1/* Allocate registers within a basic block, for GNU compiler.
2   Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING.  If not, write to
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA.  */
20
21
22/* Allocation of hard register numbers to pseudo registers is done in
23   two passes.  In this pass we consider only regs that are born and
24   die once within one basic block.  We do this one basic block at a
25   time.  Then the next pass allocates the registers that remain.
26   Two passes are used because this pass uses methods that work only
27   on linear code, but that do a better job than the general methods
28   used in global_alloc, and more quickly too.
29
30   The assignments made are recorded in the vector reg_renumber
31   whose space is allocated here.  The rtl code itself is not altered.
32
33   We assign each instruction in the basic block a number
34   which is its order from the beginning of the block.
35   Then we can represent the lifetime of a pseudo register with
36   a pair of numbers, and check for conflicts easily.
37   We can record the availability of hard registers with a
38   HARD_REG_SET for each instruction.  The HARD_REG_SET
39   contains 0 or 1 for each hard reg.
40
41   To avoid register shuffling, we tie registers together when one
42   dies by being copied into another, or dies in an instruction that
43   does arithmetic to produce another.  The tied registers are
44   allocated as one.  Registers with different reg class preferences
45   can never be tied unless the class preferred by one is a subclass
46   of the one preferred by the other.
47
48   Tying is represented with "quantity numbers".
49   A non-tied register is given a new quantity number.
50   Tied registers have the same quantity number.
51
52   We have provision to exempt registers, even when they are contained
53   within the block, that can be tied to others that are not contained in it.
54   This is so that global_alloc could process them both and tie them then.
55   But this is currently disabled since tying in global_alloc is not
56   yet implemented.  */
57
58/* Pseudos allocated here can be reallocated by global.c if the hard register
59   is used as a spill register.  Currently we don't allocate such pseudos
60   here if their preferred class is likely to be used by spills.  */
61
62#include "config.h"
63#include "system.h"
64#include "rtl.h"
65#include "flags.h"
66#include "basic-block.h"
67#include "regs.h"
68#include "hard-reg-set.h"
69#include "insn-config.h"
70#include "insn-attr.h"
71#include "recog.h"
72#include "output.h"
73#include "toplev.h"
74
75/* Next quantity number available for allocation.  */
76
77static int next_qty;
78
79/* In all the following vectors indexed by quantity number.  */
80
81/* Element Q is the hard reg number chosen for quantity Q,
82   or -1 if none was found.  */
83
84static short *qty_phys_reg;
85
86/* We maintain two hard register sets that indicate suggested hard registers
87   for each quantity.  The first, qty_phys_copy_sugg, contains hard registers
88   that are tied to the quantity by a simple copy.  The second contains all
89   hard registers that are tied to the quantity via an arithmetic operation.
90
91   The former register set is given priority for allocation.  This tends to
92   eliminate copy insns.  */
93
94/* Element Q is a set of hard registers that are suggested for quantity Q by
95   copy insns.  */
96
97static HARD_REG_SET *qty_phys_copy_sugg;
98
99/* Element Q is a set of hard registers that are suggested for quantity Q by
100   arithmetic insns.  */
101
102static HARD_REG_SET *qty_phys_sugg;
103
104/* Element Q is the number of suggested registers in qty_phys_copy_sugg.  */
105
106static short *qty_phys_num_copy_sugg;
107
108/* Element Q is the number of suggested registers in qty_phys_sugg.  */
109
110static short *qty_phys_num_sugg;
111
112/* Element Q is the number of refs to quantity Q.  */
113
114static int *qty_n_refs;
115
116/* Element Q is a reg class contained in (smaller than) the
117   preferred classes of all the pseudo regs that are tied in quantity Q.
118   This is the preferred class for allocating that quantity.  */
119
120static enum reg_class *qty_min_class;
121
122/* Insn number (counting from head of basic block)
123   where quantity Q was born.  -1 if birth has not been recorded.  */
124
125static int *qty_birth;
126
127/* Insn number (counting from head of basic block)
128   where quantity Q died.  Due to the way tying is done,
129   and the fact that we consider in this pass only regs that die but once,
130   a quantity can die only once.  Each quantity's life span
131   is a set of consecutive insns.  -1 if death has not been recorded.  */
132
133static int *qty_death;
134
135/* Number of words needed to hold the data in quantity Q.
136   This depends on its machine mode.  It is used for these purposes:
137   1. It is used in computing the relative importances of qtys,
138      which determines the order in which we look for regs for them.
139   2. It is used in rules that prevent tying several registers of
140      different sizes in a way that is geometrically impossible
141      (see combine_regs).  */
142
143static int *qty_size;
144
145/* This holds the mode of the registers that are tied to qty Q,
146   or VOIDmode if registers with differing modes are tied together.  */
147
148static enum machine_mode *qty_mode;
149
150/* Number of times a reg tied to qty Q lives across a CALL_INSN.  */
151
152static int *qty_n_calls_crossed;
153
154/* Register class within which we allocate qty Q if we can't get
155   its preferred class.  */
156
157static enum reg_class *qty_alternate_class;
158
159/* Element Q is nonzero if this quantity has been used in a SUBREG
160   that changes its size.  */
161
162static char *qty_changes_size;
163
164/* Element Q is the register number of one pseudo register whose
165   reg_qty value is Q.  This register should be the head of the chain
166   maintained in reg_next_in_qty.  */
167
168static int *qty_first_reg;
169
170/* If (REG N) has been assigned a quantity number, is a register number
171   of another register assigned the same quantity number, or -1 for the
172   end of the chain.  qty_first_reg point to the head of this chain.  */
173
174static int *reg_next_in_qty;
175
176/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
177   if it is >= 0,
178   of -1 if this register cannot be allocated by local-alloc,
179   or -2 if not known yet.
180
181   Note that if we see a use or death of pseudo register N with
182   reg_qty[N] == -2, register N must be local to the current block.  If
183   it were used in more than one block, we would have reg_qty[N] == -1.
184   This relies on the fact that if reg_basic_block[N] is >= 0, register N
185   will not appear in any other block.  We save a considerable number of
186   tests by exploiting this.
187
188   If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
189   be referenced.  */
190
191static int *reg_qty;
192
193/* The offset (in words) of register N within its quantity.
194   This can be nonzero if register N is SImode, and has been tied
195   to a subreg of a DImode register.  */
196
197static char *reg_offset;
198
199/* Vector of substitutions of register numbers,
200   used to map pseudo regs into hardware regs.
201   This is set up as a result of register allocation.
202   Element N is the hard reg assigned to pseudo reg N,
203   or is -1 if no hard reg was assigned.
204   If N is a hard reg number, element N is N.  */
205
206short *reg_renumber;
207
208/* Set of hard registers live at the current point in the scan
209   of the instructions in a basic block.  */
210
211static HARD_REG_SET regs_live;
212
213/* Each set of hard registers indicates registers live at a particular
214   point in the basic block.  For N even, regs_live_at[N] says which
215   hard registers are needed *after* insn N/2 (i.e., they may not
216   conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
217
218   If an object is to conflict with the inputs of insn J but not the
219   outputs of insn J + 1, we say it is born at index J*2 - 1.  Similarly,
220   if it is to conflict with the outputs of insn J but not the inputs of
221   insn J + 1, it is said to die at index J*2 + 1.  */
222
223static HARD_REG_SET *regs_live_at;
224
225/* Communicate local vars `insn_number' and `insn'
226   from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'.  */
227static int this_insn_number;
228static rtx this_insn;
229
230/* Used to communicate changes made by update_equiv_regs to
231   memref_referenced_p.  reg_equiv_replacement is set for any REG_EQUIV note
232   found or created, so that we can keep track of what memory accesses might
233   be created later, e.g. by reload.  */
234
235static rtx *reg_equiv_replacement;
236
237/* Used for communication between update_equiv_regs and no_equiv.  */
238static rtx *reg_equiv_init_insns;
239
240/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
241static int recorded_label_ref;
242
243static void alloc_qty		PROTO((int, enum machine_mode, int, int));
244static void validate_equiv_mem_from_store PROTO((rtx, rtx));
245static int validate_equiv_mem	PROTO((rtx, rtx, rtx));
246static int contains_replace_regs PROTO((rtx, char *));
247static int memref_referenced_p	PROTO((rtx, rtx));
248static int memref_used_between_p PROTO((rtx, rtx, rtx));
249static void update_equiv_regs	PROTO((void));
250static void no_equiv		PROTO((rtx, rtx));
251static void block_alloc		PROTO((int));
252static int qty_sugg_compare    	PROTO((int, int));
253static int qty_sugg_compare_1	PROTO((const GENERIC_PTR, const GENERIC_PTR));
254static int qty_compare    	PROTO((int, int));
255static int qty_compare_1	PROTO((const GENERIC_PTR, const GENERIC_PTR));
256static int combine_regs		PROTO((rtx, rtx, int, int, rtx, int));
257static int reg_meets_class_p	PROTO((int, enum reg_class));
258static void update_qty_class	PROTO((int, int));
259static void reg_is_set		PROTO((rtx, rtx));
260static void reg_is_born		PROTO((rtx, int));
261static void wipe_dead_reg	PROTO((rtx, int));
262static int find_free_reg	PROTO((enum reg_class, enum machine_mode,
263				       int, int, int, int, int));
264static void mark_life		PROTO((int, enum machine_mode, int));
265static void post_mark_life	PROTO((int, enum machine_mode, int, int, int));
266static int no_conflict_p	PROTO((rtx, rtx, rtx));
267static int requires_inout	PROTO((const char *));
268
269/* Allocate a new quantity (new within current basic block)
270   for register number REGNO which is born at index BIRTH
271   within the block.  MODE and SIZE are info on reg REGNO.  */
272
273static void
274alloc_qty (regno, mode, size, birth)
275     int regno;
276     enum machine_mode mode;
277     int size, birth;
278{
279  register int qty = next_qty++;
280
281  reg_qty[regno] = qty;
282  reg_offset[regno] = 0;
283  reg_next_in_qty[regno] = -1;
284
285  qty_first_reg[qty] = regno;
286  qty_size[qty] = size;
287  qty_mode[qty] = mode;
288  qty_birth[qty] = birth;
289  qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
290  qty_min_class[qty] = reg_preferred_class (regno);
291  qty_alternate_class[qty] = reg_alternate_class (regno);
292  qty_n_refs[qty] = REG_N_REFS (regno);
293  qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
294}
295
296/* Main entry point of this file.  */
297
298int
299local_alloc ()
300{
301  register int b, i;
302  int max_qty;
303
304  /* We need to keep track of whether or not we recorded a LABEL_REF so
305     that we know if the jump optimizer needs to be rerun.  */
306  recorded_label_ref = 0;
307
308  /* Leaf functions and non-leaf functions have different needs.
