1/*
2 * Copyright 2012      Ecole Normale Superieure
3 *
4 * Use of this software is governed by the MIT license
5 *
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
9
10#include <limits.h>
11#include <isl/aff.h>
12#include <isl/set.h>
13#include <isl/ilp.h>
14#include <isl/union_map.h>
15#include <isl_sort.h>
16#include <isl_tarjan.h>
17#include <isl_ast_private.h>
18#include <isl_ast_build_expr.h>
19#include <isl_ast_build_private.h>
20#include <isl_ast_graft_private.h>
21
22/* Add the constraint to the list that "user" points to, if it is not
23 * a div constraint.
24 */
25static int collect_constraint(__isl_take isl_constraint *constraint,
26	void *user)
27{
28	isl_constraint_list **list = user;
29
30	if (isl_constraint_is_div_constraint(constraint))
31		isl_constraint_free(constraint);
32	else
33		*list = isl_constraint_list_add(*list, constraint);
34
35	return 0;
36}
37
38/* Extract the constraints of "bset" (except the div constraints)
39 * and collect them in an isl_constraint_list.
40 */
41static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
42	__isl_take isl_basic_set *bset)
43{
44	int n;
45	isl_ctx *ctx;
46	isl_constraint_list *list;
47
48	if (!bset)
49		return NULL;
50
51	ctx = isl_basic_set_get_ctx(bset);
52
53	n = isl_basic_set_n_constraint(bset);
54	list = isl_constraint_list_alloc(ctx, n);
55	if (isl_basic_set_foreach_constraint(bset,
56					    &collect_constraint, &list) < 0)
57		list = isl_constraint_list_free(list);
58
59	isl_basic_set_free(bset);
60	return list;
61}
62
63/* Data used in generate_domain.
64 *
65 * "build" is the input build.
66 * "list" collects the results.
67 */
68struct isl_generate_domain_data {
69	isl_ast_build *build;
70
71	isl_ast_graft_list *list;
72};
73
74static __isl_give isl_ast_graft_list *generate_next_level(
75	__isl_take isl_union_map *executed,
76	__isl_take isl_ast_build *build);
77static __isl_give isl_ast_graft_list *generate_code(
78	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
79	int internal);
80
81/* Generate an AST for a single domain based on
82 * the (non single valued) inverse schedule "executed".
83 *
84 * We extend the schedule with the iteration domain
85 * and continue generating through a call to generate_code.
86 *
87 * In particular, if executed has the form
88 *
89 *	S -> D
90 *
91 * then we continue generating code on
92 *
93 *	[S -> D] -> D
94 *
95 * The extended inverse schedule is clearly single valued
96 * ensuring that the nested generate_code will not reach this function,
97 * but will instead create calls to all elements of D that need
98 * to be executed from the current schedule domain.
99 */
100static int generate_non_single_valued(__isl_take isl_map *executed,
101	struct isl_generate_domain_data *data)
102{
103	isl_map *identity;
104	isl_ast_build *build;
105	isl_ast_graft_list *list;
106
107	build = isl_ast_build_copy(data->build);
108
109	identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
110	executed = isl_map_domain_product(executed, identity);
111	build = isl_ast_build_set_single_valued(build, 1);
112
113	list = generate_code(isl_union_map_from_map(executed), build, 1);
114
115	data->list = isl_ast_graft_list_concat(data->list, list);
116
117	return 0;
118}
119
120/* Call the at_each_domain callback, if requested by the user,
121 * after recording the current inverse schedule in the build.
122 */
123static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
124	__isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
125{
126	if (!graft || !build)
127		return isl_ast_graft_free(graft);
128	if (!build->at_each_domain)
129		return graft;
130
131	build = isl_ast_build_copy(build);
132	build = isl_ast_build_set_executed(build,
133			isl_union_map_from_map(isl_map_copy(executed)));
134	if (!build)
135		return isl_ast_graft_free(graft);
136
137	graft->node = build->at_each_domain(graft->node,
138					build, build->at_each_domain_user);
139	isl_ast_build_free(build);
140
141	if (!graft->node)
142		graft = isl_ast_graft_free(graft);
143
144	return graft;
145}
146
147/* Generate an AST for a single domain based on
148 * the inverse schedule "executed".
149 *
150 * If there is more than one domain element associated to the current
151 * schedule "time", then we need to continue the generation process
152 * in generate_non_single_valued.
153 * Note that the inverse schedule being single-valued may depend
154 * on constraints that are only available in the original context
155 * domain specified by the user.  We therefore first introduce
156 * the constraints from data->build->domain.
157 * On the other hand, we only perform the test after having taken the gist
158 * of the domain as the resulting map is the one from which the call
159 * expression is constructed.  Using this map to construct the call
160 * expression usually yields simpler results.
161 * Because we perform the single-valuedness test on the gisted map,
162 * we may in rare cases fail to recognize that the inverse schedule
163 * is single-valued.  This becomes problematic if this happens
164 * from the recursive call through generate_non_single_valued
165 * as we would then end up in an infinite recursion.
166 * We therefore check if we are inside a call to generate_non_single_valued
167 * and revert to the ungisted map if the gisted map turns out not to be
168 * single-valued.
169 *
170 * Otherwise, we generate a call expression for the single executed
171 * domain element and put a guard around it based on the (simplified)
172 * domain of "executed".
173 *
174 * If the user has set an at_each_domain callback, it is called
175 * on the constructed call expression node.
176 */
177static int generate_domain(__isl_take isl_map *executed, void *user)
178{
179	struct isl_generate_domain_data *data = user;
180	isl_ast_graft *graft;
181	isl_ast_graft_list *list;
182	isl_set *guard;
183	isl_map *map;
184	int sv;
185
186	executed = isl_map_intersect_domain(executed,
187					    isl_set_copy(data->build->domain));
188
189	executed = isl_map_coalesce(executed);
190	map = isl_map_copy(executed);
191	map = isl_ast_build_compute_gist_map_domain(data->build, map);
192	sv = isl_map_is_single_valued(map);
193	if (sv < 0)
194		goto error;
195	if (!sv) {
196		isl_map_free(map);
197		if (data->build->single_valued)
198			map = isl_map_copy(executed);
199		else
200			return generate_non_single_valued(executed, data);
201	}
202	guard = isl_map_domain(isl_map_copy(map));
203	guard = isl_set_coalesce(guard);
204	guard = isl_ast_build_compute_gist(data->build, guard);
205	graft = isl_ast_graft_alloc_domain(map, data->build);
206	graft = at_each_domain(graft, executed, data->build);
207
208	isl_map_free(executed);
209	graft = isl_ast_graft_add_guard(graft, guard, data->build);
210
211	list = isl_ast_graft_list_from_ast_graft(graft);
212	data->list = isl_ast_graft_list_concat(data->list, list);
213
214	return 0;
215error:
216	isl_map_free(map);
217	isl_map_free(executed);
218	return -1;
219}
220
221/* Call build->create_leaf to a create "leaf" node in the AST,
222 * encapsulate the result in an isl_ast_graft and return the result
223 * as a 1-element list.
224 *
225 * Note that the node returned by the user may be an entire tree.
226 *
227 * Before we pass control to the user, we first clear some information
228 * from the build that is (presumbably) only meaningful
229 * for the current code generation.
230 * This includes the create_leaf callback itself, so we make a copy
231 * of the build first.
232 */
233static __isl_give isl_ast_graft_list *call_create_leaf(
234	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
235{
236	isl_ast_node *node;
237	isl_ast_graft *graft;
238	isl_ast_build *user_build;
239
240	user_build = isl_ast_build_copy(build);
241	user_build = isl_ast_build_set_executed(user_build, executed);
242	user_build = isl_ast_build_clear_local_info(user_build);
243	if (!user_build)
244		node = NULL;
245	else
246		node = build->create_leaf(user_build, build->create_leaf_user);
247	graft = isl_ast_graft_alloc(node, build);
248	isl_ast_build_free(build);
249	return isl_ast_graft_list_from_ast_graft(graft);
250}
251
252/* Generate an AST after having handled the complete schedule
253 * of this call to the code generator.
254 *
255 * If the user has specified a create_leaf callback, control
256 * is passed to the user in call_create_leaf.
257 *
258 * Otherwise, we generate one or more calls for each individual
259 * domain in generate_domain.
260 */
261static __isl_give isl_ast_graft_list *generate_inner_level(
262	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
263{
264	isl_ctx *ctx;
265	struct isl_generate_domain_data data = { build };
266
267	if (!build || !executed)
268		goto error;
269
270	if (build->create_leaf)
271		return call_create_leaf(executed, build);
272
273	ctx = isl_union_map_get_ctx(executed);
274	data.list = isl_ast_graft_list_alloc(ctx, 0);
275	if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
276		data.list = isl_ast_graft_list_free(data.list);
277
278	if (0)
279error:		data.list = NULL;
280	isl_ast_build_free(build);
281	isl_union_map_free(executed);
282	return data.list;
283}
284
285/* Call the before_each_for callback, if requested by the user.
286 */
287static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
288	__isl_keep isl_ast_build *build)
289{
290	isl_id *id;
291
292	if (!node || !build)
293		return isl_ast_node_free(node);
294	if (!build->before_each_for)
295		return node;
296	id = build->before_each_for(build, build->before_each_for_user);
297	node = isl_ast_node_set_annotation(node, id);
298	return node;
299}
300
301/* Call the after_each_for callback, if requested by the user.
302 */
303static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
304	__isl_keep isl_ast_build *build)
305{
306	if (!graft || !build)
307		return isl_ast_graft_free(graft);
308	if (!build->after_each_for)
309		return graft;
310	graft->node = build->after_each_for(graft->node, build,
311						build->after_each_for_user);
312	if (!graft->node)
313		return isl_ast_graft_free(graft);
314	return graft;
315}
316
317/* Plug in all the know values of the current and outer dimensions
318 * in the domain of "executed".  In principle, we only need to plug
319 * in the known value of the current dimension since the values of
320 * outer dimensions have been plugged in already.
321 * However, it turns out to be easier to just plug in all known values.
322 */
323static __isl_give isl_union_map *plug_in_values(
324	__isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
325{
326	return isl_ast_build_substitute_values_union_map_domain(build,
327								    executed);
328}
329
330/* Check if the constraint "c" is a lower bound on dimension "pos",
331 * an upper bound, or independent of dimension "pos".
332 */
333static int constraint_type(isl_constraint *c, int pos)
334{
335	if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
336		return 1;
337	if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
338		return 2;
339	return 0;
340}
341
342/* Compare the types of the constraints "a" and "b",
343 * resulting in constraints that are independent of "depth"
344 * to be sorted before the lower bounds on "depth", which in
345 * turn are sorted before the upper bounds on "depth".
346 */
347static int cmp_constraint(__isl_keep isl_constraint *a,
348	__isl_keep isl_constraint *b, void *user)
349{
350	int *depth = user;
351	int t1 = constraint_type(a, *depth);
352	int t2 = constraint_type(b, *depth);
353
354	return t1 - t2;
355}
356
357/* Extract a lower bound on dimension "pos" from constraint "c".
358 *
359 * If the constraint is of the form
360 *
361 *	a x + f(...) >= 0
362 *
363 * then we essentially return
364 *
365 *	l = ceil(-f(...)/a)
366 *
367 * However, if the current dimension is strided, then we need to make
368 * sure that the lower bound we construct is of the form
369 *
370 *	f + s a
371 *
372 * with f the offset and s the stride.
