1/******************************************************************************
2
3  Copyright (c) 2001-2012, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD$*/
34
35#include "e1000_api.h"
36
37static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
38static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
39static void e1000_config_collision_dist_generic(struct e1000_hw *hw);
40static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
41
42/**
43 *  e1000_init_mac_ops_generic - Initialize MAC function pointers
44 *  @hw: pointer to the HW structure
45 *
46 *  Setups up the function pointers to no-op functions
47 **/
48void e1000_init_mac_ops_generic(struct e1000_hw *hw)
49{
50	struct e1000_mac_info *mac = &hw->mac;
51	DEBUGFUNC("e1000_init_mac_ops_generic");
52
53	/* General Setup */
54	mac->ops.init_params = e1000_null_ops_generic;
55	mac->ops.init_hw = e1000_null_ops_generic;
56	mac->ops.reset_hw = e1000_null_ops_generic;
57	mac->ops.setup_physical_interface = e1000_null_ops_generic;
58	mac->ops.get_bus_info = e1000_null_ops_generic;
59	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
60	mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
61	mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
62	mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
63	/* LED */
64	mac->ops.cleanup_led = e1000_null_ops_generic;
65	mac->ops.setup_led = e1000_null_ops_generic;
66	mac->ops.blink_led = e1000_null_ops_generic;
67	mac->ops.led_on = e1000_null_ops_generic;
68	mac->ops.led_off = e1000_null_ops_generic;
69	/* LINK */
70	mac->ops.setup_link = e1000_null_ops_generic;
71	mac->ops.get_link_up_info = e1000_null_link_info;
72	mac->ops.check_for_link = e1000_null_ops_generic;
73	mac->ops.wait_autoneg = e1000_wait_autoneg_generic;
74	/* Management */
75	mac->ops.check_mng_mode = e1000_null_mng_mode;
76	mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic;
77	mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
78	mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic;
79	/* VLAN, MC, etc. */
80	mac->ops.update_mc_addr_list = e1000_null_update_mc;
81	mac->ops.clear_vfta = e1000_null_mac_generic;
82	mac->ops.write_vfta = e1000_null_write_vfta;
83	mac->ops.rar_set = e1000_rar_set_generic;
84	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
85}
86
87/**
88 *  e1000_null_ops_generic - No-op function, returns 0
89 *  @hw: pointer to the HW structure
90 **/
91s32 e1000_null_ops_generic(struct e1000_hw *hw)
92{
93	DEBUGFUNC("e1000_null_ops_generic");
94	return E1000_SUCCESS;
95}
96
97/**
98 *  e1000_null_mac_generic - No-op function, return void
99 *  @hw: pointer to the HW structure
100 **/
101void e1000_null_mac_generic(struct e1000_hw *hw)
102{
103	DEBUGFUNC("e1000_null_mac_generic");
104	return;
105}
106
107/**
108 *  e1000_null_link_info - No-op function, return 0
109 *  @hw: pointer to the HW structure
110 **/
111s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d)
112{
113	DEBUGFUNC("e1000_null_link_info");
114	return E1000_SUCCESS;
115}
116
117/**
118 *  e1000_null_mng_mode - No-op function, return FALSE
119 *  @hw: pointer to the HW structure
120 **/
121bool e1000_null_mng_mode(struct e1000_hw *hw)
122{
123	DEBUGFUNC("e1000_null_mng_mode");
124	return FALSE;
125}
126
127/**
128 *  e1000_null_update_mc - No-op function, return void
129 *  @hw: pointer to the HW structure
130 **/
131void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a)
132{
133	DEBUGFUNC("e1000_null_update_mc");
134	return;
135}
136
137/**
138 *  e1000_null_write_vfta - No-op function, return void
139 *  @hw: pointer to the HW structure
140 **/
141void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b)
142{
143	DEBUGFUNC("e1000_null_write_vfta");
144	return;
145}
146
147/**
148 *  e1000_null_rar_set - No-op function, return void
149 *  @hw: pointer to the HW structure
150 **/
151void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a)
152{
153	DEBUGFUNC("e1000_null_rar_set");
154	return;
155}
156
157/**
158 *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information
159 *  @hw: pointer to the HW structure
160 *
161 *  Determines and stores the system bus information for a particular
162 *  network interface.  The following bus information is determined and stored:
163 *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
164 **/
165s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
166{
167	struct e1000_mac_info *mac = &hw->mac;
168	struct e1000_bus_info *bus = &hw->bus;
169	u32 status = E1000_READ_REG(hw, E1000_STATUS);
170	s32 ret_val = E1000_SUCCESS;
171
172	DEBUGFUNC("e1000_get_bus_info_pci_generic");
173
174	/* PCI or PCI-X? */
175	bus->type = (status & E1000_STATUS_PCIX_MODE)
176			? e1000_bus_type_pcix
177			: e1000_bus_type_pci;
178
179	/* Bus speed */
180	if (bus->type == e1000_bus_type_pci) {
181		bus->speed = (status & E1000_STATUS_PCI66)
182			     ? e1000_bus_speed_66
183			     : e1000_bus_speed_33;
184	} else {
185		switch (status & E1000_STATUS_PCIX_SPEED) {
186		case E1000_STATUS_PCIX_SPEED_66:
187			bus->speed = e1000_bus_speed_66;
188			break;
189		case E1000_STATUS_PCIX_SPEED_100:
190			bus->speed = e1000_bus_speed_100;
191			break;
192		case E1000_STATUS_PCIX_SPEED_133:
193			bus->speed = e1000_bus_speed_133;
194			break;
195		default:
196			bus->speed = e1000_bus_speed_reserved;
197			break;
198		}
199	}
200
201	/* Bus width */
202	bus->width = (status & E1000_STATUS_BUS64)
203		     ? e1000_bus_width_64
204		     : e1000_bus_width_32;
205
206	/* Which PCI(-X) function? */
207	mac->ops.set_lan_id(hw);
208
209	return ret_val;
210}
211
212/**
213 *  e1000_get_bus_info_pcie_generic - Get PCIe bus information
214 *  @hw: pointer to the HW structure
215 *
216 *  Determines and stores the system bus information for a particular
217 *  network interface.  The following bus information is determined and stored:
218 *  bus speed, bus width, type (PCIe), and PCIe function.
219 **/
220s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
221{
222	struct e1000_mac_info *mac = &hw->mac;
223	struct e1000_bus_info *bus = &hw->bus;
224	s32 ret_val;
225	u16 pcie_link_status;
226
227	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
228
229	bus->type = e1000_bus_type_pci_express;
230
231	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
232					  &pcie_link_status);
233	if (ret_val) {
234		bus->width = e1000_bus_width_unknown;
235		bus->speed = e1000_bus_speed_unknown;
236	} else {
237		switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
238		case PCIE_LINK_SPEED_2500:
239			bus->speed = e1000_bus_speed_2500;
240			break;
241		case PCIE_LINK_SPEED_5000:
242			bus->speed = e1000_bus_speed_5000;
243			break;
244		default:
245			bus->speed = e1000_bus_speed_unknown;
246			break;
247		}
248
249		bus->width = (enum e1000_bus_width)((pcie_link_status &
250			      PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
251	}
252
253	mac->ops.set_lan_id(hw);
254
255	return E1000_SUCCESS;
256}
257
258/**
259 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
260 *
261 *  @hw: pointer to the HW structure
262 *
263 *  Determines the LAN function id by reading memory-mapped registers
264 *  and swaps the port value if requested.
265 **/
266static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
267{
268	struct e1000_bus_info *bus = &hw->bus;
269	u32 reg;
270
271	/*
272	 * The status register reports the correct function number
273	 * for the device regardless of function swap state.
274	 */
275	reg = E1000_READ_REG(hw, E1000_STATUS);
276	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
277}
278
279/**
280 *  e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
281 *  @hw: pointer to the HW structure
282 *
283 *  Determines the LAN function id by reading PCI config space.
