1/* second CTRC functionality for GeForce cards */
2/* Author:
3   Rudolf Cornelissen 11/2002-9/2004
4*/
5
6#define MODULE_BIT 0x00020000
7
8#include "std.h"
9
10/*Adjust passed parameters to a valid mode line*/
11status_t eng_crtc2_validate_timing(
12	uint16 *hd_e,uint16 *hs_s,uint16 *hs_e,uint16 *ht,
13	uint16 *vd_e,uint16 *vs_s,uint16 *vs_e,uint16 *vt
14)
15{
16/* horizontal */
17	/* make all parameters multiples of 8 */
18	*hd_e &= 0xfff8;
19	*hs_s &= 0xfff8;
20	*hs_e &= 0xfff8;
21	*ht   &= 0xfff8;
22
23	/* confine to required number of bits, taking logic into account */
24	if (*hd_e > ((0x01ff - 2) << 3)) *hd_e = ((0x01ff - 2) << 3);
25	if (*hs_s > ((0x01ff - 1) << 3)) *hs_s = ((0x01ff - 1) << 3);
26	if (*hs_e > ( 0x01ff      << 3)) *hs_e = ( 0x01ff      << 3);
27	if (*ht   > ((0x01ff + 5) << 3)) *ht   = ((0x01ff + 5) << 3);
28
29	/* NOTE: keep horizontal timing at multiples of 8! */
30	/* confine to a reasonable width */
31	if (*hd_e < 640) *hd_e = 640;
32	if (*hd_e > 2048) *hd_e = 2048;
33
34	/* if hor. total does not leave room for a sensible sync pulse, increase it! */
35	if (*ht < (*hd_e + 80)) *ht = (*hd_e + 80);
36
37	/* if hor. total does not adhere to max. blanking pulse width, decrease it! */
38	if (*ht > (*hd_e + 0x3f8)) *ht = (*hd_e + 0x3f8);
39
40	/* make sure sync pulse is not during display */
41	if (*hs_e > (*ht - 8)) *hs_e = (*ht - 8);
42	if (*hs_s < (*hd_e + 8)) *hs_s = (*hd_e + 8);
43
44	/* correct sync pulse if it is too long:
45	 * there are only 5 bits available to save this in the card registers! */
46	if (*hs_e > (*hs_s + 0xf8)) *hs_e = (*hs_s + 0xf8);
47
48/*vertical*/
49	/* confine to required number of bits, taking logic into account */
50	//fixme if needed: on GeForce cards there are 12 instead of 11 bits...
51	if (*vd_e > (0x7ff - 2)) *vd_e = (0x7ff - 2);
52	if (*vs_s > (0x7ff - 1)) *vs_s = (0x7ff - 1);
53	if (*vs_e >  0x7ff     ) *vs_e =  0x7ff     ;
54	if (*vt   > (0x7ff + 2)) *vt   = (0x7ff + 2);
55
56	/* confine to a reasonable height */
57	if (*vd_e < 480) *vd_e = 480;
58	if (*vd_e > 1536) *vd_e = 1536;
59
60	/*if vertical total does not leave room for a sync pulse, increase it!*/
61	if (*vt < (*vd_e + 3)) *vt = (*vd_e + 3);
62
63	/* if vert. total does not adhere to max. blanking pulse width, decrease it! */
64	if (*vt > (*vd_e + 0xff)) *vt = (*vd_e + 0xff);
65
66	/* make sure sync pulse is not during display */
67	if (*vs_e > (*vt - 1)) *vs_e = (*vt - 1);
68	if (*vs_s < (*vd_e + 1)) *vs_s = (*vd_e + 1);
69
70	/* correct sync pulse if it is too long:
71	 * there are only 4 bits available to save this in the card registers! */
72	if (*vs_e > (*vs_s + 0x0f)) *vs_e = (*vs_s + 0x0f);
73
74	return B_OK;
75}
76
77/*set a mode line - inputs are in pixels*/
78status_t eng_crtc2_set_timing(display_mode target)
79{
80	uint8 temp;
81
82	uint32 htotal;		/*total horizontal total VCLKs*/
83	uint32 hdisp_e;            /*end of horizontal display (begins at 0)*/
84	uint32 hsync_s;            /*begin of horizontal sync pulse*/
85	uint32 hsync_e;            /*end of horizontal sync pulse*/
86	uint32 hblnk_s;            /*begin horizontal blanking*/
87	uint32 hblnk_e;            /*end horizontal blanking*/
88
89	uint32 vtotal;		/*total vertical total scanlines*/
90	uint32 vdisp_e;            /*end of vertical display*/
91	uint32 vsync_s;            /*begin of vertical sync pulse*/
92	uint32 vsync_e;            /*end of vertical sync pulse*/
93	uint32 vblnk_s;            /*begin vertical blanking*/
94	uint32 vblnk_e;            /*end vertical blanking*/
95
