
686			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
687			    powerMeasI);
688			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
689			    powerMeasQ);
690			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
691			    iqCorrMeas);
692			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff	  = %d\n",
693			    iCoff);
694			HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff	  = %d\n",
695			    qCoff);
696
697			/* Write IQ */
698			data  = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
699				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
700				(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
701				((uint32_t)qCoff);
702			OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
703		}
704	}
705	*isCalDone = !ahp->ah_bIQCalibration;
706
707	if (longCal) {
708		/* Perform noise floor and set status */
709		if (!ar5211IsNfGood(ah, chan)) {
710			/* report up and clear internal state */
711			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
712			return AH_FALSE;
713		}
714		if (!ar5211CalNoiseFloor(ah, chan)) {
715			/*
716			 * Delay 5ms before retrying the noise floor
717			 * just to make sure, as we are in an error
718			 * condition here.
719			 */
720			OS_DELAY(5000);
721			if (!ar5211CalNoiseFloor(ah, chan)) {
722				if (!IEEE80211_IS_CHAN_CCK(chan))
723					chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
724				return AH_FALSE;
725			}
726		}
727		ar5211RequestRfgain(ah);
728	}
729	return AH_TRUE;
730}
731
732HAL_BOOL
733ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
734	HAL_BOOL *isIQdone)
735{
736	return ar5211PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
737}
738
739HAL_BOOL
740ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
741{
742	/* XXX */
743	return AH_TRUE;
744}
745
746/*
747 * Writes the given reset bit mask into the reset register
748 */
749static HAL_BOOL
750ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
751{
752	uint32_t mask = resetMask ? resetMask : ~0;
753	HAL_BOOL rt;
754
755	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
756	OS_REG_WRITE(ah, AR_RC, resetMask);
757
758	/* need to wait at least 128 clocks when reseting PCI before read */
759	OS_DELAY(15);
760
761	resetMask &= AR_RC_MAC | AR_RC_BB;
762	mask &= AR_RC_MAC | AR_RC_BB;
763	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
764        if ((resetMask & AR_RC_MAC) == 0) {
765		if (isBigEndian()) {
766			/*
767			 * Set CFG, little-endian for register
768			 * and descriptor accesses.
769			 */
770			mask = INIT_CONFIG_STATUS |
771				AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
772			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
773		} else
774			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
775	}
776	return rt;
777}
778
779/*
780 * Takes the MHz channel value and sets the Channel value
781 *
782 * ASSUMES: Writes enabled to analog bus before AGC is active
783 *   or by disabling the AGC.
784 */
785static HAL_BOOL
786ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
787{
788	uint32_t refClk, reg32, data2111;
789	int16_t chan5111, chanIEEE;
790
791	chanIEEE = chan->ic_ieee;
792	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
793		const CHAN_INFO_2GHZ* ci =
794			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
795
796		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
797				<< 5)
798			 | (ci->refClkSel << 4);
799		chan5111 = ci->channel5111;
800	} else {
801		data2111 = 0;
802		chan5111 = chanIEEE;
803	}
804
805	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
806	if (chan5111 >= 145 || (chan5111 & 0x1)) {
807		reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
808		refClk = 1;
809	} else {
810		reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
811		refClk = 0;
812	}
813
814	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
815	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
816	reg32 >>= 8;
817	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
818
819	AH_PRIVATE(ah)->ah_curchan = chan;
820	return AH_TRUE;
821}
822
823static int16_t
824ar5211GetNoiseFloor(struct ath_hal *ah)
825{
826	int16_t nf;
827
828	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
829	if (nf & 0x100)
830		nf = 0 - ((nf ^ 0x1ff) + 1);
831	return nf;
832}
833
834/*
835 * Peform the noisefloor calibration for the length of time set
836 * in runTime (valid values 1 to 7)
837 *
838 * Returns: The NF value at the end of the given time (or 0 for failure)
839 */
840int16_t
841ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
842{
843	int i, searchTime;
844
845	HALASSERT(runTime <= 7);
846
847	/* Setup  noise floor run time and starting value */
848	OS_REG_WRITE(ah, AR_PHY(25),
849		(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
850			 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
851	/* Calibrate the noise floor */
852	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
853		OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
854
855	/* Compute the required amount of searchTime needed to finish NF */
856	if (runTime == 0) {
857		/* 8 search windows * 6.4us each */
858		searchTime = 8  * 7;
859	} else {
860		/* 512 * runtime search windows * 6.4us each */
861		searchTime = (runTime * 512)  * 7;
862	}
863
864	/*
865	 * Do not read noise floor until it has been updated
866	 *
867	 * As a guesstimate - we may only get 1/60th the time on
868	 * the air to see search windows  in a heavily congested
869	 * network (40 us every 2400 us of time)
870	 */
871	for (i = 0; i < 60; i++) {
872		if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
873			break;
874		OS_DELAY(searchTime);
875	}
876	if (i >= 60) {
877		HALDEBUG(ah, HAL_DEBUG_NFCAL,
878		    "NF with runTime %d failed to end on channel %d\n",
879		    runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
880		HALDEBUG(ah, HAL_DEBUG_NFCAL,
881		    "  PHY NF Reg state:	 0x%x\n",
882		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
883		HALDEBUG(ah, HAL_DEBUG_NFCAL,
884		    "  PHY Active Reg state: 0x%x\n",
885		    OS_REG_READ(ah, AR_PHY_ACTIVE));
886		return 0;
887	}
888
889	return ar5211GetNoiseFloor(ah);
890}
891
892static HAL_BOOL
893getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
894	int16_t *nft)
895{
896	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
897
898	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
899	case IEEE80211_CHAN_A:
900		*nft = ee->ee_noiseFloorThresh[0];
901		break;
902	case IEEE80211_CHAN_B:
903		*nft = ee->ee_noiseFloorThresh[1];
904		break;
905	case IEEE80211_CHAN_PUREG:
906		*nft = ee->ee_noiseFloorThresh[2];
907		break;
908	default:
909		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
910		    __func__, chan->ic_flags);
911		return AH_FALSE;
912	}
913	return AH_TRUE;
914}
915
916/*
917 * Read the NF and check it against the noise floor threshhold
918 *
919 * Returns: TRUE if the NF is good
920 */
921static HAL_BOOL
922ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
923{
924	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
925	int16_t nf, nfThresh;
926
927	if (!getNoiseFloorThresh(ah, chan, &nfThresh))
928		return AH_FALSE;
929	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
930		HALDEBUG(ah, HAL_DEBUG_ANY,
931		    "%s: NF did not complete in calibration window\n", __func__);
932	}
933	nf = ar5211GetNoiseFloor(ah);
934	if (nf > nfThresh) {
935		HALDEBUG(ah, HAL_DEBUG_ANY,
936		    "%s: noise floor failed; detected %u, threshold %u\n",
937		    __func__, nf, nfThresh);
938		/*
939		 * NB: Don't discriminate 2.4 vs 5Ghz, if this
940		 *     happens it indicates a problem regardless
941		 *     of the band.
