1/* MMIX-specific support for 64-bit ELF.
2   Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3   Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20
21/* No specific ABI or "processor-specific supplement" defined.  */
22
23/* TODO:
24   - "Traditional" linker relaxation (shrinking whole sections).
25   - Merge reloc stubs jumping to same location.
26   - GETA stub relaxation (call a stub for out of range new
27     R_MMIX_GETA_STUBBABLE).  */
28
29#include "bfd.h"
30#include "sysdep.h"
31#include "libbfd.h"
32#include "elf-bfd.h"
33#include "elf/mmix.h"
34#include "opcode/mmix.h"
35
36#define MINUS_ONE	(((bfd_vma) 0) - 1)
37
38#define MAX_PUSHJ_STUB_SIZE (5 * 4)
39
40/* Put these everywhere in new code.  */
41#define FATAL_DEBUG						\
42 _bfd_abort (__FILE__, __LINE__,				\
43	     "Internal: Non-debugged code (test-case missing)")
44
45#define BAD_CASE(x)				\
46 _bfd_abort (__FILE__, __LINE__,		\
47	     "bad case for " #x)
48
49struct _mmix_elf_section_data
50{
51  struct bfd_elf_section_data elf;
52  union
53  {
54    struct bpo_reloc_section_info *reloc;
55    struct bpo_greg_section_info *greg;
56  } bpo;
57
58  struct pushj_stub_info
59  {
60    /* Maximum number of stubs needed for this section.  */
61    bfd_size_type n_pushj_relocs;
62
63    /* Size of stubs after a mmix_elf_relax_section round.  */
64    bfd_size_type stubs_size_sum;
65
66    /* Per-reloc stubs_size_sum information.  The stubs_size_sum member is the sum
67       of these.  Allocated in mmix_elf_check_common_relocs.  */
68    bfd_size_type *stub_size;
69
70    /* Offset of next stub during relocation.  Somewhat redundant with the
71       above: error coverage is easier and we don't have to reset the
72       stubs_size_sum for relocation.  */
73    bfd_size_type stub_offset;
74  } pjs;
75};
76
77#define mmix_elf_section_data(sec) \
78  ((struct _mmix_elf_section_data *) elf_section_data (sec))
79
80/* For each section containing a base-plus-offset (BPO) reloc, we attach
81   this struct as mmix_elf_section_data (section)->bpo, which is otherwise
82   NULL.  */
83struct bpo_reloc_section_info
84  {
85    /* The base is 1; this is the first number in this section.  */
86    size_t first_base_plus_offset_reloc;
87
88    /* Number of BPO-relocs in this section.  */
89    size_t n_bpo_relocs_this_section;
90
91    /* Running index, used at relocation time.  */
92    size_t bpo_index;
93
94    /* We don't have access to the bfd_link_info struct in
95       mmix_final_link_relocate.  What we really want to get at is the
96       global single struct greg_relocation, so we stash it here.  */
97    asection *bpo_greg_section;
98  };
99
100/* Helper struct (in global context) for the one below.
101   There's one of these created for every BPO reloc.  */
102struct bpo_reloc_request
103  {
104    bfd_vma value;
105
106    /* Valid after relaxation.  The base is 0; the first register number
107       must be added.  The offset is in range 0..255.  */
108    size_t regindex;
109    size_t offset;
110
111    /* The order number for this BPO reloc, corresponding to the order in
112       which BPO relocs were found.  Used to create an index after reloc
113       requests are sorted.  */
114    size_t bpo_reloc_no;
115
116    /* Set when the value is computed.  Better than coding "guard values"
117       into the other members.  Is FALSE only for BPO relocs in a GC:ed
118       section.  */
119    bfd_boolean valid;
120  };
121
122/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123   greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124   which is linked into the register contents section
125   (MMIX_REG_CONTENTS_SECTION_NAME).  This section is created by the
126   linker; using the same hook as for usual with BPO relocs does not
127   collide.  */
128struct bpo_greg_section_info
129  {
130    /* After GC, this reflects the number of remaining, non-excluded
131       BPO-relocs.  */
132    size_t n_bpo_relocs;
133
134    /* This is the number of allocated bpo_reloc_requests; the size of
135       sorted_indexes.  Valid after the check.*relocs functions are called
136       for all incoming sections.  It includes the number of BPO relocs in
137       sections that were GC:ed.  */
138    size_t n_max_bpo_relocs;
139
140    /* A counter used to find out when to fold the BPO gregs, since we
141       don't have a single "after-relaxation" hook.  */
142    size_t n_remaining_bpo_relocs_this_relaxation_round;
143
144    /* The number of linker-allocated GREGs resulting from BPO relocs.
145       This is an approximation after _bfd_mmix_before_linker_allocation
146       and supposedly accurate after mmix_elf_relax_section is called for
147       all incoming non-collected sections.  */
148    size_t n_allocated_bpo_gregs;
149
150    /* Index into reloc_request[], sorted on increasing "value", secondary
151       by increasing index for strict sorting order.  */
152    size_t *bpo_reloc_indexes;
153
154    /* An array of all relocations, with the "value" member filled in by
155       the relaxation function.  */
156    struct bpo_reloc_request *reloc_request;
157  };
158
159static bfd_boolean mmix_elf_link_output_symbol_hook
160  PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161	   asection *, struct elf_link_hash_entry *));
162
163static bfd_reloc_status_type mmix_elf_reloc
164  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165
166static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167  PARAMS ((bfd *, bfd_reloc_code_real_type));
168
169static void mmix_info_to_howto_rela
170  PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
171
172static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173
174static bfd_boolean mmix_elf_new_section_hook
175  PARAMS ((bfd *, asection *));
176
177static bfd_boolean mmix_elf_check_relocs
178  PARAMS ((bfd *, struct bfd_link_info *, asection *,
179	   const Elf_Internal_Rela *));
180
181static bfd_boolean mmix_elf_check_common_relocs
182  PARAMS ((bfd *, struct bfd_link_info *, asection *,
183	   const Elf_Internal_Rela *));
184
185static bfd_boolean mmix_elf_relocate_section
186  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187	   Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188
189static asection * mmix_elf_gc_mark_hook
190  PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
191	   struct elf_link_hash_entry *, Elf_Internal_Sym *));
192
193static bfd_boolean mmix_elf_gc_sweep_hook
194  PARAMS ((bfd *, struct bfd_link_info *, asection *,
195	   const Elf_Internal_Rela *));
196
197static bfd_reloc_status_type mmix_final_link_relocate
198  PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199	   bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200
201static bfd_reloc_status_type mmix_elf_perform_relocation
202  PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203
204static bfd_boolean mmix_elf_section_from_bfd_section
205  PARAMS ((bfd *, asection *, int *));
206
207static bfd_boolean mmix_elf_add_symbol_hook
208  PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
209	   const char **, flagword *, asection **, bfd_vma *));
210
211static bfd_boolean mmix_elf_is_local_label_name
212  PARAMS ((bfd *, const char *));
213
214static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215
216static bfd_boolean mmix_elf_relax_section
217  PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
218	   bfd_boolean *again));
219
220extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
221
222extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223
224/* Only intended to be called from a debugger.  */
225extern void mmix_dump_bpo_gregs
226  PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227
228static void
229mmix_set_relaxable_size
230  PARAMS ((bfd *, asection *, void *));
231
232
233/* Watch out: this currently needs to have elements with the same index as
234   their R_MMIX_ number.  */
235static reloc_howto_type elf_mmix_howto_table[] =
236 {
237  /* This reloc does nothing.  */
238  HOWTO (R_MMIX_NONE,		/* type */
239	 0,			/* rightshift */
240	 2,			/* size (0 = byte, 1 = short, 2 = long) */
241	 32,			/* bitsize */
242	 FALSE,			/* pc_relative */
243	 0,			/* bitpos */
244	 complain_overflow_bitfield, /* complain_on_overflow */
245	 bfd_elf_generic_reloc,	/* special_function */
246	 "R_MMIX_NONE",		/* name */
247	 FALSE,			/* partial_inplace */
248	 0,			/* src_mask */
249	 0,			/* dst_mask */
250	 FALSE),		/* pcrel_offset */
251
252  /* An 8 bit absolute relocation.  */
253  HOWTO (R_MMIX_8,		/* type */
254	 0,			/* rightshift */
255	 0,			/* size (0 = byte, 1 = short, 2 = long) */
256	 8,			/* bitsize */
257	 FALSE,			/* pc_relative */
258	 0,			/* bitpos */
259	 complain_overflow_bitfield, /* complain_on_overflow */
260	 bfd_elf_generic_reloc,	/* special_function */
261	 "R_MMIX_8",		/* name */
262	 FALSE,			/* partial_inplace */
263	 0,			/* src_mask */
264	 0xff,			/* dst_mask */
265	 FALSE),		/* pcrel_offset */
266
267  /* An 16 bit absolute relocation.  */
268  HOWTO (R_MMIX_16,		/* type */
269	 0,			/* rightshift */
270	 1,			/* size (0 = byte, 1 = short, 2 = long) */
271	 16,			/* bitsize */
272	 FALSE,			/* pc_relative */
273	 0,			/* bitpos */
274	 complain_overflow_bitfield, /* complain_on_overflow */
275	 bfd_elf_generic_reloc,	/* special_function */
276	 "R_MMIX_16",		/* name */
277	 FALSE,			/* partial_inplace */
278	 0,			/* src_mask */
279	 0xffff,		/* dst_mask */
280	 FALSE),		/* pcrel_offset */
281
282  /* An 24 bit absolute relocation.  */
283  HOWTO (R_MMIX_24,		/* type */
284	 0,			/* rightshift */
285	 2,			/* size (0 = byte, 1 = short, 2 = long) */
286	 24,			/* bitsize */
287	 FALSE,			/* pc_relative */
288	 0,			/* bitpos */
289	 complain_overflow_bitfield, /* complain_on_overflow */
290	 bfd_elf_generic_reloc,	/* special_function */
291	 "R_MMIX_24",		/* name */
292	 FALSE,			/* partial_inplace */
293	 ~0xffffff,		/* src_mask */
294	 0xffffff,		/* dst_mask */
295	 FALSE),		/* pcrel_offset */
296
297  /* A 32 bit absolute relocation.  */
298  HOWTO (R_MMIX_32,		/* type */
299	 0,			/* rightshift */
300	 2,			/* size (0 = byte, 1 = short, 2 = long) */
301	 32,			/* bitsize */
302	 FALSE,			/* pc_relative */
303	 0,			/* bitpos */
304	 complain_overflow_bitfield, /* complain_on_overflow */
305	 bfd_elf_generic_reloc,	/* special_function */
306	 "R_MMIX_32",		/* name */
307	 FALSE,			/* partial_inplace */
308	 0,			/* src_mask */
309	 0xffffffff,		/* dst_mask */
310	 FALSE),		/* pcrel_offset */
311
312  /* 64 bit relocation.  */
313  HOWTO (R_MMIX_64,		/* type */
314	 0,			/* rightshift */
315	 4,			/* size (0 = byte, 1 = short, 2 = long) */
316	 64,			/* bitsize */
317	 FALSE,			/* pc_relative */
318	 0,			/* bitpos */
319	 complain_overflow_bitfield, /* complain_on_overflow */
320	 bfd_elf_generic_reloc,	/* special_function */
321	 "R_MMIX_64",		/* name */
322	 FALSE,			/* partial_inplace */
323	 0,			/* src_mask */
324	 MINUS_ONE,		/* dst_mask */
325	 FALSE),		/* pcrel_offset */