309     If defined, let the machine say what kind of ordering we
310     should use.  */
311#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
312  ORDER_REGS_FOR_LOCAL_ALLOC;
313#endif
314
315  /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
316     registers.  */
317  update_equiv_regs ();
318
319  /* This sets the maximum number of quantities we can have.  Quantity
320     numbers start at zero and we can have one for each pseudo.  */
321  max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
322
323  /* Allocate vectors of temporary data.
324     See the declarations of these variables, above,
325     for what they mean.  */
326
327  qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
328  qty_phys_copy_sugg
329    = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
330  qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
331  qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
332  qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
333  qty_birth = (int *) alloca (max_qty * sizeof (int));
334  qty_death = (int *) alloca (max_qty * sizeof (int));
335  qty_first_reg = (int *) alloca (max_qty * sizeof (int));
336  qty_size = (int *) alloca (max_qty * sizeof (int));
337  qty_mode
338    = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
339  qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
340  qty_min_class
341    = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
342  qty_alternate_class
343    = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
344  qty_n_refs = (int *) alloca (max_qty * sizeof (int));
345  qty_changes_size = (char *) alloca (max_qty * sizeof (char));
346
347  reg_qty = (int *) xmalloc (max_regno * sizeof (int));
348  reg_offset = (char *) xmalloc (max_regno * sizeof (char));
349  reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
350
351  /* Allocate the reg_renumber array */
352  allocate_reg_info (max_regno, FALSE, TRUE);
353
354  /* Determine which pseudo-registers can be allocated by local-alloc.
355     In general, these are the registers used only in a single block and
356     which only die once.  However, if a register's preferred class has only
357     a few entries, don't allocate this register here unless it is preferred
358     or nothing since retry_global_alloc won't be able to move it to
359     GENERAL_REGS if a reload register of this class is needed.
360
361     We need not be concerned with which block actually uses the register
362     since we will never see it outside that block.  */
363
364  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
365    {
366      if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
367	  && (reg_alternate_class (i) == NO_REGS
368	      || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
369	reg_qty[i] = -2;
370      else
371	reg_qty[i] = -1;
372    }
373
374  /* Force loop below to initialize entire quantity array.  */
375  next_qty = max_qty;
376
377  /* Allocate each block's local registers, block by block.  */
378
379  for (b = 0; b < n_basic_blocks; b++)
380    {
381      /* NEXT_QTY indicates which elements of the `qty_...'
382	 vectors might need to be initialized because they were used
383	 for the previous block; it is set to the entire array before
384	 block 0.  Initialize those, with explicit loop if there are few,
385	 else with bzero and bcopy.  Do not initialize vectors that are
386	 explicit set by `alloc_qty'.  */
387
388      if (next_qty < 6)
389	{
390	  for (i = 0; i < next_qty; i++)
391	    {
392	      CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
393	      qty_phys_num_copy_sugg[i] = 0;
394	      CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
395	      qty_phys_num_sugg[i] = 0;
396	    }
397	}
398      else
399	{
400#define CLEAR(vector)  \
401	  bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
402
403	  CLEAR (qty_phys_copy_sugg);
404	  CLEAR (qty_phys_num_copy_sugg);
405	  CLEAR (qty_phys_sugg);
406	  CLEAR (qty_phys_num_sugg);
407	}
408
409      next_qty = 0;
410
411      block_alloc (b);
412#ifdef USE_C_ALLOCA
413      alloca (0);
414#endif
415    }
416
417  free (reg_qty);
418  free (reg_offset);
419  free (reg_next_in_qty);
420  return recorded_label_ref;
421}
422
423/* Depth of loops we are in while in update_equiv_regs.  */
424static int loop_depth;
425
426/* Used for communication between the following two functions: contains
427   a MEM that we wish to ensure remains unchanged.  */
428static rtx equiv_mem;
429
430/* Set nonzero if EQUIV_MEM is modified.  */
431static int equiv_mem_modified;
432
433/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
434   Called via note_stores.  */
435
436static void
437validate_equiv_mem_from_store (dest, set)
438     rtx dest;
439     rtx set ATTRIBUTE_UNUSED;
440{
441  if ((GET_CODE (dest) == REG
442       && reg_overlap_mentioned_p (dest, equiv_mem))
443      || (GET_CODE (dest) == MEM
444	  && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
445    equiv_mem_modified = 1;
446}
447
448/* Verify that no store between START and the death of REG invalidates
449   MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
450   by storing into an overlapping memory location, or with a non-const
451   CALL_INSN.
452
453   Return 1 if MEMREF remains valid.  */
454
455static int
456validate_equiv_mem (start, reg, memref)
457     rtx start;
458     rtx reg;
459     rtx memref;
460{
461  rtx insn;
462  rtx note;
463
464  equiv_mem = memref;
465  equiv_mem_modified = 0;
466
467  /* If the memory reference has side effects or is volatile, it isn't a
468     valid equivalence.  */
469  if (side_effects_p (memref))
470    return 0;
471
472  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
473    {
474      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
475	continue;
476
477      if (find_reg_note (insn, REG_DEAD, reg))
478	return 1;
479
480      if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
481	  && ! CONST_CALL_P (insn))
482	return 0;
483
484      note_stores (PATTERN (insn), validate_equiv_mem_from_store);
485
486      /* If a register mentioned in MEMREF is modified via an
487	 auto-increment, we lose the equivalence.  Do the same if one
488	 dies; although we could extend the life, it doesn't seem worth
489	 the trouble.  */
490
491      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
492	if ((REG_NOTE_KIND (note) == REG_INC
493	     || REG_NOTE_KIND (note) == REG_DEAD)
494	    && GET_CODE (XEXP (note, 0)) == REG
495	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
496	  return 0;
497    }
498
499  return 0;
500}
501
502/* TRUE if X uses any registers for which reg_equiv_replace is true.  */
503
504static int
505contains_replace_regs (x, reg_equiv_replace)
506     rtx x;
507     char *reg_equiv_replace;
508{
509  int i, j;
510  char *fmt;
511  enum rtx_code code = GET_CODE (x);
512
513  switch (code)
514    {
515    case CONST_INT:
516    case CONST:
517    case LABEL_REF:
518    case SYMBOL_REF:
519    case CONST_DOUBLE:
520    case PC:
521    case CC0:
522    case HIGH:
523    case LO_SUM:
524      return 0;
525
526    case REG:
527      return reg_equiv_replace[REGNO (x)];
528
529    default:
530      break;
531    }
532
533  fmt = GET_RTX_FORMAT (code);
534  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
535    switch (fmt[i])
536      {
537      case 'e':
538	if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
539	  return 1;
540	break;
541      case 'E':
542	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
543	  if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
544	    return 1;
545	break;
546      }
547
548  return 0;
549}
550
551/* TRUE if X references a memory location that would be affected by a store
552   to MEMREF.  */
553
554static int
555memref_referenced_p (memref, x)
556     rtx x;
557     rtx memref;
558{
559  int i, j;
560  char *fmt;
561  enum rtx_code code = GET_CODE (x);
562
563  switch (code)
564    {
565    case CONST_INT:
566    case CONST:
567    case LABEL_REF:
568    case SYMBOL_REF:
569    case CONST_DOUBLE:
570    case PC:
571    case CC0:
572    case HIGH:
573    case LO_SUM:
574      return 0;
575
576    case REG:
577      return (reg_equiv_replacement[REGNO (x)]
578	      && memref_referenced_p (memref,
579				      reg_equiv_replacement[REGNO (x)]));
580
581    case MEM:
582      if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
583	return 1;
584      break;
585
586    case SET:
587      /* If we are setting a MEM, it doesn't count (its address does), but any
588	 other SET_DEST that has a MEM in it is referencing the MEM.  */
589      if (GET_CODE (SET_DEST (x)) == MEM)
590	{
591	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
592	    return 1;
593	}
594      else if (memref_referenced_p (memref, SET_DEST (x)))
595	return 1;
596
597      return memref_referenced_p (memref, SET_SRC (x));
598
599    default:
600      break;
601    }
602
603  fmt = GET_RTX_FORMAT (code);
604  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605    switch (fmt[i])
606      {
607      case 'e':
608	if (memref_referenced_p (memref, XEXP (x, i)))
609	  return 1;
610	break;
611      case 'E':
612	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
613	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
614	    return 1;
615	break;
616      }
617
618  return 0;
619}
620
621/* TRUE if some insn in the range (START, END] references a memory location
622   that would be affected by a store to MEMREF.  */
623
624static int
625memref_used_between_p (memref, start, end)
626     rtx memref;
627     rtx start;
628     rtx end;
629{
630  rtx insn;
631
632  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
633       insn = NEXT_INSN (insn))
634    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
635	&& memref_referenced_p (memref, PATTERN (insn)))
636      return 1;
637
638  return 0;
639}
640
641/* Return nonzero if the rtx X is invariant over the current function.  */
642int
643function_invariant_p (x)
644     rtx x;
645{
646  if (CONSTANT_P (x))
647    return 1;
648  if (x == frame_pointer_rtx || x == arg_pointer_rtx)
649    return 1;
650  if (GET_CODE (x) == PLUS
651      && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
652      && CONSTANT_P (XEXP (x, 1)))
653    return 1;
654  return 0;
655}
656
657/* Find registers that are equivalent to a single value throughout the
658   compilation (either because they can be referenced in memory or are set once
659   from a single constant).  Lower their priority for a register.