942		 */
943		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
944	}
945	ichan->rawNoiseFloor = nf;
946	return (nf <= nfThresh);
947}
948
949/*
950 * Peform the noisefloor calibration and check for any constant channel
951 * interference.
952 *
953 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
954 * it is if'ed for MKK regulatory domain only.
955 *
956 * Returns: TRUE for a successful noise floor calibration; else FALSE
957 */
958HAL_BOOL
959ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
960{
961#define	N(a)	(sizeof (a) / sizeof (a[0]))
962	/* Check for Carrier Wave interference in MKK regulatory zone */
963	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
964	    (chan->ic_flags & CHANNEL_NFCREQUIRED)) {
965		static const uint8_t runtime[3] = { 0, 2, 7 };
966		HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
967		int16_t nf, nfThresh;
968		int i;
969
970		if (!getNoiseFloorThresh(ah, chan, &nfThresh))
971			return AH_FALSE;
972		/*
973		 * Run a quick noise floor that will hopefully
974		 * complete (decrease delay time).
975		 */
976		for (i = 0; i < N(runtime); i++) {
977			nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
978			if (nf > nfThresh) {
979				HALDEBUG(ah, HAL_DEBUG_ANY,
980				    "%s: run failed with %u > threshold %u "
981				    "(runtime %u)\n", __func__,
982				    nf, nfThresh, runtime[i]);
983				ichan->rawNoiseFloor = 0;
984			} else
985				ichan->rawNoiseFloor = nf;
986		}
987		return (i <= N(runtime));
988	} else {
989		/* Calibrate the noise floor */
990		OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
991			OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
992				 AR_PHY_AGC_CONTROL_NF);
993	}
994	return AH_TRUE;
995#undef N
996}
997
998/*
999 * Adjust NF based on statistical values for 5GHz frequencies.
1000 */
1001int16_t
1002ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1003{
1004	static const struct {
1005		uint16_t freqLow;
1006		int16_t	  adjust;
1007	} adjust5111[] = {
1008		{ 5790,	11 },	/* NB: ordered high -> low */
1009		{ 5730, 10 },
1010		{ 5690,  9 },
1011		{ 5660,  8 },
1012		{ 5610,  7 },
1013		{ 5530,  5 },
1014		{ 5450,  4 },
1015		{ 5379,  2 },
1016		{ 5209,  0 },	/* XXX? bogus but doesn't matter */
1017		{    0,  1 },
1018	};
1019	int i;
1020
1021	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1022		;
1023	/* NB: placeholder for 5111's less severe requirement */
1024	return adjust5111[i].adjust / 3;
1025}
1026
1027/*
1028 * Reads EEPROM header info from device structure and programs
1029 * analog registers 6 and 7
1030 *
1031 * REQUIRES: Access to the analog device
1032 */
1033static HAL_BOOL
1034ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
1035{
1036#define	N(a)	(sizeof (a) / sizeof (a[0]))
1037	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1038	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1039	struct ath_hal_5211 *ahp = AH5211(ah);
1040	uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1041	uint16_t tempOB, tempDB;
1042	uint16_t freqIndex;
1043	int i;
1044
1045	freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
1046
1047	/*
1048	 * TODO: This array mode correspondes with the index used
1049	 *	 during the read.