326
327  /* An 8 bit PC-relative relocation.  */
328  HOWTO (R_MMIX_PC_8,		/* type */
329	 0,			/* rightshift */
330	 0,			/* size (0 = byte, 1 = short, 2 = long) */
331	 8,			/* bitsize */
332	 TRUE,			/* pc_relative */
333	 0,			/* bitpos */
334	 complain_overflow_bitfield, /* complain_on_overflow */
335	 bfd_elf_generic_reloc,	/* special_function */
336	 "R_MMIX_PC_8",		/* name */
337	 FALSE,			/* partial_inplace */
338	 0,			/* src_mask */
339	 0xff,			/* dst_mask */
340	 TRUE),			/* pcrel_offset */
341
342  /* An 16 bit PC-relative relocation.  */
343  HOWTO (R_MMIX_PC_16,		/* type */
344	 0,			/* rightshift */
345	 1,			/* size (0 = byte, 1 = short, 2 = long) */
346	 16,			/* bitsize */
347	 TRUE,			/* pc_relative */
348	 0,			/* bitpos */
349	 complain_overflow_bitfield, /* complain_on_overflow */
350	 bfd_elf_generic_reloc,	/* special_function */
351	 "R_MMIX_PC_16",	/* name */
352	 FALSE,			/* partial_inplace */
353	 0,			/* src_mask */
354	 0xffff,		/* dst_mask */
355	 TRUE),			/* pcrel_offset */
356
357  /* An 24 bit PC-relative relocation.  */
358  HOWTO (R_MMIX_PC_24,		/* type */
359	 0,			/* rightshift */
360	 2,			/* size (0 = byte, 1 = short, 2 = long) */
361	 24,			/* bitsize */
362	 TRUE,			/* pc_relative */
363	 0,			/* bitpos */
364	 complain_overflow_bitfield, /* complain_on_overflow */
365	 bfd_elf_generic_reloc,	/* special_function */
366	 "R_MMIX_PC_24",	/* name */
367	 FALSE,			/* partial_inplace */
368	 ~0xffffff,		/* src_mask */
369	 0xffffff,		/* dst_mask */
370	 TRUE),			/* pcrel_offset */
371
372  /* A 32 bit absolute PC-relative relocation.  */
373  HOWTO (R_MMIX_PC_32,		/* type */
374	 0,			/* rightshift */
375	 2,			/* size (0 = byte, 1 = short, 2 = long) */
376	 32,			/* bitsize */
377	 TRUE,			/* pc_relative */
378	 0,			/* bitpos */
379	 complain_overflow_bitfield, /* complain_on_overflow */
380	 bfd_elf_generic_reloc,	/* special_function */
381	 "R_MMIX_PC_32",	/* name */
382	 FALSE,			/* partial_inplace */
383	 0,			/* src_mask */
384	 0xffffffff,		/* dst_mask */
385	 TRUE),			/* pcrel_offset */
386
387  /* 64 bit PC-relative relocation.  */
388  HOWTO (R_MMIX_PC_64,		/* type */
389	 0,			/* rightshift */
390	 4,			/* size (0 = byte, 1 = short, 2 = long) */
391	 64,			/* bitsize */
392	 TRUE,			/* pc_relative */
393	 0,			/* bitpos */
394	 complain_overflow_bitfield, /* complain_on_overflow */
395	 bfd_elf_generic_reloc,	/* special_function */
396	 "R_MMIX_PC_64",	/* name */
397	 FALSE,			/* partial_inplace */
398	 0,			/* src_mask */
399	 MINUS_ONE,		/* dst_mask */
400	 TRUE),			/* pcrel_offset */
401
402  /* GNU extension to record C++ vtable hierarchy.  */
403  HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
404	 0,			/* rightshift */
405	 0,			/* size (0 = byte, 1 = short, 2 = long) */
406	 0,			/* bitsize */
407	 FALSE,			/* pc_relative */
408	 0,			/* bitpos */
409	 complain_overflow_dont, /* complain_on_overflow */
410	 NULL,			/* special_function */
411	 "R_MMIX_GNU_VTINHERIT", /* name */
412	 FALSE,			/* partial_inplace */
413	 0,			/* src_mask */
414	 0,			/* dst_mask */
415	 TRUE),			/* pcrel_offset */
416
417  /* GNU extension to record C++ vtable member usage.  */
418  HOWTO (R_MMIX_GNU_VTENTRY,	/* type */
419	 0,			/* rightshift */
420	 0,			/* size (0 = byte, 1 = short, 2 = long) */
421	 0,			/* bitsize */
422	 FALSE,			/* pc_relative */
423	 0,			/* bitpos */
424	 complain_overflow_dont, /* complain_on_overflow */
425	 _bfd_elf_rel_vtable_reloc_fn,	/* special_function */
426	 "R_MMIX_GNU_VTENTRY", /* name */
427	 FALSE,			/* partial_inplace */
428	 0,			/* src_mask */
429	 0,			/* dst_mask */
430	 FALSE),		/* pcrel_offset */
431
432  /* The GETA relocation is supposed to get any address that could
433     possibly be reached by the GETA instruction.  It can silently expand
434     to get a 64-bit operand, but will complain if any of the two least
435     significant bits are set.  The howto members reflect a simple GETA.  */
436  HOWTO (R_MMIX_GETA,		/* type */
437	 2,			/* rightshift */
438	 2,			/* size (0 = byte, 1 = short, 2 = long) */
439	 19,			/* bitsize */
440	 TRUE,			/* pc_relative */
441	 0,			/* bitpos */
442	 complain_overflow_signed, /* complain_on_overflow */
443	 mmix_elf_reloc,	/* special_function */
444	 "R_MMIX_GETA",		/* name */
445	 FALSE,			/* partial_inplace */
446	 ~0x0100ffff,		/* src_mask */
447	 0x0100ffff,		/* dst_mask */
448	 TRUE),			/* pcrel_offset */
449
450  HOWTO (R_MMIX_GETA_1,		/* type */
451	 2,			/* rightshift */
452	 2,			/* size (0 = byte, 1 = short, 2 = long) */
453	 19,			/* bitsize */
454	 TRUE,			/* pc_relative */
455	 0,			/* bitpos */
456	 complain_overflow_signed, /* complain_on_overflow */
457	 mmix_elf_reloc,	/* special_function */
458	 "R_MMIX_GETA_1",		/* name */
459	 FALSE,			/* partial_inplace */
460	 ~0x0100ffff,		/* src_mask */
461	 0x0100ffff,		/* dst_mask */
462	 TRUE),			/* pcrel_offset */
463
464  HOWTO (R_MMIX_GETA_2,		/* type */
465	 2,			/* rightshift */
466	 2,			/* size (0 = byte, 1 = short, 2 = long) */
467	 19,			/* bitsize */
468	 TRUE,			/* pc_relative */
469	 0,			/* bitpos */
470	 complain_overflow_signed, /* complain_on_overflow */
471	 mmix_elf_reloc,	/* special_function */
472	 "R_MMIX_GETA_2",		/* name */
473	 FALSE,			/* partial_inplace */
474	 ~0x0100ffff,		/* src_mask */
475	 0x0100ffff,		/* dst_mask */
476	 TRUE),			/* pcrel_offset */
477
478  HOWTO (R_MMIX_GETA_3,		/* type */
479	 2,			/* rightshift */
480	 2,			/* size (0 = byte, 1 = short, 2 = long) */
481	 19,			/* bitsize */
482	 TRUE,			/* pc_relative */
483	 0,			/* bitpos */
484	 complain_overflow_signed, /* complain_on_overflow */
485	 mmix_elf_reloc,	/* special_function */
486	 "R_MMIX_GETA_3",		/* name */
487	 FALSE,			/* partial_inplace */
488	 ~0x0100ffff,		/* src_mask */
489	 0x0100ffff,		/* dst_mask */
490	 TRUE),			/* pcrel_offset */
491
492  /* The conditional branches are supposed to reach any (code) address.
493     It can silently expand to a 64-bit operand, but will emit an error if
494     any of the two least significant bits are set.  The howto members
495     reflect a simple branch.  */
496  HOWTO (R_MMIX_CBRANCH,	/* type */
497	 2,			/* rightshift */
498	 2,			/* size (0 = byte, 1 = short, 2 = long) */
499	 19,			/* bitsize */
500	 TRUE,			/* pc_relative */
501	 0,			/* bitpos */
502	 complain_overflow_signed, /* complain_on_overflow */
503	 mmix_elf_reloc,	/* special_function */
504	 "R_MMIX_CBRANCH",	/* name */
505	 FALSE,			/* partial_inplace */
506	 ~0x0100ffff,		/* src_mask */
507	 0x0100ffff,		/* dst_mask */
508	 TRUE),		       	/* pcrel_offset */
509
510  HOWTO (R_MMIX_CBRANCH_J,	/* type */
511	 2,			/* rightshift */
512	 2,			/* size (0 = byte, 1 = short, 2 = long) */
513	 19,			/* bitsize */
514	 TRUE,			/* pc_relative */
515	 0,			/* bitpos */
516	 complain_overflow_signed, /* complain_on_overflow */
517	 mmix_elf_reloc,	/* special_function */
518	 "R_MMIX_CBRANCH_J",	/* name */
519	 FALSE,			/* partial_inplace */
520	 ~0x0100ffff,		/* src_mask */
521	 0x0100ffff,		/* dst_mask */
522	 TRUE),			/* pcrel_offset */
523
524  HOWTO (R_MMIX_CBRANCH_1,	/* type */
525	 2,			/* rightshift */
526	 2,			/* size (0 = byte, 1 = short, 2 = long) */
527	 19,			/* bitsize */
528	 TRUE,			/* pc_relative */
529	 0,			/* bitpos */
530	 complain_overflow_signed, /* complain_on_overflow */
531	 mmix_elf_reloc,	/* special_function */
532	 "R_MMIX_CBRANCH_1",	/* name */
533	 FALSE,			/* partial_inplace */
534	 ~0x0100ffff,		/* src_mask */
535	 0x0100ffff,		/* dst_mask */
536	 TRUE),			/* pcrel_offset */
537
538  HOWTO (R_MMIX_CBRANCH_2,	/* type */
539	 2,			/* rightshift */
540	 2,			/* size (0 = byte, 1 = short, 2 = long) */
541	 19,			/* bitsize */
542	 TRUE,			/* pc_relative */
543	 0,			/* bitpos */
544	 complain_overflow_signed, /* complain_on_overflow */
545	 mmix_elf_reloc,	/* special_function */
546	 "R_MMIX_CBRANCH_2",	/* name */
547	 FALSE,			/* partial_inplace */
548	 ~0x0100ffff,		/* src_mask */
549	 0x0100ffff,		/* dst_mask */
550	 TRUE),			/* pcrel_offset */
551
552  HOWTO (R_MMIX_CBRANCH_3,	/* type */
553	 2,			/* rightshift */
554	 2,			/* size (0 = byte, 1 = short, 2 = long) */
555	 19,			/* bitsize */
556	 TRUE,			/* pc_relative */
557	 0,			/* bitpos */
558	 complain_overflow_signed, /* complain_on_overflow */
559	 mmix_elf_reloc,	/* special_function */
560	 "R_MMIX_CBRANCH_3",	/* name */
561	 FALSE,			/* partial_inplace */
562	 ~0x0100ffff,		/* src_mask */
563	 0x0100ffff,		/* dst_mask */
564	 TRUE),			/* pcrel_offset */
565
566  /* The PUSHJ instruction can reach any (code) address, as long as it's
567     the beginning of a function (no usable restriction).  It can silently
568     expand to a 64-bit operand, but will emit an error if any of the two
569     least significant bits are set.  It can also expand into a call to a
570     stub; see R_MMIX_PUSHJ_STUBBABLE.  The howto members reflect a simple
571     PUSHJ.  */
572  HOWTO (R_MMIX_PUSHJ,		/* type */
573	 2,			/* rightshift */
574	 2,			/* size (0 = byte, 1 = short, 2 = long) */
575	 19,			/* bitsize */
576	 TRUE,			/* pc_relative */
577	 0,			/* bitpos */
578	 complain_overflow_signed, /* complain_on_overflow */
579	 mmix_elf_reloc,	/* special_function */
580	 "R_MMIX_PUSHJ",	/* name */
581	 FALSE,			/* partial_inplace */
582	 ~0x0100ffff,		/* src_mask */
583	 0x0100ffff,		/* dst_mask */
584	 TRUE),			/* pcrel_offset */
585
586  HOWTO (R_MMIX_PUSHJ_1,	/* type */
587	 2,			/* rightshift */
588	 2,			/* size (0 = byte, 1 = short, 2 = long) */
589	 19,			/* bitsize */
590	 TRUE,			/* pc_relative */
591	 0,			/* bitpos */
592	 complain_overflow_signed, /* complain_on_overflow */
593	 mmix_elf_reloc,	/* special_function */
594	 "R_MMIX_PUSHJ_1",	/* name */
595	 FALSE,			/* partial_inplace */
596	 ~0x0100ffff,		/* src_mask */
597	 0x0100ffff,		/* dst_mask */
598	 TRUE),			/* pcrel_offset */
599
600  HOWTO (R_MMIX_PUSHJ_2,	/* type */
601	 2,			/* rightshift */
602	 2,			/* size (0 = byte, 1 = short, 2 = long) */
603	 19,			/* bitsize */
604	 TRUE,			/* pc_relative */
605	 0,			/* bitpos */
606	 complain_overflow_signed, /* complain_on_overflow */
607	 mmix_elf_reloc,	/* special_function */
608	 "R_MMIX_PUSHJ_2",	/* name */
609	 FALSE,			/* partial_inplace */
610	 ~0x0100ffff,		/* src_mask */
611	 0x0100ffff,		/* dst_mask */
612	 TRUE),			/* pcrel_offset */
613
614  HOWTO (R_MMIX_PUSHJ_3,	/* type */
615	 2,			/* rightshift */
616	 2,			/* size (0 = byte, 1 = short, 2 = long) */
617	 19,			/* bitsize */
618	 TRUE,			/* pc_relative */
619	 0,			/* bitpos */
620	 complain_overflow_signed, /* complain_on_overflow */
621	 mmix_elf_reloc,	/* special_function */
622	 "R_MMIX_PUSHJ_3",	/* name */
623	 FALSE,			/* partial_inplace */
624	 ~0x0100ffff,		/* src_mask */
625	 0x0100ffff,		/* dst_mask */
626	 TRUE),			/* pcrel_offset */
627
628  /* A JMP is supposed to reach any (code) address.  By itself, it can
629     reach +-64M; the expansion can reach all 64 bits.  Note that the 64M