96	uint32 linecomp;	/*split screen and vdisp_e interrupt*/
97
98	LOG(4,("CRTC2: setting timing\n"));
99
100	/* setup tuned internal modeline for flatpanel if connected and active */
101	/* notes:
102	 * - the CRTC modeline must end earlier than the panel modeline to keep correct
103	 *   sync going;
104	 * - if the CRTC modeline ends too soon, pixelnoise will occur in 8 (or so) pixel
105	 *   wide horizontal stripes. This can be observed earliest on fullscreen overlay,
106	 *   and if it gets worse, also normal desktop output will suffer. The stripes
107	 *   are mainly visible at the left of the screen, over the entire screen height. */
108	if (si->ps.tmds2_active)
109	{
110		LOG(2,("CRTC2: DFP active: tuning modeline\n"));
111
112		/* horizontal timing */
113		target.timing.h_sync_start =
114			((uint16)((si->ps.p2_timing.h_sync_start / ((float)si->ps.p2_timing.h_display)) *
115			target.timing.h_display)) & 0xfff8;
116
117		target.timing.h_sync_end =
118			((uint16)((si->ps.p2_timing.h_sync_end / ((float)si->ps.p2_timing.h_display)) *
119			target.timing.h_display)) & 0xfff8;
120
121		target.timing.h_total =
122			(((uint16)((si->ps.p2_timing.h_total / ((float)si->ps.p2_timing.h_display)) *
123			target.timing.h_display)) & 0xfff8) - 8;
124
125		/* in native mode the CRTC needs some extra time to keep synced correctly;
126		 * OTOH the overlay unit distorts if we reserve too much time! */
127		if (target.timing.h_display == si->ps.p2_timing.h_display)
128		{
129			/* NV11 timing has different constraints than later cards */
130			if (si->ps.card_type == NV11)
131				target.timing.h_total -= 56;
132			else
133				/* confirmed NV34 with 1680x1050 panel */
134				target.timing.h_total -= 32;
135		}
136
137		if (target.timing.h_sync_start == target.timing.h_display)
138			target.timing.h_sync_start += 8;
139		if (target.timing.h_sync_end == target.timing.h_total)
140			target.timing.h_sync_end -= 8;
141
142		/* vertical timing */
143		target.timing.v_sync_start =
144			((uint16)((si->ps.p2_timing.v_sync_start / ((float)si->ps.p2_timing.v_display)) *
145			target.timing.v_display));
146
147		target.timing.v_sync_end =
148			((uint16)((si->ps.p2_timing.v_sync_end / ((float)si->ps.p2_timing.v_display)) *
149			target.timing.v_display));
150
151		target.timing.v_total =
152			((uint16)((si->ps.p2_timing.v_total / ((float)si->ps.p2_timing.v_display)) *
153			target.timing.v_display)) - 1;
154
155		if (target.timing.v_sync_start == target.timing.v_display)
156			target.timing.v_sync_start += 1;
157		if (target.timing.v_sync_end == target.timing.v_total)
158			target.timing.v_sync_end -= 1;
159
160		/* disable GPU scaling testmode so automatic scaling will be done */
161		DAC2W(FP_DEBUG1, 0);
162	}
163
164	/* Modify parameters as required by standard VGA */
165	htotal = ((target.timing.h_total >> 3) - 5);
166	hdisp_e = ((target.timing.h_display >> 3) - 1);
167	hblnk_s = hdisp_e;
168	hblnk_e = (htotal + 4);//0;
169	hsync_s = (target.timing.h_sync_start >> 3);
170	hsync_e = (target.timing.h_sync_end >> 3);
171
172	vtotal = target.timing.v_total - 2;
173	vdisp_e = target.timing.v_display - 1;
174	vblnk_s = vdisp_e;
175	vblnk_e = (vtotal + 1);
176	vsync_s = target.timing.v_sync_start;//-1;
177	vsync_e = target.timing.v_sync_end;//-1;
178
179	/* prevent memory adress counter from being reset (linecomp may not occur) */
180	linecomp = target.timing.v_display;
181
182	/* enable access to secondary head */
183	set_crtc_owner(1);
184
185	/* Note for laptop and DVI flatpanels:
186	 * CRTC timing has a seperate set of registers from flatpanel timing.