284 **/
285void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
286{
287	struct e1000_bus_info *bus = &hw->bus;
288	u16 pci_header_type;
289	u32 status;
290
291	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
292	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
293		status = E1000_READ_REG(hw, E1000_STATUS);
294		bus->func = (status & E1000_STATUS_FUNC_MASK)
295			    >> E1000_STATUS_FUNC_SHIFT;
296	} else {
297		bus->func = 0;
298	}
299}
300
301/**
302 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
303 *  @hw: pointer to the HW structure
304 *
305 *  Sets the LAN function id to zero for a single port device.
306 **/
307void e1000_set_lan_id_single_port(struct e1000_hw *hw)
308{
309	struct e1000_bus_info *bus = &hw->bus;
310
311	bus->func = 0;
312}
313
314/**
315 *  e1000_clear_vfta_generic - Clear VLAN filter table
316 *  @hw: pointer to the HW structure
317 *
318 *  Clears the register array which contains the VLAN filter table by
319 *  setting all the values to 0.
320 **/
321void e1000_clear_vfta_generic(struct e1000_hw *hw)
322{
323	u32 offset;
324
325	DEBUGFUNC("e1000_clear_vfta_generic");
326
327	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
328		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
329		E1000_WRITE_FLUSH(hw);
330	}
331}
332
333/**
334 *  e1000_write_vfta_generic - Write value to VLAN filter table
335 *  @hw: pointer to the HW structure
336 *  @offset: register offset in VLAN filter table
337 *  @value: register value written to VLAN filter table
338 *
339 *  Writes value at the given offset in the register array which stores
340 *  the VLAN filter table.
341 **/
342void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
343{
344	DEBUGFUNC("e1000_write_vfta_generic");
345
346	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
347	E1000_WRITE_FLUSH(hw);
348}
349
350/**
351 *  e1000_init_rx_addrs_generic - Initialize receive address's
352 *  @hw: pointer to the HW structure
353 *  @rar_count: receive address registers
354 *
355 *  Setup the receive address registers by setting the base receive address
356 *  register to the devices MAC address and clearing all the other receive
357 *  address registers to 0.
358 **/
359void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
360{
361	u32 i;
362	u8 mac_addr[ETH_ADDR_LEN] = {0};
363
364	DEBUGFUNC("e1000_init_rx_addrs_generic");
365
366	/* Setup the receive address */
367	DEBUGOUT("Programming MAC Address into RAR[0]\n");
368
369	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
370
371	/* Zero out the other (rar_entry_count - 1) receive addresses */
372	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
373	for (i = 1; i < rar_count; i++)
374		hw->mac.ops.rar_set(hw, mac_addr, i);
375}
376
377/**
378 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
379 *  @hw: pointer to the HW structure
380 *
381 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
382 *  can be setup by pre-boot software and must be treated like a permanent
383 *  address and must override the actual permanent MAC address. If an
384 *  alternate MAC address is found it is programmed into RAR0, replacing
385 *  the permanent address that was installed into RAR0 by the Si on reset.
386 *  This function will return SUCCESS unless it encounters an error while
387 *  reading the EEPROM.
388 **/
389s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
390{
391	u32 i;
392	s32 ret_val = E1000_SUCCESS;
393	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
394	u8 alt_mac_addr[ETH_ADDR_LEN];
395
396	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
397
398	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
399	if (ret_val)
400		return ret_val;
401
402	/* not supported on older hardware or 82573 */
403	if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
404		return E1000_SUCCESS;
405
406	/*
407	 * Alternate MAC address is handled by the option ROM for 82580
408	 * and newer. SW support not required.
409	 */
410	if (hw->mac.type >= e1000_82580)
411		return E1000_SUCCESS;
412
413	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
414				   &nvm_alt_mac_addr_offset);
415	if (ret_val) {
416		DEBUGOUT("NVM Read Error\n");
417		return ret_val;
418	}
419
420	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
421	    (nvm_alt_mac_addr_offset == 0x0000))
422		/* There is no Alternate MAC Address */
423		return E1000_SUCCESS;
424
425	if (hw->bus.func == E1000_FUNC_1)
426		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
427	if (hw->bus.func == E1000_FUNC_2)
428		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
429
430	if (hw->bus.func == E1000_FUNC_3)
431		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
432	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
433		offset = nvm_alt_mac_addr_offset + (i >> 1);
434		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
435		if (ret_val) {
436			DEBUGOUT("NVM Read Error\n");
437			return ret_val;
438		}
439
440		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
441		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
442	}
443
444	/* if multicast bit is set, the alternate address will not be used */
445	if (alt_mac_addr[0] & 0x01) {
446		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
447		return E1000_SUCCESS;
448	}
449
450	/*
451	 * We have a valid alternate MAC address, and we want to treat it the
452	 * same as the normal permanent MAC address stored by the HW into the
453	 * RAR. Do this by mapping this address into RAR0.
454	 */
455	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
456
457	return E1000_SUCCESS;
458}
459
460/**
461 *  e1000_rar_set_generic - Set receive address register
462 *  @hw: pointer to the HW structure
463 *  @addr: pointer to the receive address
464 *  @index: receive address array register
465 *
466 *  Sets the receive address array register at index to the address passed
467 *  in by addr.
468 **/
469static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
470{
471	u32 rar_low, rar_high;
472
473	DEBUGFUNC("e1000_rar_set_generic");
474
475	/*
476	 * HW expects these in little endian so we reverse the byte order
477	 * from network order (big endian) to little endian
478	 */
479	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
480		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
481
482	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
483
484	/* If MAC address zero, no need to set the AV bit */
485	if (rar_low || rar_high)
486		rar_high |= E1000_RAH_AV;
487
488	/*
489	 * Some bridges will combine consecutive 32-bit writes into
490	 * a single burst write, which will malfunction on some parts.
491	 * The flushes avoid this.
492	 */
493	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
494	E1000_WRITE_FLUSH(hw);
495	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
496	E1000_WRITE_FLUSH(hw);
497}
498
499/**
500 *  e1000_hash_mc_addr_generic - Generate a multicast hash value
501 *  @hw: pointer to the HW structure
502 *  @mc_addr: pointer to a multicast address
503 *
504 *  Generates a multicast address hash value which is used to determine
505 *  the multicast filter table array address and new table value.
506 **/
507u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
508{
509	u32 hash_value, hash_mask;
510	u8 bit_shift = 0;
511
512	DEBUGFUNC("e1000_hash_mc_addr_generic");
513
514	/* Register count multiplied by bits per register */
515	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
516
517	/*
518	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
519	 * where 0xFF would still fall within the hash mask.
520	 */
521	while (hash_mask >> bit_shift != 0xFF)
522		bit_shift++;
523
524	/*
525	 * The portion of the address that is used for the hash table
526	 * is determined by the mc_filter_type setting.
527	 * The algorithm is such that there is a total of 8 bits of shifting.
528	 * The bit_shift for a mc_filter_type of 0 represents the number of
529	 * left-shifts where the MSB of mc_addr[5] would still fall within
530	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
531	 * of 8 bits of shifting, then mc_addr[4] will shift right the
532	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
533	 * cases are a variation of this algorithm...essentially raising the
534	 * number of bits to shift mc_addr[5] left, while still keeping the
535	 * 8-bit shifting total.
536	 *
537	 * For example, given the following Destination MAC Address and an
538	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
539	 * we can see that the bit_shift for case 0 is 4.  These are the hash
540	 * values resulting from each mc_filter_type...
541	 * [0] [1] [2] [3] [4] [5]
542	 * 01  AA  00  12  34  56
543	 * LSB		 MSB
544	 *
545	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
546	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
547	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
548	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
549	 */
550	switch (hw->mac.mc_filter_type) {
551	default:
552	case 0:
553		break;
554	case 1:
555		bit_shift += 1;
556		break;
557	case 2:
558		bit_shift += 2;
559		break;
560	case 3:
561		bit_shift += 4;
562		break;
563	}
564
565	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
566				  (((u16) mc_addr[5]) << bit_shift)));
567
568	return hash_value;
569}
570
571/**
572 *  e1000_update_mc_addr_list_generic - Update Multicast addresses
573 *  @hw: pointer to the HW structure
574 *  @mc_addr_list: array of multicast addresses to program
575 *  @mc_addr_count: number of multicast addresses to program
576 *
577 *  Updates entire Multicast Table Array.