373 * We therefore compute
374 *
375 *	f + s * ceil((l - f)/s)
376 */
377static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
378	int pos, __isl_keep isl_ast_build *build)
379{
380	isl_aff *aff;
381
382	aff = isl_constraint_get_bound(c, isl_dim_set, pos);
383	aff = isl_aff_ceil(aff);
384
385	if (isl_ast_build_has_stride(build, pos)) {
386		isl_aff *offset;
387		isl_val *stride;
388
389		offset = isl_ast_build_get_offset(build, pos);
390		stride = isl_ast_build_get_stride(build, pos);
391
392		aff = isl_aff_sub(aff, isl_aff_copy(offset));
393		aff = isl_aff_scale_down_val(aff, isl_val_copy(stride));
394		aff = isl_aff_ceil(aff);
395		aff = isl_aff_scale_val(aff, stride);
396		aff = isl_aff_add(aff, offset);
397	}
398
399	aff = isl_ast_build_compute_gist_aff(build, aff);
400
401	return aff;
402}
403
404/* Return the exact lower bound (or upper bound if "upper" is set)
405 * of "domain" as a piecewise affine expression.
406 *
407 * If we are computing a lower bound (of a strided dimension), then
408 * we need to make sure it is of the form
409 *
410 *	f + s a
411 *
412 * where f is the offset and s is the stride.
413 * We therefore need to include the stride constraint before computing
414 * the minimum.
415 */
416static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
417	__isl_keep isl_ast_build *build, int upper)
418{
419	isl_set *stride;
420	isl_map *it_map;
421	isl_pw_aff *pa;
422	isl_pw_multi_aff *pma;
423
424	domain = isl_set_copy(domain);
425	if (!upper) {
426		stride = isl_ast_build_get_stride_constraint(build);
427		domain = isl_set_intersect(domain, stride);
428	}
429	it_map = isl_ast_build_map_to_iterator(build, domain);
430	if (upper)
431		pma = isl_map_lexmax_pw_multi_aff(it_map);
432	else
433		pma = isl_map_lexmin_pw_multi_aff(it_map);
434	pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
435	isl_pw_multi_aff_free(pma);
436	pa = isl_ast_build_compute_gist_pw_aff(build, pa);
437	pa = isl_pw_aff_coalesce(pa);
438
439	return pa;
440}
441
442/* Extract a lower bound on dimension "pos" from each constraint
443 * in "constraints" and return the list of lower bounds.
444 * If "constraints" has zero elements, then we extract a lower bound
445 * from "domain" instead.
446 */
447static __isl_give isl_pw_aff_list *lower_bounds(
448	__isl_keep isl_constraint_list *constraints, int pos,
449	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
450{
451	isl_ctx *ctx;
452	isl_pw_aff_list *list;
453	int i, n;
454
455	if (!build)
456		return NULL;
457
458	n = isl_constraint_list_n_constraint(constraints);
459	if (n == 0) {
460		isl_pw_aff *pa;
461		pa = exact_bound(domain, build, 0);
462		return isl_pw_aff_list_from_pw_aff(pa);
463	}
464
465	ctx = isl_ast_build_get_ctx(build);
466	list = isl_pw_aff_list_alloc(ctx,n);
467
468	for (i = 0; i < n; ++i) {
469		isl_aff *aff;
470		isl_constraint *c;
471
472		c = isl_constraint_list_get_constraint(constraints, i);
473		aff = lower_bound(c, pos, build);
474		isl_constraint_free(c);
475		list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
476	}
477
478	return list;
479}
480
481/* Extract an upper bound on dimension "pos" from each constraint
482 * in "constraints" and return the list of upper bounds.
483 * If "constraints" has zero elements, then we extract an upper bound
484 * from "domain" instead.
485 */
486static __isl_give isl_pw_aff_list *upper_bounds(
487	__isl_keep isl_constraint_list *constraints, int pos,
488	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
489{
490	isl_ctx *ctx;
491	isl_pw_aff_list *list;
492	int i, n;
493
494	n = isl_constraint_list_n_constraint(constraints);
495	if (n == 0) {
496		isl_pw_aff *pa;
497		pa = exact_bound(domain, build, 1);
498		return isl_pw_aff_list_from_pw_aff(pa);
499	}
500
501	ctx = isl_ast_build_get_ctx(build);
502	list = isl_pw_aff_list_alloc(ctx,n);
503
504	for (i = 0; i < n; ++i) {
505		isl_aff *aff;
506		isl_constraint *c;
507
508		c = isl_constraint_list_get_constraint(constraints, i);
509		aff = isl_constraint_get_bound(c, isl_dim_set, pos);
510		isl_constraint_free(c);
511		aff = isl_aff_floor(aff);
512		list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
513	}
514
515	return list;
516}
517
518/* Return an isl_ast_expr that performs the reduction of type "type"
519 * on AST expressions corresponding to the elements in "list".
520 *
521 * The list is assumed to contain at least one element.
522 * If the list contains exactly one element, then the returned isl_ast_expr
523 * simply computes that affine expression.
524 */
525static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
526	__isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
527{
528	int i, n;
529	isl_ctx *ctx;
530	isl_ast_expr *expr;
531
532	if (!list)
533		return NULL;
534
535	n = isl_pw_aff_list_n_pw_aff(list);
536
537	if (n == 1)
538		return isl_ast_build_expr_from_pw_aff_internal(build,
539				isl_pw_aff_list_get_pw_aff(list, 0));
540
541	ctx = isl_pw_aff_list_get_ctx(list);
542	expr = isl_ast_expr_alloc_op(ctx, type, n);
543	if (!expr)
544		return NULL;
545
546	for (i = 0; i < n; ++i) {
547		isl_ast_expr *expr_i;
548
549		expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
550				isl_pw_aff_list_get_pw_aff(list, i));
551		if (!expr_i)
552			return isl_ast_expr_free(expr);
553		expr->u.op.args[i] = expr_i;
554	}
555
556	return expr;
557}
558
559/* Add a guard to "graft" based on "bound" in the case of a degenerate
560 * level (including the special case of an eliminated level).
561 *
562 * We eliminate the current dimension, simplify the result in the current
563 * build and add the result as guards to the graft.
564 *
565 * Note that we cannot simply drop the constraints on the current dimension
566 * even in the eliminated case, because the single affine expression may
567 * not be explicitly available in "bounds".  Moreover, the single affine
568 * expression may only be defined on a subset of the build domain,
569 * so we do in some cases need to insert a guard even in the eliminated case.
570 */
571static __isl_give isl_ast_graft *add_degenerate_guard(
572	__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
573	__isl_keep isl_ast_build *build)
574{
575	int depth;
576	isl_set *dom;
577
578	depth = isl_ast_build_get_depth(build);
579
580	dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
581	if (isl_ast_build_has_stride(build, depth)) {
582		isl_set *stride;
583
584		stride = isl_ast_build_get_stride_constraint(build);
585		dom = isl_set_intersect(dom, stride);
586	}
587	dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
588	dom = isl_ast_build_compute_gist(build, dom);
589
590	graft = isl_ast_graft_add_guard(graft, dom, build);
591
592	return graft;
593}
594
595/* Update "graft" based on "bounds" for the eliminated case.
596 *
597 * In the eliminated case, no for node is created, so we only need
598 * to check if "bounds" imply any guards that need to be inserted.
599 */
600static __isl_give isl_ast_graft *refine_eliminated(
601	__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
602	__isl_keep isl_ast_build *build)
603{
604	return add_degenerate_guard(graft, bounds, build);
605}
606
607/* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
608 *
609 * "build" is the build in which graft->node was created
610 * "sub_build" contains information about the current level itself,
611 * including the single value attained.
612 *
613 * We first set the initialization part of the for loop to the single
614 * value attained by the current dimension.
615 * The increment and condition are not strictly needed as the are known
616 * to be "1" and "iterator <= value" respectively.
617 * Then we set the size of the iterator and
618 * check if "bounds" imply any guards that need to be inserted.
619 */
620static __isl_give isl_ast_graft *refine_degenerate(
621	__isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
622	__isl_keep isl_ast_build *build,
623	__isl_keep isl_ast_build *sub_build)
624{
625	isl_pw_aff *value;
626
627	if (!graft || !sub_build)
628		return isl_ast_graft_free(graft);
629
630	value = isl_pw_aff_copy(sub_build->value);
631
632	graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
633						value);
634	if (!graft->node->u.f.init)
635		return isl_ast_graft_free(graft);
636
637	graft = add_degenerate_guard(graft, bounds, build);
638
639	return graft;
640}
641
642/* Return the intersection of constraints in "list" as a set.
643 */
644static __isl_give isl_set *intersect_constraints(
645	__isl_keep isl_constraint_list *list)
646{
647	int i, n;
648	isl_basic_set *bset;
649
650	n = isl_constraint_list_n_constraint(list);
651	if (n < 1)
652		isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
653			"expecting at least one constraint", return NULL);
654
655	bset = isl_basic_set_from_constraint(
656				isl_constraint_list_get_constraint(list, 0));
657	for (i = 1; i < n; ++i) {
658		isl_basic_set *bset_i;
659
660		bset_i = isl_basic_set_from_constraint(
661				isl_constraint_list_get_constraint(list, i));
662		bset = isl_basic_set_intersect(bset, bset_i);
663	}
664
665	return isl_set_from_basic_set(bset);
666}
667
668/* Compute the constraints on the outer dimensions enforced by
669 * graft->node and add those constraints to graft->enforced,
670 * in case the upper bound is expressed as a set "upper".
671 *
672 * In particular, if l(...) is a lower bound in "lower", and
673 *
674 *	-a i + f(...) >= 0		or	a i <= f(...)
675 *
676 * is an upper bound ocnstraint on the current dimension i,
677 * then the for loop enforces the constraint
678 *
679 *	-a l(...) + f(...) >= 0		or	a l(...) <= f(...)
680 *
681 * We therefore simply take each lower bound in turn, plug it into
682 * the upper bounds and compute the intersection over all lower bounds.
683 *
684 * If a lower bound is a rational expression, then
685 * isl_basic_set_preimage_multi_aff will force this rational
686 * expression to have only integer values.  However, the loop
687 * itself does not enforce this integrality constraint.  We therefore
688 * use the ceil of the lower bounds instead of the lower bounds themselves.
689 * Other constraints will make sure that the for loop is only executed
690 * when each of the lower bounds attains an integral value.
691 * In particular, potentially rational values only occur in
692 * lower_bound if the offset is a (seemingly) rational expression,
693 * but then outer conditions will make sure that this rational expression
694 * only attains integer values.