1050	 * For readability, this should be changed to an enum or #define
1051	 */
1052	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1053	case IEEE80211_CHAN_A:
1054		if (freq > 4000 && freq < 5260) {
1055			tempOB = ee->ee_ob1;
1056			tempDB = ee->ee_db1;
1057		} else if (freq >= 5260 && freq < 5500) {
1058			tempOB = ee->ee_ob2;
1059			tempDB = ee->ee_db2;
1060		} else if (freq >= 5500 && freq < 5725) {
1061			tempOB = ee->ee_ob3;
1062			tempDB = ee->ee_db3;
1063		} else if (freq >= 5725) {
1064			tempOB = ee->ee_ob4;
1065			tempDB = ee->ee_db4;
1066		} else {
1067			/* XXX panic?? */
1068			tempOB = tempDB = 0;
1069		}
1070
1071		rfXpdGain = ee->ee_xgain[0];
1072		rfPloSel  = ee->ee_xpd[0];
1073		rfPwdXpd  = !ee->ee_xpd[0];
1074
1075		ar5211Rf6n7[5][freqIndex]  =
1076			(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1077				(ee->ee_cornerCal.pd84<< 28);
1078		ar5211Rf6n7[6][freqIndex]  =
1079			(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1080				(ee->ee_cornerCal.pd90 << 26);
1081		ar5211Rf6n7[21][freqIndex] =
1082			(ar5211Rf6n7[21][freqIndex] & ~0x08) |
1083				(ee->ee_cornerCal.gSel << 3);
1084		break;
1085	case IEEE80211_CHAN_B:
1086		tempOB = ee->ee_obFor24;
1087		tempDB = ee->ee_dbFor24;
1088		rfXpdGain = ee->ee_xgain[1];
1089		rfPloSel  = ee->ee_xpd[1];
1090		rfPwdXpd  = !ee->ee_xpd[1];
1091		break;
1092	case IEEE80211_CHAN_PUREG:
1093		tempOB = ee->ee_obFor24g;
1094		tempDB = ee->ee_dbFor24g;
1095		rfXpdGain = ee->ee_xgain[2];
1096		rfPloSel  = ee->ee_xpd[2];
1097		rfPwdXpd  = !ee->ee_xpd[2];
1098		break;
1099	default:
1100		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1101		    __func__, chan->ic_flags);
1102		return AH_FALSE;
1103	}
1104
1105	HALASSERT(1 <= tempOB && tempOB <= 5);
1106	HALASSERT(1 <= tempDB && tempDB <= 5);
1107
1108	/* Set rfXpdGain and rfPwdXpd */
1109	ar5211Rf6n7[11][freqIndex] =  (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1110		(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1111	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1112		((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1113
1114	/* Set OB */
1115	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1116		((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1117	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1118		((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1119
1120	/* Set DB */
1121	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1122		((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1123
1124	/* Set rfPloSel */
1125	ar5211Rf6n7[17][freqIndex] =  (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1126		((rfPloSel << 3) & 0x08);
1127
1128	/* Write the Rf registers 6 & 7 */
1129	for (i = 0; i < N(ar5211Rf6n7); i++)
1130		OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1131
1132	/* Now that we have reprogrammed rfgain value, clear the flag. */
1133	ahp->ah_rfgainState = RFGAIN_INACTIVE;
1134
1135	return AH_TRUE;
1136#undef N
1137}
1138
1139HAL_BOOL
1140ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1141	const struct ieee80211_channel *chan)
1142{
1143#define	ANT_SWITCH_TABLE1	0x9960
1144#define	ANT_SWITCH_TABLE2	0x9964
1145	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1146	struct ath_hal_5211 *ahp = AH5211(ah);
1147	uint32_t antSwitchA, antSwitchB;
1148	int ix;
1149
1150	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1151	case IEEE80211_CHAN_A:		ix = 0; break;
1152	case IEEE80211_CHAN_B:		ix = 1; break;
1153	case IEEE80211_CHAN_PUREG:	ix = 2; break;
1154	default:
1155		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1156		    __func__, chan->ic_flags);
1157		return AH_FALSE;
1158	}
1159
1160	antSwitchA =  ee->ee_antennaControl[1][ix]
1161		   | (ee->ee_antennaControl[2][ix] << 6)
1162		   | (ee->ee_antennaControl[3][ix] << 12)
1163		   | (ee->ee_antennaControl[4][ix] << 18)
1164		   | (ee->ee_antennaControl[5][ix] << 24)
1165		   ;
1166	antSwitchB =  ee->ee_antennaControl[6][ix]
1167		   | (ee->ee_antennaControl[7][ix] << 6)
1168		   | (ee->ee_antennaControl[8][ix] << 12)
1169		   | (ee->ee_antennaControl[9][ix] << 18)
1170		   | (ee->ee_antennaControl[10][ix] << 24)
1171		   ;
1172	/*
1173	 * For fixed antenna, give the same setting for both switch banks
1174	 */
1175	switch (settings) {
1176	case HAL_ANT_FIXED_A:
1177		antSwitchB = antSwitchA;
1178		break;
1179	case HAL_ANT_FIXED_B:
1180		antSwitchA = antSwitchB;
1181		break;
1182	case HAL_ANT_VARIABLE:
1183		break;
1184	default:
1185		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1186		    __func__, settings);
1187		return AH_FALSE;
1188	}
1189	ahp->ah_diversityControl = settings;
1190
1191	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1192	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1193
1194	return AH_TRUE;
1195#undef ANT_SWITCH_TABLE1
1196#undef ANT_SWITCH_TABLE2
1197}
1198
1199/*
1200 * Reads EEPROM header info and programs the device for correct operation
1201 * given the channel value
1202 */
1203static HAL_BOOL
1204ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1205{
1206	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1207	struct ath_hal_5211 *ahp = AH5211(ah);
1208	int arrayMode, falseDectectBackoff;
1209
1210	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1211	case IEEE80211_CHAN_A:
1212		arrayMode = 0;
1213		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1214			AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1215		break;
1216	case IEEE80211_CHAN_B:
1217		arrayMode = 1;
1218		break;
1219	case IEEE80211_CHAN_PUREG:
1220		arrayMode = 2;
1221		break;
1222	default:
1223		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1224		    __func__, chan->ic_flags);
1225		return AH_FALSE;
1226	}
1227
1228	/* Set the antenna register(s) correctly for the chip revision */
1229	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1230		OS_REG_WRITE(ah, AR_PHY(68),
1231			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1232	} else {
1233		OS_REG_WRITE(ah, AR_PHY(68),
1234			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1235			(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1236
1237		ar5211SetAntennaSwitchInternal(ah,
1238			ahp->ah_diversityControl, chan);
1239
1240		/* Set the Noise Floor Thresh on ar5211 devices */
1241		OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1242			(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1243	}
1244	OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1245		(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1246		((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1247	OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1248		(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1249		((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1250	OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1251		(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1252		((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1253		(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1254	OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1255		(ee->ee_txEndToXPAOff[arrayMode] << 24) |
1256		(ee->ee_txEndToXPAOff[arrayMode] << 16) |
1257		(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1258		ee->ee_txFrameToXPAOn[arrayMode]);
1259	OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1260		(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1261		(ee->ee_txEndToXLNAOn[arrayMode] << 8));
1262	OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1263		(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1264		((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1265
1266#define NO_FALSE_DETECT_BACKOFF   2
1267#define CB22_FALSE_DETECT_BACKOFF 6
1268	/*
1269	 * False detect backoff - suspected 32 MHz spur causes
1270	 * false detects in OFDM, causing Tx Hangs.  Decrease
1271	 * weak signal sensitivity for this card.