578 *  The caller must have a packed mc_addr_list of multicast addresses.
579 **/
580void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
581				       u8 *mc_addr_list, u32 mc_addr_count)
582{
583	u32 hash_value, hash_bit, hash_reg;
584	int i;
585
586	DEBUGFUNC("e1000_update_mc_addr_list_generic");
587
588	/* clear mta_shadow */
589	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
590
591	/* update mta_shadow from mc_addr_list */
592	for (i = 0; (u32) i < mc_addr_count; i++) {
593		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
594
595		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
596		hash_bit = hash_value & 0x1F;
597
598		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
599		mc_addr_list += (ETH_ADDR_LEN);
600	}
601
602	/* replace the entire MTA table */
603	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
604		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
605	E1000_WRITE_FLUSH(hw);
606}
607
608/**
609 *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
610 *  @hw: pointer to the HW structure
611 *
612 *  In certain situations, a system BIOS may report that the PCIx maximum
613 *  memory read byte count (MMRBC) value is higher than than the actual
614 *  value. We check the PCIx command register with the current PCIx status
615 *  register.
616 **/
617void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
618{
619	u16 cmd_mmrbc;
620	u16 pcix_cmd;
621	u16 pcix_stat_hi_word;
622	u16 stat_mmrbc;
623
624	DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
625
626	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
627	if (hw->bus.type != e1000_bus_type_pcix)
628		return;
629
630	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
631	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
632	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
633		     PCIX_COMMAND_MMRBC_SHIFT;
634	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
635		      PCIX_STATUS_HI_MMRBC_SHIFT;
636	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
637		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
638	if (cmd_mmrbc > stat_mmrbc) {
639		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
640		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
641		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
642	}
643}
644
645/**
646 *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
647 *  @hw: pointer to the HW structure
648 *
649 *  Clears the base hardware counters by reading the counter registers.
650 **/
651void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
652{
653	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
654
655	E1000_READ_REG(hw, E1000_CRCERRS);
656	E1000_READ_REG(hw, E1000_SYMERRS);
657	E1000_READ_REG(hw, E1000_MPC);
658	E1000_READ_REG(hw, E1000_SCC);
659	E1000_READ_REG(hw, E1000_ECOL);
660	E1000_READ_REG(hw, E1000_MCC);
661	E1000_READ_REG(hw, E1000_LATECOL);
662	E1000_READ_REG(hw, E1000_COLC);
663	E1000_READ_REG(hw, E1000_DC);
664	E1000_READ_REG(hw, E1000_SEC);
665	E1000_READ_REG(hw, E1000_RLEC);
666	E1000_READ_REG(hw, E1000_XONRXC);
667	E1000_READ_REG(hw, E1000_XONTXC);
668	E1000_READ_REG(hw, E1000_XOFFRXC);
669	E1000_READ_REG(hw, E1000_XOFFTXC);
670	E1000_READ_REG(hw, E1000_FCRUC);
671	E1000_READ_REG(hw, E1000_GPRC);
672	E1000_READ_REG(hw, E1000_BPRC);
673	E1000_READ_REG(hw, E1000_MPRC);
674	E1000_READ_REG(hw, E1000_GPTC);
675	E1000_READ_REG(hw, E1000_GORCL);
676	E1000_READ_REG(hw, E1000_GORCH);
677	E1000_READ_REG(hw, E1000_GOTCL);
678	E1000_READ_REG(hw, E1000_GOTCH);
679	E1000_READ_REG(hw, E1000_RNBC);
680	E1000_READ_REG(hw, E1000_RUC);
681	E1000_READ_REG(hw, E1000_RFC);
682	E1000_READ_REG(hw, E1000_ROC);
683	E1000_READ_REG(hw, E1000_RJC);
684	E1000_READ_REG(hw, E1000_TORL);
685	E1000_READ_REG(hw, E1000_TORH);
686	E1000_READ_REG(hw, E1000_TOTL);
687	E1000_READ_REG(hw, E1000_TOTH);
688	E1000_READ_REG(hw, E1000_TPR);
689	E1000_READ_REG(hw, E1000_TPT);
690	E1000_READ_REG(hw, E1000_MPTC);
691	E1000_READ_REG(hw, E1000_BPTC);
692}
693
694/**
695 *  e1000_check_for_copper_link_generic - Check for link (Copper)
696 *  @hw: pointer to the HW structure
697 *
698 *  Checks to see of the link status of the hardware has changed.  If a
699 *  change in link status has been detected, then we read the PHY registers
700 *  to get the current speed/duplex if link exists.
701 **/
702s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
703{
704	struct e1000_mac_info *mac = &hw->mac;
705	s32 ret_val;
706	bool link;
707
708	DEBUGFUNC("e1000_check_for_copper_link");
709
710	/*
711	 * We only want to go out to the PHY registers to see if Auto-Neg
712	 * has completed and/or if our link status has changed.  The
713	 * get_link_status flag is set upon receiving a Link Status
714	 * Change or Rx Sequence Error interrupt.
715	 */
716	if (!mac->get_link_status)
717		return E1000_SUCCESS;
718
719	/*
720	 * First we want to see if the MII Status Register reports
721	 * link.  If so, then we want to get the current speed/duplex
722	 * of the PHY.
723	 */
724	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
725	if (ret_val)
726		return ret_val;
727
728	if (!link)
729		return E1000_SUCCESS; /* No link detected */
730
731	mac->get_link_status = FALSE;
732
733	/*
734	 * Check if there was DownShift, must be checked
735	 * immediately after link-up
736	 */
737	e1000_check_downshift_generic(hw);
738
739	/*
740	 * If we are forcing speed/duplex, then we simply return since
741	 * we have already determined whether we have link or not.
742	 */
743	if (!mac->autoneg)
744		return -E1000_ERR_CONFIG;
745
746	/*
747	 * Auto-Neg is enabled.  Auto Speed Detection takes care
748	 * of MAC speed/duplex configuration.  So we only need to
749	 * configure Collision Distance in the MAC.
750	 */
751	mac->ops.config_collision_dist(hw);
752
753	/*
754	 * Configure Flow Control now that Auto-Neg has completed.
755	 * First, we need to restore the desired flow control
756	 * settings because we may have had to re-autoneg with a
757	 * different link partner.
758	 */
759	ret_val = e1000_config_fc_after_link_up_generic(hw);
760	if (ret_val)
761		DEBUGOUT("Error configuring flow control\n");
762
763	return ret_val;
764}
765
766/**
767 *  e1000_check_for_fiber_link_generic - Check for link (Fiber)
768 *  @hw: pointer to the HW structure
769 *
770 *  Checks for link up on the hardware.  If link is not up and we have
771 *  a signal, then we need to force link up.
772 **/
773s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
774{
775	struct e1000_mac_info *mac = &hw->mac;
776	u32 rxcw;
777	u32 ctrl;
778	u32 status;
779	s32 ret_val;
780
781	DEBUGFUNC("e1000_check_for_fiber_link_generic");
782
783	ctrl = E1000_READ_REG(hw, E1000_CTRL);
784	status = E1000_READ_REG(hw, E1000_STATUS);
785	rxcw = E1000_READ_REG(hw, E1000_RXCW);
786
787	/*
788	 * If we don't have link (auto-negotiation failed or link partner
789	 * cannot auto-negotiate), the cable is plugged in (we have signal),
790	 * and our link partner is not trying to auto-negotiate with us (we
791	 * are receiving idles or data), we need to force link up. We also
792	 * need to give auto-negotiation time to complete, in case the cable
793	 * was just plugged in. The autoneg_failed flag does this.
794	 */
795	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
796	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
797	    !(rxcw & E1000_RXCW_C)) {
798		if (!mac->autoneg_failed) {
799			mac->autoneg_failed = TRUE;
800			return E1000_SUCCESS;
801		}
802		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
803
804		/* Disable auto-negotiation in the TXCW register */
805		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
806
807		/* Force link-up and also force full-duplex. */
808		ctrl = E1000_READ_REG(hw, E1000_CTRL);
809		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
810		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
811
812		/* Configure Flow Control after forcing link up. */
813		ret_val = e1000_config_fc_after_link_up_generic(hw);
814		if (ret_val) {
815			DEBUGOUT("Error configuring flow control\n");
816			return ret_val;
817		}
818	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
819		/*
820		 * If we are forcing link and we are receiving /C/ ordered
821		 * sets, re-enable auto-negotiation in the TXCW register
822		 * and disable forced link in the Device Control register
823		 * in an attempt to auto-negotiate with our link partner.