695 */
696static __isl_give isl_ast_graft *set_enforced_from_set(
697	__isl_take isl_ast_graft *graft,
698	__isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
699{
700	isl_space *space;
701	isl_basic_set *enforced;
702	isl_pw_multi_aff *pma;
703	int i, n;
704
705	if (!graft || !lower)
706		return isl_ast_graft_free(graft);
707
708	space = isl_set_get_space(upper);
709	enforced = isl_basic_set_universe(isl_space_copy(space));
710
711	space = isl_space_map_from_set(space);
712	pma = isl_pw_multi_aff_identity(space);
713
714	n = isl_pw_aff_list_n_pw_aff(lower);
715	for (i = 0; i < n; ++i) {
716		isl_pw_aff *pa;
717		isl_set *enforced_i;
718		isl_basic_set *hull;
719		isl_pw_multi_aff *pma_i;
720
721		pa = isl_pw_aff_list_get_pw_aff(lower, i);
722		pa = isl_pw_aff_ceil(pa);
723		pma_i = isl_pw_multi_aff_copy(pma);
724		pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
725		enforced_i = isl_set_copy(upper);
726		enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
727		hull = isl_set_simple_hull(enforced_i);
728		enforced = isl_basic_set_intersect(enforced, hull);
729	}
730
731	isl_pw_multi_aff_free(pma);
732
733	graft = isl_ast_graft_enforce(graft, enforced);
734
735	return graft;
736}
737
738/* Compute the constraints on the outer dimensions enforced by
739 * graft->node and add those constraints to graft->enforced,
740 * in case the upper bound is expressed as
741 * a list of affine expressions "upper".
742 *
743 * The enforced condition is that each lower bound expression is less
744 * than or equal to each upper bound expression.
745 */
746static __isl_give isl_ast_graft *set_enforced_from_list(
747	__isl_take isl_ast_graft *graft,
748	__isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
749{
750	isl_set *cond;
751	isl_basic_set *enforced;
752
753	lower = isl_pw_aff_list_copy(lower);
754	upper = isl_pw_aff_list_copy(upper);
755	cond = isl_pw_aff_list_le_set(lower, upper);
756	enforced = isl_set_simple_hull(cond);
757	graft = isl_ast_graft_enforce(graft, enforced);
758
759	return graft;
760}
761
762/* Does "aff" have a negative constant term?
763 */
764static int aff_constant_is_negative(__isl_take isl_set *set,
765	__isl_take isl_aff *aff, void *user)
766{
767	int *neg = user;
768	isl_val *v;
769
770	v = isl_aff_get_constant_val(aff);
771	*neg = isl_val_is_neg(v);
772	isl_val_free(v);
773	isl_set_free(set);
774	isl_aff_free(aff);
775
776	return *neg ? 0 : -1;
777}
778
779/* Does "pa" have a negative constant term over its entire domain?
780 */
781static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
782{
783	int r;
784	int *neg = user;
785
786	r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
787	isl_pw_aff_free(pa);
788
789	return *neg ? 0 : -1;
790}
791
792/* Does each element in "list" have a negative constant term?
793 *
794 * The callback terminates the iteration as soon an element has been
795 * found that does not have a negative constant term.
796 */
797static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
798{
799	int neg = 1;
800
801	if (isl_pw_aff_list_foreach(list,
802				&pw_aff_constant_is_negative, &neg) < 0 && neg)
803		return -1;
804
805	return neg;
806}
807
808/* Add 1 to each of the elements in "list", where each of these elements
809 * is defined over the internal schedule space of "build".
810 */
811static __isl_give isl_pw_aff_list *list_add_one(
812	__isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
813{
814	int i, n;
815	isl_space *space;
816	isl_aff *aff;
817	isl_pw_aff *one;
818
819	space = isl_ast_build_get_space(build, 1);
820	aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
821	aff = isl_aff_add_constant_si(aff, 1);
822	one = isl_pw_aff_from_aff(aff);
823
824	n = isl_pw_aff_list_n_pw_aff(list);
825	for (i = 0; i < n; ++i) {
826		isl_pw_aff *pa;
827		pa = isl_pw_aff_list_get_pw_aff(list, i);
828		pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
829		list = isl_pw_aff_list_set_pw_aff(list, i, pa);
830	}
831
832	isl_pw_aff_free(one);
833
834	return list;
835}
836
837/* Set the condition part of the for node graft->node in case
838 * the upper bound is represented as a list of piecewise affine expressions.
839 *
840 * In particular, set the condition to
841 *
842 *	iterator <= min(list of upper bounds)
843 *
844 * If each of the upper bounds has a negative constant term, then
845 * set the condition to
846 *
847 *	iterator < min(list of (upper bound + 1)s)
848 *
849 */
850static __isl_give isl_ast_graft *set_for_cond_from_list(
851	__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
852	__isl_keep isl_ast_build *build)
853{
854	int neg;
855	isl_ast_expr *bound, *iterator, *cond;
856	enum isl_ast_op_type type = isl_ast_op_le;
857
858	if (!graft || !list)
859		return isl_ast_graft_free(graft);
860
861	neg = list_constant_is_negative(list);
862	if (neg < 0)
863		return isl_ast_graft_free(graft);
864	list = isl_pw_aff_list_copy(list);
865	if (neg) {
866		list = list_add_one(list, build);
867		type = isl_ast_op_lt;
868	}
869
870	bound = reduce_list(isl_ast_op_min, list, build);
871	iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
872	cond = isl_ast_expr_alloc_binary(type, iterator, bound);
873	graft->node->u.f.cond = cond;
874
875	isl_pw_aff_list_free(list);
876	if (!graft->node->u.f.cond)
877		return isl_ast_graft_free(graft);
878	return graft;
879}
880
881/* Set the condition part of the for node graft->node in case
882 * the upper bound is represented as a set.
883 */
884static __isl_give isl_ast_graft *set_for_cond_from_set(
885	__isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
886	__isl_keep isl_ast_build *build)
887{
888	isl_ast_expr *cond;
889
890	if (!graft)
891		return NULL;
892
893	cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
894	graft->node->u.f.cond = cond;
895	if (!graft->node->u.f.cond)
896		return isl_ast_graft_free(graft);
897	return graft;
898}
899
900/* Construct an isl_ast_expr for the increment (i.e., stride) of
901 * the current dimension.
902 */
903static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
904{
905	int depth;
906	isl_val *v;
907	isl_ctx *ctx;
908
909	if (!build)
910		return NULL;
911	ctx = isl_ast_build_get_ctx(build);
912	depth = isl_ast_build_get_depth(build);
913
914	if (!isl_ast_build_has_stride(build, depth))
915		return isl_ast_expr_alloc_int_si(ctx, 1);
916
917	v = isl_ast_build_get_stride(build, depth);
918	return isl_ast_expr_from_val(v);
919}
920
921/* Should we express the loop condition as
922 *
923 *	iterator <= min(list of upper bounds)
924 *
925 * or as a conjunction of constraints?
926 *
927 * The first is constructed from a list of upper bounds.
928 * The second is constructed from a set.
929 *
930 * If there are no upper bounds in "constraints", then this could mean
931 * that "domain" simply doesn't have an upper bound or that we didn't
932 * pick any upper bound.  In the first case, we want to generate the
933 * loop condition as a(n empty) conjunction of constraints
934 * In the second case, we will compute
935 * a single upper bound from "domain" and so we use the list form.
936 *
937 * If there are upper bounds in "constraints",
938 * then we use the list form iff the atomic_upper_bound option is set.
939 */
940static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
941	__isl_keep isl_set *domain, int depth)
942{
943	if (n_upper > 0)
944		return isl_options_get_ast_build_atomic_upper_bound(ctx);
945	else
946		return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
947}
948
949/* Fill in the expressions of the for node in graft->node.
950 *
951 * In particular,
952 * - set the initialization part of the loop to the maximum of the lower bounds
953 * - set the size of the iterator based on the values attained by the iterator
954 * - extract the increment from the stride of the current dimension
955 * - construct the for condition either based on a list of upper bounds
956 *	or on a set of upper bound constraints.
957 */
958static __isl_give isl_ast_graft *set_for_node_expressions(
959	__isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
960	int use_list, __isl_keep isl_pw_aff_list *upper_list,
961	__isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
962{
963	isl_ast_node *node;
964
965	if (!graft)
966		return NULL;
967
968	build = isl_ast_build_copy(build);
969	build = isl_ast_build_set_enforced(build,
970					isl_ast_graft_get_enforced(graft));
971
972	node = graft->node;
973	node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
974	node->u.f.inc = for_inc(build);
975
976	if (use_list)
977		graft = set_for_cond_from_list(graft, upper_list, build);
978	else
979		graft = set_for_cond_from_set(graft, upper_set, build);
980
981	isl_ast_build_free(build);
982
983	if (!node->u.f.iterator || !node->u.f.init ||
984	    !node->u.f.cond || !node->u.f.inc)
985		return isl_ast_graft_free(graft);
986
987	return graft;
988}
989
990/* Update "graft" based on "bounds" and "domain" for the generic,
991 * non-degenerate, case.
992 *
993 * "c_lower" and "c_upper" contain the lower and upper bounds
994 * that the loop node should express.
995 * "domain" is the subset of the intersection of the constraints
996 * for which some code is executed.
997 *
998 * There may be zero lower bounds or zero upper bounds in "constraints"
999 * in case the list of constraints was created
1000 * based on the atomic option or based on separation with explicit bounds.
1001 * In that case, we use "domain" to derive lower and/or upper bounds.
1002 *
1003 * We first compute a list of one or more lower bounds.
1004 *
1005 * Then we decide if we want to express the condition as
1006 *
1007 *	iterator <= min(list of upper bounds)
1008 *
1009 * or as a conjunction of constraints.
1010 *
1011 * The set of enforced constraints is then computed either based on
1012 * a list of upper bounds or on a set of upper bound constraints.
1013 * We do not compute any enforced constraints if we were forced
1014 * to compute a lower or upper bound using exact_bound.  The domains
1015 * of the resulting expressions may imply some bounds on outer dimensions
1016 * that we do not want to appear in the enforced constraints since
1017 * they are not actually enforced by the corresponding code.
1018 *
1019 * Finally, we fill in the expressions of the for node.
1020 */
1021static __isl_give isl_ast_graft *refine_generic_bounds(
1022	__isl_take isl_ast_graft *graft,
1023	__isl_take isl_constraint_list *c_lower,
1024	__isl_take isl_constraint_list *c_upper,
1025	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1026{
1027	int depth;
1028	isl_ctx *ctx;
1029	isl_pw_aff_list *lower;
1030	int use_list;
1031	isl_set *upper_set = NULL;
1032	isl_pw_aff_list *upper_list = NULL;
1033	int n_lower, n_upper;
1034
1035	if (!graft || !c_lower || !c_upper || !build)
1036		goto error;
1037
1038	depth = isl_ast_build_get_depth(build);
1039	ctx = isl_ast_graft_get_ctx(graft);
1040
1041	n_lower = isl_constraint_list_n_constraint(c_lower);
1042	n_upper = isl_constraint_list_n_constraint(c_upper);
1043
1044	use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1045
1046	lower = lower_bounds(c_lower, depth, domain, build);
1047
1048	if (use_list)
1049		upper_list = upper_bounds(c_upper, depth, domain, build);
1050	else if (n_upper > 0)
1051		upper_set = intersect_constraints(c_upper);
1052	else
1053		upper_set = isl_set_universe(isl_set_get_space(domain));
1054
1055	if (n_lower == 0 || n_upper == 0)
1056		;
1057	else if (use_list)
1058		graft = set_enforced_from_list(graft, lower, upper_list);
1059	else
1060		graft = set_enforced_from_set(graft, lower, depth, upper_set);
1061
1062	graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1063					upper_set, build);
1064
1065	isl_pw_aff_list_free(lower);
1066	isl_pw_aff_list_free(upper_list);
1067	isl_set_free(upper_set);
1068	isl_constraint_list_free(c_lower);
1069	isl_constraint_list_free(c_upper);
1070
1071	return graft;
1072error:
1073	isl_constraint_list_free(c_lower);
1074	isl_constraint_list_free(c_upper);
1075	return isl_ast_graft_free(graft);
1076}
1077
1078/* Internal data structure used inside count_constraints to keep
1079 * track of the number of constraints that are independent of dimension "pos",
1080 * the lower bounds in "pos" and the upper bounds in "pos".