630     limit is soon reached if you link the program in wildly different
631     memory segments.  The howto members reflect a trivial JMP.  */
632  HOWTO (R_MMIX_JMP,		/* type */
633	 2,			/* rightshift */
634	 2,			/* size (0 = byte, 1 = short, 2 = long) */
635	 27,			/* bitsize */
636	 TRUE,			/* pc_relative */
637	 0,			/* bitpos */
638	 complain_overflow_signed, /* complain_on_overflow */
639	 mmix_elf_reloc,	/* special_function */
640	 "R_MMIX_JMP",		/* name */
641	 FALSE,			/* partial_inplace */
642	 ~0x1ffffff,		/* src_mask */
643	 0x1ffffff,		/* dst_mask */
644	 TRUE),			/* pcrel_offset */
645
646  HOWTO (R_MMIX_JMP_1,		/* type */
647	 2,			/* rightshift */
648	 2,			/* size (0 = byte, 1 = short, 2 = long) */
649	 27,			/* bitsize */
650	 TRUE,			/* pc_relative */
651	 0,			/* bitpos */
652	 complain_overflow_signed, /* complain_on_overflow */
653	 mmix_elf_reloc,	/* special_function */
654	 "R_MMIX_JMP_1",	/* name */
655	 FALSE,			/* partial_inplace */
656	 ~0x1ffffff,		/* src_mask */
657	 0x1ffffff,		/* dst_mask */
658	 TRUE),			/* pcrel_offset */
659
660  HOWTO (R_MMIX_JMP_2,		/* type */
661	 2,			/* rightshift */
662	 2,			/* size (0 = byte, 1 = short, 2 = long) */
663	 27,			/* bitsize */
664	 TRUE,			/* pc_relative */
665	 0,			/* bitpos */
666	 complain_overflow_signed, /* complain_on_overflow */
667	 mmix_elf_reloc,	/* special_function */
668	 "R_MMIX_JMP_2",	/* name */
669	 FALSE,			/* partial_inplace */
670	 ~0x1ffffff,		/* src_mask */
671	 0x1ffffff,		/* dst_mask */
672	 TRUE),			/* pcrel_offset */
673
674  HOWTO (R_MMIX_JMP_3,		/* type */
675	 2,			/* rightshift */
676	 2,			/* size (0 = byte, 1 = short, 2 = long) */
677	 27,			/* bitsize */
678	 TRUE,			/* pc_relative */
679	 0,			/* bitpos */
680	 complain_overflow_signed, /* complain_on_overflow */
681	 mmix_elf_reloc,	/* special_function */
682	 "R_MMIX_JMP_3",	/* name */
683	 FALSE,			/* partial_inplace */
684	 ~0x1ffffff,		/* src_mask */
685	 0x1ffffff,		/* dst_mask */
686	 TRUE),			/* pcrel_offset */
687
688  /* When we don't emit link-time-relaxable code from the assembler, or
689     when relaxation has done all it can do, these relocs are used.  For
690     GETA/PUSHJ/branches.  */
691  HOWTO (R_MMIX_ADDR19,		/* type */
692	 2,			/* rightshift */
693	 2,			/* size (0 = byte, 1 = short, 2 = long) */
694	 19,			/* bitsize */
695	 TRUE,			/* pc_relative */
696	 0,			/* bitpos */
697	 complain_overflow_signed, /* complain_on_overflow */
698	 mmix_elf_reloc,	/* special_function */
699	 "R_MMIX_ADDR19",	/* name */
700	 FALSE,			/* partial_inplace */
701	 ~0x0100ffff,		/* src_mask */
702	 0x0100ffff,		/* dst_mask */
703	 TRUE),			/* pcrel_offset */
704
705  /* For JMP.  */
706  HOWTO (R_MMIX_ADDR27,		/* type */
707	 2,			/* rightshift */
708	 2,			/* size (0 = byte, 1 = short, 2 = long) */
709	 27,			/* bitsize */
710	 TRUE,			/* pc_relative */
711	 0,			/* bitpos */
712	 complain_overflow_signed, /* complain_on_overflow */
713	 mmix_elf_reloc,	/* special_function */
714	 "R_MMIX_ADDR27",	/* name */
715	 FALSE,			/* partial_inplace */
716	 ~0x1ffffff,		/* src_mask */
717	 0x1ffffff,		/* dst_mask */
718	 TRUE),			/* pcrel_offset */
719
720  /* A general register or the value 0..255.  If a value, then the
721     instruction (offset -3) needs adjusting.  */
722  HOWTO (R_MMIX_REG_OR_BYTE,	/* type */
723	 0,			/* rightshift */
724	 1,			/* size (0 = byte, 1 = short, 2 = long) */
725	 8,			/* bitsize */
726	 FALSE,			/* pc_relative */
727	 0,			/* bitpos */
728	 complain_overflow_bitfield, /* complain_on_overflow */
729	 mmix_elf_reloc,	/* special_function */
730	 "R_MMIX_REG_OR_BYTE",	/* name */
731	 FALSE,			/* partial_inplace */
732	 0,			/* src_mask */
733	 0xff,			/* dst_mask */
734	 FALSE),		/* pcrel_offset */
735
736  /* A general register.  */
737  HOWTO (R_MMIX_REG,		/* type */
738	 0,			/* rightshift */
739	 1,			/* size (0 = byte, 1 = short, 2 = long) */
740	 8,			/* bitsize */
741	 FALSE,			/* pc_relative */
742	 0,			/* bitpos */
743	 complain_overflow_bitfield, /* complain_on_overflow */
744	 mmix_elf_reloc,	/* special_function */
745	 "R_MMIX_REG",		/* name */
746	 FALSE,			/* partial_inplace */
747	 0,			/* src_mask */
748	 0xff,			/* dst_mask */
749	 FALSE),		/* pcrel_offset */
750
751  /* A register plus an index, corresponding to the relocation expression.
752     The sizes must correspond to the valid range of the expression, while
753     the bitmasks correspond to what we store in the image.  */
754  HOWTO (R_MMIX_BASE_PLUS_OFFSET,	/* type */
755	 0,			/* rightshift */
756	 4,			/* size (0 = byte, 1 = short, 2 = long) */
757	 64,			/* bitsize */
758	 FALSE,			/* pc_relative */
759	 0,			/* bitpos */
760	 complain_overflow_bitfield, /* complain_on_overflow */
761	 mmix_elf_reloc,	/* special_function */
762	 "R_MMIX_BASE_PLUS_OFFSET", /* name */
763	 FALSE,			/* partial_inplace */
764	 0,			/* src_mask */
765	 0xffff,		/* dst_mask */
766	 FALSE),		/* pcrel_offset */
767
768  /* A "magic" relocation for a LOCAL expression, asserting that the
769     expression is less than the number of global registers.  No actual
770     modification of the contents is done.  Implementing this as a
771     relocation was less intrusive than e.g. putting such expressions in a
772     section to discard *after* relocation.  */
773  HOWTO (R_MMIX_LOCAL,		/* type */
774	 0,			/* rightshift */
775	 0,			/* size (0 = byte, 1 = short, 2 = long) */
776	 0,			/* bitsize */
777	 FALSE,			/* pc_relative */
778	 0,			/* bitpos */
779	 complain_overflow_dont, /* complain_on_overflow */
780	 mmix_elf_reloc,	/* special_function */
781	 "R_MMIX_LOCAL",	/* name */
782	 FALSE,			/* partial_inplace */
783	 0,			/* src_mask */
784	 0,			/* dst_mask */
785	 FALSE),		/* pcrel_offset */
786
787  HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
788	 2,			/* rightshift */
789	 2,			/* size (0 = byte, 1 = short, 2 = long) */
790	 19,			/* bitsize */
791	 TRUE,			/* pc_relative */
792	 0,			/* bitpos */
793	 complain_overflow_signed, /* complain_on_overflow */
794	 mmix_elf_reloc,	/* special_function */
795	 "R_MMIX_PUSHJ_STUBBABLE", /* name */
796	 FALSE,			/* partial_inplace */
797	 ~0x0100ffff,		/* src_mask */
798	 0x0100ffff,		/* dst_mask */
799	 TRUE)			/* pcrel_offset */
800 };
801
802
803/* Map BFD reloc types to MMIX ELF reloc types.  */
804
805struct mmix_reloc_map
806  {
807    bfd_reloc_code_real_type bfd_reloc_val;
808    enum elf_mmix_reloc_type elf_reloc_val;
809  };
810
811
812static const struct mmix_reloc_map mmix_reloc_map[] =
813  {
814    {BFD_RELOC_NONE, R_MMIX_NONE},
815    {BFD_RELOC_8, R_MMIX_8},
816    {BFD_RELOC_16, R_MMIX_16},
817    {BFD_RELOC_24, R_MMIX_24},
818    {BFD_RELOC_32, R_MMIX_32},
819    {BFD_RELOC_64, R_MMIX_64},
820    {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
821    {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
822    {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
823    {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
824    {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
825    {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
826    {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
827    {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
828    {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
829    {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
830    {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
831    {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
832    {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
833    {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
834    {BFD_RELOC_MMIX_REG, R_MMIX_REG},
835    {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
836    {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
837    {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
838  };
839
840static reloc_howto_type *
841bfd_elf64_bfd_reloc_type_lookup (abfd, code)
842     bfd *abfd ATTRIBUTE_UNUSED;
843     bfd_reloc_code_real_type code;
844{
845  unsigned int i;
846
847  for (i = 0;
848       i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
849       i++)
850    {
851      if (mmix_reloc_map[i].bfd_reloc_val == code)
852	return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
853    }
854
855  return NULL;
856}
857
858static bfd_boolean
859mmix_elf_new_section_hook (abfd, sec)
860     bfd *abfd;
861     asection *sec;
862{
863  struct _mmix_elf_section_data *sdata;
864  bfd_size_type amt = sizeof (*sdata);
865
866  sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
867  if (sdata == NULL)
868    return FALSE;
869  sec->used_by_bfd = (PTR) sdata;
870
871  return _bfd_elf_new_section_hook (abfd, sec);
872}
873
874
875/* This function performs the actual bitfiddling and sanity check for a
876   final relocation.  Each relocation gets its *worst*-case expansion
877   in size when it arrives here; any reduction in size should have been
878   caught in linker relaxation earlier.  When we get here, the relocation
879   looks like the smallest instruction with SWYM:s (nop:s) appended to the
880   max size.  We fill in those nop:s.
881
882   R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
883    GETA $N,foo
884   ->
885    SETL $N,foo & 0xffff
886    INCML $N,(foo >> 16) & 0xffff
887    INCMH $N,(foo >> 32) & 0xffff
888    INCH $N,(foo >> 48) & 0xffff
889
890   R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
891   condbranches needing relaxation might be rare enough to not be
892   worthwhile.)
893    [P]Bcc $N,foo
894   ->
895    [~P]B~cc $N,.+20
896    SETL $255,foo & ...
897    INCML ...
898    INCMH ...
899    INCH ...
900    GO $255,$255,0
901
902   R_MMIX_PUSHJ: (FIXME: Relaxation...)
903    PUSHJ $N,foo
904   ->
905    SETL $255,foo & ...
906    INCML ...
907    INCMH ...
908    INCH ...
909    PUSHGO $N,$255,0
910
911   R_MMIX_JMP: (FIXME: Relaxation...)
912    JMP foo
913   ->
914    SETL $255,foo & ...
915    INCML ...
916    INCMH ...
917    INCH ...
918    GO $255,$255,0
919
920   R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in.  */
921
922static bfd_reloc_status_type
923mmix_elf_perform_relocation (isec, howto, datap, addr, value)
924     asection *isec;
925     reloc_howto_type *howto;
926     PTR datap;
927     bfd_vma addr;
928     bfd_vma value;
929{
930  bfd *abfd = isec->owner;
931  bfd_reloc_status_type flag = bfd_reloc_ok;
932  bfd_reloc_status_type r;
933  int offs = 0;
934  int reg = 255;
935
936  /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
937     We handle the differences here and the common sequence later.  */
938  switch (howto->type)
939    {
940    case R_MMIX_GETA:
941      offs = 0;
942      reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
943
944      /* We change to an absolute value.  */
945      value += addr;
946      break;
947
948    case R_MMIX_CBRANCH:
949      {
950	int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
951
952	/* Invert the condition and prediction bit, and set the offset
953	   to five instructions ahead.