824		 */
825		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
826		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
827		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
828
829		mac->serdes_has_link = TRUE;
830	}
831
832	return E1000_SUCCESS;
833}
834
835/**
836 *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
837 *  @hw: pointer to the HW structure
838 *
839 *  Checks for link up on the hardware.  If link is not up and we have
840 *  a signal, then we need to force link up.
841 **/
842s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
843{
844	struct e1000_mac_info *mac = &hw->mac;
845	u32 rxcw;
846	u32 ctrl;
847	u32 status;
848	s32 ret_val;
849
850	DEBUGFUNC("e1000_check_for_serdes_link_generic");
851
852	ctrl = E1000_READ_REG(hw, E1000_CTRL);
853	status = E1000_READ_REG(hw, E1000_STATUS);
854	rxcw = E1000_READ_REG(hw, E1000_RXCW);
855
856	/*
857	 * If we don't have link (auto-negotiation failed or link partner
858	 * cannot auto-negotiate), and our link partner is not trying to
859	 * auto-negotiate with us (we are receiving idles or data),
860	 * we need to force link up. We also need to give auto-negotiation
861	 * time to complete.
862	 */
863	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
864	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
865		if (!mac->autoneg_failed) {
866			mac->autoneg_failed = TRUE;
867			return E1000_SUCCESS;
868		}
869		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
870
871		/* Disable auto-negotiation in the TXCW register */
872		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
873
874		/* Force link-up and also force full-duplex. */
875		ctrl = E1000_READ_REG(hw, E1000_CTRL);
876		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
877		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
878
879		/* Configure Flow Control after forcing link up. */
880		ret_val = e1000_config_fc_after_link_up_generic(hw);
881		if (ret_val) {
882			DEBUGOUT("Error configuring flow control\n");
883			return ret_val;
884		}
885	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
886		/*
887		 * If we are forcing link and we are receiving /C/ ordered
888		 * sets, re-enable auto-negotiation in the TXCW register
889		 * and disable forced link in the Device Control register
890		 * in an attempt to auto-negotiate with our link partner.
891		 */
892		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
893		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
894		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
895
896		mac->serdes_has_link = TRUE;
897	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
898		/*
899		 * If we force link for non-auto-negotiation switch, check
900		 * link status based on MAC synchronization for internal
901		 * serdes media type.
902		 */
903		/* SYNCH bit and IV bit are sticky. */
904		usec_delay(10);
905		rxcw = E1000_READ_REG(hw, E1000_RXCW);
906		if (rxcw & E1000_RXCW_SYNCH) {
907			if (!(rxcw & E1000_RXCW_IV)) {
908				mac->serdes_has_link = TRUE;
909				DEBUGOUT("SERDES: Link up - forced.\n");
910			}
911		} else {
912			mac->serdes_has_link = FALSE;
913			DEBUGOUT("SERDES: Link down - force failed.\n");
914		}
915	}
916
917	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
918		status = E1000_READ_REG(hw, E1000_STATUS);
919		if (status & E1000_STATUS_LU) {
920			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
921			usec_delay(10);
922			rxcw = E1000_READ_REG(hw, E1000_RXCW);
923			if (rxcw & E1000_RXCW_SYNCH) {
924				if (!(rxcw & E1000_RXCW_IV)) {
925					mac->serdes_has_link = TRUE;
926					DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
927				} else {
928					mac->serdes_has_link = FALSE;
929					DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
930				}
931			} else {
932				mac->serdes_has_link = FALSE;
933				DEBUGOUT("SERDES: Link down - no sync.\n");
934			}
935		} else {
936			mac->serdes_has_link = FALSE;
937			DEBUGOUT("SERDES: Link down - autoneg failed\n");
938		}
939	}
940
941	return E1000_SUCCESS;
942}
943
944/**
945 *  e1000_set_default_fc_generic - Set flow control default values
946 *  @hw: pointer to the HW structure
947 *
948 *  Read the EEPROM for the default values for flow control and store the
949 *  values.
950 **/
951s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
952{
953	s32 ret_val;
954	u16 nvm_data;
955
956	DEBUGFUNC("e1000_set_default_fc_generic");
957
958	/*
959	 * Read and store word 0x0F of the EEPROM. This word contains bits
960	 * that determine the hardware's default PAUSE (flow control) mode,
961	 * a bit that determines whether the HW defaults to enabling or
962	 * disabling auto-negotiation, and the direction of the
963	 * SW defined pins. If there is no SW over-ride of the flow
964	 * control setting, then the variable hw->fc will
965	 * be initialized based on a value in the EEPROM.
966	 */
967	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
968
969	if (ret_val) {
970		DEBUGOUT("NVM Read Error\n");
971		return ret_val;
972	}
973
974	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
975		hw->fc.requested_mode = e1000_fc_none;
976	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
977		 NVM_WORD0F_ASM_DIR)
978		hw->fc.requested_mode = e1000_fc_tx_pause;
979	else
980		hw->fc.requested_mode = e1000_fc_full;
981
982	return E1000_SUCCESS;
983}
984
985/**
986 *  e1000_setup_link_generic - Setup flow control and link settings
987 *  @hw: pointer to the HW structure
988 *
989 *  Determines which flow control settings to use, then configures flow
990 *  control.  Calls the appropriate media-specific link configuration
991 *  function.  Assuming the adapter has a valid link partner, a valid link
992 *  should be established.  Assumes the hardware has previously been reset
993 *  and the transmitter and receiver are not enabled.
994 **/
995s32 e1000_setup_link_generic(struct e1000_hw *hw)
996{
997	s32 ret_val;
998
999	DEBUGFUNC("e1000_setup_link_generic");
1000
1001	/*
1002	 * In the case of the phy reset being blocked, we already have a link.
1003	 * We do not need to set it up again.
1004	 */
1005	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
1006		return E1000_SUCCESS;
1007
1008	/*
1009	 * If requested flow control is set to default, set flow control
1010	 * based on the EEPROM flow control settings.
1011	 */
1012	if (hw->fc.requested_mode == e1000_fc_default) {
1013		ret_val = e1000_set_default_fc_generic(hw);
1014		if (ret_val)
1015			return ret_val;
1016	}
1017
1018	/*
1019	 * Save off the requested flow control mode for use later.  Depending
1020	 * on the link partner's capabilities, we may or may not use this mode.
1021	 */
1022	hw->fc.current_mode = hw->fc.requested_mode;
1023
1024	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
1025		hw->fc.current_mode);
1026
1027	/* Call the necessary media_type subroutine to configure the link. */
1028	ret_val = hw->mac.ops.setup_physical_interface(hw);
1029	if (ret_val)
1030		return ret_val;
1031
1032	/*
1033	 * Initialize the flow control address, type, and PAUSE timer
1034	 * registers to their default values.  This is done even if flow
1035	 * control is disabled, because it does not hurt anything to
1036	 * initialize these registers.
1037	 */
1038	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1039	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
1040	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1041	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
1042
1043	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
1044
1045	return e1000_set_fc_watermarks_generic(hw);
1046}
1047
1048/**
1049 *  e1000_commit_fc_settings_generic - Configure flow control
1050 *  @hw: pointer to the HW structure
1051 *
1052 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
1053 *  base on the flow control settings in e1000_mac_info.
1054 **/
1055s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
1056{
1057	struct e1000_mac_info *mac = &hw->mac;
1058	u32 txcw;
1059
1060	DEBUGFUNC("e1000_commit_fc_settings_generic");
1061
1062	/*
1063	 * Check for a software override of the flow control settings, and
1064	 * setup the device accordingly.  If auto-negotiation is enabled, then
1065	 * software will have to set the "PAUSE" bits to the correct value in
1066	 * the Transmit Config Word Register (TXCW) and re-start auto-
1067	 * negotiation.  However, if auto-negotiation is disabled, then
1068	 * software will have to manually configure the two flow control enable
1069	 * bits in the CTRL register.