1081 */
1082struct isl_ast_count_constraints_data {
1083	int pos;
1084
1085	int n_indep;
1086	int n_lower;
1087	int n_upper;
1088};
1089
1090/* Increment data->n_indep, data->lower or data->upper depending
1091 * on whether "c" is independenct of dimensions data->pos,
1092 * a lower bound or an upper bound.
1093 */
1094static int count_constraints(__isl_take isl_constraint *c, void *user)
1095{
1096	struct isl_ast_count_constraints_data *data = user;
1097
1098	if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
1099		data->n_lower++;
1100	else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
1101		data->n_upper++;
1102	else
1103		data->n_indep++;
1104
1105	isl_constraint_free(c);
1106
1107	return 0;
1108}
1109
1110/* Update "graft" based on "bounds" and "domain" for the generic,
1111 * non-degenerate, case.
1112 *
1113 * "list" respresent the list of bounds that need to be encoded by
1114 * the for loop (or a guard around the for loop).
1115 * "domain" is the subset of the intersection of the constraints
1116 * for which some code is executed.
1117 * "build" is the build in which graft->node was created.
1118 *
1119 * We separate lower bounds, upper bounds and constraints that
1120 * are independent of the loop iterator.
1121 *
1122 * The actual for loop bounds are generated in refine_generic_bounds.
1123 * If there are any constraints that are independent of the loop iterator,
1124 * we need to put a guard around the for loop (which may get hoisted up
1125 * to higher levels) and we call refine_generic_bounds in a build
1126 * where this guard is enforced.
1127 */
1128static __isl_give isl_ast_graft *refine_generic_split(
1129	__isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
1130	__isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1131{
1132	isl_ast_build *for_build;
1133	isl_set *guard;
1134	struct isl_ast_count_constraints_data data;
1135	isl_constraint_list *lower;
1136	isl_constraint_list *upper;
1137
1138	if (!list)
1139		return isl_ast_graft_free(graft);
1140
1141	data.pos = isl_ast_build_get_depth(build);
1142
1143	list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
1144	if (!list)
1145		return isl_ast_graft_free(graft);
1146
1147	data.n_indep = data.n_lower = data.n_upper = 0;
1148	if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
1149		isl_constraint_list_free(list);
1150		return isl_ast_graft_free(graft);
1151	}
1152
1153	lower = isl_constraint_list_copy(list);
1154	lower = isl_constraint_list_drop(lower, 0, data.n_indep);
1155	upper = isl_constraint_list_copy(lower);
1156	lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
1157	upper = isl_constraint_list_drop(upper, 0, data.n_lower);
1158
1159	if (data.n_indep == 0) {
1160		isl_constraint_list_free(list);
1161		return refine_generic_bounds(graft, lower, upper,
1162						domain, build);
1163	}
1164
1165	list = isl_constraint_list_drop(list, data.n_indep,
1166					data.n_lower + data.n_upper);
1167	guard = intersect_constraints(list);
1168	isl_constraint_list_free(list);
1169
1170	for_build = isl_ast_build_copy(build);
1171	for_build = isl_ast_build_restrict_pending(for_build,
1172						isl_set_copy(guard));
1173	graft = refine_generic_bounds(graft, lower, upper, domain, for_build);
1174	isl_ast_build_free(for_build);
1175
1176	graft = isl_ast_graft_add_guard(graft, guard, build);
1177
1178	return graft;
1179}
1180
1181/* Add the guard implied by the current stride constraint (if any),
1182 * but not (necessarily) enforced by the generated AST to "graft".
1183 */
1184static __isl_give isl_ast_graft *add_stride_guard(
1185	__isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
1186{
1187	int depth;
1188	isl_set *dom;
1189
1190	depth = isl_ast_build_get_depth(build);
1191	if (!isl_ast_build_has_stride(build, depth))
1192		return graft;
1193
1194	dom = isl_ast_build_get_stride_constraint(build);
1195	dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
1196	dom = isl_ast_build_compute_gist(build, dom);
1197
1198	graft = isl_ast_graft_add_guard(graft, dom, build);
1199
1200	return graft;
1201}
1202
1203/* Update "graft" based on "bounds" and "domain" for the generic,
1204 * non-degenerate, case.
1205 *
1206 * "bounds" respresent the bounds that need to be encoded by
1207 * the for loop (or a guard around the for loop).
1208 * "domain" is the subset of "bounds" for which some code is executed.
1209 * "build" is the build in which graft->node was created.
1210 *
1211 * We break up "bounds" into a list of constraints and continue with
1212 * refine_generic_split.
1213 */
1214static __isl_give isl_ast_graft *refine_generic(
1215	__isl_take isl_ast_graft *graft,
1216	__isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1217	__isl_keep isl_ast_build *build)
1218{
1219	isl_constraint_list *list;
1220
1221	if (!build || !graft)
1222		return isl_ast_graft_free(graft);
1223
1224	bounds = isl_basic_set_copy(bounds);
1225	bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1226	list = isl_constraint_list_from_basic_set(bounds);
1227
1228	graft = refine_generic_split(graft, list, domain, build);
1229	graft = add_stride_guard(graft, build);
1230
1231	return graft;
1232}
1233
1234/* Create a for node for the current level.
1235 *
1236 * Mark the for node degenerate if "degenerate" is set.
1237 */
1238static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1239	int degenerate)
1240{
1241	int depth;
1242	isl_id *id;
1243	isl_ast_node *node;
1244
1245	if (!build)
1246		return NULL;
1247
1248	depth = isl_ast_build_get_depth(build);
1249	id = isl_ast_build_get_iterator_id(build, depth);
1250	node = isl_ast_node_alloc_for(id);
1251	if (degenerate)
1252		node = isl_ast_node_for_mark_degenerate(node);
1253
1254	return node;
1255}
1256
1257/* Create an AST node for the current dimension based on
1258 * the schedule domain "bounds" and return the node encapsulated
1259 * in an isl_ast_graft.
1260 *
1261 * "executed" is the current inverse schedule, taking into account
1262 * the bounds in "bounds"
1263 * "domain" is the domain of "executed", with inner dimensions projected out.
1264 * It may be a strict subset of "bounds" in case "bounds" was created
1265 * based on the atomic option or based on separation with explicit bounds.
1266 *
1267 * "domain" may satisfy additional equalities that result
1268 * from intersecting "executed" with "bounds" in add_node.
1269 * It may also satisfy some global constraints that were dropped out because
1270 * we performed separation with explicit bounds.
1271 * The very first step is then to copy these constraints to "bounds".
1272 *
1273 * Since we may be calling before_each_for and after_each_for
1274 * callbacks, we record the current inverse schedule in the build.
1275 *
1276 * We consider three builds,
1277 * "build" is the one in which the current level is created,
1278 * "body_build" is the build in which the next level is created,
1279 * "sub_build" is essentially the same as "body_build", except that
1280 * the depth has not been increased yet.
1281 *
1282 * "build" already contains information (in strides and offsets)
1283 * about the strides at the current level, but this information is not
1284 * reflected in the build->domain.
1285 * We first add this information and the "bounds" to the sub_build->domain.
1286 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1287 * only a single value and whether this single value can be represented using
1288 * a single affine expression.
1289 * In the first case, the current level is considered "degenerate".
1290 * In the second, sub-case, the current level is considered "eliminated".
1291 * Eliminated level don't need to be reflected in the AST since we can
1292 * simply plug in the affine expression.  For degenerate, but non-eliminated,
1293 * levels, we do introduce a for node, but mark is as degenerate so that
1294 * it can be printed as an assignment of the single value to the loop
1295 * "iterator".
1296 *
1297 * If the current level is eliminated, we explicitly plug in the value
1298 * for the current level found by isl_ast_build_set_loop_bounds in the
1299 * inverse schedule.  This ensures that if we are working on a slice
1300 * of the domain based on information available in the inverse schedule
1301 * and the build domain, that then this information is also reflected
1302 * in the inverse schedule.  This operation also eliminates the current
1303 * dimension from the inverse schedule making sure no inner dimensions depend
1304 * on the current dimension.  Otherwise, we create a for node, marking
1305 * it degenerate if appropriate.  The initial for node is still incomplete
1306 * and will be completed in either refine_degenerate or refine_generic.
1307 *
1308 * We then generate a sequence of grafts for the next level,
1309 * create a surrounding graft for the current level and insert
1310 * the for node we created (if the current level is not eliminated).
1311 *
1312 * Finally, we set the bounds of the for loop and insert guards
1313 * (either in the AST or in the graft) in one of
1314 * refine_eliminated, refine_degenerate or refine_generic.
1315 */
1316static __isl_give isl_ast_graft *create_node_scaled(
1317	__isl_take isl_union_map *executed,
1318	__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1319	__isl_take isl_ast_build *build)
1320{
1321	int depth;
1322	int degenerate, eliminated;
1323	isl_basic_set *hull;
1324	isl_ast_node *node = NULL;
1325	isl_ast_graft *graft;
1326	isl_ast_graft_list *children;
1327	isl_ast_build *sub_build;
1328	isl_ast_build *body_build;
1329
1330	domain = isl_ast_build_eliminate_divs(build, domain);
1331	domain = isl_set_detect_equalities(domain);
1332	hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1333	bounds = isl_basic_set_intersect(bounds, hull);
1334	build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1335
1336	depth = isl_ast_build_get_depth(build);
1337	sub_build = isl_ast_build_copy(build);
1338	sub_build = isl_ast_build_include_stride(sub_build);
1339	sub_build = isl_ast_build_set_loop_bounds(sub_build,
1340						isl_basic_set_copy(bounds));
1341	degenerate = isl_ast_build_has_value(sub_build);
1342	eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1343	if (degenerate < 0 || eliminated < 0)
1344		executed = isl_union_map_free(executed);
1345	if (eliminated)
1346		executed = plug_in_values(executed, sub_build);
1347	else
1348		node = create_for(build, degenerate);
1349
1350	body_build = isl_ast_build_copy(sub_build);
1351	body_build = isl_ast_build_increase_depth(body_build);
1352	if (!eliminated)
1353		node = before_each_for(node, body_build);
1354	children = generate_next_level(executed,
1355				    isl_ast_build_copy(body_build));
1356
1357	graft = isl_ast_graft_alloc_level(children, build, sub_build);
1358	if (!eliminated)
1359		graft = isl_ast_graft_insert_for(graft, node);
1360	if (eliminated)
1361		graft = refine_eliminated(graft, bounds, build);
1362	else if (degenerate)
1363		graft = refine_degenerate(graft, bounds, build, sub_build);
1364	else
1365		graft = refine_generic(graft, bounds, domain, build);
1366	if (!eliminated)
1367		graft = after_each_for(graft, body_build);
1368
1369	isl_ast_build_free(body_build);
1370	isl_ast_build_free(sub_build);
1371	isl_ast_build_free(build);
1372	isl_basic_set_free(bounds);
1373	isl_set_free(domain);
1374
1375	return graft;
1376}
1377
1378/* Internal data structure for checking if all constraints involving
1379 * the input dimension "depth" are such that the other coefficients
1380 * are multiples of "m", reducing "m" if they are not.