187	 * The flatpanel timing registers have scaling registers that are used to match
188	 * these two modelines. */
189	{
190		LOG(4,("CRTC2: Setting full timing...\n"));
191
192		/* log the mode that will be set */
193		LOG(2,("CRTC2:\n\tHTOT:%x\n\tHDISPEND:%x\n\tHBLNKS:%x\n\tHBLNKE:%x\n\tHSYNCS:%x\n\tHSYNCE:%x\n\t",htotal,hdisp_e,hblnk_s,hblnk_e,hsync_s,hsync_e));
194		LOG(2,("VTOT:%x\n\tVDISPEND:%x\n\tVBLNKS:%x\n\tVBLNKE:%x\n\tVSYNCS:%x\n\tVSYNCE:%x\n",vtotal,vdisp_e,vblnk_s,vblnk_e,vsync_s,vsync_e));
195
196		/* actually program the card! */
197		/* unlock CRTC registers at index 0-7 */
198		CRTC2W(VSYNCE, (CRTC2R(VSYNCE) & 0x7f));
199		/* horizontal standard VGA regs */
200		CRTC2W(HTOTAL, (htotal & 0xff));
201		CRTC2W(HDISPE, (hdisp_e & 0xff));
202		CRTC2W(HBLANKS, (hblnk_s & 0xff));
203		/* also unlock vertical retrace registers in advance */
204		CRTC2W(HBLANKE, ((hblnk_e & 0x1f) | 0x80));
205		CRTC2W(HSYNCS, (hsync_s & 0xff));
206		CRTC2W(HSYNCE, ((hsync_e & 0x1f) | ((hblnk_e & 0x20) << 2)));
207
208		/* vertical standard VGA regs */
209		CRTC2W(VTOTAL, (vtotal & 0xff));
210		CRTC2W(OVERFLOW,
211		(
212			((vtotal & 0x100) >> (8 - 0)) | ((vtotal & 0x200) >> (9 - 5)) |
213			((vdisp_e & 0x100) >> (8 - 1)) | ((vdisp_e & 0x200) >> (9 - 6)) |
214			((vsync_s & 0x100) >> (8 - 2)) | ((vsync_s & 0x200) >> (9 - 7)) |
215			((vblnk_s & 0x100) >> (8 - 3)) | ((linecomp & 0x100) >> (8 - 4))
216		));
217		CRTC2W(PRROWSCN, 0x00); /* not used */
218		CRTC2W(MAXSCLIN, (((vblnk_s & 0x200) >> (9 - 5)) | ((linecomp & 0x200) >> (9 - 6))));
219		CRTC2W(VSYNCS, (vsync_s & 0xff));
220		CRTC2W(VSYNCE, ((CRTC2R(VSYNCE) & 0xf0) | (vsync_e & 0x0f)));
221		CRTC2W(VDISPE, (vdisp_e & 0xff));
222		CRTC2W(VBLANKS, (vblnk_s & 0xff));
223		CRTC2W(VBLANKE, (vblnk_e & 0xff));
224		CRTC2W(LINECOMP, (linecomp & 0xff));
225
226		/* horizontal extended regs */
227		//fixme: we reset bit4. is this correct??
228		CRTC2W(HEB, (CRTC2R(HEB) & 0xe0) |
229			(
230		 	((htotal & 0x100) >> (8 - 0)) |
231			((hdisp_e & 0x100) >> (8 - 1)) |
232			((hblnk_s & 0x100) >> (8 - 2)) |
233			((hsync_s & 0x100) >> (8 - 3))
234			));
235
236		/* (mostly) vertical extended regs */
237		CRTC2W(LSR,
238			(
239		 	((vtotal & 0x400) >> (10 - 0)) |
240			((vdisp_e & 0x400) >> (10 - 1)) |
241			((vsync_s & 0x400) >> (10 - 2)) |
242			((vblnk_s & 0x400) >> (10 - 3)) |
243			((hblnk_e & 0x040) >> (6 - 4))
244			//fixme: we still miss one linecomp bit!?! is this it??