1070	 *
1071	 * The possible values of the "fc" parameter are:
1072	 *      0:  Flow control is completely disabled
1073	 *      1:  Rx flow control is enabled (we can receive pause frames,
1074	 *          but not send pause frames).
1075	 *      2:  Tx flow control is enabled (we can send pause frames but we
1076	 *          do not support receiving pause frames).
1077	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1078	 */
1079	switch (hw->fc.current_mode) {
1080	case e1000_fc_none:
1081		/* Flow control completely disabled by a software over-ride. */
1082		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1083		break;
1084	case e1000_fc_rx_pause:
1085		/*
1086		 * Rx Flow control is enabled and Tx Flow control is disabled
1087		 * by a software over-ride. Since there really isn't a way to
1088		 * advertise that we are capable of Rx Pause ONLY, we will
1089		 * advertise that we support both symmetric and asymmetric Rx
1090		 * PAUSE.  Later, we will disable the adapter's ability to send
1091		 * PAUSE frames.
1092		 */
1093		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1094		break;
1095	case e1000_fc_tx_pause:
1096		/*
1097		 * Tx Flow control is enabled, and Rx Flow control is disabled,
1098		 * by a software over-ride.
1099		 */
1100		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1101		break;
1102	case e1000_fc_full:
1103		/*
1104		 * Flow control (both Rx and Tx) is enabled by a software
1105		 * over-ride.
1106		 */
1107		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1108		break;
1109	default:
1110		DEBUGOUT("Flow control param set incorrectly\n");
1111		return -E1000_ERR_CONFIG;
1112		break;
1113	}
1114
1115	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1116	mac->txcw = txcw;
1117
1118	return E1000_SUCCESS;
1119}
1120
1121/**
1122 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Polls for link up by reading the status register, if link fails to come
1126 *  up with auto-negotiation, then the link is forced if a signal is detected.
1127 **/
1128s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
1129{
1130	struct e1000_mac_info *mac = &hw->mac;
1131	u32 i, status;
1132	s32 ret_val;
1133
1134	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1135
1136	/*
1137	 * If we have a signal (the cable is plugged in, or assumed TRUE for
1138	 * serdes media) then poll for a "Link-Up" indication in the Device
1139	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
1140	 * seconds (Auto-negotiation should complete in less than 500
1141	 * milliseconds even if the other end is doing it in SW).
1142	 */
1143	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1144		msec_delay(10);
1145		status = E1000_READ_REG(hw, E1000_STATUS);
1146		if (status & E1000_STATUS_LU)
1147			break;
1148	}
1149	if (i == FIBER_LINK_UP_LIMIT) {
1150		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1151		mac->autoneg_failed = TRUE;
1152		/*
1153		 * AutoNeg failed to achieve a link, so we'll call
1154		 * mac->check_for_link. This routine will force the
1155		 * link up if we detect a signal. This will allow us to
1156		 * communicate with non-autonegotiating link partners.
1157		 */
1158		ret_val = mac->ops.check_for_link(hw);
1159		if (ret_val) {
1160			DEBUGOUT("Error while checking for link\n");
1161			return ret_val;
1162		}
1163		mac->autoneg_failed = FALSE;
1164	} else {
1165		mac->autoneg_failed = FALSE;
1166		DEBUGOUT("Valid Link Found\n");
1167	}
1168
1169	return E1000_SUCCESS;
1170}
1171
1172/**
1173 *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
1174 *  @hw: pointer to the HW structure
1175 *
1176 *  Configures collision distance and flow control for fiber and serdes
1177 *  links.  Upon successful setup, poll for link.
1178 **/
1179s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
1180{
1181	u32 ctrl;
1182	s32 ret_val;
1183
1184	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
1185
1186	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1187
1188	/* Take the link out of reset */
1189	ctrl &= ~E1000_CTRL_LRST;
1190
1191	hw->mac.ops.config_collision_dist(hw);
1192
1193	ret_val = e1000_commit_fc_settings_generic(hw);
1194	if (ret_val)
1195		return ret_val;
1196
1197	/*
1198	 * Since auto-negotiation is enabled, take the link out of reset (the
1199	 * link will be in reset, because we previously reset the chip). This
1200	 * will restart auto-negotiation.  If auto-negotiation is successful
1201	 * then the link-up status bit will be set and the flow control enable
1202	 * bits (RFCE and TFCE) will be set according to their negotiated value.
1203	 */
1204	DEBUGOUT("Auto-negotiation enabled\n");
1205
1206	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1207	E1000_WRITE_FLUSH(hw);
1208	msec_delay(1);
1209
1210	/*
1211	 * For these adapters, the SW definable pin 1 is set when the optics
1212	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
1213	 * indication.
1214	 */
1215	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1216	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
1217		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1218	} else {
1219		DEBUGOUT("No signal detected\n");
1220	}
1221
1222	return ret_val;
1223}
1224
1225/**
1226 *  e1000_config_collision_dist_generic - Configure collision distance
1227 *  @hw: pointer to the HW structure
1228 *
1229 *  Configures the collision distance to the default value and is used
1230 *  during link setup.
1231 **/
1232static void e1000_config_collision_dist_generic(struct e1000_hw *hw)
1233{
1234	u32 tctl;
1235
1236	DEBUGFUNC("e1000_config_collision_dist_generic");
1237
1238	tctl = E1000_READ_REG(hw, E1000_TCTL);
1239
1240	tctl &= ~E1000_TCTL_COLD;
1241	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1242
1243	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1244	E1000_WRITE_FLUSH(hw);
1245}
1246
1247/**
1248 *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1249 *  @hw: pointer to the HW structure
1250 *
1251 *  Sets the flow control high/low threshold (watermark) registers.  If
1252 *  flow control XON frame transmission is enabled, then set XON frame
1253 *  transmission as well.
1254 **/
1255s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
1256{
1257	u32 fcrtl = 0, fcrth = 0;
1258
1259	DEBUGFUNC("e1000_set_fc_watermarks_generic");
1260
1261	/*
1262	 * Set the flow control receive threshold registers.  Normally,
1263	 * these registers will be set to a default threshold that may be
1264	 * adjusted later by the driver's runtime code.  However, if the
1265	 * ability to transmit pause frames is not enabled, then these
1266	 * registers will be set to 0.
1267	 */
1268	if (hw->fc.current_mode & e1000_fc_tx_pause) {
1269		/*
1270		 * We need to set up the Receive Threshold high and low water
1271		 * marks as well as (optionally) enabling the transmission of
1272		 * XON frames.
1273		 */
1274		fcrtl = hw->fc.low_water;
1275		if (hw->fc.send_xon)
1276			fcrtl |= E1000_FCRTL_XONE;
1277
1278		fcrth = hw->fc.high_water;
1279	}
1280	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
1281	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
1282
1283	return E1000_SUCCESS;
1284}
1285
1286/**
1287 *  e1000_force_mac_fc_generic - Force the MAC's flow control settings
1288 *  @hw: pointer to the HW structure
1289 *
1290 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1291 *  device control register to reflect the adapter settings.  TFCE and RFCE
1292 *  need to be explicitly set by software when a copper PHY is used because
1293 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
1294 *  also configure these bits when link is forced on a fiber connection.
1295 **/
1296s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
1297{
1298	u32 ctrl;
1299
1300	DEBUGFUNC("e1000_force_mac_fc_generic");
1301
1302	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1303
1304	/*
1305	 * Because we didn't get link via the internal auto-negotiation
1306	 * mechanism (we either forced link or we got link via PHY
1307	 * auto-neg), we have to manually enable/disable transmit an
1308	 * receive flow control.
1309	 *
1310	 * The "Case" statement below enables/disable flow control
1311	 * according to the "hw->fc.current_mode" parameter.
1312	 *
1313	 * The possible values of the "fc" parameter are:
1314	 *      0:  Flow control is completely disabled
1315	 *      1:  Rx flow control is enabled (we can receive pause
1316	 *          frames but not send pause frames).
1317	 *      2:  Tx flow control is enabled (we can send pause frames
1318	 *          frames but we do not receive pause frames).