1272	 */
1273	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1274	if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1275		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1276		    IEEE80211_IS_CHAN_OFDM(chan))
1277			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1278	} else {
1279		uint16_t freq = ath_hal_gethwchannel(ah, chan);
1280		uint32_t remainder = freq % 32;
1281
1282		if (remainder && (remainder < 10 || remainder > 22))
1283			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1284	}
1285	OS_REG_WRITE(ah, 0x9924,
1286		(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1287		| ((falseDectectBackoff << 1) & 0xF7));
1288
1289	return AH_TRUE;
1290#undef NO_FALSE_DETECT_BACKOFF
1291#undef CB22_FALSE_DETECT_BACKOFF
1292}
1293
1294/*
1295 * Set the limit on the overall output power.  Used for dynamic
1296 * transmit power control and the like.
1297 *
1298 * NOTE: The power is passed in is in units of 0.5 dBm.
1299 */
1300HAL_BOOL
1301ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1302{
1303
1304	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1305	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1306	return AH_TRUE;
1307}
1308
1309/*
1310 * Sets the transmit power in the baseband for the given
1311 * operating channel and mode.
1312 */
1313static HAL_BOOL
1314ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
1315{
1316	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1317	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1318	TRGT_POWER_INFO *pi;
1319	RD_EDGES_POWER *rep;
1320	PCDACS_EEPROM eepromPcdacs;
1321	u_int nchan, cfgCtl;
1322	int i;
1323
1324	/* setup the pcdac struct to point to the correct info, based on mode */
1325	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1326	case IEEE80211_CHAN_A:
1327		eepromPcdacs.numChannels = ee->ee_numChannels11a;
1328		eepromPcdacs.pChannelList= ee->ee_channels11a;
1329		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1330		nchan = ee->ee_numTargetPwr_11a;
1331		pi = ee->ee_trgtPwr_11a;
1332		break;
1333	case IEEE80211_CHAN_PUREG:
1334		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1335		eepromPcdacs.pChannelList= ee->ee_channels11g;
1336		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1337		nchan = ee->ee_numTargetPwr_11g;
1338		pi = ee->ee_trgtPwr_11g;
1339		break;
1340	case IEEE80211_CHAN_B:
1341		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1342		eepromPcdacs.pChannelList= ee->ee_channels11b;
1343		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1344		nchan = ee->ee_numTargetPwr_11b;
1345		pi = ee->ee_trgtPwr_11b;
1346		break;
1347	default:
1348		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1349		    __func__, chan->ic_flags);
1350		return AH_FALSE;
1351	}
1352
1353	ar5211SetPowerTable(ah, &eepromPcdacs, freq);
1354
1355	rep = AH_NULL;
1356	/* Match CTL to EEPROM value */
1357	cfgCtl = ath_hal_getctl(ah, chan);
1358	for (i = 0; i < ee->ee_numCtls; i++)
1359		if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1360			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1361			break;
1362		}
1363	ar5211SetRateTable(ah, rep, pi, nchan, chan);
1364
1365	return AH_TRUE;
1366}
1367
1368/*
1369 * Read the transmit power levels from the structures taken
1370 * from EEPROM. Interpolate read transmit power values for
1371 * this channel. Organize the transmit power values into a
1372 * table for writing into the hardware.
1373 */
1374void
1375ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
1376	uint16_t channel)
1377{
1378	static FULL_PCDAC_STRUCT pcdacStruct;
1379	static uint16_t pcdacTable[PWR_TABLE_SIZE];
1380
1381	uint16_t	 i, j;
1382	uint16_t	 *pPcdacValues;
1383	int16_t	  *pScaledUpDbm;
1384	int16_t	  minScaledPwr;
1385	int16_t	  maxScaledPwr;
1386	int16_t	  pwr;
1387	uint16_t	 pcdacMin = 0;
1388	uint16_t	 pcdacMax = 63;
1389	uint16_t	 pcdacTableIndex;
1390	uint16_t	 scaledPcdac;
1391	uint32_t	 addr;
1392	uint32_t	 temp32;
1393
1394	OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1395	OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1396	pPcdacValues = pcdacStruct.PcdacValues;
1397	pScaledUpDbm = pcdacStruct.PwrValues;
1398
1399	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1400	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1401		pPcdacValues[j] = i;
1402
1403	pcdacStruct.numPcdacValues = j;
1404	pcdacStruct.pcdacMin = PCDAC_START;
1405	pcdacStruct.pcdacMax = PCDAC_STOP;
1406
1407	/* Fill out the power values for this channel */
1408	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1409		pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1410
1411	/* Now scale the pcdac values to fit in the 64 entry power table */
1412	minScaledPwr = pScaledUpDbm[0];
1413	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1414
1415	/* find minimum and make monotonic */
1416	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1417		if (minScaledPwr >= pScaledUpDbm[j]) {
1418			minScaledPwr = pScaledUpDbm[j];
1419			pcdacMin = j;
1420		}
1421		/*
1422		 * Make the full_hsh monotonically increasing otherwise
1423		 * interpolation algorithm will get fooled gotta start
1424		 * working from the top, hence i = 63 - j.