1381 * If "m" is reduced all the way down to "1", then the check has failed
1382 * and we break out of the iteration.
1383 */
1384struct isl_check_scaled_data {
1385	int depth;
1386	isl_val *m;
1387};
1388
1389/* If constraint "c" involves the input dimension data->depth,
1390 * then make sure that all the other coefficients are multiples of data->m,
1391 * reducing data->m if needed.
1392 * Break out of the iteration if data->m has become equal to "1".
1393 */
1394static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1395{
1396	struct isl_check_scaled_data *data = user;
1397	int i, j, n;
1398	enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1399				    isl_dim_div };
1400
1401	if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1402		isl_constraint_free(c);
1403		return 0;
1404	}
1405
1406	for (i = 0; i < 4; ++i) {
1407		n = isl_constraint_dim(c, t[i]);
1408		for (j = 0; j < n; ++j) {
1409			isl_val *d;
1410
1411			if (t[i] == isl_dim_in && j == data->depth)
1412				continue;
1413			if (!isl_constraint_involves_dims(c, t[i], j, 1))
1414				continue;
1415			d = isl_constraint_get_coefficient_val(c, t[i], j);
1416			data->m = isl_val_gcd(data->m, d);
1417			if (isl_val_is_one(data->m))
1418				break;
1419		}
1420		if (j < n)
1421			break;
1422	}
1423
1424	isl_constraint_free(c);
1425
1426	return i < 4 ? -1 : 0;
1427}
1428
1429/* For each constraint of "bmap" that involves the input dimension data->depth,
1430 * make sure that all the other coefficients are multiples of data->m,
1431 * reducing data->m if needed.
1432 * Break out of the iteration if data->m has become equal to "1".
1433 */
1434static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1435{
1436	int r;
1437
1438	r = isl_basic_map_foreach_constraint(bmap,
1439						&constraint_check_scaled, user);
1440	isl_basic_map_free(bmap);
1441
1442	return r;
1443}
1444
1445/* For each constraint of "map" that involves the input dimension data->depth,
1446 * make sure that all the other coefficients are multiples of data->m,
1447 * reducing data->m if needed.
1448 * Break out of the iteration if data->m has become equal to "1".
1449 */
1450static int map_check_scaled(__isl_take isl_map *map, void *user)
1451{
1452	int r;
1453
1454	r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1455	isl_map_free(map);
1456
1457	return r;
1458}
1459
1460/* Create an AST node for the current dimension based on
1461 * the schedule domain "bounds" and return the node encapsulated
1462 * in an isl_ast_graft.
1463 *
1464 * "executed" is the current inverse schedule, taking into account
1465 * the bounds in "bounds"
1466 * "domain" is the domain of "executed", with inner dimensions projected out.
1467 *
1468 *
1469 * Before moving on to the actual AST node construction in create_node_scaled,
1470 * we first check if the current dimension is strided and if we can scale
1471 * down this stride.  Note that we only do this if the ast_build_scale_strides
1472 * option is set.
1473 *
1474 * In particular, let the current dimension take on values
1475 *
1476 *	f + s a
1477 *
1478 * with a an integer.  We check if we can find an integer m that (obviouly)
1479 * divides both f and s.
1480 *
1481 * If so, we check if the current dimension only appears in constraints
1482 * where the coefficients of the other variables are multiples of m.
1483 * We perform this extra check to avoid the risk of introducing
1484 * divisions by scaling down the current dimension.
1485 *
1486 * If so, we scale the current dimension down by a factor of m.
1487 * That is, we plug in
1488 *
1489 *	i = m i'							(1)
1490 *
1491 * Note that in principle we could always scale down strided loops
1492 * by plugging in
1493 *
1494 *	i = f + s i'
1495 *
1496 * but this may result in i' taking on larger values than the original i,
1497 * due to the shift by "f".
1498 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1499 */
1500static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1501	__isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1502	__isl_take isl_ast_build *build)
1503{
1504	struct isl_check_scaled_data data;
1505	isl_ctx *ctx;
1506	isl_aff *offset;
1507	isl_val *d;
1508
1509	ctx = isl_ast_build_get_ctx(build);
1510	if (!isl_options_get_ast_build_scale_strides(ctx))
1511		return create_node_scaled(executed, bounds, domain, build);
1512
1513	data.depth = isl_ast_build_get_depth(build);
1514	if (!isl_ast_build_has_stride(build, data.depth))
1515		return create_node_scaled(executed, bounds, domain, build);
1516
1517	offset = isl_ast_build_get_offset(build, data.depth);
1518	data.m = isl_ast_build_get_stride(build, data.depth);
1519	if (!data.m)
1520		offset = isl_aff_free(offset);
1521	offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m));
1522	d = isl_aff_get_denominator_val(offset);
1523	if (!d)
1524		executed = isl_union_map_free(executed);
1525
1526	if (executed && isl_val_is_divisible_by(data.m, d))
1527		data.m = isl_val_div(data.m, d);
1528	else {
1529		data.m = isl_val_set_si(data.m, 1);
1530		isl_val_free(d);
1531	}
1532
1533	if (!isl_val_is_one(data.m)) {
1534		if (isl_union_map_foreach_map(executed, &map_check_scaled,
1535						&data) < 0 &&
1536		    !isl_val_is_one(data.m))
1537			executed = isl_union_map_free(executed);
1538	}
1539
1540	if (!isl_val_is_one(data.m)) {
1541		isl_space *space;
1542		isl_multi_aff *ma;
1543		isl_aff *aff;
1544		isl_map *map;
1545		isl_union_map *umap;
1546
1547		space = isl_ast_build_get_space(build, 1);
1548		space = isl_space_map_from_set(space);
1549		ma = isl_multi_aff_identity(space);
1550		aff = isl_multi_aff_get_aff(ma, data.depth);
1551		aff = isl_aff_scale_val(aff, isl_val_copy(data.m));
1552		ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1553
1554		bounds = isl_basic_set_preimage_multi_aff(bounds,
1555						isl_multi_aff_copy(ma));
1556		domain = isl_set_preimage_multi_aff(domain,
1557						isl_multi_aff_copy(ma));
1558		map = isl_map_reverse(isl_map_from_multi_aff(ma));
1559		umap = isl_union_map_from_map(map);
1560		executed = isl_union_map_apply_domain(executed,
1561						isl_union_map_copy(umap));
1562		build = isl_ast_build_scale_down(build, isl_val_copy(data.m),
1563						umap);
1564	}
1565	isl_aff_free(offset);
1566	isl_val_free(data.m);
1567
1568	return create_node_scaled(executed, bounds, domain, build);
1569}
1570
1571/* Add the basic set to the list that "user" points to.
1572 */
1573static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1574{
1575	isl_basic_set_list **list = user;
1576
1577	*list = isl_basic_set_list_add(*list, bset);
1578
1579	return 0;
1580}
1581
1582/* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1583 */
1584static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1585	__isl_take isl_set *set)
1586{
1587	int n;
1588	isl_ctx *ctx;
1589	isl_basic_set_list *list;
1590
1591	if (!set)
1592		return NULL;
1593
1594	ctx = isl_set_get_ctx(set);
1595
1596	n = isl_set_n_basic_set(set);
1597	list = isl_basic_set_list_alloc(ctx, n);
1598	if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1599		list = isl_basic_set_list_free(list);
1600
1601	isl_set_free(set);
1602	return list;
1603}
1604
1605/* Generate code for the schedule domain "bounds"
1606 * and add the result to "list".
1607 *
1608 * We mainly detect strides and additional equalities here
1609 * and then pass over control to create_node.
1610 *
1611 * "bounds" reflects the bounds on the current dimension and possibly
1612 * some extra conditions on outer dimensions.
1613 * It does not, however, include any divs involving the current dimension,
1614 * so it does not capture any stride constraints.
1615 * We therefore need to compute that part of the schedule domain that
1616 * intersects with "bounds" and derive the strides from the result.
1617 */
1618static __isl_give isl_ast_graft_list *add_node(
1619	__isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1620	__isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1621{
1622	isl_ast_graft *graft;
1623	isl_set *domain = NULL;
1624	isl_union_set *uset;
1625	int empty;
1626
1627	uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1628	executed = isl_union_map_intersect_domain(executed, uset);
1629	empty = isl_union_map_is_empty(executed);
1630	if (empty < 0)
1631		goto error;
1632	if (empty)
1633		goto done;
1634
1635	uset = isl_union_map_domain(isl_union_map_copy(executed));
1636	domain = isl_set_from_union_set(uset);
1637	domain = isl_ast_build_compute_gist(build, domain);
1638	empty = isl_set_is_empty(domain);
1639	if (empty < 0)
1640		goto error;
1641	if (empty)
1642		goto done;
1643
1644	domain = isl_ast_build_eliminate_inner(build, domain);
1645	build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1646
1647	graft = create_node(executed, bounds, domain,
1648				isl_ast_build_copy(build));
1649	list = isl_ast_graft_list_add(list, graft);
1650	isl_ast_build_free(build);
1651	return list;
1652error:
1653	list = isl_ast_graft_list_free(list);
1654done:
1655	isl_set_free(domain);
1656	isl_basic_set_free(bounds);
1657	isl_union_map_free(executed);
1658	isl_ast_build_free(build);
1659	return list;
1660}
1661
1662/* Does any element of i follow or coincide with any element of j
1663 * at the current depth for equal values of the outer dimensions?
1664 */
1665static int domain_follows_at_depth(__isl_keep isl_basic_set *i,
1666	__isl_keep isl_basic_set *j, void *user)
1667{
1668	int depth = *(int *) user;
1669	isl_basic_map *test;
1670	int empty;
1671	int l;
1672
1673	test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1674						    isl_basic_set_copy(j));
1675	for (l = 0; l < depth; ++l)
1676		test = isl_basic_map_equate(test, isl_dim_in, l,
1677						isl_dim_out, l);
1678	test = isl_basic_map_order_ge(test, isl_dim_in, depth,
1679					isl_dim_out, depth);
1680	empty = isl_basic_map_is_empty(test);
1681	isl_basic_map_free(test);
1682
1683	return empty < 0 ? -1 : !empty;
1684}
1685
1686/* Split up each element of "list" into a part that is related to "bset"
1687 * according to "gt" and a part that is not.
1688 * Return a list that consist of "bset" and all the pieces.
1689 */
1690static __isl_give isl_basic_set_list *add_split_on(
1691	__isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
1692	__isl_keep isl_basic_map *gt)
1693{
1694	int i, n;
1695	isl_basic_set_list *res;
1696
1697	gt = isl_basic_map_copy(gt);
1698	gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset));
1699	n = isl_basic_set_list_n_basic_set(list);
1700	res = isl_basic_set_list_from_basic_set(bset);
1701	for (i = 0; res && i < n; ++i) {
1702		isl_basic_set *bset;
1703		isl_set *set1, *set2;
1704		isl_basic_map *bmap;
1705		int empty;
1706
1707		bset = isl_basic_set_list_get_basic_set(list, i);
1708		bmap = isl_basic_map_copy(gt);
1709		bmap = isl_basic_map_intersect_range(bmap, bset);
1710		bset = isl_basic_map_range(bmap);
1711		empty = isl_basic_set_is_empty(bset);
1712		if (empty < 0)
1713			res = isl_basic_set_list_free(res);
1714		if (empty)  {
1715			isl_basic_set_free(bset);
1716			bset = isl_basic_set_list_get_basic_set(list, i);
1717			res = isl_basic_set_list_add(res, bset);
1718			continue;
1719		}
1720
1721		res = isl_basic_set_list_add(res, isl_basic_set_copy(bset));
1722		set1 = isl_set_from_basic_set(bset);
1723		bset = isl_basic_set_list_get_basic_set(list, i);
1724		set2 = isl_set_from_basic_set(bset);
1725		set1 = isl_set_subtract(set2, set1);
1726		set1 = isl_set_make_disjoint(set1);
1727
1728		res = isl_basic_set_list_concat(res,
1729					    isl_basic_set_list_from_set(set1));
1730	}
1731	isl_basic_map_free(gt);
1732	isl_basic_set_list_free(list);
1733	return res;
1734}
1735
1736static __isl_give isl_ast_graft_list *generate_sorted_domains(
1737	__isl_keep isl_basic_set_list *domain_list,
1738	__isl_keep isl_union_map *executed,
1739	__isl_keep isl_ast_build *build);
1740
1741/* Internal data structure for add_nodes.