1319	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1320	 *  other:  No other values should be possible at this point.
1321	 */
1322	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1323
1324	switch (hw->fc.current_mode) {
1325	case e1000_fc_none:
1326		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1327		break;
1328	case e1000_fc_rx_pause:
1329		ctrl &= (~E1000_CTRL_TFCE);
1330		ctrl |= E1000_CTRL_RFCE;
1331		break;
1332	case e1000_fc_tx_pause:
1333		ctrl &= (~E1000_CTRL_RFCE);
1334		ctrl |= E1000_CTRL_TFCE;
1335		break;
1336	case e1000_fc_full:
1337		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1338		break;
1339	default:
1340		DEBUGOUT("Flow control param set incorrectly\n");
1341		return -E1000_ERR_CONFIG;
1342	}
1343
1344	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1345
1346	return E1000_SUCCESS;
1347}
1348
1349/**
1350 *  e1000_config_fc_after_link_up_generic - Configures flow control after link
1351 *  @hw: pointer to the HW structure
1352 *
1353 *  Checks the status of auto-negotiation after link up to ensure that the
1354 *  speed and duplex were not forced.  If the link needed to be forced, then
1355 *  flow control needs to be forced also.  If auto-negotiation is enabled
1356 *  and did not fail, then we configure flow control based on our link
1357 *  partner.
1358 **/
1359s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
1360{
1361	struct e1000_mac_info *mac = &hw->mac;
1362	s32 ret_val = E1000_SUCCESS;
1363	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1364	u16 speed, duplex;
1365
1366	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1367
1368	/*
1369	 * Check for the case where we have fiber media and auto-neg failed
1370	 * so we had to force link.  In this case, we need to force the
1371	 * configuration of the MAC to match the "fc" parameter.
1372	 */
1373	if (mac->autoneg_failed) {
1374		if (hw->phy.media_type == e1000_media_type_fiber ||
1375		    hw->phy.media_type == e1000_media_type_internal_serdes)
1376			ret_val = e1000_force_mac_fc_generic(hw);
1377	} else {
1378		if (hw->phy.media_type == e1000_media_type_copper)
1379			ret_val = e1000_force_mac_fc_generic(hw);
1380	}
1381
1382	if (ret_val) {
1383		DEBUGOUT("Error forcing flow control settings\n");
1384		return ret_val;
1385	}
1386
1387	/*
1388	 * Check for the case where we have copper media and auto-neg is
1389	 * enabled.  In this case, we need to check and see if Auto-Neg
1390	 * has completed, and if so, how the PHY and link partner has
1391	 * flow control configured.
1392	 */
1393	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1394		/*
1395		 * Read the MII Status Register and check to see if AutoNeg
1396		 * has completed.  We read this twice because this reg has
1397		 * some "sticky" (latched) bits.
1398		 */
1399		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1400		if (ret_val)
1401			return ret_val;
1402		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1403		if (ret_val)
1404			return ret_val;
1405
1406		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1407			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
1408			return ret_val;
1409		}
1410
1411		/*
1412		 * The AutoNeg process has completed, so we now need to
1413		 * read both the Auto Negotiation Advertisement
1414		 * Register (Address 4) and the Auto_Negotiation Base
1415		 * Page Ability Register (Address 5) to determine how
1416		 * flow control was negotiated.
1417		 */
1418		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1419					       &mii_nway_adv_reg);
1420		if (ret_val)
1421			return ret_val;
1422		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1423					       &mii_nway_lp_ability_reg);
1424		if (ret_val)
1425			return ret_val;
1426
1427		/*
1428		 * Two bits in the Auto Negotiation Advertisement Register
1429		 * (Address 4) and two bits in the Auto Negotiation Base
1430		 * Page Ability Register (Address 5) determine flow control
1431		 * for both the PHY and the link partner.  The following
1432		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1433		 * 1999, describes these PAUSE resolution bits and how flow
1434		 * control is determined based upon these settings.
1435		 * NOTE:  DC = Don't Care
1436		 *
1437		 *   LOCAL DEVICE  |   LINK PARTNER
1438		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1439		 *-------|---------|-------|---------|--------------------
1440		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1441		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1442		 *   0   |    1    |   1   |    0    | e1000_fc_none
1443		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1444		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1445		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1446		 *   1   |    1    |   0   |    0    | e1000_fc_none
1447		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1448		 *
1449		 * Are both PAUSE bits set to 1?  If so, this implies
1450		 * Symmetric Flow Control is enabled at both ends.  The
1451		 * ASM_DIR bits are irrelevant per the spec.
1452		 *
1453		 * For Symmetric Flow Control:
1454		 *
1455		 *   LOCAL DEVICE  |   LINK PARTNER
1456		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1457		 *-------|---------|-------|---------|--------------------
1458		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1459		 *
1460		 */
1461		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1462		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1463			/*
1464			 * Now we need to check if the user selected Rx ONLY
1465			 * of pause frames.  In this case, we had to advertise
1466			 * FULL flow control because we could not advertise Rx
1467			 * ONLY. Hence, we must now check to see if we need to
1468			 * turn OFF the TRANSMISSION of PAUSE frames.
1469			 */
1470			if (hw->fc.requested_mode == e1000_fc_full) {
1471				hw->fc.current_mode = e1000_fc_full;
1472				DEBUGOUT("Flow Control = FULL.\n");
1473			} else {
1474				hw->fc.current_mode = e1000_fc_rx_pause;
1475				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1476			}
1477		}
1478		/*
1479		 * For receiving PAUSE frames ONLY.
1480		 *
1481		 *   LOCAL DEVICE  |   LINK PARTNER
1482		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1483		 *-------|---------|-------|---------|--------------------
1484		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1485		 */
1486		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1487			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1488			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1489			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1490			hw->fc.current_mode = e1000_fc_tx_pause;
1491			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
1492		}
1493		/*
1494		 * For transmitting PAUSE frames ONLY.
1495		 *
1496		 *   LOCAL DEVICE  |   LINK PARTNER
1497		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1498		 *-------|---------|-------|---------|--------------------
1499		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1500		 */
1501		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1502			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1503			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1504			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1505			hw->fc.current_mode = e1000_fc_rx_pause;
1506			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1507		} else {
1508			/*
1509			 * Per the IEEE spec, at this point flow control
1510			 * should be disabled.
1511			 */
1512			hw->fc.current_mode = e1000_fc_none;
1513			DEBUGOUT("Flow Control = NONE.\n");
1514		}
1515
1516		/*
1517		 * Now we need to do one last check...  If we auto-
1518		 * negotiated to HALF DUPLEX, flow control should not be
1519		 * enabled per IEEE 802.3 spec.
1520		 */
1521		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1522		if (ret_val) {
1523			DEBUGOUT("Error getting link speed and duplex\n");
1524			return ret_val;
1525		}
1526
1527		if (duplex == HALF_DUPLEX)
1528			hw->fc.current_mode = e1000_fc_none;
1529
1530		/*
1531		 * Now we call a subroutine to actually force the MAC
1532		 * controller to use the correct flow control settings.
1533		 */
1534		ret_val = e1000_force_mac_fc_generic(hw);
1535		if (ret_val) {
1536			DEBUGOUT("Error forcing flow control settings\n");
1537			return ret_val;
1538		}
1539	}
1540
1541	return E1000_SUCCESS;
1542}
1543
1544/**
1545 *  e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1546 *  @hw: pointer to the HW structure
1547 *  @speed: stores the current speed
1548 *  @duplex: stores the current duplex
1549 *
1550 *  Read the status register for the current speed/duplex and store the current
1551 *  speed and duplex for copper connections.