1425		 */
1426		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1427		if (i == 0)
1428			break;
1429		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1430			/*
1431			 * It could be a glitch, so make the power for
1432			 * this pcdac the same as the power from the
1433			 * next highest pcdac.
1434			 */
1435			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1436		}
1437	}
1438
1439	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1440		if (maxScaledPwr < pScaledUpDbm[j]) {
1441			maxScaledPwr = pScaledUpDbm[j];
1442			pcdacMax = j;
1443		}
1444
1445	/* Find the first power level with a pcdac */
1446	pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP)  + PWR_MIN);
1447
1448	/* Write all the first pcdac entries based off the pcdacMin */
1449	pcdacTableIndex = 0;
1450	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1451		pcdacTable[pcdacTableIndex++] = pcdacMin;
1452
1453	i = 0;
1454	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1455		pwr += PWR_STEP;
1456		/* stop if dbM > max_power_possible */
1457		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1458		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1459			i++;
1460		/* scale by 2 and add 1 to enable round up or down as needed */
1461		scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1462				pScaledUpDbm[i], pScaledUpDbm[i+1],
1463				(uint16_t)(pPcdacValues[i] * 2),
1464				(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1465
1466		pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1467		if (pcdacTable[pcdacTableIndex] > pcdacMax)
1468			pcdacTable[pcdacTableIndex] = pcdacMax;
1469		pcdacTableIndex++;
1470	}
1471
1472	/* Write all the last pcdac entries based off the last valid pcdac */
1473	while (pcdacTableIndex < PWR_TABLE_SIZE) {
1474		pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1475		pcdacTableIndex++;
1476	}
1477
1478	/* Finally, write the power values into the baseband power table */
1479	addr = AR_PHY_BASE + (608 << 2);
1480	for (i = 0; i < 32; i++) {
1481		temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1482		temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1483		OS_REG_WRITE(ah, addr, temp32);
1484		addr += 4;
1485	}
1486
1487}
1488
1489/*
1490 * Set the transmit power in the baseband for the given
1491 * operating channel and mode.
1492 */
1493static void
1494ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1495	TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1496	const struct ieee80211_channel *chan)
1497{
1498	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1499	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1500	struct ath_hal_5211 *ahp = AH5211(ah);
1501	static uint16_t ratesArray[NUM_RATES];
1502	static const uint16_t tpcScaleReductionTable[5] =
1503		{ 0, 3, 6, 9, MAX_RATE_POWER };
1504
1505	uint16_t	*pRatesPower;
1506	uint16_t	lowerChannel, lowerIndex=0, lowerPower=0;
1507	uint16_t	upperChannel, upperIndex=0, upperPower=0;
1508	uint16_t	twiceMaxEdgePower=63;
1509	uint16_t	twicePower = 0;
1510	uint16_t	i, numEdges;
1511	uint16_t	tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1512	uint16_t	twiceMaxRDPower;
1513	int16_t	 scaledPower = 0;		/* for gcc -O2 */
1514	uint16_t	mask = 0x3f;
1515	HAL_BOOL	  paPreDEnable = 0;
1516	int8_t	  twiceAntennaGain, twiceAntennaReduction = 0;
1517
1518	pRatesPower = ratesArray;
1519	twiceMaxRDPower = chan->ic_maxregpower * 2;
1520
1521	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1522		twiceAntennaGain = ee->ee_antennaGainMax[0];
1523	} else {
1524		twiceAntennaGain = ee->ee_antennaGainMax[1];
1525	}
1526
1527	twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1528
1529	if (pRdEdgesPower) {
1530		/* Get the edge power */
1531		for (i = 0; i < NUM_EDGES; i++) {
1532			if (pRdEdgesPower[i].rdEdge == 0)
1533				break;
1534			tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1535		}
1536		numEdges = i;
1537
1538		ar5211GetLowerUpperValues(freq, tempChannelList,
1539			numEdges, &lowerChannel, &upperChannel);
1540		/* Get the index for this channel */
1541		for (i = 0; i < numEdges; i++)
1542			if (lowerChannel == tempChannelList[i])
1543				break;
1544		HALASSERT(i != numEdges);
1545
1546		if ((lowerChannel == upperChannel &&
1547		     lowerChannel == freq) ||
1548		    pRdEdgesPower[i].flag) {
1549			twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1550			HALASSERT(twiceMaxEdgePower > 0);
1551		}
1552	}
1553
1554	/* extrapolate the power values for the test Groups */
1555	for (i = 0; i < numChannels; i++)
1556		tempChannelList[i] = pPowerInfo[i].testChannel;
1557
1558	ar5211GetLowerUpperValues(freq, tempChannelList,
1559		numChannels, &lowerChannel, &upperChannel);
1560
1561	/* get the index for the channel */
1562	for (i = 0; i < numChannels; i++) {
1563		if (lowerChannel == tempChannelList[i])
1564			lowerIndex = i;
1565		if (upperChannel == tempChannelList[i]) {
1566			upperIndex = i;
1567			break;
1568		}
1569	}
1570
1571	for (i = 0; i < NUM_RATES; i++) {
1572		if (IEEE80211_IS_CHAN_OFDM(chan)) {
1573			/* power for rates 6,9,12,18,24 is all the same */
1574			if (i < 5) {
1575				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1576				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1577			} else if (i == 5) {
1578				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1579				upperPower = pPowerInfo[upperIndex].twicePwr36;
1580			} else if (i == 6) {
1581				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1582				upperPower = pPowerInfo[upperIndex].twicePwr48;
1583			} else if (i == 7) {
1584				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1585				upperPower = pPowerInfo[upperIndex].twicePwr54;
1586			}
1587		} else {
1588			switch (i) {
1589			case 0:
1590			case 1:
1591				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1592				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1593				break;
1594			case 2:
1595			case 3:
1596				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1597				upperPower = pPowerInfo[upperIndex].twicePwr36;
1598				break;
1599			case 4:
1600			case 5:
1601				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1602				upperPower = pPowerInfo[upperIndex].twicePwr48;
1603				break;
1604			case 6:
1605			case 7:
1606				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1607				upperPower = pPowerInfo[upperIndex].twicePwr54;