954
955	   We *can* do better if we want to.  If the branch is found to be
956	   within limits, we could leave the branch as is; there'll just
957	   be a bunch of NOP:s after it.  But we shouldn't see this
958	   sequence often enough that it's worth doing it.  */
959
960	bfd_put_32 (abfd,
961		    (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
962		     | (24/4)),
963		    (bfd_byte *) datap);
964
965	/* Put a "GO $255,$255,0" after the common sequence.  */
966	bfd_put_32 (abfd,
967		    ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
968		    (bfd_byte *) datap + 20);
969
970	/* Common sequence starts at offset 4.  */
971	offs = 4;
972
973	/* We change to an absolute value.  */
974	value += addr;
975      }
976      break;
977
978    case R_MMIX_PUSHJ_STUBBABLE:
979      /* If the address fits, we're fine.  */
980      if ((value & 3) == 0
981	  /* Note rightshift 0; see R_MMIX_JMP case below.  */
982	  && (r = bfd_check_overflow (complain_overflow_signed,
983				      howto->bitsize,
984				      0,
985				      bfd_arch_bits_per_address (abfd),
986				      value)) == bfd_reloc_ok)
987	goto pcrel_mmix_reloc_fits;
988      else
989	{
990	  bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
991
992	  /* We have the bytes at the PUSHJ insn and need to get the
993	     position for the stub.  There's supposed to be room allocated
994	     for the stub.  */
995	  bfd_byte *stubcontents
996	    = ((bfd_byte *) datap
997	       - (addr - (isec->output_section->vma + isec->output_offset))
998	       + size
999	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1000	  bfd_vma stubaddr;
1001
1002	  /* The address doesn't fit, so redirect the PUSHJ to the
1003	     location of the stub.  */
1004	  r = mmix_elf_perform_relocation (isec,
1005					   &elf_mmix_howto_table
1006					   [R_MMIX_ADDR19],
1007					   datap,
1008					   addr,
1009					   isec->output_section->vma
1010					   + isec->output_offset
1011					   + size
1012					   + (mmix_elf_section_data (isec)
1013					      ->pjs.stub_offset)
1014					   - addr);
1015	  if (r != bfd_reloc_ok)
1016	    return r;
1017
1018	  stubaddr
1019	    = (isec->output_section->vma
1020	       + isec->output_offset
1021	       + size
1022	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1023
1024	  /* We generate a simple JMP if that suffices, else the whole 5
1025	     insn stub.  */
1026	  if (bfd_check_overflow (complain_overflow_signed,
1027				  elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1028				  0,
1029				  bfd_arch_bits_per_address (abfd),
1030				  addr + value - stubaddr) == bfd_reloc_ok)
1031	    {
1032	      bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1033	      r = mmix_elf_perform_relocation (isec,
1034					       &elf_mmix_howto_table
1035					       [R_MMIX_ADDR27],
1036					       stubcontents,
1037					       stubaddr,
1038					       value + addr - stubaddr);
1039	      mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041	      if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042		  > isec->size)
1043		abort ();
1044
1045	      return r;
1046	    }
1047	  else
1048	    {
1049	      /* Put a "GO $255,0" after the common sequence.  */
1050	      bfd_put_32 (abfd,
1051			  ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052			  | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054	      /* Prepare for the general code to set the first part of the
1055		 linker stub, and */
1056	      value += addr;
1057	      datap = stubcontents;
1058	      mmix_elf_section_data (isec)->pjs.stub_offset
1059		+= MAX_PUSHJ_STUB_SIZE;
1060	    }
1061	}
1062      break;
1063
1064    case R_MMIX_PUSHJ:
1065      {
1066	int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068	/* Put a "PUSHGO $N,$255,0" after the common sequence.  */
1069	bfd_put_32 (abfd,
1070		    ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071		    | (inreg << 16)
1072		    | 0xff00,
1073		    (bfd_byte *) datap + 16);
1074
1075	/* We change to an absolute value.  */
1076	value += addr;
1077      }
1078      break;
1079
1080    case R_MMIX_JMP:
1081      /* This one is a little special.  If we get here on a non-relaxing
1082	 link, and the destination is actually in range, we don't need to
1083	 execute the nops.
1084	 If so, we fall through to the bit-fiddling relocs.
1085
1086	 FIXME: bfd_check_overflow seems broken; the relocation is
1087	 rightshifted before testing, so supply a zero rightshift.  */
1088
1089      if (! ((value & 3) == 0
1090	     && (r = bfd_check_overflow (complain_overflow_signed,
1091					 howto->bitsize,
1092					 0,
1093					 bfd_arch_bits_per_address (abfd),
1094					 value)) == bfd_reloc_ok))
1095	{
1096	  /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097	     modified below, and put a "GO $255,$255,0" after the
1098	     address-loading sequence.  */
1099	  bfd_put_32 (abfd,
1100		      ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101		      | 0xffff00,
1102		      (bfd_byte *) datap + 16);
1103
1104	  /* We change to an absolute value.  */
1105	  value += addr;
1106	  break;
1107	}
1108      /* FALLTHROUGH.  */
1109    case R_MMIX_ADDR19:
1110    case R_MMIX_ADDR27:
1111    pcrel_mmix_reloc_fits:
1112      /* These must be in range, or else we emit an error.  */
1113      if ((value & 3) == 0
1114	  /* Note rightshift 0; see above.  */
1115	  && (r = bfd_check_overflow (complain_overflow_signed,
1116				      howto->bitsize,
1117				      0,
1118				      bfd_arch_bits_per_address (abfd),
1119				      value)) == bfd_reloc_ok)
1120	{
1121	  bfd_vma in1
1122	    = bfd_get_32 (abfd, (bfd_byte *) datap);
1123	  bfd_vma highbit;
1124
1125	  if ((bfd_signed_vma) value < 0)
1126	    {
1127	      highbit = 1 << 24;
1128	      value += (1 << (howto->bitsize - 1));
1129	    }
1130	  else
1131	    highbit = 0;
1132
1133	  value >>= 2;
1134
1135	  bfd_put_32 (abfd,
1136		      (in1 & howto->src_mask)
1137		      | highbit
1138		      | (value & howto->dst_mask),
1139		      (bfd_byte *) datap);
1140
1141	  return bfd_reloc_ok;
1142	}
1143      else
1144	return bfd_reloc_overflow;
1145
1146    case R_MMIX_BASE_PLUS_OFFSET:
1147      {
1148	struct bpo_reloc_section_info *bpodata
1149	  = mmix_elf_section_data (isec)->bpo.reloc;
1150	asection *bpo_greg_section
1151	  = bpodata->bpo_greg_section;
1152	struct bpo_greg_section_info *gregdata
1153	  = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1154	size_t bpo_index
1155	  = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1156
1157	/* A consistency check: The value we now have in "relocation" must
1158	   be the same as the value we stored for that relocation.  It
1159	   doesn't cost much, so can be left in at all times.  */
1160	if (value != gregdata->reloc_request[bpo_index].value)
1161	  {
1162	    (*_bfd_error_handler)
1163	      (_("%s: Internal inconsistency error for value for\n\
1164 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1165	       bfd_get_filename (isec->owner),
1166	       (unsigned long) (value >> 32), (unsigned long) value,
1167	       (unsigned long) (gregdata->reloc_request[bpo_index].value
1168				>> 32),
1169	       (unsigned long) gregdata->reloc_request[bpo_index].value);
1170	    bfd_set_error (bfd_error_bad_value);
1171	    return bfd_reloc_overflow;
1172	  }
1173
1174	/* Then store the register number and offset for that register
1175	   into datap and datap + 1 respectively.  */
1176	bfd_put_8 (abfd,
1177		   gregdata->reloc_request[bpo_index].regindex
1178		   + bpo_greg_section->output_section->vma / 8,
1179		   datap);
1180	bfd_put_8 (abfd,
1181		   gregdata->reloc_request[bpo_index].offset,
1182		   ((unsigned char *) datap) + 1);
1183	return bfd_reloc_ok;
1184      }
1185
1186    case R_MMIX_REG_OR_BYTE:
1187    case R_MMIX_REG:
1188      if (value > 255)
1189	return bfd_reloc_overflow;
1190      bfd_put_8 (abfd, value, datap);
1191      return bfd_reloc_ok;
1192
1193    default:
1194      BAD_CASE (howto->type);
1195    }
1196
1197  /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1198     sequence.  */
1199
1200  /* Lowest two bits must be 0.  We return bfd_reloc_overflow for
1201     everything that looks strange.  */
1202  if (value & 3)
1203    flag = bfd_reloc_overflow;
1204
1205  bfd_put_32 (abfd,
1206	      (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1207	      (bfd_byte *) datap + offs);
1208  bfd_put_32 (abfd,
1209	      (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1210	      (bfd_byte *) datap + offs + 4);
1211  bfd_put_32 (abfd,
1212	      (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1213	      (bfd_byte *) datap + offs + 8);
1214  bfd_put_32 (abfd,
1215	      (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1216	      (bfd_byte *) datap + offs + 12);
1217
1218  return flag;
1219}
1220
1221/* Set the howto pointer for an MMIX ELF reloc (type RELA).  */
1222
1223static void
1224mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1225     bfd *abfd ATTRIBUTE_UNUSED;
1226     arelent *cache_ptr;
1227     Elf_Internal_Rela *dst;
1228{
1229  unsigned int r_type;
1230
1231  r_type = ELF64_R_TYPE (dst->r_info);
1232  BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1233  cache_ptr->howto = &elf_mmix_howto_table[r_type];
1234}
1235
1236/* Any MMIX-specific relocation gets here at assembly time or when linking
1237   to other formats (such as mmo); this is the relocation function from
1238   the reloc_table.  We don't get here for final pure ELF linking.  */
1239
1240static bfd_reloc_status_type
1241mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1242		output_bfd, error_message)
1243     bfd *abfd;
1244     arelent *reloc_entry;
1245     asymbol *symbol;
1246     PTR data;
1247     asection *input_section;
1248     bfd *output_bfd;
1249     char **error_message ATTRIBUTE_UNUSED;
1250{
1251  bfd_vma relocation;
1252  bfd_reloc_status_type r;
1253  asection *reloc_target_output_section;
1254  bfd_reloc_status_type flag = bfd_reloc_ok;
1255  bfd_vma output_base = 0;
1256  bfd_vma addr;
1257
1258  r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1259			     input_section, output_bfd, error_message);
1260
1261  /* If that was all that was needed (i.e. this isn't a final link, only
1262     some segment adjustments), we're done.  */
1263  if (r != bfd_reloc_continue)
1264    return r;
1265
1266  if (bfd_is_und_section (symbol->section)
1267      && (symbol->flags & BSF_WEAK) == 0
1268      && output_bfd == (bfd *) NULL)
1269    return bfd_reloc_undefined;
1270
1271  /* Is the address of the relocation really within the section?  */
1272  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1273    return bfd_reloc_outofrange;
1274
1275  /* Work out which section the relocation is targeted at and the
1276     initial relocation command value.  */
1277
1278  /* Get symbol value.  (Common symbols are special.)  */
1279  if (bfd_is_com_section (symbol->section))
1280    relocation = 0;
1281  else
1282    relocation = symbol->value;
1283
1284  reloc_target_output_section = bfd_get_output_section (symbol);
1285
1286  /* Here the variable relocation holds the final address of the symbol we
1287     are relocating against, plus any addend.  */
1288  if (output_bfd)
1289    output_base = 0;
1290  else
1291    output_base = reloc_target_output_section->vma;
1292
1293  relocation += output_base + symbol->section->output_offset;
1294
1295  /* Get position of relocation.  */
1296  addr = (reloc_entry->address + input_section->output_section->vma
1297	  + input_section->output_offset);
1298  if (output_bfd != (bfd *) NULL)
1299    {
1300      /* Add in supplied addend.  */
1301      relocation += reloc_entry->addend;
1302
1303      /* This is a partial relocation, and we want to apply the
1304	 relocation to the reloc entry rather than the raw data.
1305	 Modify the reloc inplace to reflect what we now know.  */
1306      reloc_entry->addend = relocation;
1307      reloc_entry->address += input_section->output_offset;
1308      return flag;
1309    }
1310
1311  return mmix_final_link_relocate (reloc_entry->howto, input_section,
1312				   data, reloc_entry->address,
1313				   reloc_entry->addend, relocation,
1314				   bfd_asymbol_name (symbol),
1315				   reloc_target_output_section);
1316}
1317
1318/* Relocate an MMIX ELF section.  Modified from elf32-fr30.c; look to it
1319   for guidance if you're thinking of copying this.  */
1320
1321static bfd_boolean
1322mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1323			   contents, relocs, local_syms, local_sections)
1324     bfd *output_bfd ATTRIBUTE_UNUSED;
1325     struct bfd_link_info *info;
1326     bfd *input_bfd;
1327     asection *input_section;
1328     bfd_byte *contents;
1329     Elf_Internal_Rela *relocs;
1330     Elf_Internal_Sym *local_syms;
1331     asection **local_sections;
1332{
1333  Elf_Internal_Shdr *symtab_hdr;
1334  struct elf_link_hash_entry **sym_hashes;
1335  Elf_Internal_Rela *rel;
1336  Elf_Internal_Rela *relend;
1337  bfd_size_type size;
1338  size_t pjsno = 0;
1339
1340  size = input_section->rawsize ? input_section->rawsize : input_section->size;
1341  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1342  sym_hashes = elf_sym_hashes (input_bfd);
1343  relend = relocs + input_section->reloc_count;
1344
1345  /* Zero the stub area before we start.  */
1346  if (input_section->rawsize != 0
1347      && input_section->size > input_section->rawsize)
1348    memset (contents + input_section->rawsize, 0,
1349	    input_section->size - input_section->rawsize);
1350
1351  for (rel = relocs; rel < relend; rel ++)
1352    {
1353      reloc_howto_type *howto;
1354      unsigned long r_symndx;
1355      Elf_Internal_Sym *sym;
1356      asection *sec;
1357      struct elf_link_hash_entry *h;
1358      bfd_vma relocation;
1359      bfd_reloc_status_type r;
1360      const char *name = NULL;
1361      int r_type;
1362      bfd_boolean undefined_signalled = FALSE;
1363
1364      r_type = ELF64_R_TYPE (rel->r_info);
1365
1366      if (r_type == R_MMIX_GNU_VTINHERIT
1367	  || r_type == R_MMIX_GNU_VTENTRY)
1368	continue;
1369
1370      r_symndx = ELF64_R_SYM (rel->r_info);
1371
1372      if (info->relocatable)
1373	{
1374	  /* This is a relocatable link.  For most relocs we don't have to
1375	     change anything, unless the reloc is against a section
1376	     symbol, in which case we have to adjust according to where
1377	     the section symbol winds up in the output section.  */
1378	  if (r_symndx < symtab_hdr->sh_info)
1379	    {
1380	      sym = local_syms + r_symndx;
1381
1382	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1383		{
1384		  sec = local_sections [r_symndx];
1385		  rel->r_addend += sec->output_offset + sym->st_value;
1386		}
1387	    }
1388
1389	  /* For PUSHJ stub relocs however, we may need to change the
1390	     reloc and the section contents, if the reloc doesn't reach
1391	     beyond the end of the output section and previous stubs.