1552 **/
1553s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
1554					      u16 *duplex)
1555{
1556	u32 status;
1557
1558	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1559
1560	status = E1000_READ_REG(hw, E1000_STATUS);
1561	if (status & E1000_STATUS_SPEED_1000) {
1562		*speed = SPEED_1000;
1563		DEBUGOUT("1000 Mbs, ");
1564	} else if (status & E1000_STATUS_SPEED_100) {
1565		*speed = SPEED_100;
1566		DEBUGOUT("100 Mbs, ");
1567	} else {
1568		*speed = SPEED_10;
1569		DEBUGOUT("10 Mbs, ");
1570	}
1571
1572	if (status & E1000_STATUS_FD) {
1573		*duplex = FULL_DUPLEX;
1574		DEBUGOUT("Full Duplex\n");
1575	} else {
1576		*duplex = HALF_DUPLEX;
1577		DEBUGOUT("Half Duplex\n");
1578	}
1579
1580	return E1000_SUCCESS;
1581}
1582
1583/**
1584 *  e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1585 *  @hw: pointer to the HW structure
1586 *  @speed: stores the current speed
1587 *  @duplex: stores the current duplex
1588 *
1589 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1590 *  for fiber/serdes links.
1591 **/
1592s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
1593						    u16 *speed, u16 *duplex)
1594{
1595	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1596
1597	*speed = SPEED_1000;
1598	*duplex = FULL_DUPLEX;
1599
1600	return E1000_SUCCESS;
1601}
1602
1603/**
1604 *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1605 *  @hw: pointer to the HW structure
1606 *
1607 *  Acquire the HW semaphore to access the PHY or NVM
1608 **/
1609s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
1610{
1611	u32 swsm;
1612	s32 timeout = hw->nvm.word_size + 1;
1613	s32 i = 0;
1614
1615	DEBUGFUNC("e1000_get_hw_semaphore_generic");
1616
1617	/* Get the SW semaphore */
1618	while (i < timeout) {
1619		swsm = E1000_READ_REG(hw, E1000_SWSM);
1620		if (!(swsm & E1000_SWSM_SMBI))
1621			break;
1622
1623		usec_delay(50);
1624		i++;
1625	}
1626
1627	if (i == timeout) {
1628		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1629		return -E1000_ERR_NVM;
1630	}
1631
1632	/* Get the FW semaphore. */
1633	for (i = 0; i < timeout; i++) {
1634		swsm = E1000_READ_REG(hw, E1000_SWSM);
1635		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1636
1637		/* Semaphore acquired if bit latched */
1638		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
1639			break;
1640
1641		usec_delay(50);
1642	}
1643
1644	if (i == timeout) {
1645		/* Release semaphores */
1646		e1000_put_hw_semaphore_generic(hw);
1647		DEBUGOUT("Driver can't access the NVM\n");
1648		return -E1000_ERR_NVM;
1649	}
1650
1651	return E1000_SUCCESS;
1652}
1653
1654/**
1655 *  e1000_put_hw_semaphore_generic - Release hardware semaphore
1656 *  @hw: pointer to the HW structure
1657 *
1658 *  Release hardware semaphore used to access the PHY or NVM
1659 **/
1660void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
1661{
1662	u32 swsm;
1663
1664	DEBUGFUNC("e1000_put_hw_semaphore_generic");
1665
1666	swsm = E1000_READ_REG(hw, E1000_SWSM);
1667
1668	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1669
1670	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
1671}
1672
1673/**
1674 *  e1000_get_auto_rd_done_generic - Check for auto read completion
1675 *  @hw: pointer to the HW structure
1676 *
1677 *  Check EEPROM for Auto Read done bit.
1678 **/
1679s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
1680{
1681	s32 i = 0;
1682
1683	DEBUGFUNC("e1000_get_auto_rd_done_generic");
1684
1685	while (i < AUTO_READ_DONE_TIMEOUT) {
1686		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
1687			break;
1688		msec_delay(1);
1689		i++;
1690	}
1691
1692	if (i == AUTO_READ_DONE_TIMEOUT) {
1693		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1694		return -E1000_ERR_RESET;
1695	}
1696
1697	return E1000_SUCCESS;
1698}
1699
1700/**
1701 *  e1000_valid_led_default_generic - Verify a valid default LED config
1702 *  @hw: pointer to the HW structure
1703 *  @data: pointer to the NVM (EEPROM)
1704 *
1705 *  Read the EEPROM for the current default LED configuration.  If the
1706 *  LED configuration is not valid, set to a valid LED configuration.
1707 **/
1708s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
1709{
1710	s32 ret_val;
1711
1712	DEBUGFUNC("e1000_valid_led_default_generic");
1713
1714	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1715	if (ret_val) {
1716		DEBUGOUT("NVM Read Error\n");
1717		return ret_val;
1718	}
1719
1720	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1721		*data = ID_LED_DEFAULT;
1722
1723	return E1000_SUCCESS;
1724}
1725
1726/**
1727 *  e1000_id_led_init_generic -
1728 *  @hw: pointer to the HW structure
1729 *
1730 **/
1731s32 e1000_id_led_init_generic(struct e1000_hw *hw)
1732{
1733	struct e1000_mac_info *mac = &hw->mac;
1734	s32 ret_val;
1735	const u32 ledctl_mask = 0x000000FF;
1736	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1737	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1738	u16 data, i, temp;
1739	const u16 led_mask = 0x0F;
1740
1741	DEBUGFUNC("e1000_id_led_init_generic");
1742
1743	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1744	if (ret_val)
1745		return ret_val;
1746
1747	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
1748	mac->ledctl_mode1 = mac->ledctl_default;
1749	mac->ledctl_mode2 = mac->ledctl_default;
1750
1751	for (i = 0; i < 4; i++) {
1752		temp = (data >> (i << 2)) & led_mask;
1753		switch (temp) {
1754		case ID_LED_ON1_DEF2:
1755		case ID_LED_ON1_ON2:
1756		case ID_LED_ON1_OFF2:
1757			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1758			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1759			break;
1760		case ID_LED_OFF1_DEF2:
1761		case ID_LED_OFF1_ON2:
1762		case ID_LED_OFF1_OFF2:
1763			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1764			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1765			break;
1766		default:
1767			/* Do nothing */
1768			break;
1769		}
1770		switch (temp) {
1771		case ID_LED_DEF1_ON2:
1772		case ID_LED_ON1_ON2:
1773		case ID_LED_OFF1_ON2:
1774			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1775			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1776			break;
1777		case ID_LED_DEF1_OFF2:
1778		case ID_LED_ON1_OFF2:
1779		case ID_LED_OFF1_OFF2:
1780			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1781			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1782			break;
1783		default:
1784			/* Do nothing */
1785			break;
1786		}
1787	}
1788
1789	return E1000_SUCCESS;
1790}
1791
1792/**
1793 *  e1000_setup_led_generic - Configures SW controllable LED
1794 *  @hw: pointer to the HW structure
1795 *
1796 *  This prepares the SW controllable LED for use and saves the current state
1797 *  of the LED so it can be later restored.
1798 **/
1799s32 e1000_setup_led_generic(struct e1000_hw *hw)
1800{
1801	u32 ledctl;
1802
1803	DEBUGFUNC("e1000_setup_led_generic");
1804
1805	if (hw->mac.ops.setup_led != e1000_setup_led_generic)
1806		return -E1000_ERR_CONFIG;
1807
1808	if (hw->phy.media_type == e1000_media_type_fiber) {
1809		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
1810		hw->mac.ledctl_default = ledctl;
1811		/* Turn off LED0 */
1812		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1813			    E1000_LEDCTL_LED0_MODE_MASK);
1814		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1815			   E1000_LEDCTL_LED0_MODE_SHIFT);
1816		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
1817	} else if (hw->phy.media_type == e1000_media_type_copper) {
1818		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1819	}
1820
1821	return E1000_SUCCESS;
1822}
1823
1824/**
1825 *  e1000_cleanup_led_generic - Set LED config to default operation
1826 *  @hw: pointer to the HW structure
1827 *
1828 *  Remove the current LED configuration and set the LED configuration
1829 *  to the default value, saved from the EEPROM.
1830 **/
1831s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
1832{
1833	DEBUGFUNC("e1000_cleanup_led_generic");
1834
1835	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1836	return E1000_SUCCESS;
1837}
1838
1839/**
1840 *  e1000_blink_led_generic - Blink LED
1841 *  @hw: pointer to the HW structure
1842 *
1843 *  Blink the LEDs which are set to be on.