1742 *
1743 * "executed" and "build" are extra arguments to be passed to add_node.
1744 * "list" collects the results.
1745 */
1746struct isl_add_nodes_data {
1747	isl_union_map *executed;
1748	isl_ast_build *build;
1749
1750	isl_ast_graft_list *list;
1751};
1752
1753/* Generate code for the schedule domains in "scc"
1754 * and add the results to "list".
1755 *
1756 * The domains in "scc" form a strongly connected component in the ordering.
1757 * If the number of domains in "scc" is larger than 1, then this means
1758 * that we cannot determine a valid ordering for the domains in the component.
1759 * This should be fairly rare because the individual domains
1760 * have been made disjoint first.
1761 * The problem is that the domains may be integrally disjoint but not
1762 * rationally disjoint.  For example, we may have domains
1763 *
1764 *	{ [i,i] : 0 <= i <= 1 }		and	{ [i,1-i] : 0 <= i <= 1 }
1765 *
1766 * These two domains have an empty intersection, but their rational
1767 * relaxations do intersect.  It is impossible to order these domains
1768 * in the second dimension because the first should be ordered before
1769 * the second for outer dimension equal to 0, while it should be ordered
1770 * after for outer dimension equal to 1.
1771 *
1772 * This may happen in particular in case of unrolling since the domain
1773 * of each slice is replaced by its simple hull.
1774 *
1775 * For each basic set i in "scc" and for each of the following basic sets j,
1776 * we split off that part of the basic set i that shares the outer dimensions
1777 * with j and lies before j in the current dimension.
1778 * We collect all the pieces in a new list that replaces "scc".
1779 */
1780static int add_nodes(__isl_take isl_basic_set_list *scc, void *user)
1781{
1782	struct isl_add_nodes_data *data = user;
1783	int i, n, depth;
1784	isl_basic_set *bset;
1785	isl_basic_set_list *list;
1786	isl_space *space;
1787	isl_basic_map *gt;
1788
1789	n = isl_basic_set_list_n_basic_set(scc);
1790	bset = isl_basic_set_list_get_basic_set(scc, 0);
1791	if (n == 1) {
1792		isl_basic_set_list_free(scc);
1793		data->list = add_node(data->list,
1794				isl_union_map_copy(data->executed), bset,
1795				isl_ast_build_copy(data->build));
1796		return data->list ? 0 : -1;
1797	}
1798
1799	depth = isl_ast_build_get_depth(data->build);
1800	space = isl_basic_set_get_space(bset);
1801	space = isl_space_map_from_set(space);
1802	gt = isl_basic_map_universe(space);
1803	for (i = 0; i < depth; ++i)
1804		gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
1805	gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
1806
1807	list = isl_basic_set_list_from_basic_set(bset);
1808	for (i = 1; i < n; ++i) {
1809		bset = isl_basic_set_list_get_basic_set(scc, i);
1810		list = add_split_on(list, bset, gt);
1811	}
1812	isl_basic_map_free(gt);
1813	isl_basic_set_list_free(scc);
1814	scc = list;
1815	data->list = isl_ast_graft_list_concat(data->list,
1816		    generate_sorted_domains(scc, data->executed, data->build));
1817	isl_basic_set_list_free(scc);
1818
1819	return data->list ? 0 : -1;
1820}
1821
1822/* Sort the domains in "domain_list" according to the execution order
1823 * at the current depth (for equal values of the outer dimensions),
1824 * generate code for each of them, collecting the results in a list.
1825 * If no code is generated (because the intersection of the inverse schedule
1826 * with the domains turns out to be empty), then an empty list is returned.
1827 *
1828 * The caller is responsible for ensuring that the basic sets in "domain_list"
1829 * are pair-wise disjoint.  It can, however, in principle happen that
1830 * two basic sets should be ordered one way for one value of the outer
1831 * dimensions and the other way for some other value of the outer dimensions.
1832 * We therefore play safe and look for strongly connected components.
1833 * The function add_nodes takes care of handling non-trivial components.
1834 */
1835static __isl_give isl_ast_graft_list *generate_sorted_domains(
1836	__isl_keep isl_basic_set_list *domain_list,
1837	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1838{
1839	isl_ctx *ctx;
1840	struct isl_add_nodes_data data;
1841	int depth;
1842	int n;
1843
1844	if (!domain_list)
1845		return NULL;
1846
1847	ctx = isl_basic_set_list_get_ctx(domain_list);
1848	n = isl_basic_set_list_n_basic_set(domain_list);
1849	data.list = isl_ast_graft_list_alloc(ctx, n);
1850	if (n == 0)
1851		return data.list;
1852	if (n == 1)
1853		return add_node(data.list, isl_union_map_copy(executed),
1854			isl_basic_set_list_get_basic_set(domain_list, 0),
1855			isl_ast_build_copy(build));
1856
1857	depth = isl_ast_build_get_depth(build);
1858	data.executed = executed;
1859	data.build = build;
1860	if (isl_basic_set_list_foreach_scc(domain_list,
1861					&domain_follows_at_depth, &depth,
1862					&add_nodes, &data) < 0)
1863		data.list = isl_ast_graft_list_free(data.list);
1864
1865	return data.list;
1866}
1867
1868/* Do i and j share any values for the outer dimensions?
1869 */
1870static int shared_outer(__isl_keep isl_basic_set *i,
1871	__isl_keep isl_basic_set *j, void *user)
1872{
1873	int depth = *(int *) user;
1874	isl_basic_map *test;
1875	int empty;
1876	int l;
1877
1878	test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1879						    isl_basic_set_copy(j));
1880	for (l = 0; l < depth; ++l)
1881		test = isl_basic_map_equate(test, isl_dim_in, l,
1882						isl_dim_out, l);
1883	empty = isl_basic_map_is_empty(test);
1884	isl_basic_map_free(test);
1885
1886	return empty < 0 ? -1 : !empty;
1887}
1888
1889/* Internal data structure for generate_sorted_domains_wrap.
1890 *
1891 * "n" is the total number of basic sets
1892 * "executed" and "build" are extra arguments to be passed
1893 *	to generate_sorted_domains.
1894 *
1895 * "single" is set to 1 by generate_sorted_domains_wrap if there
1896 * is only a single component.
1897 * "list" collects the results.
1898 */
1899struct isl_ast_generate_parallel_domains_data {
1900	int n;
1901	isl_union_map *executed;
1902	isl_ast_build *build;
1903
1904	int single;
1905	isl_ast_graft_list *list;
1906};
1907
1908/* Call generate_sorted_domains on "scc", fuse the result into a list
1909 * with either zero or one graft and collect the these single element
1910 * lists into data->list.
1911 *
1912 * If there is only one component, i.e., if the number of basic sets
1913 * in the current component is equal to the total number of basic sets,
1914 * then data->single is set to 1 and the result of generate_sorted_domains
1915 * is not fused.
1916 */
1917static int generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
1918	void *user)
1919{
1920	struct isl_ast_generate_parallel_domains_data *data = user;
1921	isl_ast_graft_list *list;
1922
1923	list = generate_sorted_domains(scc, data->executed, data->build);
1924	data->single = isl_basic_set_list_n_basic_set(scc) == data->n;
1925	if (!data->single)
1926		list = isl_ast_graft_list_fuse(list, data->build);
1927	if (!data->list)
1928		data->list = list;
1929	else
1930		data->list = isl_ast_graft_list_concat(data->list, list);
1931
1932	isl_basic_set_list_free(scc);
1933	if (!data->list)
1934		return -1;
1935
1936	return 0;
1937}
1938
1939/* Look for any (weakly connected) components in the "domain_list"
1940 * of domains that share some values of the outer dimensions.
1941 * That is, domains in different components do not share any values
1942 * of the outer dimensions.  This means that these components
1943 * can be freely reordered.
1944 * Within each of the components, we sort the domains according
1945 * to the execution order at the current depth.
1946 *
1947 * If there is more than one component, then generate_sorted_domains_wrap
1948 * fuses the result of each call to generate_sorted_domains
1949 * into a list with either zero or one graft and collects these (at most)
1950 * single element lists into a bigger list. This means that the elements of the
1951 * final list can be freely reordered.  In particular, we sort them
1952 * according to an arbitrary but fixed ordering to ease merging of
1953 * graft lists from different components.
1954 */
1955static __isl_give isl_ast_graft_list *generate_parallel_domains(
1956	__isl_keep isl_basic_set_list *domain_list,
1957	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1958{
1959	int depth;
1960	struct isl_ast_generate_parallel_domains_data data;
1961
1962	if (!domain_list)
1963		return NULL;
1964
1965	data.n = isl_basic_set_list_n_basic_set(domain_list);
1966	if (data.n <= 1)
1967		return generate_sorted_domains(domain_list, executed, build);
1968
1969	depth = isl_ast_build_get_depth(build);
1970	data.list = NULL;
1971	data.executed = executed;
1972	data.build = build;
1973	data.single = 0;
1974	if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
1975					    &generate_sorted_domains_wrap,
1976					    &data) < 0)
1977		data.list = isl_ast_graft_list_free(data.list);
1978
1979	if (!data.single)
1980		data.list = isl_ast_graft_list_sort_guard(data.list);
1981
1982	return data.list;
1983}
1984
1985/* Internal data for separate_domain.
1986 *
1987 * "explicit" is set if we only want to use explicit bounds.
1988 *
1989 * "domain" collects the separated domains.
1990 */
1991struct isl_separate_domain_data {
1992	isl_ast_build *build;
1993	int explicit;
1994	isl_set *domain;
1995};
1996
1997/* Extract implicit bounds on the current dimension for the executed "map".
1998 *
1999 * The domain of "map" may involve inner dimensions, so we
2000 * need to eliminate them.
2001 */
2002static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
2003	__isl_keep isl_ast_build *build)
2004{
2005	isl_set *domain;
2006
2007	domain = isl_map_domain(map);
2008	domain = isl_ast_build_eliminate(build, domain);
2009
2010	return domain;
2011}
2012
2013/* Extract explicit bounds on the current dimension for the executed "map".
2014 *
2015 * Rather than eliminating the inner dimensions as in implicit_bounds,
2016 * we simply drop any constraints involving those inner dimensions.
2017 * The idea is that most bounds that are implied by constraints on the
2018 * inner dimensions will be enforced by for loops and not by explicit guards.
2019 * There is then no need to separate along those bounds.