1608				break;
1609			}
1610		}
1611
1612		twicePower = ar5211GetInterpolatedValue(freq,
1613			lowerChannel, upperChannel, lowerPower, upperPower, 0);
1614
1615		/* Reduce power by band edge restrictions */
1616		twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1617
1618		/*
1619		 * If turbo is set, reduce power to keep power
1620		 * consumption under 2 Watts.  Note that we always do
1621		 * this unless specially configured.  Then we limit
1622		 * power only for non-AP operation.
1623		 */
1624		if (IEEE80211_IS_CHAN_TURBO(chan) &&
1625		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1626#ifdef AH_ENABLE_AP_SUPPORT
1627		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1628#endif
1629		) {
1630			twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1631		}
1632
1633		/* Reduce power by max regulatory domain allowed restrictions */
1634		pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1635
1636		/* Use 6 Mb power level for transmit power scaling reduction */
1637		/* We don't want to reduce higher rates if its not needed */
1638		if (i == 0) {
1639			scaledPower = pRatesPower[0] -
1640				(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1641			if (scaledPower < 1)
1642				scaledPower = 1;
1643		}
1644
1645		pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1646	}
1647
1648	/* Record txPower at Rate 6 for info gathering */
1649	ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1650
1651#ifdef AH_DEBUG
1652	HALDEBUG(ah, HAL_DEBUG_RESET,
1653	    "%s: final output power setting %d MHz:\n",
1654	    __func__, chan->ic_freq);
1655	HALDEBUG(ah, HAL_DEBUG_RESET,
1656	    "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1657	    scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1658	HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1659	    tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1660	    twiceAntennaReduction / 2);
1661	if (IEEE80211_IS_CHAN_TURBO(chan) &&
1662	    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1663		HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1664		    ee->ee_turbo2WMaxPower5);
1665	HALDEBUG(ah, HAL_DEBUG_RESET,
1666	    "  %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1667	    pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1668	    pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1669	    pRatesPower[6] / 2, pRatesPower[7] / 2);
1670#endif /* AH_DEBUG */
1671
1672	/* Write the power table into the hardware */
1673	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1674		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1675		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1676		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1677		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[0] & mask));
1678	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1679		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1680		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1681		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1682		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[4] & mask));
1683
1684	/* set max power to the power value at rate 6 */
1685	ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1686
1687	AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1688}
1689
1690/*
1691 * Get or interpolate the pcdac value from the calibrated data
1692 */
1693uint16_t
1694ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
1695	const PCDACS_EEPROM *pSrcStruct)
1696{
1697	uint16_t powerValue;
1698	uint16_t lFreq, rFreq;		/* left and right frequency values */
1699	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
1700	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
1701	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
1702	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1703
1704	if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1705		/* value was copied from srcStruct */
1706		return powerValue;
1707
1708	ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1709		pSrcStruct->numChannels, &lFreq, &rFreq);
1710	ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1711		&llPcdac, &ulPcdac);
1712	ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1713		&lrPcdac, &urPcdac);
1714
1715	/* get the power index for the pcdac value */
1716	ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1717	ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1718	lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1719				llPcdac, ulPcdac, lPwr, uPwr, 0);
1720
1721	ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1722	ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1723	rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1724				lrPcdac, urPcdac, lPwr, uPwr, 0);
1725
1726	return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1727		lScaledPwr, rScaledPwr, 0);
1728}
1729
1730/*
1731 * Find the value from the calibrated source data struct
1732 */
1733HAL_BOOL
1734ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1735	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1736{
1737	const DATA_PER_CHANNEL *pChannelData;
1738	const uint16_t *pPcdac;
1739	uint16_t i, j;
1740
1741	pChannelData = pSrcStruct->pDataPerChannel;
1742	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1743		if (pChannelData->channelValue == channel) {
1744			pPcdac = pChannelData->PcdacValues;
1745			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1746				if (*pPcdac == pcdacValue) {
1747					*powerValue = pChannelData->PwrValues[j];
1748					return AH_TRUE;
1749				}
1750				pPcdac++;
1751			}
1752		}
1753		pChannelData++;
1754	}
1755	return AH_FALSE;
1756}
1757
1758/*
1759 * Returns interpolated or the scaled up interpolated value
1760 */
1761uint16_t
1762ar5211GetInterpolatedValue(uint16_t target,
1763	uint16_t srcLeft, uint16_t srcRight,
1764	uint16_t targetLeft, uint16_t targetRight,
1765	HAL_BOOL scaleUp)
1766{
1767	uint16_t rv;
1768	int16_t lRatio;
1769	uint16_t scaleValue = EEP_SCALE;
1770
1771	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1772	if ((targetLeft * targetRight) == 0)
1773		return 0;
1774	if (scaleUp)
1775		scaleValue = 1;
1776
1777	if (srcRight != srcLeft) {
1778		/*
1779		 * Note the ratio always need to be scaled,
1780		 * since it will be a fraction.