245			//| ((linecomp & 0x400) >> 3)
246			));
247
248		/* more vertical extended regs */
249		CRTC2W(EXTRA,
250			(
251		 	((vtotal & 0x800) >> (11 - 0)) |
252			((vdisp_e & 0x800) >> (11 - 2)) |
253			((vsync_s & 0x800) >> (11 - 4)) |
254			((vblnk_s & 0x800) >> (11 - 6))
255			//fixme: do we miss another linecomp bit!?!
256			));
257
258		/* setup 'large screen' mode */
259		if (target.timing.h_display >= 1280)
260			CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0xfb));
261		else
262			CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x04));
263
264		/* setup HSYNC & VSYNC polarity */
265		LOG(2,("CRTC2: sync polarity: "));
266		temp = ENG_REG8(RG8_MISCR);
267		if (target.timing.flags & B_POSITIVE_HSYNC)
268		{
269			LOG(2,("H:pos "));
270			temp &= ~0x40;
271		}
272		else
273		{
274			LOG(2,("H:neg "));
275			temp |= 0x40;
276		}
277		if (target.timing.flags & B_POSITIVE_VSYNC)
278		{
279			LOG(2,("V:pos "));
280			temp &= ~0x80;
281		}
282		else
283		{
284			LOG(2,("V:neg "));
285			temp |= 0x80;
286		}
287		ENG_REG8(RG8_MISCW) = temp;
288
289		LOG(2,(", MISC reg readback: $%02x\n", ENG_REG8(RG8_MISCR)));
290	}
291
292	/* always disable interlaced operation */
293	/* (interlace is supported on upto and including NV10, NV15, and NV30 and up) */
294	CRTC2W(INTERLACE, 0xff);
295
296	/* disable CRTC slaved mode unless a panel is in use */
297	// fixme: this kills TVout when it was in use...
298	if (!si->ps.tmds2_active) CRTC2W(PIXEL, (CRTC2R(PIXEL) & 0x7f));
299
300	/* setup flatpanel if connected and active */
301	if (si->ps.tmds2_active)
302	{
303		uint32 iscale_x, iscale_y;
304
305		/* calculate inverse scaling factors used by hardware in 20.12 format */
306		iscale_x = (((1 << 12) * target.timing.h_display) / si->ps.p2_timing.h_display);
307		iscale_y = (((1 << 12) * target.timing.v_display) / si->ps.p2_timing.v_display);
308
309		/* unblock flatpanel timing programming (or something like that..) */
310		CRTC2W(FP_HTIMING, 0);
311		CRTC2W(FP_VTIMING, 0);
312		LOG(2,("CRTC2: FP_HTIMING reg readback: $%02x\n", CRTC2R(FP_HTIMING)));
313		LOG(2,("CRTC2: FP_VTIMING reg readback: $%02x\n", CRTC2R(FP_VTIMING)));
314
315		/* enable full width visibility on flatpanel */
316		DAC2W(FP_HVALID_S, 0);
317		DAC2W(FP_HVALID_E, (si->ps.p2_timing.h_display - 1));
318		/* enable full height visibility on flatpanel */
319		DAC2W(FP_VVALID_S, 0);
320		DAC2W(FP_VVALID_E, (si->ps.p2_timing.v_display - 1));
321
322		/* nVidia cards support upscaling except on ??? */
323		/* NV11 cards can upscale after all! */
324		if (0)//si->ps.card_type == NV11)
325		{
326			/* disable last fetched line limiting */
327			DAC2W(FP_DEBUG2, 0x00000000);
328			/* inform panel to scale if needed */
329			if ((iscale_x != (1 << 12)) || (iscale_y != (1 << 12)))
330			{
331				LOG(2,("CRTC2: DFP needs to do scaling\n"));
332				DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) | 0x00000100));
333			}
334			else
335			{
336				LOG(2,("CRTC2: no scaling for DFP needed\n"));
337				DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) & 0xfffffeff));
338			}
339		}
340		else
341		{
342			float dm_aspect;
343
344			LOG(2,("CRTC2: GPU scales for DFP if needed\n"));
345
346			/* calculate display mode aspect */
347			dm_aspect = (target.timing.h_display / ((float)target.timing.v_display));
348
349			/* limit last fetched line if vertical scaling is done */
350			if (iscale_y != (1 << 12))
351				DAC2W(FP_DEBUG2, ((1 << 28) | ((target.timing.v_display - 1) << 16)));
352			else
353				DAC2W(FP_DEBUG2, 0x00000000);
354
355			/* inform panel not to scale */
356			DAC2W(FP_TG_CTRL, (DAC2R(FP_TG_CTRL) & 0xfffffeff));
357
358			/* GPU scaling is automatically setup by hardware, so only modify this
359			 * scalingfactor for non 4:3 (1.33) aspect panels;
360			 * let's consider 1280x1024 1:33 aspect (it's 1.25 aspect actually!) */
361
362			/* correct for widescreen panels relative to mode...