2020 */
2021static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
2022	__isl_keep isl_ast_build *build)
2023{
2024	isl_set *domain;
2025	int depth, dim;
2026
2027	dim = isl_map_dim(map, isl_dim_out);
2028	map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
2029
2030	domain = isl_map_domain(map);
2031	depth = isl_ast_build_get_depth(build);
2032	dim = isl_set_dim(domain, isl_dim_set);
2033	domain = isl_set_detect_equalities(domain);
2034	domain = isl_set_drop_constraints_involving_dims(domain,
2035				isl_dim_set, depth + 1, dim - (depth + 1));
2036	domain = isl_set_remove_divs_involving_dims(domain,
2037				isl_dim_set, depth, 1);
2038	domain = isl_set_remove_unknown_divs(domain);
2039
2040	return domain;
2041}
2042
2043/* Split data->domain into pieces that intersect with the range of "map"
2044 * and pieces that do not intersect with the range of "map"
2045 * and then add that part of the range of "map" that does not intersect
2046 * with data->domain.
2047 */
2048static int separate_domain(__isl_take isl_map *map, void *user)
2049{
2050	struct isl_separate_domain_data *data = user;
2051	isl_set *domain;
2052	isl_set *d1, *d2;
2053
2054	if (data->explicit)
2055		domain = explicit_bounds(map, data->build);
2056	else
2057		domain = implicit_bounds(map, data->build);
2058
2059	domain = isl_set_coalesce(domain);
2060	domain = isl_set_make_disjoint(domain);
2061	d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2062	d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2063	data->domain = isl_set_intersect(data->domain, domain);
2064	data->domain = isl_set_union(data->domain, d1);
2065	data->domain = isl_set_union(data->domain, d2);
2066
2067	return 0;
2068}
2069
2070/* Separate the schedule domains of "executed".
2071 *
2072 * That is, break up the domain of "executed" into basic sets,
2073 * such that for each basic set S, every element in S is associated with
2074 * the same domain spaces.
2075 *
2076 * "space" is the (single) domain space of "executed".
2077 */
2078static __isl_give isl_set *separate_schedule_domains(
2079	__isl_take isl_space *space, __isl_take isl_union_map *executed,
2080	__isl_keep isl_ast_build *build)
2081{
2082	struct isl_separate_domain_data data = { build };
2083	isl_ctx *ctx;
2084
2085	ctx = isl_ast_build_get_ctx(build);
2086	data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2087				    ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2088	data.domain = isl_set_empty(space);
2089	if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2090		data.domain = isl_set_free(data.domain);
2091
2092	isl_union_map_free(executed);
2093	return data.domain;
2094}
2095
2096/* Temporary data used during the search for a lower bound for unrolling.
2097 *
2098 * "domain" is the original set for which to find a lower bound
2099 * "depth" is the dimension for which to find a lower boudn
2100 *
2101 * "lower" is the best lower bound found so far.  It is NULL if we have not
2102 * found any yet.
2103 * "n" is the corresponding size.  If lower is NULL, then the value of n
2104 * is undefined.
2105 */
2106struct isl_find_unroll_data {
2107	isl_set *domain;
2108	int depth;
2109
2110	isl_aff *lower;
2111	int *n;
2112};
2113
2114/* Check if we can use "c" as a lower bound and if it is better than
2115 * any previously found lower bound.
2116 *
2117 * If "c" does not involve the dimension at the current depth,
2118 * then we cannot use it.
2119 * Otherwise, let "c" be of the form
2120 *
2121 *	i >= f(j)/a
2122 *
2123 * We compute the maximal value of
2124 *
2125 *	-ceil(f(j)/a)) + i + 1
2126 *
2127 * over the domain.  If there is such a value "n", then we know
2128 *
2129 *	-ceil(f(j)/a)) + i + 1 <= n
2130 *
2131 * or
2132 *
2133 *	i < ceil(f(j)/a)) + n
2134 *
2135 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2136 * We just need to check if we have found any lower bound before and
2137 * if the new lower bound is better (smaller n) than the previously found
2138 * lower bounds.
2139 */
2140static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2141	__isl_keep isl_constraint *c)
2142{
2143	isl_aff *aff, *lower;
2144	isl_val *max;
2145
2146	if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2147		return 0;
2148
2149	lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2150	lower = isl_aff_ceil(lower);
2151	aff = isl_aff_copy(lower);
2152	aff = isl_aff_neg(aff);
2153	aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2154	aff = isl_aff_add_constant_si(aff, 1);
2155	max = isl_set_max_val(data->domain, aff);
2156	isl_aff_free(aff);
2157
2158	if (!max)
2159		goto error;
2160	if (isl_val_is_infty(max)) {
2161		isl_val_free(max);
2162		isl_aff_free(lower);
2163		return 0;
2164	}
2165
2166	if (isl_val_cmp_si(max, INT_MAX) <= 0 &&
2167	    (!data->lower || isl_val_cmp_si(max, *data->n) < 0)) {
2168		isl_aff_free(data->lower);
2169		data->lower = lower;
2170		*data->n = isl_val_get_num_si(max);
2171	} else
2172		isl_aff_free(lower);
2173	isl_val_free(max);
2174
2175	return 1;
2176error:
2177	isl_aff_free(lower);
2178	return -1;
2179}
2180
2181/* Check if we can use "c" as a lower bound and if it is better than
2182 * any previously found lower bound.
2183 */
2184static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2185{
2186	struct isl_find_unroll_data *data;
2187	int r;
2188
2189	data = (struct isl_find_unroll_data *) user;
2190	r = update_unrolling_lower_bound(data, c);
2191	isl_constraint_free(c);
2192
2193	return r;
2194}
2195
2196/* Look for a lower bound l(i) on the dimension at "depth"
2197 * and a size n such that "domain" is a subset of
2198 *
2199 *	{ [i] : l(i) <= i_d < l(i) + n }
2200 *
2201 * where d is "depth" and l(i) depends only on earlier dimensions.
2202 * Furthermore, try and find a lower bound such that n is as small as possible.
2203 * In particular, "n" needs to be finite.
2204 *
2205 * Inner dimensions have been eliminated from "domain" by the caller.
2206 *
2207 * We first construct a collection of lower bounds on the input set
2208 * by computing its simple hull.  We then iterate through them,
2209 * discarding those that we cannot use (either because they do not
2210 * involve the dimension at "depth" or because they have no corresponding
2211 * upper bound, meaning that "n" would be unbounded) and pick out the
2212 * best from the remaining ones.
2213 *
2214 * If we cannot find a suitable lower bound, then we consider that
2215 * to be an error.
2216 */
2217static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2218	int depth, int *n)
2219{
2220	struct isl_find_unroll_data data = { domain, depth, NULL, n };
2221	isl_basic_set *hull;
2222
2223	hull = isl_set_simple_hull(isl_set_copy(domain));
2224
2225	if (isl_basic_set_foreach_constraint(hull,
2226					    &constraint_find_unroll, &data) < 0)
2227		goto error;
2228
2229	isl_basic_set_free(hull);
2230
2231	if (!data.lower)
2232		isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2233			"cannot find lower bound for unrolling", return NULL);
2234
2235	return data.lower;
2236error:
2237	isl_basic_set_free(hull);
2238	return isl_aff_free(data.lower);
2239}
2240
2241/* Return the constraint
2242 *
2243 *	i_"depth" = aff + offset
2244 */
2245static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2246	int offset)
2247{
2248	aff = isl_aff_copy(aff);
2249	aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2250	aff = isl_aff_add_constant_si(aff, offset);
2251	return isl_equality_from_aff(aff);
2252}
2253
2254/* Data structure for storing the results and the intermediate objects
2255 * of compute_domains.
2256 *
2257 * "list" is the main result of the function and contains a list
2258 * of disjoint basic sets for which code should be generated.
2259 *
2260 * "executed" and "build" are inputs to compute_domains.
2261 * "schedule_domain" is the domain of "executed".
2262 *
2263 * "option" constains the domains at the current depth that should by
2264 * atomic, separated or unrolled.  These domains are as specified by
2265 * the user, except that inner dimensions have been eliminated and
2266 * that they have been made pair-wise disjoint.
2267 *
2268 * "sep_class" contains the user-specified split into separation classes
2269 * specialized to the current depth.
2270 * "done" contains the union of the separation domains that have already
2271 * been handled.
2272 */
2273struct isl_codegen_domains {
2274	isl_basic_set_list *list;
2275
2276	isl_union_map *executed;
2277	isl_ast_build *build;
2278	isl_set *schedule_domain;
2279
2280	isl_set *option[3];
2281
2282	isl_map *sep_class;
2283	isl_set *done;
2284};
2285
2286/* Extend domains->list with a list of basic sets, one for each value
2287 * of the current dimension in "domain" and remove the corresponding
2288 * sets from the class domain.  Return the updated class domain.
2289 * The divs that involve the current dimension have not been projected out
2290 * from this domain.
2291 *
2292 * Since we are going to be iterating over the individual values,
2293 * we first check if there are any strides on the current dimension.
2294 * If there is, we rewrite the current dimension i as
2295 *
2296 *		i = stride i' + offset
2297 *
2298 * and then iterate over individual values of i' instead.
2299 *
2300 * We then look for a lower bound on i' and a size such that the domain
2301 * is a subset of
2302 *
2303 *	{ [j,i'] : l(j) <= i' < l(j) + n }
2304 *
2305 * and then take slices of the domain at values of i'
2306 * between l(j) and l(j) + n - 1.
2307 *
2308 * We compute the unshifted simple hull of each slice to ensure that
2309 * we have a single basic set per offset.  The slicing constraint
2310 * may get simplified away before the unshifted simple hull is taken
2311 * and may therefore in some rare cases disappear from the result.
2312 * We therefore explicitly add the constraint back after computing
2313 * the unshifted simple hull to ensure that the basic sets
2314 * remain disjoint.  The constraints that are dropped by taking the hull
2315 * will be taken into account at the next level, as in the case of the
2316 * atomic option.
2317 *
2318 * Finally, we map i' back to i and add each basic set to the list.
2319 * Since we may have dropped some constraints, we intersect with
2320 * the class domain again to ensure that each element in the list
2321 * is disjoint from the other class domains.