660
661   If such a register is only referenced once, try substituting its value
662   into the using insn.  If it succeeds, we can eliminate the register
663   completely.  */
664
665static void
666update_equiv_regs ()
667{
668  /* Set when an attempt should be made to replace a register with the
669     associated reg_equiv_replacement entry at the end of this function.  */
670  char *reg_equiv_replace
671    = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
672  rtx insn;
673  int block, depth;
674
675  reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
676  reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
677
678  bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
679  bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
680  bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
681
682  init_alias_analysis ();
683
684  loop_depth = 1;
685
686  /* Scan the insns and find which registers have equivalences.  Do this
687     in a separate scan of the insns because (due to -fcse-follow-jumps)
688     a register can be set below its use.  */
689  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
690    {
691      rtx note;
692      rtx set;
693      rtx dest, src;
694      int regno;
695
696      if (GET_CODE (insn) == NOTE)
697	{
698	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
699	    loop_depth++;
700	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
701	    loop_depth--;
702	}
703
704      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
705	continue;
706
707      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
708	if (REG_NOTE_KIND (note) == REG_INC)
709	  no_equiv (XEXP (note, 0), note);
710
711      set = single_set (insn);
712
713      /* If this insn contains more (or less) than a single SET,
714	 only mark all destinations as having no known equivalence.  */
715      if (set == 0)
716	{
717	  note_stores (PATTERN (insn), no_equiv);
718	  continue;
719	}
720      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
721	{
722	  int i;
723
724	  for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
725	    {
726	      rtx part = XVECEXP (PATTERN (insn), 0, i);
727	      if (part != set)
728		note_stores (part, no_equiv);
729	    }
730	}
731
732      dest = SET_DEST (set);
733      src = SET_SRC (set);
734
735      /* If this sets a MEM to the contents of a REG that is only used
736	 in a single basic block, see if the register is always equivalent
737	 to that memory location and if moving the store from INSN to the
738	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
739	 initializing insn.
740
741	 Don't add a REG_EQUIV note if the insn already has one.  The existing
742	 REG_EQUIV is likely more useful than the one we are adding.
743
744	 If one of the regs in the address is marked as reg_equiv_replace,
745	 then we can't add this REG_EQUIV note.  The reg_equiv_replace
746	 optimization may move the set of this register immediately before
747	 insn, which puts it after reg_equiv_init_insns[regno], and hence
748	 the mention in the REG_EQUIV note would be to an uninitialized
749	 pseudo.  */
750      /* ????? This test isn't good enough; we might see a MEM with a use of
751	 a pseudo register before we see its setting insn that will cause
752	 reg_equiv_replace for that pseudo to be set.
753	 Equivalences to MEMs should be made in another pass, after the
754	 reg_equiv_replace information has been gathered.  */
755
756      if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
757	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
758	  && REG_BASIC_BLOCK (regno) >= 0
759	  && REG_N_SETS (regno) == 1
760	  && reg_equiv_init_insns[regno] != 0
761	  && reg_equiv_init_insns[regno] != const0_rtx
762	  && ! find_reg_note (XEXP (reg_equiv_init_insns[regno], 0),
763			      REG_EQUIV, NULL_RTX)
764	  && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
765	{
766	  rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
767	  if (validate_equiv_mem (init_insn, src, dest)
768	      && ! memref_used_between_p (dest, init_insn, insn))
769	    REG_NOTES (init_insn)
770	      = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
771	}
772
773      /* We only handle the case of a pseudo register being set
774	 once, or always to the same value.  */
775      /* ??? The mn10200 port breaks if we add equivalences for
776	 values that need an ADDRESS_REGS register and set them equivalent
777	 to a MEM of a pseudo.  The actual problem is in the over-conservative
778	 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
779	 calculate_needs, but we traditionally work around this problem
780	 here by rejecting equivalences when the destination is in a register
781	 that's likely spilled.  This is fragile, of course, since the
782	 preferred class of a pseudo depends on all instructions that set
783	 or use it.  */
784
785      if (GET_CODE (dest) != REG
786	  || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
787	  || reg_equiv_init_insns[regno] == const0_rtx
788	  || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
789	      && GET_CODE (src) == MEM))
790	{
791	  /* This might be seting a SUBREG of a pseudo, a pseudo that is
792	     also set somewhere else to a constant.  */
793	  note_stores (set, no_equiv);
794	  continue;
795	}
796      /* Don't handle the equivalence if the source is in a register
797	 class that's likely to be spilled.  */
798      if (GET_CODE (src) == REG
799	  && REGNO (src) >= FIRST_PSEUDO_REGISTER
800	  && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
801	{
802	  no_equiv (dest, set);
803	  continue;
804	}
805
806      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
807
808      if (REG_N_SETS (regno) != 1
809	  && (! note
810	      || ! function_invariant_p (XEXP (note, 0))
811	      || (reg_equiv_replacement[regno]
812		  && ! rtx_equal_p (XEXP (note, 0),
813				    reg_equiv_replacement[regno]))))
814	{
815	  no_equiv (dest, set);
816	  continue;
817	}
818      /* Record this insn as initializing this register.  */
819      reg_equiv_init_insns[regno]
820	= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
821
822      /* If this register is known to be equal to a constant, record that
823	 it is always equivalent to the constant.  */
824      if (note && function_invariant_p (XEXP (note, 0)))
825	PUT_MODE (note, (enum machine_mode) REG_EQUIV);
826
827      /* If this insn introduces a "constant" register, decrease the priority
828	 of that register.  Record this insn if the register is only used once
829	 more and the equivalence value is the same as our source.
830
831	 The latter condition is checked for two reasons:  First, it is an
832	 indication that it may be more efficient to actually emit the insn
833	 as written (if no registers are available, reload will substitute
834	 the equivalence).  Secondly, it avoids problems with any registers
835	 dying in this insn whose death notes would be missed.
836
837	 If we don't have a REG_EQUIV note, see if this insn is loading
838	 a register used only in one basic block from a MEM.  If so, and the
839	 MEM remains unchanged for the life of the register, add a REG_EQUIV
840	 note.  */
841
842      note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
843
844      if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
845	  && GET_CODE (SET_SRC (set)) == MEM
846	  && validate_equiv_mem (insn, dest, SET_SRC (set)))
847	REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
848						     REG_NOTES (insn));
849
850      if (note)
851	{
852	  int regno = REGNO (dest);
853
854	  /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
855	     We might end up substituting the LABEL_REF for uses of the
856	     pseudo here or later.  That kind of transformation may turn an
857	     indirect jump into a direct jump, in which case we must rerun the
858	     jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
859	  if (GET_CODE (XEXP (note, 0)) == LABEL_REF
860	      || (GET_CODE (XEXP (note, 0)) == CONST
861		  && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
862		  && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
863		      == LABEL_REF)))
864	    recorded_label_ref = 1;
865
866
867	  reg_equiv_replacement[regno] = XEXP (note, 0);
868
869	  /* Don't mess with things live during setjmp.  */
870	  if (REG_LIVE_LENGTH (regno) >= 0)
871	    {
872	      /* Note that the statement below does not affect the priority
873		 in local-alloc!  */
874	      REG_LIVE_LENGTH (regno) *= 2;
875
876
877	      /* If the register is referenced exactly twice, meaning it is
878		 set once and used once, indicate that the reference may be
879		 replaced by the equivalence we computed above.  If the
880		 register is only used in one basic block, this can't succeed
881		 or combine would have done it.