1392	     Then we change the section contents to be a PUSHJ to the end
1393	     of the input section plus stubs (we can do that without using
1394	     a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1395	     at the stub location.  */
1396	  if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1397	    {
1398	      /* We've already checked whether we need a stub; use that
1399		 knowledge.  */
1400	      if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1401		  != 0)
1402		{
1403		  Elf_Internal_Rela relcpy;
1404
1405		  if (mmix_elf_section_data (input_section)
1406		      ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1407		    abort ();
1408
1409		  /* There's already a PUSHJ insn there, so just fill in
1410		     the offset bits to the stub.  */
1411		  if (mmix_final_link_relocate (elf_mmix_howto_table
1412						+ R_MMIX_ADDR19,
1413						input_section,
1414						contents,
1415						rel->r_offset,
1416						0,
1417						input_section
1418						->output_section->vma
1419						+ input_section->output_offset
1420						+ size
1421						+ mmix_elf_section_data (input_section)
1422						->pjs.stub_offset,
1423						NULL, NULL) != bfd_reloc_ok)
1424		    return FALSE;
1425
1426		  /* Put a JMP insn at the stub; it goes with the
1427		     R_MMIX_JMP reloc.  */
1428		  bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1429			      contents
1430			      + size
1431			      + mmix_elf_section_data (input_section)
1432			      ->pjs.stub_offset);
1433
1434		  /* Change the reloc to be at the stub, and to a full
1435		     R_MMIX_JMP reloc.  */
1436		  rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1437		  rel->r_offset
1438		    = (size
1439		       + mmix_elf_section_data (input_section)
1440		       ->pjs.stub_offset);
1441
1442		  mmix_elf_section_data (input_section)->pjs.stub_offset
1443		    += MAX_PUSHJ_STUB_SIZE;
1444
1445		  /* Shift this reloc to the end of the relocs to maintain
1446		     the r_offset sorted reloc order.  */
1447		  relcpy = *rel;
1448		  memmove (rel, rel + 1, (char *) relend - (char *) rel);
1449		  relend[-1] = relcpy;
1450
1451		  /* Back up one reloc, or else we'd skip the next reloc
1452		   in turn.  */
1453		  rel--;
1454		}
1455
1456	      pjsno++;
1457	    }
1458	  continue;
1459	}
1460
1461      /* This is a final link.  */
1462      howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1463      h = NULL;
1464      sym = NULL;
1465      sec = NULL;
1466
1467      if (r_symndx < symtab_hdr->sh_info)
1468	{
1469	  sym = local_syms + r_symndx;
1470	  sec = local_sections [r_symndx];
1471	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1472
1473	  name = bfd_elf_string_from_elf_section (input_bfd,
1474						  symtab_hdr->sh_link,
1475						  sym->st_name);
1476	  if (name == NULL)
1477	    name = bfd_section_name (input_bfd, sec);
1478	}
1479      else
1480	{
1481	  bfd_boolean unresolved_reloc;
1482
1483	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1484				   r_symndx, symtab_hdr, sym_hashes,
1485				   h, sec, relocation,
1486				   unresolved_reloc, undefined_signalled);
1487	  name = h->root.root.string;
1488	}
1489
1490      r = mmix_final_link_relocate (howto, input_section,
1491				    contents, rel->r_offset,
1492				    rel->r_addend, relocation, name, sec);
1493
1494      if (r != bfd_reloc_ok)
1495	{
1496	  bfd_boolean check_ok = TRUE;
1497	  const char * msg = (const char *) NULL;
1498
1499	  switch (r)
1500	    {
1501	    case bfd_reloc_overflow:
1502	      check_ok = info->callbacks->reloc_overflow
1503		(info, (h ? &h->root : NULL), name, howto->name,
1504		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1505	      break;
1506
1507	    case bfd_reloc_undefined:
1508	      /* We may have sent this message above.  */
1509	      if (! undefined_signalled)
1510		check_ok = info->callbacks->undefined_symbol
1511		  (info, name, input_bfd, input_section, rel->r_offset,
1512		   TRUE);
1513	      undefined_signalled = TRUE;
1514	      break;
1515
1516	    case bfd_reloc_outofrange:
1517	      msg = _("internal error: out of range error");
1518	      break;
1519
1520	    case bfd_reloc_notsupported:
1521	      msg = _("internal error: unsupported relocation error");
1522	      break;
1523
1524	    case bfd_reloc_dangerous:
1525	      msg = _("internal error: dangerous relocation");
1526	      break;
1527
1528	    default:
1529	      msg = _("internal error: unknown error");
1530	      break;
1531	    }
1532
1533	  if (msg)
1534	    check_ok = info->callbacks->warning
1535	      (info, msg, name, input_bfd, input_section, rel->r_offset);
1536
1537	  if (! check_ok)
1538	    return FALSE;
1539	}
1540    }
1541
1542  return TRUE;
1543}
1544
1545/* Perform a single relocation.  By default we use the standard BFD
1546   routines.  A few relocs we have to do ourselves.  */
1547
1548static bfd_reloc_status_type
1549mmix_final_link_relocate (howto, input_section, contents,
1550			  r_offset, r_addend, relocation, symname, symsec)
1551     reloc_howto_type *howto;
1552     asection *input_section;
1553     bfd_byte *contents;
1554     bfd_vma r_offset;
1555     bfd_signed_vma r_addend;
1556     bfd_vma relocation;
1557     const char *symname;
1558     asection *symsec;
1559{
1560  bfd_reloc_status_type r = bfd_reloc_ok;
1561  bfd_vma addr
1562    = (input_section->output_section->vma
1563       + input_section->output_offset
1564       + r_offset);
1565  bfd_signed_vma srel
1566    = (bfd_signed_vma) relocation + r_addend;
1567
1568  switch (howto->type)
1569    {
1570      /* All these are PC-relative.  */
1571    case R_MMIX_PUSHJ_STUBBABLE:
1572    case R_MMIX_PUSHJ:
1573    case R_MMIX_CBRANCH:
1574    case R_MMIX_ADDR19:
1575    case R_MMIX_GETA:
1576    case R_MMIX_ADDR27:
1577    case R_MMIX_JMP:
1578      contents += r_offset;
1579
1580      srel -= (input_section->output_section->vma
1581	       + input_section->output_offset
1582	       + r_offset);
1583
1584      r = mmix_elf_perform_relocation (input_section, howto, contents,
1585				       addr, srel);
1586      break;
1587
1588    case R_MMIX_BASE_PLUS_OFFSET:
1589      if (symsec == NULL)
1590	return bfd_reloc_undefined;
1591
1592      /* Check that we're not relocating against a register symbol.  */
1593      if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1594		  MMIX_REG_CONTENTS_SECTION_NAME) == 0
1595	  || strcmp (bfd_get_section_name (symsec->owner, symsec),
1596		     MMIX_REG_SECTION_NAME) == 0)
1597	{
1598	  /* Note: This is separated out into two messages in order
1599	     to ease the translation into other languages.  */
1600	  if (symname == NULL || *symname == 0)
1601	    (*_bfd_error_handler)
1602	      (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1603	       bfd_get_filename (input_section->owner),
1604	       bfd_get_section_name (symsec->owner, symsec));
1605	  else
1606	    (*_bfd_error_handler)
1607	      (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1608	       bfd_get_filename (input_section->owner), symname,
1609	       bfd_get_section_name (symsec->owner, symsec));
1610	  return bfd_reloc_overflow;
1611	}
1612      goto do_mmix_reloc;
1613
1614    case R_MMIX_REG_OR_BYTE:
1615    case R_MMIX_REG:
1616      /* For now, we handle these alike.  They must refer to an register
1617	 symbol, which is either relative to the register section and in
1618	 the range 0..255, or is in the register contents section with vma
1619	 regno * 8.  */
1620
1621      /* FIXME: A better way to check for reg contents section?
1622	 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1623      if (symsec == NULL)
1624	return bfd_reloc_undefined;
1625
1626      if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1627		  MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1628	{
1629	  if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1630	    {
1631	      /* The bfd_reloc_outofrange return value, though intuitively
1632		 a better value, will not get us an error.  */
1633	      return bfd_reloc_overflow;
1634	    }
1635	  srel /= 8;
1636	}
1637      else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1638		       MMIX_REG_SECTION_NAME) == 0)
1639	{
1640	  if (srel < 0 || srel > 255)
1641	    /* The bfd_reloc_outofrange return value, though intuitively a
1642	       better value, will not get us an error.  */
1643	    return bfd_reloc_overflow;
1644	}
1645      else
1646	{
1647	  /* Note: This is separated out into two messages in order
1648	     to ease the translation into other languages.  */
1649	  if (symname == NULL || *symname == 0)
1650	    (*_bfd_error_handler)
1651	      (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1652	       bfd_get_filename (input_section->owner),
1653	       bfd_get_section_name (symsec->owner, symsec));
1654	  else
1655	    (*_bfd_error_handler)
1656	      (_("%s: register relocation against non-register symbol: %s in %s"),
1657	       bfd_get_filename (input_section->owner), symname,
1658	       bfd_get_section_name (symsec->owner, symsec));
1659
1660	  /* The bfd_reloc_outofrange return value, though intuitively a
1661	     better value, will not get us an error.  */
1662	  return bfd_reloc_overflow;
1663	}
1664    do_mmix_reloc:
1665      contents += r_offset;
1666      r = mmix_elf_perform_relocation (input_section, howto, contents,
1667				       addr, srel);
1668      break;
1669
1670    case R_MMIX_LOCAL:
1671      /* This isn't a real relocation, it's just an assertion that the
1672	 final relocation value corresponds to a local register.  We
1673	 ignore the actual relocation; nothing is changed.  */
1674      {
1675	asection *regsec
1676	  = bfd_get_section_by_name (input_section->output_section->owner,
1677				     MMIX_REG_CONTENTS_SECTION_NAME);
1678	bfd_vma first_global;
1679
1680	/* Check that this is an absolute value, or a reference to the
1681	   register contents section or the register (symbol) section.