363			 * (so if panel is more widescreen than mode being set) */
364			/* BTW: known widescreen panels:
365			 * 1280 x  800 (1.60),
366			 * 1440 x  900 (1.60),
367			 * 1680 x 1050 (1.60),
368			 * 1920 x 1200 (1.60). */
369			/* known 4:3 aspect non-standard resolution panels:
370			 * 1400 x 1050 (1.33). */
371			/* NOTE:
372			 * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */
373			if ((iscale_x != (1 << 12)) && (si->ps.panel2_aspect > (dm_aspect + 0.10)))
374			{
375				uint16 diff;
376
377				LOG(2,("CRTC2: (relative) widescreen panel: tuning horizontal scaling\n"));
378
379				/* X-scaling should be the same as Y-scaling */
380				iscale_x = iscale_y;
381				/* enable testmode (b12) and program new X-scaling factor */
382				DAC2W(FP_DEBUG1, (((iscale_x >> 1) & 0x00000fff) | (1 << 12)));
383				/* center/cut-off left and right side of screen */
384				diff = ((si->ps.p2_timing.h_display -
385						(target.timing.h_display * ((1 << 12) / ((float)iscale_x))))
386						/ 2);
387				DAC2W(FP_HVALID_S, diff);
388				DAC2W(FP_HVALID_E, ((si->ps.p2_timing.h_display - diff) - 1));
389			}
390			/* correct for portrait panels... */
391			/* NOTE:
392			 * allow 0.10 difference so 1280x1024 panels will be used fullscreen! */
393			if ((iscale_y != (1 << 12)) && (si->ps.panel2_aspect < (dm_aspect - 0.10)))
394			{
395				LOG(2,("CRTC2: (relative) portrait panel: should tune vertical scaling\n"));
396				/* fixme: implement if this kind of portrait panels exist on nVidia... */
397			}
398		}
399
400		/* do some logging.. */
401		LOG(2,("CRTC2: FP_HVALID_S reg readback: $%08x\n", DAC2R(FP_HVALID_S)));
402		LOG(2,("CRTC2: FP_HVALID_E reg readback: $%08x\n", DAC2R(FP_HVALID_E)));
403		LOG(2,("CRTC2: FP_VVALID_S reg readback: $%08x\n", DAC2R(FP_VVALID_S)));
404		LOG(2,("CRTC2: FP_VVALID_E reg readback: $%08x\n", DAC2R(FP_VVALID_E)));
405		LOG(2,("CRTC2: FP_DEBUG0 reg readback: $%08x\n", DAC2R(FP_DEBUG0)));
406		LOG(2,("CRTC2: FP_DEBUG1 reg readback: $%08x\n", DAC2R(FP_DEBUG1)));
407		LOG(2,("CRTC2: FP_DEBUG2 reg readback: $%08x\n", DAC2R(FP_DEBUG2)));
408		LOG(2,("CRTC2: FP_DEBUG3 reg readback: $%08x\n", DAC2R(FP_DEBUG3)));
409		LOG(2,("CRTC2: FP_TG_CTRL reg readback: $%08x\n", DAC2R(FP_TG_CTRL)));
410	}
411
412	return B_OK;
413}
414
415status_t eng_crtc2_depth(int mode)
416{
417	uint8 viddelay = 0;
418	uint32 genctrl = 0;
419
420	/* set VCLK scaling */
421	switch(mode)
422	{
423	case BPP8:
424		viddelay = 0x01;
425		/* genctrl b4 & b5 reset: 'direct mode' */
426		genctrl = 0x00101100;
427		break;
428	case BPP15:
429		viddelay = 0x02;
430		/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
431		genctrl = 0x00100130;
432		break;
433	case BPP16:
434		viddelay = 0x02;
435		/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
436		genctrl = 0x00101130;
437		break;
438	case BPP24:
439		viddelay = 0x03;
440		/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
441		genctrl = 0x00100130;
442		break;
443	case BPP32:
444		viddelay = 0x03;
445		/* genctrl b4 & b5 set: 'indirect mode' (via colorpalette) */
446		genctrl = 0x00101130;
447		break;
448	}
449	/* enable access to secondary head */
450	set_crtc_owner(1);
451
452	CRTC2W(PIXEL, ((CRTC2R(PIXEL) & 0xfc) | viddelay));