882
883		 It would be nice to use "loop_depth * 2" in the compare
884		 below.  Unfortunately, LOOP_DEPTH need not be constant within
885		 a basic block so this would be too complicated.
886
887		 This case normally occurs when a parameter is read from
888		 memory and then used exactly once, not in a loop.  */
889
890		if (REG_N_REFS (regno) == 2
891		    && REG_BASIC_BLOCK (regno) < 0
892		    && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
893		  reg_equiv_replace[regno] = 1;
894	    }
895	}
896    }
897
898  /* Now scan all regs killed in an insn to see if any of them are
899     registers only used that once.  If so, see if we can replace the
900     reference with the equivalent from.  If we can, delete the
901     initializing reference and this register will go away.  If we
902     can't replace the reference, and the instruction is not in a
903     loop, then move the register initialization just before the use,
904     so that they are in the same basic block.  */
905  block = -1;
906  depth = 0;
907  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
908    {
909      rtx link;
910
911      /* Keep track of which basic block we are in.  */
912      if (block + 1 < n_basic_blocks
913	  && BLOCK_HEAD (block + 1) == insn)
914	++block;
915
916      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
917	{
918	  if (GET_CODE (insn) == NOTE)
919	    {
920	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
921		++depth;
922	      else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
923		{
924		  --depth;
925		  if (depth < 0)
926		    abort ();
927		}
928	    }
929
930	  continue;
931	}
932
933      for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
934	{
935	  if (REG_NOTE_KIND (link) == REG_DEAD
936	      /* Make sure this insn still refers to the register.  */
937	      && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
938	    {
939	      int regno = REGNO (XEXP (link, 0));
940	      rtx equiv_insn;
941
942	      if (! reg_equiv_replace[regno])
943		continue;
944
945	      /* reg_equiv_replace[REGNO] gets set only when
946		 REG_N_REFS[REGNO] is 2, i.e. the register is set
947		 once and used once.  (If it were only set, but not used,
948		 flow would have deleted the setting insns.)  Hence
949		 there can only be one insn in reg_equiv_init_insns.  */
950	      equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
951
952	      if (validate_replace_rtx (regno_reg_rtx[regno],
953					reg_equiv_replacement[regno], insn))
954		{
955		  remove_death (regno, insn);
956		  REG_N_REFS (regno) = 0;
957		  PUT_CODE (equiv_insn, NOTE);
958		  NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
959		  NOTE_SOURCE_FILE (equiv_insn) = 0;
960		}
961	      /* If we aren't in a loop, and there are no calls in
962		 INSN or in the initialization of the register, then
963		 move the initialization of the register to just
964		 before INSN.  Update the flow information.  */
965	      else if (depth == 0
966		       && GET_CODE (equiv_insn) == INSN
967		       && GET_CODE (insn) == INSN
968		       && REG_BASIC_BLOCK (regno) < 0)
969		{
970		  int l;
971
972		  emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
973		  REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
974
975		  PUT_CODE (equiv_insn, NOTE);
976		  NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
977		  NOTE_SOURCE_FILE (equiv_insn) = 0;
978		  REG_NOTES (equiv_insn) = 0;
979
980		  if (block < 0)
981		    REG_BASIC_BLOCK (regno) = 0;
982		  else
983		    REG_BASIC_BLOCK (regno) = block;
984		  REG_N_CALLS_CROSSED (regno) = 0;
985		  REG_LIVE_LENGTH (regno) = 2;
986
987		  if (block >= 0 && insn == BLOCK_HEAD (block))
988		    BLOCK_HEAD (block) = PREV_INSN (insn);
989
990		  for (l = 0; l < n_basic_blocks; l++)
991		    CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
992					 regno);
993		}
994	    }
995	}
996    }
997}
998
999/* Mark REG as having no known equivalence.
1000   Some instructions might have been proceessed before and furnished
1001   with REG_EQUIV notes for this register; these notes will have to be
1002   removed.
1003   STORE is the piece of RTL that does the non-constant / conflicting
1004   assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
1005   but needs to be there because this function is called from note_stores.  */
1006static void
1007no_equiv (reg, store)
1008     rtx reg, store ATTRIBUTE_UNUSED;
1009{
1010  int regno;
1011  rtx list;
1012
1013  if (GET_CODE (reg) != REG)
1014    return;
1015  regno = REGNO (reg);
1016  list = reg_equiv_init_insns[regno];
1017  if (list == const0_rtx)
1018    return;
1019  for (; list; list =  XEXP (list, 1))
1020    {
1021      rtx insn = XEXP (list, 0);
1022      remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1023    }
1024  reg_equiv_init_insns[regno] = const0_rtx;
1025  reg_equiv_replacement[regno] = NULL_RTX;
1026}
1027
1028/* Allocate hard regs to the pseudo regs used only within block number B.
1029   Only the pseudos that die but once can be handled.  */
1030
1031static void
1032block_alloc (b)
1033     int b;
1034{
1035  register int i, q;
1036  register rtx insn;
1037  rtx note;
1038  int insn_number = 0;
1039  int insn_count = 0;
1040  int max_uid = get_max_uid ();
1041  int *qty_order;
1042  int no_conflict_combined_regno = -1;
1043
1044  /* Count the instructions in the basic block.  */
1045
1046  insn = BLOCK_END (b);
1047  while (1)
1048    {
1049      if (GET_CODE (insn) != NOTE)
1050	if (++insn_count > max_uid)
1051	  abort ();
1052      if (insn == BLOCK_HEAD (b))
1053	break;
1054      insn = PREV_INSN (insn);
1055    }
1056
1057  /* +2 to leave room for a post_mark_life at the last insn and for
1058     the birth of a CLOBBER in the first insn.  */
1059  regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1060					  * sizeof (HARD_REG_SET));
1061  bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1062
1063  /* Initialize table of hardware registers currently live.  */
1064
1065  REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1066
1067  /* This loop scans the instructions of the basic block
1068     and assigns quantities to registers.
1069     It computes which registers to tie.  */
1070
1071  insn = BLOCK_HEAD (b);
1072  while (1)
1073    {
1074      register rtx body = PATTERN (insn);
1075
1076      if (GET_CODE (insn) != NOTE)
1077	insn_number++;
1078
1079      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1080	{
1081	  register rtx link, set;
1082	  register int win = 0;
1083	  register rtx r0, r1;
1084	  int combined_regno = -1;
1085	  int i;
1086
1087	  this_insn_number = insn_number;
1088	  this_insn = insn;
1089
1090	  extract_insn (insn);
1091	  which_alternative = -1;
1092
1093	  /* Is this insn suitable for tying two registers?
1094	     If so, try doing that.
1095	     Suitable insns are those with at least two operands and where
1096	     operand 0 is an output that is a register that is not
1097	     earlyclobber.
1098
1099	     We can tie operand 0 with some operand that dies in this insn.
1100	     First look for operands that are required to be in the same
1101	     register as operand 0.  If we find such, only try tying that
1102	     operand or one that can be put into that operand if the
1103	     operation is commutative.  If we don't find an operand
1104	     that is required to be in the same register as operand 0,
1105	     we can tie with any operand.
1106
1107	     Subregs in place of regs are also ok.
1108
1109	     If tying is done, WIN is set nonzero.  */
1110
1111	  if (1
1112#ifdef REGISTER_CONSTRAINTS
1113	      && recog_n_operands > 1
1114	      && recog_constraints[0][0] == '='
1115	      && recog_constraints[0][1] != '&'
1116#else
1117	      && GET_CODE (PATTERN (insn)) == SET
1118	      && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1119#endif
1120	      )
1121	    {
1122#ifdef REGISTER_CONSTRAINTS
1123	      /* If non-negative, is an operand that must match operand 0.  */
1124	      int must_match_0 = -1;
1125	      /* Counts number of alternatives that require a match with
1126		 operand 0.  */
1127	      int n_matching_alts = 0;
1128
1129	      for (i = 1; i < recog_n_operands; i++)
1130		{
1131		  const char *p = recog_constraints[i];
1132		  int this_match = (requires_inout (p));
1133
1134		  n_matching_alts += this_match;
1135		  if (this_match == recog_n_alternatives)
1136		    must_match_0 = i;
1137		}
1138#endif
1139
1140	      r0 = recog_operand[0];
1141	      for (i = 1; i < recog_n_operands; i++)
1142		{
1143#ifdef REGISTER_CONSTRAINTS
1144		  /* Skip this operand if we found an operand that
1145		     must match operand 0 and this operand isn't it
1146		     and can't be made to be it by commutativity.  */
1147
1148		  if (must_match_0 >= 0 && i != must_match_0
1149		      && ! (i == must_match_0 + 1
1150			    && recog_constraints[i-1][0] == '%')
1151		      && ! (i == must_match_0 - 1
1152			    && recog_constraints[i][0] == '%'))
1153		    continue;
1154
1155		  /* Likewise if each alternative has some operand that
1156		     must match operand zero.  In that case, skip any
1157		     operand that doesn't list operand 0 since we know that
1158		     the operand always conflicts with operand 0.  We
1159		     ignore commutatity in this case to keep things simple.  */
1160		  if (n_matching_alts == recog_n_alternatives
1161		      && 0 == requires_inout (recog_constraints[i]))
1162		    continue;
1163#endif
1164
1165		  r1 = recog_operand[i];
1166
1167		  /* If the operand is an address, find a register in it.