1682	   Absolute numbers can get here as undefined section.  Undefined
1683	   symbols are signalled elsewhere, so there's no conflict in us
1684	   accidentally handling it.  */
1685	if (!bfd_is_abs_section (symsec)
1686	    && !bfd_is_und_section (symsec)
1687	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1688		       MMIX_REG_CONTENTS_SECTION_NAME) != 0
1689	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1690		       MMIX_REG_SECTION_NAME) != 0)
1691	{
1692	  (*_bfd_error_handler)
1693	    (_("%s: directive LOCAL valid only with a register or absolute value"),
1694	     bfd_get_filename (input_section->owner));
1695
1696	  return bfd_reloc_overflow;
1697	}
1698
1699      /* If we don't have a register contents section, then $255 is the
1700	 first global register.  */
1701      if (regsec == NULL)
1702	first_global = 255;
1703      else
1704	{
1705	  first_global = bfd_get_section_vma (abfd, regsec) / 8;
1706	  if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1707		      MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1708	    {
1709	      if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1710		/* The bfd_reloc_outofrange return value, though
1711		   intuitively a better value, will not get us an error.  */
1712		return bfd_reloc_overflow;
1713	      srel /= 8;
1714	    }
1715	}
1716
1717	if ((bfd_vma) srel >= first_global)
1718	  {
1719	    /* FIXME: Better error message.  */
1720	    (*_bfd_error_handler)
1721	      (_("%s: LOCAL directive: Register $%ld is not a local register.  First global register is $%ld."),
1722	       bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1723
1724	    return bfd_reloc_overflow;
1725	  }
1726      }
1727      r = bfd_reloc_ok;
1728      break;
1729
1730    default:
1731      r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1732				    contents, r_offset,
1733				    relocation, r_addend);
1734    }
1735
1736  return r;
1737}
1738
1739/* Return the section that should be marked against GC for a given
1740   relocation.  */
1741
1742static asection *
1743mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1744     asection *sec;
1745     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1746     Elf_Internal_Rela *rel;
1747     struct elf_link_hash_entry *h;
1748     Elf_Internal_Sym *sym;
1749{
1750  if (h != NULL)
1751    {
1752      switch (ELF64_R_TYPE (rel->r_info))
1753	{
1754	case R_MMIX_GNU_VTINHERIT:
1755	case R_MMIX_GNU_VTENTRY:
1756	  break;
1757
1758	default:
1759	  switch (h->root.type)
1760	    {
1761	    case bfd_link_hash_defined:
1762	    case bfd_link_hash_defweak:
1763	      return h->root.u.def.section;
1764
1765	    case bfd_link_hash_common:
1766	      return h->root.u.c.p->section;
1767
1768	    default:
1769	      break;
1770	    }
1771	}
1772    }
1773  else
1774    return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1775
1776  return NULL;
1777}
1778
1779/* Update relocation info for a GC-excluded section.  We could supposedly
1780   perform the allocation after GC, but there's no suitable hook between
1781   GC (or section merge) and the point when all input sections must be
1782   present.  Better to waste some memory and (perhaps) a little time.  */
1783
1784static bfd_boolean
1785mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1786     bfd *abfd ATTRIBUTE_UNUSED;
1787     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1788     asection *sec ATTRIBUTE_UNUSED;
1789     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1790{
1791  struct bpo_reloc_section_info *bpodata
1792    = mmix_elf_section_data (sec)->bpo.reloc;
1793  asection *allocated_gregs_section;
1794
1795  /* If no bpodata here, we have nothing to do.  */
1796  if (bpodata == NULL)
1797    return TRUE;
1798
1799  allocated_gregs_section = bpodata->bpo_greg_section;
1800
1801  mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1802    -= bpodata->n_bpo_relocs_this_section;
1803
1804  return TRUE;
1805}
1806
1807/* Sort register relocs to come before expanding relocs.  */
1808
1809static int
1810mmix_elf_sort_relocs (p1, p2)
1811     const PTR p1;
1812     const PTR p2;
1813{
1814  const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1815  const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1816  int r1_is_reg, r2_is_reg;
1817
1818  /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1819     insns.  */
1820  if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1821    return 1;
1822  else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1823    return -1;
1824
1825  r1_is_reg
1826    = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1827       || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1828  r2_is_reg
1829    = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1830       || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1831  if (r1_is_reg != r2_is_reg)
1832    return r2_is_reg - r1_is_reg;
1833
1834  /* Neither or both are register relocs.  Then sort on full offset.  */
1835  if (r1->r_offset > r2->r_offset)
1836    return 1;
1837  else if (r1->r_offset < r2->r_offset)
1838    return -1;
1839  return 0;
1840}
1841
1842/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking.  */
1843
1844static bfd_boolean
1845mmix_elf_check_common_relocs  (abfd, info, sec, relocs)
1846     bfd *abfd;
1847     struct bfd_link_info *info;
1848     asection *sec;
1849     const Elf_Internal_Rela *relocs;
1850{
1851  bfd *bpo_greg_owner = NULL;
1852  asection *allocated_gregs_section = NULL;
1853  struct bpo_greg_section_info *gregdata = NULL;
1854  struct bpo_reloc_section_info *bpodata = NULL;
1855  const Elf_Internal_Rela *rel;
1856  const Elf_Internal_Rela *rel_end;
1857
1858  /* We currently have to abuse this COFF-specific member, since there's
1859     no target-machine-dedicated member.  There's no alternative outside
1860     the bfd_link_info struct; we can't specialize a hash-table since
1861     they're different between ELF and mmo.  */
1862  bpo_greg_owner = (bfd *) info->base_file;
1863
1864  rel_end = relocs + sec->reloc_count;
1865  for (rel = relocs; rel < rel_end; rel++)
1866    {
1867      switch (ELF64_R_TYPE (rel->r_info))
1868        {
1869	  /* This relocation causes a GREG allocation.  We need to count
1870	     them, and we need to create a section for them, so we need an
1871	     object to fake as the owner of that section.  We can't use
1872	     the ELF dynobj for this, since the ELF bits assume lots of
1873	     DSO-related stuff if that member is non-NULL.  */
1874	case R_MMIX_BASE_PLUS_OFFSET:
1875	  /* We don't do anything with this reloc for a relocatable link.  */
1876	  if (info->relocatable)
1877	    break;
1878
1879	  if (bpo_greg_owner == NULL)
1880	    {
1881	      bpo_greg_owner = abfd;
1882	      info->base_file = (PTR) bpo_greg_owner;
1883	    }
1884
1885	  if (allocated_gregs_section == NULL)
1886	    allocated_gregs_section
1887	      = bfd_get_section_by_name (bpo_greg_owner,
1888					 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1889
1890	  if (allocated_gregs_section == NULL)
1891	    {
1892	      allocated_gregs_section
1893		= bfd_make_section_with_flags (bpo_greg_owner,
1894					       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1895					       (SEC_HAS_CONTENTS
1896						| SEC_IN_MEMORY
1897						| SEC_LINKER_CREATED));
1898	      /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1899		 treated like any other section, and we'd get errors for
1900		 address overlap with the text section.  Let's set none of
1901		 those flags, as that is what currently happens for usual
1902		 GREG allocations, and that works.  */
1903	      if (allocated_gregs_section == NULL
1904		  || !bfd_set_section_alignment (bpo_greg_owner,
1905						 allocated_gregs_section,
1906						 3))
1907		return FALSE;
1908
1909	      gregdata = (struct bpo_greg_section_info *)
1910		bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1911	      if (gregdata == NULL)
1912		return FALSE;
1913	      mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1914		= gregdata;
1915	    }
1916	  else if (gregdata == NULL)
1917	    gregdata
1918	      = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1919
1920	  /* Get ourselves some auxiliary info for the BPO-relocs.  */
1921	  if (bpodata == NULL)
1922	    {
1923	      /* No use doing a separate iteration pass to find the upper
1924		 limit - just use the number of relocs.  */
1925	      bpodata = (struct bpo_reloc_section_info *)
1926		bfd_alloc (bpo_greg_owner,
1927			   sizeof (struct bpo_reloc_section_info)
1928			   * (sec->reloc_count + 1));
1929	      if (bpodata == NULL)
1930		return FALSE;
1931	      mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1932	      bpodata->first_base_plus_offset_reloc
1933		= bpodata->bpo_index
1934		= gregdata->n_max_bpo_relocs;
1935	      bpodata->bpo_greg_section
1936		= allocated_gregs_section;
1937	      bpodata->n_bpo_relocs_this_section = 0;
1938	    }
1939
1940	  bpodata->n_bpo_relocs_this_section++;
1941	  gregdata->n_max_bpo_relocs++;
1942
1943	  /* We don't get another chance to set this before GC; we've not
1944	     set up any hook that runs before GC.  */
1945	  gregdata->n_bpo_relocs
1946	    = gregdata->n_max_bpo_relocs;
1947	  break;
1948
1949	case R_MMIX_PUSHJ_STUBBABLE:
1950	  mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1951	  break;
1952	}
1953    }
1954
1955  /* Allocate per-reloc stub storage and initialize it to the max stub
1956     size.  */
1957  if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1958    {
1959      size_t i;
1960
1961      mmix_elf_section_data (sec)->pjs.stub_size
1962	= bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1963		     * sizeof (mmix_elf_section_data (sec)
1964			       ->pjs.stub_size[0]));
1965      if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1966	return FALSE;
1967
1968      for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1969	mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1970    }
1971
1972  return TRUE;
1973}
1974
1975/* Look through the relocs for a section during the first phase.  */
1976
1977static bfd_boolean
1978mmix_elf_check_relocs (abfd, info, sec, relocs)
1979     bfd *abfd;
1980     struct bfd_link_info *info;
1981     asection *sec;
1982     const Elf_Internal_Rela *relocs;
1983{
1984  Elf_Internal_Shdr *symtab_hdr;
1985  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1986  const Elf_Internal_Rela *rel;
1987  const Elf_Internal_Rela *rel_end;
1988
1989  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1990  sym_hashes = elf_sym_hashes (abfd);
1991  sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1992  if (!elf_bad_symtab (abfd))
1993    sym_hashes_end -= symtab_hdr->sh_info;
1994
1995  /* First we sort the relocs so that any register relocs come before
1996     expansion-relocs to the same insn.  FIXME: Not done for mmo.  */
1997  qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1998	 mmix_elf_sort_relocs);
1999
2000  /* Do the common part.  */
2001  if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
2002    return FALSE;
2003
2004  if (info->relocatable)
2005    return TRUE;
2006
2007  rel_end = relocs + sec->reloc_count;
2008  for (rel = relocs; rel < rel_end; rel++)
2009    {
2010      struct elf_link_hash_entry *h;
2011      unsigned long r_symndx;
2012
2013      r_symndx = ELF64_R_SYM (rel->r_info);
2014      if (r_symndx < symtab_hdr->sh_info)
2015        h = NULL;
2016      else
2017	{
2018	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2019	  while (h->root.type == bfd_link_hash_indirect
2020		 || h->root.type == bfd_link_hash_warning)
2021	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2022	}
2023
2024      switch (ELF64_R_TYPE (rel->r_info))
2025	{
2026        /* This relocation describes the C++ object vtable hierarchy.
2027           Reconstruct it for later use during GC.  */
2028        case R_MMIX_GNU_VTINHERIT:
2029          if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2030            return FALSE;
2031          break;
2032
2033        /* This relocation describes which C++ vtable entries are actually
2034           used.  Record for later use during GC.  */
2035        case R_MMIX_GNU_VTENTRY:
2036          if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2037            return FALSE;
2038          break;
2039	}
2040    }
2041
2042  return TRUE;
2043}
2044
2045/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2046   Copied from elf_link_add_object_symbols.  */
2047
2048bfd_boolean
2049_bfd_mmix_check_all_relocs (abfd, info)
2050     bfd *abfd;
2051     struct bfd_link_info *info;
2052{
2053  asection *o;
2054
2055  for (o = abfd->sections; o != NULL; o = o->next)
2056    {
2057      Elf_Internal_Rela *internal_relocs;
2058      bfd_boolean ok;
2059
2060      if ((o->flags & SEC_RELOC) == 0
2061	  || o->reloc_count == 0
2062	  || ((info->strip == strip_all || info->strip == strip_debugger)
2063	      && (o->flags & SEC_DEBUGGING) != 0)
2064	  || bfd_is_abs_section (o->output_section))
2065	continue;
2066
2067      internal_relocs
2068	= _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2069				     (Elf_Internal_Rela *) NULL,
2070				     info->keep_memory);
2071      if (internal_relocs == NULL)
2072	return FALSE;
2073
2074      ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2075
2076      if (! info->keep_memory)
2077	free (internal_relocs);
2078
2079      if (! ok)
2080	return FALSE;
2081    }
2082
2083  return TRUE;
2084}
2085
2086/* Change symbols relative to the reg contents section to instead be to
2087   the register section, and scale them down to correspond to the register
2088   number.  */
2089
2090static bfd_boolean
2091mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2092     struct bfd_link_info *info ATTRIBUTE_UNUSED;
2093     const char *name ATTRIBUTE_UNUSED;
2094     Elf_Internal_Sym *sym;
2095     asection *input_sec;
2096     struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2097{
2098  if (input_sec != NULL
2099      && input_sec->name != NULL
2100      && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2101      && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2102    {
2103      sym->st_value /= 8;
2104      sym->st_shndx = SHN_REGISTER;
2105    }
2106
2107  return TRUE;
2108}
2109
2110/* We fake a register section that holds values that are register numbers.
2111   Having a SHN_REGISTER and register section translates better to other
2112   formats (e.g. mmo) than for example a STT_REGISTER attribute.
2113   This section faking is based on a construct in elf32-mips.c.  */
2114static asection mmix_elf_reg_section;
2115static asymbol mmix_elf_reg_section_symbol;
2116static asymbol *mmix_elf_reg_section_symbol_ptr;
2117
2118/* Handle the special section numbers that a symbol may use.  */
2119
2120void
2121mmix_elf_symbol_processing (abfd, asym)
2122     bfd *abfd ATTRIBUTE_UNUSED;
2123     asymbol *asym;
2124{
2125  elf_symbol_type *elfsym;
2126
2127  elfsym = (elf_symbol_type *) asym;
2128  switch (elfsym->internal_elf_sym.st_shndx)
2129    {
2130    case SHN_REGISTER:
2131      if (mmix_elf_reg_section.name == NULL)
2132	{
2133	  /* Initialize the register section.  */
2134	  mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2135	  mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2136	  mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2137	  mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2138	  mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2139	  mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2140	  mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2141	  mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2142	  mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2143	}
2144      asym->section = &mmix_elf_reg_section;
2145      break;
2146
2147    default:
2148      break;
2149    }
2150}
2151
2152/* Given a BFD section, try to locate the corresponding ELF section
2153   index.  */
2154
2155static bfd_boolean
2156mmix_elf_section_from_bfd_section (abfd, sec, retval)
2157     bfd *                 abfd ATTRIBUTE_UNUSED;
2158     asection *            sec;
2159     int *                 retval;
2160{
2161  if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2162    *retval = SHN_REGISTER;
2163  else
2164    return FALSE;
2165
2166  return TRUE;
2167}
2168
2169/* Hook called by the linker routine which adds symbols from an object
2170   file.  We must handle the special SHN_REGISTER section number here.