453	DAC2W(GENCTRL, genctrl);
454
455	return B_OK;
456}
457
458status_t eng_crtc2_dpms(bool display, bool h, bool v)
459{
460	uint8 temp;
461
462	LOG(4,("CRTC2: setting DPMS: "));
463
464	/* enable access to secondary head */
465	set_crtc_owner(1);
466
467	/* start synchronous reset: required before turning screen off! */
468	SEQW(RESET, 0x01);
469
470	/* turn screen off */
471	temp = SEQR(CLKMODE);
472	if (display)
473	{
474		SEQW(CLKMODE, (temp & ~0x20));
475
476		/* end synchronous reset if display should be enabled */
477		SEQW(RESET, 0x03);
478
479		//'safe mode' test! feedback needed with this 'setting'!
480		if (0)//si->ps.tmds2_active)
481		{
482			/* powerup both LVDS (laptop panellink) and TMDS (DVI panellink)
483			 * internal transmitters... */
484			/* note:
485			 * the powerbits in this register are hardwired to the DVI connectors,
486			 * instead of to the DACs! (confirmed NV34) */
487			//fixme...
488			DAC2W(FP_DEBUG0, (DAC2R(FP_DEBUG0) & 0xcfffffff));
489			/* ... and powerup external TMDS transmitter if it exists */
490			/* (confirmed OK on NV28 and NV34) */
491			CRTC2W(0x59, (CRTC2R(0x59) | 0x01));
492		}
493
494		LOG(4,("display on, "));
495	}
496	else
497	{
498		SEQW(CLKMODE, (temp | 0x20));
499
500		//'safe mode' test! feedback needed with this 'setting'!
501		if (0)//si->ps.tmds2_active)
502		{
503			/* powerdown both LVDS (laptop panellink) and TMDS (DVI panellink)
504			 * internal transmitters... */
505			/* note:
506			 * the powerbits in this register are hardwired to the DVI connectors,
507			 * instead of to the DACs! (confirmed NV34) */
508			//fixme...
509			DAC2W(FP_DEBUG0, (DAC2R(FP_DEBUG0) | 0x30000000));
510			/* ... and powerdown external TMDS transmitter if it exists */
511			/* (confirmed OK on NV28 and NV34) */
512			CRTC2W(0x59, (CRTC2R(0x59) & 0xfe));
513		}
514
515		LOG(4,("display off, "));
516	}
517
518	if (h)
519	{
520		CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0x7f));
521		LOG(4,("hsync enabled, "));
522	}
523	else
524	{
525		CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x80));
526		LOG(4,("hsync disabled, "));
527	}
528	if (v)
529	{
530		CRTC2W(REPAINT1, (CRTC2R(REPAINT1) & 0xbf));
531		LOG(4,("vsync enabled\n"));
532	}
533	else
534	{
535		CRTC2W(REPAINT1, (CRTC2R(REPAINT1) | 0x40));
536		LOG(4,("vsync disabled\n"));
537	}
538
539	return B_OK;
540}
541
542status_t eng_crtc2_dpms_fetch(bool *display, bool *h, bool *v)
543{
544	/* enable access to secondary head */
545	set_crtc_owner(1);
546
547	*display = !(SEQR(CLKMODE) & 0x20);
548	*h = !(CRTC2R(REPAINT1) & 0x80);
549	*v = !(CRTC2R(REPAINT1) & 0x40);
550
551	LOG(4,("CTRC2: fetched DPMS state: "));
552	if (*display) LOG(4,("display on, "));
553	else LOG(4,("display off, "));
554	if (*h) LOG(4,("hsync enabled, "));
555	else LOG(4,("hsync disabled, "));
556	if (*v) LOG(4,("vsync enabled\n"));
557	else LOG(4,("vsync disabled\n"));
558
559	return B_OK;
560}
561
562status_t eng_crtc2_set_display_pitch()
563{
564	uint32 offset;
565
566	LOG(4,("CRTC2: setting card pitch (offset between lines)\n"));
567
568	/* figure out offset value hardware needs */
569	offset = si->fbc.bytes_per_row / 8;
570
571	LOG(2,("CRTC2: offset register set to: $%04x\n", offset));