1781		 */
1782		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1783		if (lRatio < 0) {
1784		    /* Return as Left target if value would be negative */
1785		    rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1786		} else if (lRatio > EEP_SCALE) {
1787		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
1788		    rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1789		} else {
1790			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1791					targetLeft) / scaleValue;
1792		}
1793	} else {
1794		rv = targetLeft;
1795		if (scaleUp)
1796			rv *= EEP_SCALE;
1797	}
1798	return rv;
1799}
1800
1801/*
1802 *  Look for value being within 0.1 of the search values
1803 *  however, NDIS can't do float calculations, so multiply everything
1804 *  up by EEP_SCALE so can do integer arithmatic
1805 *
1806 * INPUT  value	   -value to search for
1807 * INPUT  pList	   -ptr to the list to search
1808 * INPUT  listSize	-number of entries in list
1809 * OUTPUT pLowerValue -return the lower value
1810 * OUTPUT pUpperValue -return the upper value
1811 */
1812void
1813ar5211GetLowerUpperValues(uint16_t value,
1814	const uint16_t *pList, uint16_t listSize,
1815	uint16_t *pLowerValue, uint16_t *pUpperValue)
1816{
1817	const uint16_t listEndValue = *(pList + listSize - 1);
1818	uint32_t target = value * EEP_SCALE;
1819	int i;
1820
1821	/*
1822	 * See if value is lower than the first value in the list
1823	 * if so return first value
1824	 */
1825	if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1826		*pLowerValue = *pList;
1827		*pUpperValue = *pList;
1828		return;
1829	}
1830
1831	/*
1832	 * See if value is greater than last value in list
1833	 * if so return last value
1834	 */
1835	if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1836		*pLowerValue = listEndValue;
1837		*pUpperValue = listEndValue;
1838		return;
1839	}
1840
1841	/* look for value being near or between 2 values in list */
1842	for (i = 0; i < listSize; i++) {
1843		/*
1844		 * If value is close to the current value of the list
1845		 * then target is not between values, it is one of the values
1846		 */
1847		if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1848			*pLowerValue = pList[i];
1849			*pUpperValue = pList[i];
1850			return;
1851		}
1852
1853		/*
1854		 * Look for value being between current value and next value
1855		 * if so return these 2 values
1856		 */
1857		if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1858			*pLowerValue = pList[i];
1859			*pUpperValue = pList[i + 1];
1860			return;
1861		}
1862	}
1863}
1864
1865/*
1866 * Get the upper and lower pcdac given the channel and the pcdac
1867 * used in the search
1868 */
1869void
1870ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1871	const PCDACS_EEPROM *pSrcStruct,
1872	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1873{
1874	const DATA_PER_CHANNEL *pChannelData;
1875	int i;
1876
1877	/* Find the channel information */
1878	pChannelData = pSrcStruct->pDataPerChannel;
1879	for (i = 0; i < pSrcStruct->numChannels; i++) {
1880		if (pChannelData->channelValue == channel)
1881			break;
1882		pChannelData++;
1883	}
1884	ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1885		pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1886}
1887
1888#define	DYN_ADJ_UP_MARGIN	15
1889#define	DYN_ADJ_LO_MARGIN	20
1890
1891static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1892	9,					/* numStepsInLadder */
1893	4,					/* defaultStepNum */
1894	{ { {4, 1, 1, 1},  6, "FG8"},
1895	  { {4, 0, 1, 1},  4, "FG7"},
1896	  { {3, 1, 1, 1},  3, "FG6"},
1897	  { {4, 0, 0, 1},  1, "FG5"},
1898	  { {4, 1, 1, 0},  0, "FG4"},	/* noJack */
1899	  { {4, 0, 1, 0}, -2, "FG3"},	/* halfJack */
1900	  { {3, 1, 1, 0}, -3, "FG2"},	/* clip3 */
1901	  { {4, 0, 0, 0}, -4, "FG1"},	/* noJack */
1902	  { {2, 1, 1, 0}, -6, "FG0"} 	/* clip2 */
1903	}
1904};
1905
1906/*
1907 * Initialize the gain structure to good values
1908 */
1909void
1910ar5211InitializeGainValues(struct ath_hal *ah)
1911{
1912	struct ath_hal_5211 *ahp = AH5211(ah);
1913	GAIN_VALUES *gv = &ahp->ah_gainValues;
1914
1915	/* initialize gain optimization values */
1916	gv->currStepNum = gainLadder.defaultStepNum;
1917	gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1918	gv->active = AH_TRUE;
1919	gv->loTrig = 20;
1920	gv->hiTrig = 35;
1921}
1922
1923static HAL_BOOL
1924ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1925{
1926	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1927	uint32_t gStep, g;
1928	uint32_t L1, L2, L3, L4;
1929
1930	if (IEEE80211_IS_CHAN_CCK(chan)) {
1931		gStep = 0x18;
1932		L1 = 0;
1933		L2 = gStep + 4;
1934		L3 = 0x40;
1935		L4 = L3 + 50;
1936
1937		gv->loTrig = L1;
1938		gv->hiTrig = L4+5;
1939	} else {
1940		gStep = 0x3f;
1941		L1 = 0;
1942		L2 = 50;
1943		L3 = L1;
1944		L4 = L3 + 50;
1945
1946		gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1947		gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1948	}
1949	g = gv->currGain;
1950
1951	return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1952}
1953
1954/*
1955 * Enable the probe gain check on the next packet
1956 */
1957static void
1958ar5211RequestRfgain(struct ath_hal *ah)
1959{
1960	struct ath_hal_5211 *ahp = AH5211(ah);
1961
1962	/* Enable the gain readback probe */
1963	OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1964		  SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1965		| AR_PHY_PAPD_PROBE_NEXT_TX);
1966
1967	ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1968}
1969
1970/*
1971 * Exported call to check for a recent gain reading and return
1972 * the current state of the thermal calibration gain engine.