2171
2172   We also check that we only have *one* each of the section-start
2173   symbols, since otherwise having two with the same value would cause
2174   them to be "merged", but with the contents serialized.  */
2175
2176bfd_boolean
2177mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2178     bfd *abfd;
2179     struct bfd_link_info *info ATTRIBUTE_UNUSED;
2180     Elf_Internal_Sym *sym;
2181     const char **namep ATTRIBUTE_UNUSED;
2182     flagword *flagsp ATTRIBUTE_UNUSED;
2183     asection **secp;
2184     bfd_vma *valp ATTRIBUTE_UNUSED;
2185{
2186  if (sym->st_shndx == SHN_REGISTER)
2187    {
2188      *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2189      (*secp)->flags |= SEC_LINKER_CREATED;
2190    }
2191  else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2192	   && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2193		       strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2194    {
2195      /* See if we have another one.  */
2196      struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2197							    *namep,
2198							    FALSE,
2199							    FALSE,
2200							    FALSE);
2201
2202      if (h != NULL && h->type != bfd_link_hash_undefined)
2203	{
2204	  /* How do we get the asymbol (or really: the filename) from h?
2205	     h->u.def.section->owner is NULL.  */
2206	  ((*_bfd_error_handler)
2207	   (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2208	    bfd_get_filename (abfd), *namep,
2209	    *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2210	   bfd_set_error (bfd_error_bad_value);
2211	   return FALSE;
2212	}
2213    }
2214
2215  return TRUE;
2216}
2217
2218/* We consider symbols matching "L.*:[0-9]+" to be local symbols.  */
2219
2220bfd_boolean
2221mmix_elf_is_local_label_name (abfd, name)
2222     bfd *abfd;
2223     const char *name;
2224{
2225  const char *colpos;
2226  int digits;
2227
2228  /* Also include the default local-label definition.  */
2229  if (_bfd_elf_is_local_label_name (abfd, name))
2230    return TRUE;
2231
2232  if (*name != 'L')
2233    return FALSE;
2234
2235  /* If there's no ":", or more than one, it's not a local symbol.  */
2236  colpos = strchr (name, ':');
2237  if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2238    return FALSE;
2239
2240  /* Check that there are remaining characters and that they are digits.  */
2241  if (colpos[1] == 0)
2242    return FALSE;
2243
2244  digits = strspn (colpos + 1, "0123456789");
2245  return digits != 0 && colpos[1 + digits] == 0;
2246}
2247
2248/* We get rid of the register section here.  */
2249
2250bfd_boolean
2251mmix_elf_final_link (abfd, info)
2252     bfd *abfd;
2253     struct bfd_link_info *info;
2254{
2255  /* We never output a register section, though we create one for
2256     temporary measures.  Check that nobody entered contents into it.  */
2257  asection *reg_section;
2258
2259  reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2260
2261  if (reg_section != NULL)
2262    {
2263      /* FIXME: Pass error state gracefully.  */
2264      if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2265	_bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2266
2267      /* Really remove the section, if it hasn't already been done.  */
2268      if (!bfd_section_removed_from_list (abfd, reg_section))
2269	{
2270	  bfd_section_list_remove (abfd, reg_section);
2271	  --abfd->section_count;
2272	}
2273    }
2274
2275  if (! bfd_elf_final_link (abfd, info))
2276    return FALSE;
2277
2278  /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2279     the regular linker machinery.  We do it here, like other targets with
2280     special sections.  */
2281  if (info->base_file != NULL)
2282    {
2283      asection *greg_section
2284	= bfd_get_section_by_name ((bfd *) info->base_file,
2285				   MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2286      if (!bfd_set_section_contents (abfd,
2287				     greg_section->output_section,
2288				     greg_section->contents,
2289				     (file_ptr) greg_section->output_offset,
2290				     greg_section->size))
2291	return FALSE;
2292    }
2293  return TRUE;
2294}
2295
2296/* We need to include the maximum size of PUSHJ-stubs in the initial
2297   section size.  This is expected to shrink during linker relaxation.  */
2298
2299static void
2300mmix_set_relaxable_size (abfd, sec, ptr)
2301     bfd *abfd ATTRIBUTE_UNUSED;
2302     asection *sec;
2303     void *ptr;
2304{
2305  struct bfd_link_info *info = ptr;
2306
2307  /* Make sure we only do this for section where we know we want this,
2308     otherwise we might end up resetting the size of COMMONs.  */
2309  if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2310    return;
2311
2312  sec->rawsize = sec->size;
2313  sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2314		* MAX_PUSHJ_STUB_SIZE);
2315
2316  /* For use in relocatable link, we start with a max stubs size.  See
2317     mmix_elf_relax_section.  */
2318  if (info->relocatable && sec->output_section)
2319    mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2320      += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2321	  * MAX_PUSHJ_STUB_SIZE);
2322}
2323
2324/* Initialize stuff for the linker-generated GREGs to match
2325   R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker.  */
2326
2327bfd_boolean
2328_bfd_mmix_before_linker_allocation (abfd, info)
2329     bfd *abfd ATTRIBUTE_UNUSED;
2330     struct bfd_link_info *info;
2331{
2332  asection *bpo_gregs_section;
2333  bfd *bpo_greg_owner;
2334  struct bpo_greg_section_info *gregdata;
2335  size_t n_gregs;
2336  bfd_vma gregs_size;
2337  size_t i;
2338  size_t *bpo_reloc_indexes;
2339  bfd *ibfd;
2340
2341  /* Set the initial size of sections.  */
2342  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2343    bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2344
2345  /* The bpo_greg_owner bfd is supposed to have been set by
2346     mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2347     If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2348  bpo_greg_owner = (bfd *) info->base_file;
2349  if (bpo_greg_owner == NULL)
2350    return TRUE;
2351
2352  bpo_gregs_section
2353    = bfd_get_section_by_name (bpo_greg_owner,
2354			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2355
2356  if (bpo_gregs_section == NULL)
2357    return TRUE;
2358
2359  /* We use the target-data handle in the ELF section data.  */
2360  gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2361  if (gregdata == NULL)
2362    return FALSE;
2363
2364  n_gregs = gregdata->n_bpo_relocs;
2365  gregdata->n_allocated_bpo_gregs = n_gregs;
2366
2367  /* When this reaches zero during relaxation, all entries have been
2368     filled in and the size of the linker gregs can be calculated.  */
2369  gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2370
2371  /* Set the zeroth-order estimate for the GREGs size.  */
2372  gregs_size = n_gregs * 8;
2373
2374  if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2375    return FALSE;
2376
2377  /* Allocate and set up the GREG arrays.  They're filled in at relaxation
2378     time.  Note that we must use the max number ever noted for the array,
2379     since the index numbers were created before GC.  */
2380  gregdata->reloc_request
2381    = bfd_zalloc (bpo_greg_owner,
2382		  sizeof (struct bpo_reloc_request)
2383		  * gregdata->n_max_bpo_relocs);
2384
2385  gregdata->bpo_reloc_indexes
2386    = bpo_reloc_indexes
2387    = bfd_alloc (bpo_greg_owner,
2388		 gregdata->n_max_bpo_relocs
2389		 * sizeof (size_t));
2390  if (bpo_reloc_indexes == NULL)
2391    return FALSE;
2392
2393  /* The default order is an identity mapping.  */
2394  for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2395    {
2396      bpo_reloc_indexes[i] = i;
2397      gregdata->reloc_request[i].bpo_reloc_no = i;
2398    }
2399
2400  return TRUE;
2401}
2402
2403/* Fill in contents in the linker allocated gregs.  Everything is
2404   calculated at this point; we just move the contents into place here.  */
2405
2406bfd_boolean
2407_bfd_mmix_after_linker_allocation (abfd, link_info)
2408     bfd *abfd ATTRIBUTE_UNUSED;
2409     struct bfd_link_info *link_info;
2410{
2411  asection *bpo_gregs_section;
2412  bfd *bpo_greg_owner;
2413  struct bpo_greg_section_info *gregdata;
2414  size_t n_gregs;
2415  size_t i, j;
2416  size_t lastreg;
2417  bfd_byte *contents;
2418
2419  /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2420     when the first R_MMIX_BASE_PLUS_OFFSET is seen.  If there is no such
2421     object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2422  bpo_greg_owner = (bfd *) link_info->base_file;
2423  if (bpo_greg_owner == NULL)
2424    return TRUE;
2425
2426  bpo_gregs_section
2427    = bfd_get_section_by_name (bpo_greg_owner,
2428			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2429
2430  /* This can't happen without DSO handling.  When DSOs are handled
2431     without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2432     section.  */
2433  if (bpo_gregs_section == NULL)
2434    return TRUE;
2435
2436  /* We use the target-data handle in the ELF section data.  */
2437
2438  gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2439  if (gregdata == NULL)
2440    return FALSE;
2441
2442  n_gregs = gregdata->n_allocated_bpo_gregs;
2443
2444  bpo_gregs_section->contents
2445    = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2446  if (contents == NULL)
2447    return FALSE;
2448
2449  /* Sanity check: If these numbers mismatch, some relocation has not been
2450     accounted for and the rest of gregdata is probably inconsistent.
2451     It's a bug, but it's more helpful to identify it than segfaulting
2452     below.  */
2453  if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2454      != gregdata->n_bpo_relocs)
2455    {
2456      (*_bfd_error_handler)
2457	(_("Internal inconsistency: remaining %u != max %u.\n\
2458  Please report this bug."),
2459	 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2460	 gregdata->n_bpo_relocs);
2461      return FALSE;
2462    }
2463
2464  for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2465    if (gregdata->reloc_request[i].regindex != lastreg)
2466      {
2467	bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2468		    contents + j * 8);
2469	lastreg = gregdata->reloc_request[i].regindex;
2470	j++;
2471      }
2472
2473  return TRUE;
2474}
2475
2476/* Sort valid relocs to come before non-valid relocs, then on increasing
2477   value.  */
2478
2479static int
2480bpo_reloc_request_sort_fn (p1, p2)
2481     const PTR p1;
2482     const PTR p2;
2483{
2484  const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2485  const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2486
2487  /* Primary function is validity; non-valid relocs sorted after valid
2488     ones.  */
2489  if (r1->valid != r2->valid)
2490    return r2->valid - r1->valid;
2491
2492  /* Then sort on value.  Don't simplify and return just the difference of
2493     the values: the upper bits of the 64-bit value would be truncated on
2494     a host with 32-bit ints.  */
2495  if (r1->value != r2->value)
2496    return r1->value > r2->value ? 1 : -1;
2497
2498  /* As a last re-sort, use the relocation number, so we get a stable
2499     sort.  The *addresses* aren't stable since items are swapped during
2500     sorting.  It depends on the qsort implementation if this actually
2501     happens.  */
2502  return r1->bpo_reloc_no > r2->bpo_reloc_no
2503    ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2504}
2505
2506/* For debug use only.  Dumps the global register allocations resulting
2507   from base-plus-offset relocs.  */
2508
2509void
2510mmix_dump_bpo_gregs (link_info, pf)
2511     struct bfd_link_info *link_info;
2512     bfd_error_handler_type pf;
2513{
2514  bfd *bpo_greg_owner;
2515  asection *bpo_gregs_section;
2516  struct bpo_greg_section_info *gregdata;
2517  unsigned int i;
2518
2519  if (link_info == NULL || link_info->base_file == NULL)
2520    return;
2521
2522  bpo_greg_owner = (bfd *) link_info->base_file;
2523
2524  bpo_gregs_section
2525    = bfd_get_section_by_name (bpo_greg_owner,
2526			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2527
2528  if (bpo_gregs_section == NULL)
2529    return;
2530
2531  gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2532  if (gregdata == NULL)
2533    return;
2534
2535  if (pf == NULL)
2536    pf = _bfd_error_handler;
2537
2538  /* These format strings are not translated.  They are for debug purposes
2539     only and never displayed to an end user.  Should they escape, we
2540     surely want them in original.  */
2541  (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2542 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2543     gregdata->n_max_bpo_relocs,
2544     gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2545     gregdata->n_allocated_bpo_gregs);
2546
2547  if (gregdata->reloc_request)
2548    for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2549      (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx  r: %3u o: %3u\n",
2550	     i,
2551	     (gregdata->bpo_reloc_indexes != NULL
2552	      ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2553	     gregdata->reloc_request[i].bpo_reloc_no,
2554	     gregdata->reloc_request[i].valid,
2555
2556	     (unsigned long) (gregdata->reloc_request[i].value >> 32),
2557	     (unsigned long) gregdata->reloc_request[i].value,
2558	     gregdata->reloc_request[i].regindex,
2559	     gregdata->reloc_request[i].offset);
2560}
2561
2562/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2563   when the last such reloc is done, an index-array is sorted according to
2564   the values and iterated over to produce register numbers (indexed by 0
2565   from the first allocated register number) and offsets for use in real
2566   relocation.