572
573	/* enable access to secondary head */
574	set_crtc_owner(1);
575
576	/* program the card */
577	CRTC2W(PITCHL, (offset & 0x00ff));
578	CRTC2W(REPAINT0, ((CRTC2R(REPAINT0) & 0x1f) | ((offset & 0x0700) >> 3)));
579
580	return B_OK;
581}
582
583status_t eng_crtc2_set_display_start(uint32 startadd,uint8 bpp)
584{
585	uint32 timeout = 0;
586
587	LOG(4,("CRTC2: setting card RAM to be displayed bpp %d\n", bpp));
588
589	LOG(2,("CRTC2: startadd: $%08x\n", startadd));
590	LOG(2,("CRTC2: frameRAM: $%08x\n", si->framebuffer));
591	LOG(2,("CRTC2: framebuffer: $%08x\n", si->fbc.frame_buffer));
592
593	/* we might have no retraces during setmode! */
594	/* wait 25mS max. for retrace to occur (refresh > 40Hz) */
595	while (((ENG_REG32(RG32_RASTER2) & 0x000007ff) < si->dm.timing.v_display) &&
596			(timeout < (25000/10)))
597	{
598		/* don't snooze much longer or retrace might get missed! */
599		snooze(10);
600		timeout++;
601	}
602
603	/* enable access to secondary head */
604	set_crtc_owner(1);
605
606	/* upto 4Gb RAM adressing: must be used on NV10 and later! */
607	/* NOTE:
608	 * While this register also exists on pre-NV10 cards, it will
609	 * wrap-around at 16Mb boundaries!! */
610
611	/* 30bit adress in 32bit words */
612	ENG_REG32(RG32_NV10FB2STADD32) = (startadd & 0xfffffffc);
613
614	/* set byte adress: (b0 - 1) */
615	ATB2W(HORPIXPAN, ((startadd & 0x00000003) << 1));
616
617	return B_OK;
618}
619
620status_t eng_crtc2_cursor_init()
621{
622	int i;
623	uint32 * fb;
624	/* cursor bitmap will be stored at the start of the framebuffer */
625	const uint32 curadd = 0;
626
627	/* enable access to secondary head */
628	set_crtc_owner(1);
629
630	/* set cursor bitmap adress ... */
631	if (si->ps.laptop)
632	{
633		/* must be used this way on pre-NV10 and on all 'Go' cards! */
634
635		/* cursorbitmap must start on 2Kbyte boundary: */
636		/* set adress bit11-16, and set 'no doublescan' (registerbit 1 = 0) */
637		CRTC2W(CURCTL0, ((curadd & 0x0001f800) >> 9));
638		/* set adress bit17-23, and set graphics mode cursor(?) (registerbit 7 = 1) */
639		CRTC2W(CURCTL1, (((curadd & 0x00fe0000) >> 17) | 0x80));
640		/* set adress bit24-31 */
641		CRTC2W(CURCTL2, ((curadd & 0xff000000) >> 24));
642	}
643	else
644	{
645		/* upto 4Gb RAM adressing:
646		 * can be used on NV10 and later (except for 'Go' cards)! */
647		/* NOTE:
648		 * This register does not exist on pre-NV10 and 'Go' cards. */
649
650		/* cursorbitmap must still start on 2Kbyte boundary: */
651		ENG_REG32(RG32_NV10CUR2ADD32) = (curadd & 0xfffff800);
652	}
653
654	/* set cursor colour: not needed because of direct nature of cursor bitmap. */
655
656	/*clear cursor*/
657	fb = (uint32 *) si->framebuffer + curadd;
658	for (i=0;i<(2048/4);i++)
659	{
660		fb[i]=0;
661	}
662
663	/* select 32x32 pixel, 16bit color cursorbitmap, no doublescan */
664	ENG_REG32(RG32_2CURCONF) = 0x02000100;
665
666	/* activate hardware cursor */
667	eng_crtc2_cursor_show();
668
669	return B_OK;
670}
671
672status_t eng_crtc2_cursor_show()
673{
674	LOG(4,("CRTC2: enabling cursor\n"));
675
676	/* enable access to secondary head */
677	set_crtc_owner(1);
678
679	/* b0 = 1 enables cursor */