1168		     There may be more than one register, but we only try one
1169		     of them.  */
1170		  if (
1171#ifdef REGISTER_CONSTRAINTS
1172		      recog_constraints[i][0] == 'p'
1173#else
1174		      recog_operand_address_p[i]
1175#endif
1176		      )
1177		    while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1178		      r1 = XEXP (r1, 0);
1179
1180		  if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1181		    {
1182		      /* We have two priorities for hard register preferences.
1183			 If we have a move insn or an insn whose first input
1184			 can only be in the same register as the output, give
1185			 priority to an equivalence found from that insn.  */
1186		      int may_save_copy
1187			= ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1188#ifdef REGISTER_CONSTRAINTS
1189			   || (r1 == recog_operand[i] && must_match_0 >= 0)
1190#endif
1191			   );
1192
1193		      if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1194			win = combine_regs (r1, r0, may_save_copy,
1195					    insn_number, insn, 0);
1196		    }
1197		  if (win)
1198		    break;
1199		}
1200	    }
1201
1202	  /* Recognize an insn sequence with an ultimate result
1203	     which can safely overlap one of the inputs.
1204	     The sequence begins with a CLOBBER of its result,
1205	     and ends with an insn that copies the result to itself
1206	     and has a REG_EQUAL note for an equivalent formula.
1207	     That note indicates what the inputs are.
1208	     The result and the input can overlap if each insn in
1209	     the sequence either doesn't mention the input
1210	     or has a REG_NO_CONFLICT note to inhibit the conflict.
1211
1212	     We do the combining test at the CLOBBER so that the
1213	     destination register won't have had a quantity number
1214	     assigned, since that would prevent combining.  */
1215
1216	  if (GET_CODE (PATTERN (insn)) == CLOBBER
1217	      && (r0 = XEXP (PATTERN (insn), 0),
1218		  GET_CODE (r0) == REG)
1219	      && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1220	      && XEXP (link, 0) != 0
1221	      && GET_CODE (XEXP (link, 0)) == INSN
1222	      && (set = single_set (XEXP (link, 0))) != 0
1223	      && SET_DEST (set) == r0 && SET_SRC (set) == r0
1224	      && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1225					NULL_RTX)) != 0)
1226	    {
1227	      if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1228		  /* Check that we have such a sequence.  */
1229		  && no_conflict_p (insn, r0, r1))
1230		win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1231	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1232		       && (r1 = XEXP (XEXP (note, 0), 0),
1233			   GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1234		       && no_conflict_p (insn, r0, r1))
1235		win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1236
1237	      /* Here we care if the operation to be computed is
1238		 commutative.  */
1239	      else if ((GET_CODE (XEXP (note, 0)) == EQ
1240			|| GET_CODE (XEXP (note, 0)) == NE
1241			|| GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1242		       && (r1 = XEXP (XEXP (note, 0), 1),
1243			   (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1244		       && no_conflict_p (insn, r0, r1))
1245		win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1246
1247	      /* If we did combine something, show the register number
1248		 in question so that we know to ignore its death.  */
1249	      if (win)
1250		no_conflict_combined_regno = REGNO (r1);
1251	    }
1252
1253	  /* If registers were just tied, set COMBINED_REGNO
1254	     to the number of the register used in this insn
1255	     that was tied to the register set in this insn.
1256	     This register's qty should not be "killed".  */
1257
1258	  if (win)
1259	    {
1260	      while (GET_CODE (r1) == SUBREG)
1261		r1 = SUBREG_REG (r1);
1262	      combined_regno = REGNO (r1);
1263	    }
1264
1265	  /* Mark the death of everything that dies in this instruction,
1266	     except for anything that was just combined.  */
1267
1268	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1269	    if (REG_NOTE_KIND (link) == REG_DEAD
1270		&& GET_CODE (XEXP (link, 0)) == REG
1271		&& combined_regno != REGNO (XEXP (link, 0))
1272		&& (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1273		    || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1274	      wipe_dead_reg (XEXP (link, 0), 0);
1275
1276	  /* Allocate qty numbers for all registers local to this block
1277	     that are born (set) in this instruction.
1278	     A pseudo that already has a qty is not changed.  */
1279
1280	  note_stores (PATTERN (insn), reg_is_set);
1281
1282	  /* If anything is set in this insn and then unused, mark it as dying
1283	     after this insn, so it will conflict with our outputs.  This
1284	     can't match with something that combined, and it doesn't matter
1285	     if it did.  Do this after the calls to reg_is_set since these
1286	     die after, not during, the current insn.  */
1287
1288	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1289	    if (REG_NOTE_KIND (link) == REG_UNUSED
1290		&& GET_CODE (XEXP (link, 0)) == REG)
1291	      wipe_dead_reg (XEXP (link, 0), 1);
1292
1293	  /* If this is an insn that has a REG_RETVAL note pointing at a
1294	     CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1295	     block, so clear any register number that combined within it.  */
1296	  if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1297	      && GET_CODE (XEXP (note, 0)) == INSN
1298	      && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1299	    no_conflict_combined_regno = -1;
1300	}
1301
1302      /* Set the registers live after INSN_NUMBER.  Note that we never
1303	 record the registers live before the block's first insn, since no
1304	 pseudos we care about are live before that insn.  */
1305
1306      IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1307      IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1308
1309      if (insn == BLOCK_END (b))
1310	break;
1311
1312      insn = NEXT_INSN (insn);
1313    }
1314
1315  /* Now every register that is local to this basic block
1316     should have been given a quantity, or else -1 meaning ignore it.
1317     Every quantity should have a known birth and death.
1318
1319     Order the qtys so we assign them registers in order of the
1320     number of suggested registers they need so we allocate those with
1321     the most restrictive needs first.  */
1322
1323  qty_order = (int *) alloca (next_qty * sizeof (int));
1324  for (i = 0; i < next_qty; i++)
1325    qty_order[i] = i;
1326
1327#define EXCHANGE(I1, I2)  \
1328  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1329
1330  switch (next_qty)
1331    {
1332    case 3:
1333      /* Make qty_order[2] be the one to allocate last.  */
1334      if (qty_sugg_compare (0, 1) > 0)
1335	EXCHANGE (0, 1);
1336      if (qty_sugg_compare (1, 2) > 0)
1337	EXCHANGE (2, 1);
1338
1339      /* ... Fall through ...  */
1340    case 2:
1341      /* Put the best one to allocate in qty_order[0].  */
1342      if (qty_sugg_compare (0, 1) > 0)
1343	EXCHANGE (0, 1);
1344
1345      /* ... Fall through ...  */
1346
1347    case 1:
1348    case 0:
1349      /* Nothing to do here.  */
1350      break;
1351
1352    default:
1353      qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1354    }
1355
1356  /* Try to put each quantity in a suggested physical register, if it has one.
1357     This may cause registers to be allocated that otherwise wouldn't be, but
1358     this seems acceptable in local allocation (unlike global allocation).  */
1359  for (i = 0; i < next_qty; i++)
1360    {
1361      q = qty_order[i];
1362      if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1363	qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1364					 0, 1, qty_birth[q], qty_death[q]);
1365      else
1366	qty_phys_reg[q] = -1;
1367    }
1368
1369  /* Order the qtys so we assign them registers in order of
1370     decreasing length of life.  Normally call qsort, but if we
1371     have only a very small number of quantities, sort them ourselves.  */
1372
1373  for (i = 0; i < next_qty; i++)
1374    qty_order[i] = i;
1375
1376#define EXCHANGE(I1, I2)  \
1377  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1378
1379  switch (next_qty)
1380    {
1381    case 3:
1382      /* Make qty_order[2] be the one to allocate last.  */
1383      if (qty_compare (0, 1) > 0)
1384	EXCHANGE (0, 1);
1385      if (qty_compare (1, 2) > 0)
1386	EXCHANGE (2, 1);
1387
1388      /* ... Fall through ...  */
1389    case 2:
1390      /* Put the best one to allocate in qty_order[0].  */
1391      if (qty_compare (0, 1) > 0)
1392	EXCHANGE (0, 1);
1393
1394      /* ... Fall through ...  */
1395
1396    case 1:
1397    case 0:
1398      /* Nothing to do here.  */
1399      break;
1400
1401    default:
1402      qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1403    }
1404
1405  /* Now for each qty that is not a hardware register,
1406     look for a hardware register to put it in.