2567
2568   PUSHJ stub accounting is also done here.
2569
2570   Symbol- and reloc-reading infrastructure copied from elf-m10200.c.  */
2571
2572static bfd_boolean
2573mmix_elf_relax_section (abfd, sec, link_info, again)
2574     bfd *abfd;
2575     asection *sec;
2576     struct bfd_link_info *link_info;
2577     bfd_boolean *again;
2578{
2579  Elf_Internal_Shdr *symtab_hdr;
2580  Elf_Internal_Rela *internal_relocs;
2581  Elf_Internal_Rela *irel, *irelend;
2582  asection *bpo_gregs_section = NULL;
2583  struct bpo_greg_section_info *gregdata;
2584  struct bpo_reloc_section_info *bpodata
2585    = mmix_elf_section_data (sec)->bpo.reloc;
2586  /* The initialization is to quiet compiler warnings.  The value is to
2587     spot a missing actual initialization.  */
2588  size_t bpono = (size_t) -1;
2589  size_t pjsno = 0;
2590  bfd *bpo_greg_owner;
2591  Elf_Internal_Sym *isymbuf = NULL;
2592  bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2593
2594  mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2595
2596  /* Assume nothing changes.  */
2597  *again = FALSE;
2598
2599  /* We don't have to do anything if this section does not have relocs, or
2600     if this is not a code section.  */
2601  if ((sec->flags & SEC_RELOC) == 0
2602      || sec->reloc_count == 0
2603      || (sec->flags & SEC_CODE) == 0
2604      || (sec->flags & SEC_LINKER_CREATED) != 0
2605      /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2606         then nothing to do.  */
2607      || (bpodata == NULL
2608	  && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2609    return TRUE;
2610
2611  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2612
2613  bpo_greg_owner = (bfd *) link_info->base_file;
2614
2615  if (bpodata != NULL)
2616    {
2617      bpo_gregs_section = bpodata->bpo_greg_section;
2618      gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2619      bpono = bpodata->first_base_plus_offset_reloc;
2620    }
2621  else
2622    gregdata = NULL;
2623
2624  /* Get a copy of the native relocations.  */
2625  internal_relocs
2626    = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2627				 (Elf_Internal_Rela *) NULL,
2628				 link_info->keep_memory);
2629  if (internal_relocs == NULL)
2630    goto error_return;
2631
2632  /* Walk through them looking for relaxing opportunities.  */
2633  irelend = internal_relocs + sec->reloc_count;
2634  for (irel = internal_relocs; irel < irelend; irel++)
2635    {
2636      bfd_vma symval;
2637      struct elf_link_hash_entry *h = NULL;
2638
2639      /* We only process two relocs.  */
2640      if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2641	  && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2642	continue;
2643
2644      /* We process relocs in a distinctly different way when this is a
2645	 relocatable link (for one, we don't look at symbols), so we avoid
2646	 mixing its code with that for the "normal" relaxation.  */
2647      if (link_info->relocatable)
2648	{
2649	  /* The only transformation in a relocatable link is to generate
2650	     a full stub at the location of the stub calculated for the
2651	     input section, if the relocated stub location, the end of the
2652	     output section plus earlier stubs, cannot be reached.  Thus
2653	     relocatable linking can only lead to worse code, but it still
2654	     works.  */
2655	  if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2656	    {
2657	      /* If we can reach the end of the output-section and beyond
2658		 any current stubs, then we don't need a stub for this
2659		 reloc.  The relaxed order of output stub allocation may
2660		 not exactly match the straightforward order, so we always
2661		 assume presence of output stubs, which will allow
2662		 relaxation only on relocations indifferent to the
2663		 presence of output stub allocations for other relocations
2664		 and thus the order of output stub allocation.  */
2665	      if (bfd_check_overflow (complain_overflow_signed,
2666				      19,
2667				      0,
2668				      bfd_arch_bits_per_address (abfd),
2669				      /* Output-stub location.  */
2670				      sec->output_section->rawsize
2671				      + (mmix_elf_section_data (sec
2672							       ->output_section)
2673					 ->pjs.stubs_size_sum)
2674				      /* Location of this PUSHJ reloc.  */
2675				      - (sec->output_offset + irel->r_offset)
2676				      /* Don't count *this* stub twice.  */
2677				      - (mmix_elf_section_data (sec)
2678					 ->pjs.stub_size[pjsno]
2679					 + MAX_PUSHJ_STUB_SIZE))
2680		  == bfd_reloc_ok)
2681		mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2682
2683	      mmix_elf_section_data (sec)->pjs.stubs_size_sum
2684		+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2685
2686	      pjsno++;
2687	    }
2688
2689	  continue;
2690	}
2691
2692      /* Get the value of the symbol referred to by the reloc.  */
2693      if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2694	{
2695	  /* A local symbol.  */
2696	  Elf_Internal_Sym *isym;
2697	  asection *sym_sec;
2698
2699	  /* Read this BFD's local symbols if we haven't already.  */
2700	  if (isymbuf == NULL)
2701	    {
2702	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2703	      if (isymbuf == NULL)
2704		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2705						symtab_hdr->sh_info, 0,
2706						NULL, NULL, NULL);
2707	      if (isymbuf == 0)
2708		goto error_return;
2709	    }
2710
2711	  isym = isymbuf + ELF64_R_SYM (irel->r_info);
2712	  if (isym->st_shndx == SHN_UNDEF)
2713	    sym_sec = bfd_und_section_ptr;
2714	  else if (isym->st_shndx == SHN_ABS)
2715	    sym_sec = bfd_abs_section_ptr;
2716	  else if (isym->st_shndx == SHN_COMMON)
2717	    sym_sec = bfd_com_section_ptr;
2718	  else
2719	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2720	  symval = (isym->st_value
2721		    + sym_sec->output_section->vma
2722		    + sym_sec->output_offset);
2723	}
2724      else
2725	{
2726	  unsigned long indx;
2727
2728	  /* An external symbol.  */
2729	  indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2730	  h = elf_sym_hashes (abfd)[indx];
2731	  BFD_ASSERT (h != NULL);
2732	  if (h->root.type != bfd_link_hash_defined
2733	      && h->root.type != bfd_link_hash_defweak)
2734	    {
2735	      /* This appears to be a reference to an undefined symbol.  Just
2736		 ignore it--it will be caught by the regular reloc processing.
2737		 We need to keep BPO reloc accounting consistent, though
2738		 else we'll abort instead of emitting an error message.  */
2739	      if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2740		  && gregdata != NULL)
2741		{
2742		  gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2743		  bpono++;
2744		}
2745	      continue;
2746	    }
2747
2748	  symval = (h->root.u.def.value
2749		    + h->root.u.def.section->output_section->vma
2750		    + h->root.u.def.section->output_offset);
2751	}
2752
2753      if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2754	{
2755	  bfd_vma value = symval + irel->r_addend;
2756	  bfd_vma dot
2757	    = (sec->output_section->vma
2758	       + sec->output_offset
2759	       + irel->r_offset);
2760	  bfd_vma stubaddr
2761	    = (sec->output_section->vma
2762	       + sec->output_offset
2763	       + size
2764	       + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2765
2766	  if ((value & 3) == 0
2767	      && bfd_check_overflow (complain_overflow_signed,
2768				     19,
2769				     0,
2770				     bfd_arch_bits_per_address (abfd),
2771				     value - dot
2772				     - (value > dot
2773					? mmix_elf_section_data (sec)
2774					->pjs.stub_size[pjsno]
2775					: 0))
2776	      == bfd_reloc_ok)
2777	    /* If the reloc fits, no stub is needed.  */
2778	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2779	  else
2780	    /* Maybe we can get away with just a JMP insn?  */
2781	    if ((value & 3) == 0
2782		&& bfd_check_overflow (complain_overflow_signed,
2783				       27,
2784				       0,
2785				       bfd_arch_bits_per_address (abfd),
2786				       value - stubaddr
2787				       - (value > dot
2788					  ? mmix_elf_section_data (sec)
2789					  ->pjs.stub_size[pjsno] - 4
2790					  : 0))
2791		== bfd_reloc_ok)
2792	      /* Yep, account for a stub consisting of a single JMP insn.  */
2793	      mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2794	  else
2795	    /* Nope, go for the full insn stub.  It doesn't seem useful to
2796	       emit the intermediate sizes; those will only be useful for
2797	       a >64M program assuming contiguous code.  */
2798	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2799	      = MAX_PUSHJ_STUB_SIZE;
2800
2801	  mmix_elf_section_data (sec)->pjs.stubs_size_sum
2802	    += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2803	  pjsno++;
2804	  continue;
2805	}
2806
2807      /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc.  */
2808
2809      gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2810	= symval + irel->r_addend;
2811      gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2812      gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2813    }
2814
2815  /* Check if that was the last BPO-reloc.  If so, sort the values and
2816     calculate how many registers we need to cover them.  Set the size of
2817     the linker gregs, and if the number of registers changed, indicate
2818     that we need to relax some more because we have more work to do.  */
2819  if (gregdata != NULL
2820      && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2821    {
2822      size_t i;
2823      bfd_vma prev_base;
2824      size_t regindex;
2825
2826      /* First, reset the remaining relocs for the next round.  */
2827      gregdata->n_remaining_bpo_relocs_this_relaxation_round
2828	= gregdata->n_bpo_relocs;
2829
2830      qsort ((PTR) gregdata->reloc_request,
2831	     gregdata->n_max_bpo_relocs,
2832	     sizeof (struct bpo_reloc_request),
2833	     bpo_reloc_request_sort_fn);
2834
2835      /* Recalculate indexes.  When we find a change (however unlikely
2836	 after the initial iteration), we know we need to relax again,
2837	 since items in the GREG-array are sorted by increasing value and
2838	 stored in the relaxation phase.  */
2839      for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2840	if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2841	    != i)
2842	  {
2843	    gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2844	      = i;
2845	    *again = TRUE;
2846	  }
2847
2848      /* Allocate register numbers (indexing from 0).  Stop at the first
2849	 non-valid reloc.  */
2850      for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2851	   i < gregdata->n_bpo_relocs;
2852	   i++)
2853	{
2854	  if (gregdata->reloc_request[i].value > prev_base + 255)
2855	    {
2856	      regindex++;
2857	      prev_base = gregdata->reloc_request[i].value;
2858	    }
2859	  gregdata->reloc_request[i].regindex = regindex;
2860	  gregdata->reloc_request[i].offset
2861	    = gregdata->reloc_request[i].value - prev_base;
2862	}
2863
2864      /* If it's not the same as the last time, we need to relax again,
2865	 because the size of the section has changed.  I'm not sure we
2866	 actually need to do any adjustments since the shrinking happens
2867	 at the start of this section, but better safe than sorry.  */
2868      if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2869	{
2870	  gregdata->n_allocated_bpo_gregs = regindex + 1;
2871	  *again = TRUE;
2872	}
2873
2874      bpo_gregs_section->size = (regindex + 1) * 8;
2875    }
2876
2877  if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2878    {
2879      if (! link_info->keep_memory)
2880	free (isymbuf);
2881      else
2882	{
2883	  /* Cache the symbols for elf_link_input_bfd.  */
2884	  symtab_hdr->contents = (unsigned char *) isymbuf;
2885	}
2886    }
2887
2888  if (internal_relocs != NULL
2889      && elf_section_data (sec)->relocs != internal_relocs)
2890    free (internal_relocs);
2891
2892  if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2893    abort ();
2894
2895  if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2896    {
2897      sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2898      *again = TRUE;
2899    }
2900
2901  return TRUE;
2902
2903 error_return:
2904  if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2905    free (isymbuf);
2906  if (internal_relocs != NULL
2907      && elf_section_data (sec)->relocs != internal_relocs)
2908    free (internal_relocs);
2909  return FALSE;
2910}
2911
2912#define ELF_ARCH		bfd_arch_mmix
2913#define ELF_MACHINE_CODE 	EM_MMIX
2914
2915/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2916   However, that's too much for something somewhere in the linker part of
2917   BFD; perhaps the start-address has to be a non-zero multiple of this
2918   number, or larger than this number.  The symptom is that the linker
2919   complains: "warning: allocated section `.text' not in segment".  We
2920   settle for 64k; the page-size used in examples is 8k.
2921   #define ELF_MAXPAGESIZE 0x10000
2922
2923   Unfortunately, this causes excessive padding in the supposedly small
2924   for-education programs that are the expected usage (where people would
2925   inspect output).  We stick to 256 bytes just to have *some* default
2926   alignment.  */
2927#define ELF_MAXPAGESIZE 0x100
2928
2929#define TARGET_BIG_SYM		bfd_elf64_mmix_vec
2930#define TARGET_BIG_NAME		"elf64-mmix"
2931
2932#define elf_info_to_howto_rel		NULL
2933#define elf_info_to_howto		mmix_info_to_howto_rela
2934#define elf_backend_relocate_section	mmix_elf_relocate_section
2935#define elf_backend_gc_mark_hook	mmix_elf_gc_mark_hook
2936#define elf_backend_gc_sweep_hook	mmix_elf_gc_sweep_hook
2937
2938#define elf_backend_link_output_symbol_hook \
2939	mmix_elf_link_output_symbol_hook
2940#define elf_backend_add_symbol_hook	mmix_elf_add_symbol_hook
2941
2942#define elf_backend_check_relocs	mmix_elf_check_relocs
2943#define elf_backend_symbol_processing	mmix_elf_symbol_processing
2944
2945#define bfd_elf64_bfd_is_local_label_name \
2946	mmix_elf_is_local_label_name
2947
2948#define elf_backend_may_use_rel_p	0
2949#define elf_backend_may_use_rela_p	1
2950#define elf_backend_default_use_rela_p	1
2951
2952#define elf_backend_can_gc_sections	1
2953#define elf_backend_section_from_bfd_section \
2954	mmix_elf_section_from_bfd_section
2955
2956#define bfd_elf64_new_section_hook	mmix_elf_new_section_hook
2957#define bfd_elf64_bfd_final_link	mmix_elf_final_link
2958#define bfd_elf64_bfd_relax_section	mmix_elf_relax_section
2959
2960#include "elf64-target.h"
2961