680	CRTC2W(CURCTL0, (CRTC2R(CURCTL0) | 0x01));
681
682	return B_OK;
683}
684
685status_t eng_crtc2_cursor_hide()
686{
687	LOG(4,("CRTC2: disabling cursor\n"));
688
689	/* enable access to secondary head */
690	set_crtc_owner(1);
691
692	/* b0 = 0 disables cursor */
693	CRTC2W(CURCTL0, (CRTC2R(CURCTL0) & 0xfe));
694
695	return B_OK;
696}
697
698/*set up cursor shape*/
699status_t eng_crtc2_cursor_define(uint8* andMask,uint8* xorMask)
700{
701	int x, y;
702	uint8 b;
703	uint16 *cursor;
704	uint16 pixel;
705
706	/* get a pointer to the cursor */
707	cursor = (uint16*) si->framebuffer;
708
709	/* draw the cursor */
710	/* (Nvidia cards have a RGB15 direct color cursor bitmap, bit #16 is transparancy) */
711	for (y = 0; y < 16; y++)
712	{
713		b = 0x80;
714		for (x = 0; x < 8; x++)
715		{
716			/* preset transparant */
717			pixel = 0x0000;
718			/* set white if requested */
719			if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff;
720			/* set black if requested */
721			if ((!(*andMask & b)) &&   (*xorMask & b))  pixel = 0x8000;
722			/* set invert if requested */
723			if (  (*andMask & b)  &&   (*xorMask & b))  pixel = 0x7fff;
724			/* place the pixel in the bitmap */
725			cursor[x + (y * 32)] = pixel;
726			b >>= 1;
727		}
728		xorMask++;
729		andMask++;
730		b = 0x80;
731		for (; x < 16; x++)
732		{
733			/* preset transparant */
734			pixel = 0x0000;
735			/* set white if requested */
736			if ((!(*andMask & b)) && (!(*xorMask & b))) pixel = 0xffff;
737			/* set black if requested */
738			if ((!(*andMask & b)) &&   (*xorMask & b))  pixel = 0x8000;
739			/* set invert if requested */
740			if (  (*andMask & b)  &&   (*xorMask & b))  pixel = 0x7fff;
741			/* place the pixel in the bitmap */
742			cursor[x + (y * 32)] = pixel;
743			b >>= 1;
744		}
745		xorMask++;
746		andMask++;
747	}
748
749	return B_OK;
750}
751
752/* position the cursor */
753status_t eng_crtc2_cursor_position(uint16 x, uint16 y)
754{
755	uint16 yhigh;
756
757	/* make sure we are beyond the first line of the cursorbitmap being drawn during
758	 * updating the position to prevent distortions: no double buffering feature */
759	/* Note:
760	 * we need to return as quick as possible or some apps will exhibit lagging.. */
761
762	/* read the old cursor Y position */
763	yhigh = ((DAC2R(CURPOS) & 0x0fff0000) >> 16);
764	/* make sure we will wait until we are below both the old and new Y position:
765	 * visible cursorbitmap drawing needs to be done at least... */
766	if (y > yhigh) yhigh = y;
767
768	if (yhigh < (si->dm.timing.v_display - 16))
769	{
770		/* we have vertical lines below old and new cursorposition to spare. So we
771		 * update the cursor postion 'mid-screen', but below that area. */
772		while (((uint16)(ENG_REG32(RG32_RASTER2) & 0x000007ff)) < (yhigh + 16))
773		{
774			snooze(10);
775		}
776	}
777	else
778	{
779		/* no room to spare, just wait for retrace (is relatively slow) */
780		while ((ENG_REG32(RG32_RASTER2) & 0x000007ff) < si->dm.timing.v_display)
781		{
782			/* don't snooze much longer or retrace might get missed! */
783			snooze(10);
784		}
785	}
786
787	/* update cursorposition */
788	DAC2W(CURPOS, ((x & 0x0fff) | ((y & 0x0fff) << 16)));
789
790	return B_OK;
791}
792