1844 **/
1845s32 e1000_blink_led_generic(struct e1000_hw *hw)
1846{
1847	u32 ledctl_blink = 0;
1848	u32 i;
1849
1850	DEBUGFUNC("e1000_blink_led_generic");
1851
1852	if (hw->phy.media_type == e1000_media_type_fiber) {
1853		/* always blink LED0 for PCI-E fiber */
1854		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1855		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1856	} else {
1857		/*
1858		 * set the blink bit for each LED that's "on" (0x0E)
1859		 * in ledctl_mode2
1860		 */
1861		ledctl_blink = hw->mac.ledctl_mode2;
1862		for (i = 0; i < 4; i++)
1863			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1864			    E1000_LEDCTL_MODE_LED_ON)
1865				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1866						 (i * 8));
1867	}
1868
1869	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
1870
1871	return E1000_SUCCESS;
1872}
1873
1874/**
1875 *  e1000_led_on_generic - Turn LED on
1876 *  @hw: pointer to the HW structure
1877 *
1878 *  Turn LED on.
1879 **/
1880s32 e1000_led_on_generic(struct e1000_hw *hw)
1881{
1882	u32 ctrl;
1883
1884	DEBUGFUNC("e1000_led_on_generic");
1885
1886	switch (hw->phy.media_type) {
1887	case e1000_media_type_fiber:
1888		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1889		ctrl &= ~E1000_CTRL_SWDPIN0;
1890		ctrl |= E1000_CTRL_SWDPIO0;
1891		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1892		break;
1893	case e1000_media_type_copper:
1894		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
1895		break;
1896	default:
1897		break;
1898	}
1899
1900	return E1000_SUCCESS;
1901}
1902
1903/**
1904 *  e1000_led_off_generic - Turn LED off
1905 *  @hw: pointer to the HW structure
1906 *
1907 *  Turn LED off.
1908 **/
1909s32 e1000_led_off_generic(struct e1000_hw *hw)
1910{
1911	u32 ctrl;
1912
1913	DEBUGFUNC("e1000_led_off_generic");
1914
1915	switch (hw->phy.media_type) {
1916	case e1000_media_type_fiber:
1917		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1918		ctrl |= E1000_CTRL_SWDPIN0;
1919		ctrl |= E1000_CTRL_SWDPIO0;
1920		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1921		break;
1922	case e1000_media_type_copper:
1923		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1924		break;
1925	default:
1926		break;
1927	}
1928
1929	return E1000_SUCCESS;
1930}
1931
1932/**
1933 *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
1934 *  @hw: pointer to the HW structure
1935 *  @no_snoop: bitmap of snoop events
1936 *
1937 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1938 **/
1939void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
1940{
1941	u32 gcr;
1942
1943	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
1944
1945	if (hw->bus.type != e1000_bus_type_pci_express)
1946		return;
1947
1948	if (no_snoop) {
1949		gcr = E1000_READ_REG(hw, E1000_GCR);
1950		gcr &= ~(PCIE_NO_SNOOP_ALL);
1951		gcr |= no_snoop;
1952		E1000_WRITE_REG(hw, E1000_GCR, gcr);
1953	}
1954}
1955
1956/**
1957 *  e1000_disable_pcie_master_generic - Disables PCI-express master access
1958 *  @hw: pointer to the HW structure
1959 *
1960 *  Returns E1000_SUCCESS if successful, else returns -10
1961 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1962 *  the master requests to be disabled.
1963 *
1964 *  Disables PCI-Express master access and verifies there are no pending
1965 *  requests.
1966 **/
1967s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
1968{
1969	u32 ctrl;
1970	s32 timeout = MASTER_DISABLE_TIMEOUT;
1971
1972	DEBUGFUNC("e1000_disable_pcie_master_generic");
1973
1974	if (hw->bus.type != e1000_bus_type_pci_express)
1975		return E1000_SUCCESS;
1976
1977	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1978	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1979	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1980
1981	while (timeout) {
1982		if (!(E1000_READ_REG(hw, E1000_STATUS) &
1983		      E1000_STATUS_GIO_MASTER_ENABLE))
1984			break;
1985		usec_delay(100);
1986		timeout--;
1987	}
1988
1989	if (!timeout) {
1990		DEBUGOUT("Master requests are pending.\n");
1991		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1992	}
1993
1994	return E1000_SUCCESS;
1995}
1996
1997/**
1998 *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
1999 *  @hw: pointer to the HW structure
2000 *
2001 *  Reset the Adaptive Interframe Spacing throttle to default values.
2002 **/
2003void e1000_reset_adaptive_generic(struct e1000_hw *hw)
2004{
2005	struct e1000_mac_info *mac = &hw->mac;
2006
2007	DEBUGFUNC("e1000_reset_adaptive_generic");
2008
2009	if (!mac->adaptive_ifs) {
2010		DEBUGOUT("Not in Adaptive IFS mode!\n");
2011		return;
2012	}
2013
2014	mac->current_ifs_val = 0;
2015	mac->ifs_min_val = IFS_MIN;
2016	mac->ifs_max_val = IFS_MAX;
2017	mac->ifs_step_size = IFS_STEP;
2018	mac->ifs_ratio = IFS_RATIO;
2019
2020	mac->in_ifs_mode = FALSE;
2021	E1000_WRITE_REG(hw, E1000_AIT, 0);
2022}
2023
2024/**
2025 *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2026 *  @hw: pointer to the HW structure
2027 *
2028 *  Update the Adaptive Interframe Spacing Throttle value based on the
2029 *  time between transmitted packets and time between collisions.
2030 **/
2031void e1000_update_adaptive_generic(struct e1000_hw *hw)
2032{
2033	struct e1000_mac_info *mac = &hw->mac;
2034
2035	DEBUGFUNC("e1000_update_adaptive_generic");
2036
2037	if (!mac->adaptive_ifs) {
2038		DEBUGOUT("Not in Adaptive IFS mode!\n");
2039		return;
2040	}
2041
2042	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
2043		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
2044			mac->in_ifs_mode = TRUE;
2045			if (mac->current_ifs_val < mac->ifs_max_val) {
2046				if (!mac->current_ifs_val)
2047					mac->current_ifs_val = mac->ifs_min_val;
2048				else
2049					mac->current_ifs_val +=
2050						mac->ifs_step_size;
2051				E1000_WRITE_REG(hw, E1000_AIT,
2052						mac->current_ifs_val);
2053			}
2054		}
2055	} else {
2056		if (mac->in_ifs_mode &&
2057		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
2058			mac->current_ifs_val = 0;
2059			mac->in_ifs_mode = FALSE;
2060			E1000_WRITE_REG(hw, E1000_AIT, 0);
2061		}
2062	}
2063}
2064
2065/**
2066 *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Verify that when not using auto-negotiation that MDI/MDIx is correctly
2070 *  set, which is forced to MDI mode only.
2071 **/
2072static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
2073{
2074	DEBUGFUNC("e1000_validate_mdi_setting_generic");
2075
2076	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
2077		DEBUGOUT("Invalid MDI setting detected\n");
2078		hw->phy.mdix = 1;
2079		return -E1000_ERR_CONFIG;
2080	}
2081
2082	return E1000_SUCCESS;
2083}
2084
2085/**
2086 *  e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
2087 *  @hw: pointer to the HW structure
2088 *  @reg: 32bit register offset such as E1000_SCTL
2089 *  @offset: register offset to write to
2090 *  @data: data to write at register offset
2091 *
2092 *  Writes an address/data control type register.  There are several of these
2093 *  and they all have the format address << 8 | data and bit 31 is polled for
2094 *  completion.
2095 **/
2096s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
2097				      u32 offset, u8 data)
2098{
2099	u32 i, regvalue = 0;
2100
2101	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
2102
2103	/* Set up the address and data */
2104	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
2105	E1000_WRITE_REG(hw, reg, regvalue);
2106
2107	/* Poll the ready bit to see if the MDI read completed */
2108	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
2109		usec_delay(5);
2110		regvalue = E1000_READ_REG(hw, reg);
2111		if (regvalue & E1000_GEN_CTL_READY)
2112			break;
2113	}
2114	if (!(regvalue & E1000_GEN_CTL_READY)) {
2115		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
2116		return -E1000_ERR_PHY;
2117	}
2118
2119	return E1000_SUCCESS;
2120}
2121