1407     First try the register class that is cheapest for this qty,
1408     if there is more than one class.  */
1409
1410  for (i = 0; i < next_qty; i++)
1411    {
1412      q = qty_order[i];
1413      if (qty_phys_reg[q] < 0)
1414	{
1415#ifdef INSN_SCHEDULING
1416	  /* These values represent the adjusted lifetime of a qty so
1417	     that it conflicts with qtys which appear near the start/end
1418	     of this qty's lifetime.
1419
1420	     The purpose behind extending the lifetime of this qty is to
1421	     discourage the register allocator from creating false
1422	     dependencies.
1423
1424	     The adjustment value is choosen to indicate that this qty
1425	     conflicts with all the qtys in the instructions immediately
1426	     before and after the lifetime of this qty.
1427
1428	     Experiments have shown that higher values tend to hurt
1429	     overall code performance.
1430
1431	     If allocation using the extended lifetime fails we will try
1432	     again with the qty's unadjusted lifetime.  */
1433	  int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1434	  int fake_death = MIN (insn_number * 2 + 1,
1435				qty_death[q] + 2 - qty_death[q] % 2);
1436#endif
1437
1438	  if (N_REG_CLASSES > 1)
1439	    {
1440#ifdef INSN_SCHEDULING
1441	      /* We try to avoid using hard registers allocated to qtys which
1442		 are born immediately after this qty or die immediately before
1443		 this qty.
1444
1445		 This optimization is only appropriate when we will run
1446		 a scheduling pass after reload and we are not optimizing
1447		 for code size.  */
1448	      if (flag_schedule_insns_after_reload
1449		  && !optimize_size
1450		  && !SMALL_REGISTER_CLASSES)
1451		{
1452
1453		  qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1454						   qty_mode[q], q, 0, 0,
1455						   fake_birth, fake_death);
1456		  if (qty_phys_reg[q] >= 0)
1457		    continue;
1458		}
1459#endif
1460	      qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1461					       qty_mode[q], q, 0, 0,
1462					       qty_birth[q], qty_death[q]);
1463	      if (qty_phys_reg[q] >= 0)
1464		continue;
1465	    }
1466
1467#ifdef INSN_SCHEDULING
1468	  /* Similarly, avoid false dependencies.  */
1469	  if (flag_schedule_insns_after_reload
1470	      && !optimize_size
1471	      && !SMALL_REGISTER_CLASSES
1472	      && qty_alternate_class[q] != NO_REGS)
1473	    qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1474					     qty_mode[q], q, 0, 0,
1475					     fake_birth, fake_death);
1476#endif
1477	  if (qty_alternate_class[q] != NO_REGS)
1478	    qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1479					     qty_mode[q], q, 0, 0,
1480					     qty_birth[q], qty_death[q]);
1481	}
1482    }
1483
1484  /* Now propagate the register assignments
1485     to the pseudo regs belonging to the qtys.  */
1486
1487  for (q = 0; q < next_qty; q++)
1488    if (qty_phys_reg[q] >= 0)
1489      {
1490	for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1491	  reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1492      }
1493}
1494
1495/* Compare two quantities' priority for getting real registers.
1496   We give shorter-lived quantities higher priority.
1497   Quantities with more references are also preferred, as are quantities that
1498   require multiple registers.  This is the identical prioritization as
1499   done by global-alloc.
1500
1501   We used to give preference to registers with *longer* lives, but using
1502   the same algorithm in both local- and global-alloc can speed up execution
1503   of some programs by as much as a factor of three!  */
1504
1505/* Note that the quotient will never be bigger than
1506   the value of floor_log2 times the maximum number of
1507   times a register can occur in one insn (surely less than 100).
1508   Multiplying this by 10000 can't overflow.
1509   QTY_CMP_PRI is also used by qty_sugg_compare.  */
1510
1511#define QTY_CMP_PRI(q)		\
1512  ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1513	  / (qty_death[q] - qty_birth[q])) * 10000))
1514
1515static int
1516qty_compare (q1, q2)
1517     int q1, q2;
1518{
1519  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1520}
1521
1522static int
1523qty_compare_1 (q1p, q2p)
1524     const GENERIC_PTR q1p;
1525     const GENERIC_PTR q2p;
1526{
1527  register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1528  register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1529
1530  if (tem != 0)
1531    return tem;
1532
1533  /* If qtys are equally good, sort by qty number,
1534     so that the results of qsort leave nothing to chance.  */
1535  return q1 - q2;
1536}
1537
1538/* Compare two quantities' priority for getting real registers.  This version
1539   is called for quantities that have suggested hard registers.  First priority
1540   goes to quantities that have copy preferences, then to those that have
1541   normal preferences.  Within those groups, quantities with the lower
1542   number of preferences have the highest priority.  Of those, we use the same
1543   algorithm as above.  */
1544
1545#define QTY_CMP_SUGG(q)		\
1546  (qty_phys_num_copy_sugg[q]		\
1547    ? qty_phys_num_copy_sugg[q]	\
1548    : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1549
1550static int
1551qty_sugg_compare (q1, q2)
1552     int q1, q2;
1553{
1554  register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1555
1556  if (tem != 0)
1557    return tem;
1558
1559  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1560}
1561
1562static int
1563qty_sugg_compare_1 (q1p, q2p)
1564     const GENERIC_PTR q1p;
1565     const GENERIC_PTR q2p;
1566{
1567  register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1568  register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1569
1570  if (tem != 0)
1571    return tem;
1572
1573  tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1574  if (tem != 0)
1575    return tem;
1576
1577  /* If qtys are equally good, sort by qty number,
1578     so that the results of qsort leave nothing to chance.  */
1579  return q1 - q2;
1580}
1581
1582#undef QTY_CMP_SUGG
1583#undef QTY_CMP_PRI
1584
1585/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1586   Returns 1 if have done so, or 0 if cannot.
1587
1588   Combining registers means marking them as having the same quantity
1589   and adjusting the offsets within the quantity if either of
1590   them is a SUBREG).
1591
1592   We don't actually combine a hard reg with a pseudo; instead
1593   we just record the hard reg as the suggestion for the pseudo's quantity.
1594   If we really combined them, we could lose if the pseudo lives
1595   across an insn that clobbers the hard reg (eg, movstr).
1596
1597   ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1598   there is no REG_DEAD note on INSN.  This occurs during the processing
1599   of REG_NO_CONFLICT blocks.
1600
1601   MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1602   SETREG or if the input and output must share a register.
1603   In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1604
1605   There are elaborate checks for the validity of combining.  */
1606
1607
1608static int
1609combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1610     rtx usedreg, setreg;
1611     int may_save_copy;
1612     int insn_number;
1613     rtx insn;
1614     int already_dead;
1615{
1616  register int ureg, sreg;
1617  register int offset = 0;
1618  int usize, ssize;
1619  register int sqty;
1620
1621  /* Determine the numbers and sizes of registers being used.  If a subreg
1622     is present that does not change the entire register, don't consider
1623     this a copy insn.  */
1624
1625  while (GET_CODE (usedreg) == SUBREG)
1626    {
1627      if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1628	may_save_copy = 0;
1629      offset += SUBREG_WORD (usedreg);
1630      usedreg = SUBREG_REG (usedreg);
1631    }
1632  if (GET_CODE (usedreg) != REG)
1633    return 0;
1634  ureg = REGNO (usedreg);
1635  usize = REG_SIZE (usedreg);
1636
1637  while (GET_CODE (setreg) == SUBREG)
1638    {
1639      if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1640	may_save_copy = 0;
1641      offset -= SUBREG_WORD (setreg);
1642      setreg = SUBREG_REG (setreg);
1643    }
1644  if (GET_CODE (setreg) != REG)
1645    return 0;
1646  sreg = REGNO (setreg);
1647  ssize = REG_SIZE (setreg);
1648
1649  /* If UREG is a pseudo-register that hasn't already been assigned a
1650     quantity number, it means that it is not local to this block or dies
1651     more than once.  In either event, we can't do anything with it.  */
1652  if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1653      /* Do not combine registers unless one fits within the other.  */
1654      || (offset > 0 && usize + offset > ssize)
1655      || (offset < 0 && usize + offset < ssize)
1656      /* Do not combine with a smaller already-assigned object
1657	 if that smaller object is already combined with something bigger.  */
1658      || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1659	  && usize < qty_size[reg_qty[ureg]])
1660      /* Can't combine if SREG is not a register we can allocate.  */
1661      || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1662      /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1663	 These have already been taken care of.  This probably wouldn't
1664	 combine anyway, but don't take any chances.  */
1665      || (ureg >= FIRST_PSEUDO_REGISTER
1666	  && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1667      /* Don't tie something to itself.  In most cases it would make no
1668	 difference, but it would screw up if the reg being tied to itself
1669	 also dies in this insn.  */
1670      || ureg == sreg
1671      /* Don't try to connect two different hardware registers.  */
1672      || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1673      /* Don't use a hard reg that might be spilled.  */
1674      || (ureg < FIRST_PSEUDO_REGISTER
1675	  && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1676      || (sreg < FIRST_PSEUDO_REGISTER
1677	  && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1678      /* Don't connect two different machine modes if they have different
1679	 implications as to which registers may be used.  */
1680      || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1681    return 0;
1682
1683  /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1684     qty_phys_sugg for the pseudo instead of tying them.