1973 */
1974HAL_RFGAIN
1975ar5211GetRfgain(struct ath_hal *ah)
1976{
1977	struct ath_hal_5211 *ahp = AH5211(ah);
1978	GAIN_VALUES *gv = &ahp->ah_gainValues;
1979	uint32_t rddata;
1980
1981	if (!gv->active)
1982		return HAL_RFGAIN_INACTIVE;
1983
1984	if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
1985		/* Caller had asked to setup a new reading. Check it. */
1986		rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
1987
1988		if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
1989			/* bit got cleared, we have a new reading. */
1990			gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
1991			/* inactive by default */
1992			ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
1993
1994			if (!ar5211InvalidGainReadback(ah, gv) &&
1995			    ar5211IsGainAdjustNeeded(ah, gv) &&
1996			    ar5211AdjustGain(ah, gv) > 0) {
1997				/*
1998				 * Change needed. Copy ladder info
1999				 * into eeprom info.
2000				 */
2001				ar5211SetRfgain(ah, gv);
2002				ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2003			}
2004		}
2005	}
2006	return ahp->ah_rfgainState;
2007}
2008
2009/*
2010 * Check to see if our readback gain level sits within the linear
2011 * region of our current variable attenuation window
2012 */
2013static HAL_BOOL
2014ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2015{
2016	return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2017}
2018
2019/*
2020 * Move the rabbit ears in the correct direction.
2021 */
2022static int32_t
2023ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2024{
2025	/* return > 0 for valid adjustments. */
2026	if (!gv->active)
2027		return -1;
2028
2029	gv->currStep = &gainLadder.optStep[gv->currStepNum];
2030	if (gv->currGain >= gv->hiTrig) {
2031		if (gv->currStepNum == 0) {
2032			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2033			    "%s: Max gain limit.\n", __func__);
2034			return -1;
2035		}
2036		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2037		    "%s: Adding gain: currG=%d [%s] --> ",
2038		    __func__, gv->currGain, gv->currStep->stepName);
2039		gv->targetGain = gv->currGain;
2040		while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2041			gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2042				gv->currStep->stepGain);
2043			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2044		}
2045		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2046		    gv->targetGain, gv->currStep->stepName);
2047		return 1;
2048	}
2049	if (gv->currGain <= gv->loTrig) {
2050		if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2051			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2052			    "%s: Min gain limit.\n", __func__);
2053			return -2;
2054		}
2055		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2056		    "%s: Deducting gain: currG=%d [%s] --> ",
2057		    __func__, gv->currGain, gv->currStep->stepName);
2058		gv->targetGain = gv->currGain;
2059		while (gv->targetGain <= gv->loTrig &&
2060		      gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2061			gv->targetGain -= 2 *
2062				(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2063			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2064		}
2065		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2066		    gv->targetGain, gv->currStep->stepName);
2067		return 2;
2068	}
2069	return 0;		/* caller didn't call needAdjGain first */
2070}
2071
2072/*
2073 * Adjust the 5GHz EEPROM information with the desired calibration values.
2074 */
2075static void
2076ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2077{
2078	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2079
2080	if (!gv->active)
2081		return;
2082	ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2083	ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2084	ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2085	ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2086}
2087
2088static void
2089ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2090{
2091	struct ath_hal_5211 *ahp = AH5211(ah);
2092	uint32_t val;
2093
2094	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2095	switch (opmode) {
2096	case HAL_M_HOSTAP:
2097		OS_REG_WRITE(ah, AR_STA_ID1, val
2098			| AR_STA_ID1_STA_AP
2099			| AR_STA_ID1_RTS_USE_DEF
2100			| ahp->ah_staId1Defaults);
2101		break;
2102	case HAL_M_IBSS:
2103		OS_REG_WRITE(ah, AR_STA_ID1, val
2104			| AR_STA_ID1_ADHOC
2105			| AR_STA_ID1_DESC_ANTENNA
2106			| ahp->ah_staId1Defaults);
2107		break;
2108	case HAL_M_STA:
2109	case HAL_M_MONITOR:
2110		OS_REG_WRITE(ah, AR_STA_ID1, val
2111			| AR_STA_ID1_DEFAULT_ANTENNA
2112			| ahp->ah_staId1Defaults);
2113		break;
2114	}
2115}
2116
2117void
2118ar5211SetPCUConfig(struct ath_hal *ah)
2119{
2120	ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
2121}
2122