1685
1686     Return "failure" so that the lifespan of UREG is terminated here;
1687     that way the two lifespans will be disjoint and nothing will prevent
1688     the pseudo reg from being given this hard reg.  */
1689
1690  if (ureg < FIRST_PSEUDO_REGISTER)
1691    {
1692      /* Allocate a quantity number so we have a place to put our
1693	 suggestions.  */
1694      if (reg_qty[sreg] == -2)
1695	reg_is_born (setreg, 2 * insn_number);
1696
1697      if (reg_qty[sreg] >= 0)
1698	{
1699	  if (may_save_copy
1700	      && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1701	    {
1702	      SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1703	      qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1704	    }
1705	  else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1706	    {
1707	      SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1708	      qty_phys_num_sugg[reg_qty[sreg]]++;
1709	    }
1710	}
1711      return 0;
1712    }
1713
1714  /* Similarly for SREG a hard register and UREG a pseudo register.  */
1715
1716  if (sreg < FIRST_PSEUDO_REGISTER)
1717    {
1718      if (may_save_copy
1719	  && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1720	{
1721	  SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1722	  qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1723	}
1724      else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1725	{
1726	  SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1727	  qty_phys_num_sugg[reg_qty[ureg]]++;
1728	}
1729      return 0;
1730    }
1731
1732  /* At this point we know that SREG and UREG are both pseudos.
1733     Do nothing if SREG already has a quantity or is a register that we
1734     don't allocate.  */
1735  if (reg_qty[sreg] >= -1
1736      /* If we are not going to let any regs live across calls,
1737	 don't tie a call-crossing reg to a non-call-crossing reg.  */
1738      || (current_function_has_nonlocal_label
1739	  && ((REG_N_CALLS_CROSSED (ureg) > 0)
1740	      != (REG_N_CALLS_CROSSED (sreg) > 0))))
1741    return 0;
1742
1743  /* We don't already know about SREG, so tie it to UREG
1744     if this is the last use of UREG, provided the classes they want
1745     are compatible.  */
1746
1747  if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1748      && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1749    {
1750      /* Add SREG to UREG's quantity.  */
1751      sqty = reg_qty[ureg];
1752      reg_qty[sreg] = sqty;
1753      reg_offset[sreg] = reg_offset[ureg] + offset;
1754      reg_next_in_qty[sreg] = qty_first_reg[sqty];
1755      qty_first_reg[sqty] = sreg;
1756
1757      /* If SREG's reg class is smaller, set qty_min_class[SQTY].  */
1758      update_qty_class (sqty, sreg);
1759
1760      /* Update info about quantity SQTY.  */
1761      qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1762      qty_n_refs[sqty] += REG_N_REFS (sreg);
1763      if (usize < ssize)
1764	{
1765	  register int i;
1766
1767	  for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1768	    reg_offset[i] -= offset;
1769
1770	  qty_size[sqty] = ssize;
1771	  qty_mode[sqty] = GET_MODE (setreg);
1772	}
1773    }
1774  else
1775    return 0;
1776
1777  return 1;
1778}
1779
1780/* Return 1 if the preferred class of REG allows it to be tied
1781   to a quantity or register whose class is CLASS.
1782   True if REG's reg class either contains or is contained in CLASS.  */
1783
1784static int
1785reg_meets_class_p (reg, class)
1786     int reg;
1787     enum reg_class class;
1788{
1789  register enum reg_class rclass = reg_preferred_class (reg);
1790  return (reg_class_subset_p (rclass, class)
1791	  || reg_class_subset_p (class, rclass));
1792}
1793
1794/* Update the class of QTY assuming that REG is being tied to it.  */
1795
1796static void
1797update_qty_class (qty, reg)
1798     int qty;
1799     int reg;
1800{
1801  enum reg_class rclass = reg_preferred_class (reg);
1802  if (reg_class_subset_p (rclass, qty_min_class[qty]))
1803    qty_min_class[qty] = rclass;
1804
1805  rclass = reg_alternate_class (reg);
1806  if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1807    qty_alternate_class[qty] = rclass;
1808
1809  if (REG_CHANGES_SIZE (reg))
1810    qty_changes_size[qty] = 1;
1811}
1812
1813/* Handle something which alters the value of an rtx REG.
1814
1815   REG is whatever is set or clobbered.  SETTER is the rtx that
1816   is modifying the register.
1817
1818   If it is not really a register, we do nothing.
1819   The file-global variables `this_insn' and `this_insn_number'
1820   carry info from `block_alloc'.  */
1821
1822static void
1823reg_is_set (reg, setter)
1824     rtx reg;
1825     rtx setter;
1826{
1827  /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1828     a hard register.  These may actually not exist any more.  */
1829
1830  if (GET_CODE (reg) != SUBREG
1831      && GET_CODE (reg) != REG)
1832    return;
1833
1834  /* Mark this register as being born.  If it is used in a CLOBBER, mark
1835     it as being born halfway between the previous insn and this insn so that
1836     it conflicts with our inputs but not the outputs of the previous insn.  */
1837
1838  reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1839}
1840
1841/* Handle beginning of the life of register REG.
1842   BIRTH is the index at which this is happening.  */
1843
1844static void
1845reg_is_born (reg, birth)
1846     rtx reg;
1847     int birth;
1848{
1849  register int regno;
1850
1851  if (GET_CODE (reg) == SUBREG)
1852    regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1853  else
1854    regno = REGNO (reg);
1855
1856  if (regno < FIRST_PSEUDO_REGISTER)
1857    {
1858      mark_life (regno, GET_MODE (reg), 1);
1859
1860      /* If the register was to have been born earlier that the present
1861	 insn, mark it as live where it is actually born.  */
1862      if (birth < 2 * this_insn_number)
1863	post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1864    }
1865  else
1866    {
1867      if (reg_qty[regno] == -2)
1868	alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1869
1870      /* If this register has a quantity number, show that it isn't dead.  */
1871      if (reg_qty[regno] >= 0)
1872	qty_death[reg_qty[regno]] = -1;
1873    }
1874}
1875
1876/* Record the death of REG in the current insn.  If OUTPUT_P is non-zero,
1877   REG is an output that is dying (i.e., it is never used), otherwise it
1878   is an input (the normal case).
1879   If OUTPUT_P is 1, then we extend the life past the end of this insn.  */
1880
1881static void
1882wipe_dead_reg (reg, output_p)
1883     register rtx reg;
1884     int output_p;
1885{
1886  register int regno = REGNO (reg);
1887
1888  /* If this insn has multiple results,
1889     and the dead reg is used in one of the results,
1890     extend its life to after this insn,
1891     so it won't get allocated together with any other result of this insn.
1892
1893     It is unsafe to use !single_set here since it will ignore an unused
1894     output.  Just because an output is unused does not mean the compiler
1895     can assume the side effect will not occur.   Consider if REG appears
1896     in the address of an output and we reload the output.  If we allocate
1897     REG to the same hard register as an unused output we could set the hard
1898     register before the output reload insn.  */
1899  if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1900      && multiple_sets (this_insn))
1901    {
1902      int i;
1903      for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1904	{
1905	  rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1906	  if (GET_CODE (set) == SET
1907	      && GET_CODE (SET_DEST (set)) != REG
1908	      && !rtx_equal_p (reg, SET_DEST (set))
1909	      && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1910	    output_p = 1;
1911	}
1912    }
1913
1914  /* If this register is used in an auto-increment address, then extend its
1915     life to after this insn, so that it won't get allocated together with
1916     the result of this insn.  */
1917  if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1918    output_p = 1;
1919
1920  if (regno < FIRST_PSEUDO_REGISTER)
1921    {
1922      mark_life (regno, GET_MODE (reg), 0);
1923
1924      /* If a hard register is dying as an output, mark it as in use at
1925	 the beginning of this insn (the above statement would cause this
1926	 not to happen).  */
1927      if (output_p)
1928	post_mark_life (regno, GET_MODE (reg), 1,
1929			2 * this_insn_number, 2 * this_insn_number+ 1);
1930    }
1931
1932  else if (reg_qty[regno] >= 0)
1933    qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1934}
1935
1936/* Find a block of SIZE words of hard regs in reg_class CLASS
1937   that can hold something of machine-mode MODE
1938     (but actually we test only the first of the block for holding MODE)
1939   and still free between insn BORN_INDEX and insn DEAD_INDEX,
1940   and return the number of the first of them.
1941   Return -1 if such a block cannot be found.
1942   If QTY crosses calls, insist on a register preserved by calls,
1943   unless ACCEPT_CALL_CLOBBERED is nonzero.
1944
1945   If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1946   register is available.  If not, return -1.  */
1947
1948static int
1949find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1950	       born_index, dead_index)
1951     enum reg_class class;
1952     enum machine_mode mode;
1953     int qty;
1954     int accept_call_clobbered;
1955     int just_try_suggested;
1956     int born_index, dead_index;
1957{
1958  register int i, ins;
1959#ifdef HARD_REG_SET
1960  register		/* Declare it register if it's a scalar.  */
1961#endif
1962    HARD_REG_SET used, first_used;
1963#ifdef ELIMINABLE_REGS
1964  static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1965#endif
1966
1967  /* Validate our parameters.  */
1968  if (born_index < 0 || born_index > dead_index)
1969    abort ();
1970
1971  /* Don't let a pseudo live in a reg across a function call
1972     if we might get a nonlocal goto.  */
1973  if (current_function_has_nonlocal_label
1974      && qty_n_calls_crossed[qty] > 0)
1975    return -1;
1976
1977  if (accept_call_clobbered)
1978    COPY_HARD_REG_SET (used, call_fixed_reg_set);
1979  else if (qty_n_calls_crossed[qty] == 0)
1980    COPY_HARD_REG_SET (used, fixed_reg_set);
1981  else
1982    COPY_HARD_REG_SET (used, call_used_reg_set);
1983
1984  if (accept_call_clobbered)
1985    IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1986
1987  for (ins = born_index; ins < dead_index; ins++)
1988    IOR_HARD_REG_SET (used, regs_live_at[ins]);
1989
1990  IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1991
1992  /* Don't use the frame pointer reg in local-alloc even if
1993     we may omit the frame pointer, because if we do that and then we
1994     need a frame pointer, reload won't know how to move the pseudo
1995     to another hard reg.  It can move only regs made by global-alloc.
1996
1997     This is true of any register that can be eliminated.  */
1998#ifdef ELIMINABLE_REGS
1999  for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
2000    SET_HARD_REG_BIT (used, eliminables[i].from);
2001#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2002  /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2003     that it might be eliminated into.  */
2004  SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2005#endif
2006#else
2007  SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2008#endif
2009
2010#ifdef CLASS_CANNOT_CHANGE_SIZE
2011  if (qty_changes_size[qty])
2012    IOR_HARD_REG_SET (used,
2013		      reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2014#endif
2015
2016  /* Normally, the registers that can be used for the first register in
2017     a multi-register quantity are the same as those that can be used for
2018     subsequent registers.  However, if just trying suggested registers,
2019     restrict our consideration to them.  If there are copy-suggested
2020     register, try them.  Otherwise, try the arithmetic-suggested
2021     registers.  */
2022  COPY_HARD_REG_SET (first_used, used);
2023
2024  if (just_try_suggested)
2025    {
2026      if (qty_phys_num_copy_sugg[qty] != 0)
2027	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2028      else
2029	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2030    }
2031
2032  /* If all registers are excluded, we can't do anything.  */
2033  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2034
2035  /* If at least one would be suitable, test each hard reg.  */
2036
2037  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2038    {
2039#ifdef REG_ALLOC_ORDER
2040      int regno = reg_alloc_order[i];
2041#else
2042      int regno = i;
2043#endif
2044      if (! TEST_HARD_REG_BIT (first_used, regno)
2045	  && HARD_REGNO_MODE_OK (regno, mode)
2046	  && (qty_n_calls_crossed[qty] == 0
2047	      || accept_call_clobbered
2048	      || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2049	{
2050	  register int j;
2051	  register int size1 = HARD_REGNO_NREGS (regno, mode);
2052	  for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2053	  if (j == size1)
2054	    {
2055	      /* Mark that this register is in use between its birth and death
2056		 insns.  */
2057	      post_mark_life (regno, mode, 1, born_index, dead_index);
2058	      return regno;
2059	    }
2060#ifndef REG_ALLOC_ORDER
2061	  i += j;		/* Skip starting points we know will lose */
2062#endif
2063	}
2064    }
2065
2066 fail:
2067
2068  /* If we are just trying suggested register, we have just tried copy-
2069     suggested registers, and there are arithmetic-suggested registers,
2070     try them.  */
2071
2072  /* If it would be profitable to allocate a call-clobbered register
2073     and save and restore it around calls, do that.  */
2074  if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2075      && qty_phys_num_sugg[qty] != 0)
2076    {
2077      /* Don't try the copy-suggested regs again.  */
2078      qty_phys_num_copy_sugg[qty] = 0;
2079      return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2080			    born_index, dead_index);
2081    }
2082
2083  /* We need not check to see if the current function has nonlocal
2084     labels because we don't put any pseudos that are live over calls in
2085     registers in that case.  */
2086
2087  if (! accept_call_clobbered
2088      && flag_caller_saves
2089      && ! just_try_suggested
2090      && qty_n_calls_crossed[qty] != 0
2091      && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2092    {
2093      i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2094      if (i >= 0)
2095	caller_save_needed = 1;
2096      return i;
2097    }
2098  return -1;
2099}
2100
2101/* Mark that REGNO with machine-mode MODE is live starting from the current
2102   insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2103   is zero).  */
2104
2105static void
2106mark_life (regno, mode, life)
2107     register int regno;
2108     enum machine_mode mode;
2109     int life;
2110{
2111  register int j = HARD_REGNO_NREGS (regno, mode);
2112  if (life)
2113    while (--j >= 0)
2114      SET_HARD_REG_BIT (regs_live, regno + j);
2115  else
2116    while (--j >= 0)
2117      CLEAR_HARD_REG_BIT (regs_live, regno + j);
2118}
2119
2120/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2121   is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2122   to insn number DEATH (exclusive).  */
2123
2124static void
2125post_mark_life (regno, mode, life, birth, death)
2126     int regno;
2127     enum machine_mode mode;
2128     int life, birth, death;
2129{
2130  register int j = HARD_REGNO_NREGS (regno, mode);
2131#ifdef HARD_REG_SET
2132  register		/* Declare it register if it's a scalar.  */
2133#endif
2134    HARD_REG_SET this_reg;
2135
2136  CLEAR_HARD_REG_SET (this_reg);
2137  while (--j >= 0)
2138    SET_HARD_REG_BIT (this_reg, regno + j);
2139
2140  if (life)
2141    while (birth < death)
2142      {
2143	IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2144	birth++;
2145      }
2146  else
2147    while (birth < death)
2148      {
2149	AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2150	birth++;
2151      }
2152}
2153
2154/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2155   is the register being clobbered, and R1 is a register being used in
2156   the equivalent expression.
2157
2158   If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2159   in which it is used, return 1.
2160
2161   Otherwise, return 0.  */
2162
2163static int
2164no_conflict_p (insn, r0, r1)
2165     rtx insn, r0, r1;
2166{
2167  int ok = 0;
2168  rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2169  rtx p, last;
2170
2171  /* If R1 is a hard register, return 0 since we handle this case
2172     when we scan the insns that actually use it.  */
2173
2174  if (note == 0
2175      || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2176      || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2177	  && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2178    return 0;
2179
2180  last = XEXP (note, 0);
2181
2182  for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2183    if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2184      {
2185	if (find_reg_note (p, REG_DEAD, r1))
2186	  ok = 1;
2187
2188	/* There must be a REG_NO_CONFLICT note on every insn, otherwise
2189	   some earlier optimization pass has inserted instructions into
2190	   the sequence, and it is not safe to perform this optimization.
2191	   Note that emit_no_conflict_block always ensures that this is
2192	   true when these sequences are created.  */
2193	if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2194	  return 0;
2195      }
2196
2197  return ok;
2198}
2199
2200#ifdef REGISTER_CONSTRAINTS
2201
2202/* Return the number of alternatives for which the constraint string P
2203   indicates that the operand must be equal to operand 0 and that no register
2204   is acceptable.  */
2205
2206static int
2207requires_inout (p)
2208  const char *p;
2209{
2210  char c;
2211  int found_zero = 0;
2212  int reg_allowed = 0;
2213  int num_matching_alts = 0;
2214
2215  while ((c = *p++))
2216    switch (c)
2217      {
2218      case '=':  case '+':  case '?':
2219      case '#':  case '&':  case '!':
2220      case '*':  case '%':
2221      case '1':  case '2':  case '3':  case '4':
2222      case 'm':  case '<':  case '>':  case 'V':  case 'o':
2223      case 'E':  case 'F':  case 'G':  case 'H':
2224      case 's':  case 'i':  case 'n':
2225      case 'I':  case 'J':  case 'K':  case 'L':
2226      case 'M':  case 'N':  case 'O':  case 'P':
2227#ifdef EXTRA_CONSTRAINT
2228      case 'Q':  case 'R':  case 'S':  case 'T':  case 'U':
2229#endif
2230      case 'X':
2231	/* These don't say anything we care about.  */
2232	break;
2233
2234      case ',':
2235	if (found_zero && ! reg_allowed)
2236	  num_matching_alts++;
2237
2238	found_zero = reg_allowed = 0;
2239	break;
2240
2241      case '0':
2242	found_zero = 1;
2243	break;
2244
2245      case 'p':
2246      case 'g': case 'r':
2247      default:
2248	reg_allowed = 1;
2249	break;
2250      }
2251
2252  if (found_zero && ! reg_allowed)
2253    num_matching_alts++;
2254
2255  return num_matching_alts;
2256}
2257#endif /* REGISTER_CONSTRAINTS */
2258
2259void
2260dump_local_alloc (file)
2261     FILE *file;
2262{
2263  register int i;
2264  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2265    if (reg_renumber[i] != -1)
2266      fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2267}
2268