2322 */
2323static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains,
2324	__isl_take isl_set *domain, __isl_take isl_set *class_domain)
2325{
2326	int i, n;
2327	int depth;
2328	isl_ctx *ctx;
2329	isl_aff *lower;
2330	isl_multi_aff *expansion;
2331	isl_basic_map *bmap;
2332	isl_set *unroll_domain;
2333	isl_ast_build *build;
2334
2335	if (!domain)
2336		return isl_set_free(class_domain);
2337
2338	ctx = isl_set_get_ctx(domain);
2339	depth = isl_ast_build_get_depth(domains->build);
2340	build = isl_ast_build_copy(domains->build);
2341	domain = isl_ast_build_eliminate_inner(build, domain);
2342	build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2343	expansion = isl_ast_build_get_stride_expansion(build);
2344
2345	domain = isl_set_preimage_multi_aff(domain,
2346					    isl_multi_aff_copy(expansion));
2347	domain = isl_ast_build_eliminate_divs(build, domain);
2348
2349	isl_ast_build_free(build);
2350
2351	lower = find_unroll_lower_bound(domain, depth, &n);
2352	if (!lower)
2353		class_domain = isl_set_free(class_domain);
2354
2355	bmap = isl_basic_map_from_multi_aff(expansion);
2356
2357	unroll_domain = isl_set_empty(isl_set_get_space(domain));
2358
2359	for (i = 0; class_domain && i < n; ++i) {
2360		isl_set *set;
2361		isl_basic_set *bset;
2362		isl_constraint *slice;
2363		isl_basic_set_list *list;
2364
2365		slice = at_offset(depth, lower, i);
2366		set = isl_set_copy(domain);
2367		set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2368		bset = isl_set_unshifted_simple_hull(set);
2369		bset = isl_basic_set_add_constraint(bset, slice);
2370		bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2371		set = isl_set_from_basic_set(bset);
2372		unroll_domain = isl_set_union(unroll_domain, isl_set_copy(set));
2373		set = isl_set_intersect(set, isl_set_copy(class_domain));
2374		set = isl_set_make_disjoint(set);
2375		list = isl_basic_set_list_from_set(set);
2376		domains->list = isl_basic_set_list_concat(domains->list, list);
2377	}
2378
2379	class_domain = isl_set_subtract(class_domain, unroll_domain);
2380
2381	isl_aff_free(lower);
2382	isl_set_free(domain);
2383	isl_basic_map_free(bmap);
2384
2385	return class_domain;
2386}
2387
2388/* Add domains to domains->list for each individual value of the current
2389 * dimension, for that part of the schedule domain that lies in the
2390 * intersection of the option domain and the class domain.
2391 * Remove the corresponding sets from the class domain and
2392 * return the updated class domain.
2393 *
2394 * We first break up the unroll option domain into individual pieces
2395 * and then handle each of them separately.  The unroll option domain
2396 * has been made disjoint in compute_domains_init_options,
2397 *
2398 * Note that we actively want to combine different pieces of the
2399 * schedule domain that have the same value at the current dimension.
2400 * We therefore need to break up the unroll option domain before
2401 * intersecting with class and schedule domain, hoping that the
2402 * unroll option domain specified by the user is relatively simple.
2403 */
2404static __isl_give isl_set *compute_unroll_domains(
2405	struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2406{
2407	isl_set *unroll_domain;
2408	isl_basic_set_list *unroll_list;
2409	int i, n;
2410	int empty;
2411
2412	empty = isl_set_is_empty(domains->option[unroll]);
2413	if (empty < 0)
2414		return isl_set_free(class_domain);
2415	if (empty)
2416		return class_domain;
2417
2418	unroll_domain = isl_set_copy(domains->option[unroll]);
2419	unroll_list = isl_basic_set_list_from_set(unroll_domain);
2420
2421	n = isl_basic_set_list_n_basic_set(unroll_list);
2422	for (i = 0; i < n; ++i) {
2423		isl_basic_set *bset;
2424
2425		bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2426		unroll_domain = isl_set_from_basic_set(bset);
2427		unroll_domain = isl_set_intersect(unroll_domain,
2428						    isl_set_copy(class_domain));
2429		unroll_domain = isl_set_intersect(unroll_domain,
2430					isl_set_copy(domains->schedule_domain));
2431
2432		empty = isl_set_is_empty(unroll_domain);
2433		if (empty >= 0 && empty) {
2434			isl_set_free(unroll_domain);
2435			continue;
2436		}
2437
2438		class_domain = do_unroll(domains, unroll_domain, class_domain);
2439	}
2440
2441	isl_basic_set_list_free(unroll_list);
2442
2443	return class_domain;
2444}
2445
2446/* Try and construct a single basic set that includes the intersection of
2447 * the schedule domain, the atomic option domain and the class domain.
2448 * Add the resulting basic set(s) to domains->list and remove them
2449 * from class_domain.  Return the updated class domain.
2450 *
2451 * We construct a single domain rather than trying to combine
2452 * the schedule domains of individual domains because we are working
2453 * within a single component so that non-overlapping schedule domains
2454 * should already have been separated.
2455 * We do however need to make sure that this single domains is a subset
2456 * of the class domain so that it would not intersect with any other
2457 * class domains.  This means that we may end up splitting up the atomic
2458 * domain in case separation classes are being used.
2459 *
2460 * "domain" is the intersection of the schedule domain and the class domain,
2461 * with inner dimensions projected out.
2462 */
2463static __isl_give isl_set *compute_atomic_domain(
2464	struct isl_codegen_domains *domains, __isl_take isl_set *class_domain)
2465{
2466	isl_basic_set *bset;
2467	isl_basic_set_list *list;
2468	isl_set *domain, *atomic_domain;
2469	int empty;
2470
2471	domain = isl_set_copy(domains->option[atomic]);
2472	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2473	domain = isl_set_intersect(domain,
2474				isl_set_copy(domains->schedule_domain));
2475	empty = isl_set_is_empty(domain);
2476	if (empty < 0)
2477		class_domain = isl_set_free(class_domain);
2478	if (empty) {
2479		isl_set_free(domain);
2480		return class_domain;
2481	}
2482
2483	domain = isl_ast_build_eliminate(domains->build, domain);
2484	domain = isl_set_coalesce(domain);
2485	bset = isl_set_unshifted_simple_hull(domain);
2486	domain = isl_set_from_basic_set(bset);
2487	atomic_domain = isl_set_copy(domain);
2488	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2489	class_domain = isl_set_subtract(class_domain, atomic_domain);
2490	domain = isl_set_make_disjoint(domain);
2491	list = isl_basic_set_list_from_set(domain);
2492	domains->list = isl_basic_set_list_concat(domains->list, list);
2493
2494	return class_domain;
2495}
2496
2497/* Split up the schedule domain into uniform basic sets,
2498 * in the sense that each element in a basic set is associated to
2499 * elements of the same domains, and add the result to domains->list.
2500 * Do this for that part of the schedule domain that lies in the
2501 * intersection of "class_domain" and the separate option domain.
2502 *
2503 * "class_domain" may or may not include the constraints
2504 * of the schedule domain, but this does not make a difference
2505 * since we are going to intersect it with the domain of the inverse schedule.
2506 * If it includes schedule domain constraints, then they may involve
2507 * inner dimensions, but we will eliminate them in separation_domain.
2508 */
2509static int compute_separate_domain(struct isl_codegen_domains *domains,
2510	__isl_keep isl_set *class_domain)
2511{
2512	isl_space *space;
2513	isl_set *domain;
2514	isl_union_map *executed;
2515	isl_basic_set_list *list;
2516	int empty;
2517
2518	domain = isl_set_copy(domains->option[separate]);
2519	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2520	executed = isl_union_map_copy(domains->executed);
2521	executed = isl_union_map_intersect_domain(executed,
2522				    isl_union_set_from_set(domain));
2523	empty = isl_union_map_is_empty(executed);
2524	if (empty < 0 || empty) {
2525		isl_union_map_free(executed);
2526		return empty < 0 ? -1 : 0;
2527	}
2528
2529	space = isl_set_get_space(class_domain);
2530	domain = separate_schedule_domains(space, executed, domains->build);
2531
2532	list = isl_basic_set_list_from_set(domain);
2533	domains->list = isl_basic_set_list_concat(domains->list, list);
2534
2535	return 0;
2536}
2537
2538/* Split up the domain at the current depth into disjoint
2539 * basic sets for which code should be generated separately
2540 * for the given separation class domain.
2541 *
2542 * If any separation classes have been defined, then "class_domain"
2543 * is the domain of the current class and does not refer to inner dimensions.
2544 * Otherwise, "class_domain" is the universe domain.
2545 *
2546 * We first make sure that the class domain is disjoint from
2547 * previously considered class domains.
2548 *
2549 * The separate domains can be computed directly from the "class_domain".
2550 *
2551 * The unroll, atomic and remainder domains need the constraints
2552 * from the schedule domain.
2553 *
2554 * For unrolling, the actual schedule domain is needed (with divs that
2555 * may refer to the current dimension) so that stride detection can be
2556 * performed.
2557 *
2558 * For atomic and remainder domains, inner dimensions and divs involving
2559 * the current dimensions should be eliminated.
2560 * In case we are working within a separation class, we need to intersect
2561 * the result with the current "class_domain" to ensure that the domains
2562 * are disjoint from those generated from other class domains.
2563 *
2564 * The domain that has been made atomic may be larger than specified
2565 * by the user since it needs to be representable as a single basic set.
2566 * This possibly larger domain is removed from class_domain by
2567 * compute_atomic_domain.  It is computed first so that the extended domain
2568 * would not overlap with any domains computed before.
2569 * Similary, the unrolled domains may have some constraints removed and
2570 * may therefore also be larger than specified by the user.
2571 *
2572 * If anything is left after handling separate, unroll and atomic,
2573 * we split it up into basic sets and append the basic sets to domains->list.
2574 */
2575static int compute_partial_domains(struct isl_codegen_domains *domains,
2576	__isl_take isl_set *class_domain)
2577{
2578	isl_basic_set_list *list;
2579	isl_set *domain;
2580
2581	class_domain = isl_set_subtract(class_domain,
2582					isl_set_copy(domains->done));
2583	domains->done = isl_set_union(domains->done,
2584					isl_set_copy(class_domain));
2585
2586	class_domain = compute_atomic_domain(domains, class_domain);
2587	class_domain = compute_unroll_domains(domains, class_domain);
2588
2589	domain = isl_set_copy(class_domain);
2590
2591	if (compute_separate_domain(domains, domain) < 0)
2592		goto error;
2593	domain = isl_set_subtract(domain,
2594				    isl_set_copy(domains->option[separate]));
2595
2596	domain = isl_set_intersect(domain,
2597				isl_set_copy(domains->schedule_domain));
2598
2599	domain = isl_ast_build_eliminate(domains->build, domain);
2600	domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2601
2602	domain = isl_set_coalesce(domain);
2603	domain = isl_set_make_disjoint(domain);
2604
2605	list = isl_basic_set_list_from_set(domain);
2606	domains->list = isl_basic_set_list_concat(domains->list, list);
2607
2608	isl_set_free(class_domain);
2609
2610	return 0;
2611error:
2612	isl_set_free(domain);
2613	isl_set_free(class_domain);
2614	return -1;
2615}
2616
2617/* Split up the domain at the current depth into disjoint
2618 * basic sets for which code should be generated separately
2619 * for the separation class identified by "pnt".
2620 *
2621 * We extract the corresponding class domain from domains->sep_class,
2622 * eliminate inner dimensions and pass control to compute_partial_domains.
2623 */
2624static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2625{
2626	struct isl_codegen_domains *domains = user;
2627	isl_set *class_set;
2628	isl_set *domain;
2629	int disjoint;
2630
2631	class_set = isl_set_from_point(pnt);
2632	domain = isl_map_domain(isl_map_intersect_range(
2633				isl_map_copy(domains->sep_class), class_set));
2634	domain = isl_ast_build_compute_gist(domains->build, domain);
2635	domain = isl_ast_build_eliminate(domains->build, domain);
2636
2637	disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2638	if (disjoint < 0)
2639		return -1;
2640	if (disjoint) {
2641		isl_set_free(domain);
2642		return 0;
2643	}
2644
2645	return compute_partial_domains(domains, domain);
2646}
2647
2648/* Extract the domains at the current depth that should be atomic,
2649 * separated or unrolled and store them in option.
2650 *
2651 * The domains specified by the user might overlap, so we make
2652 * them disjoint by subtracting earlier domains from later domains.
2653 */
2654static void compute_domains_init_options(isl_set *option[3],
2655	__isl_keep isl_ast_build *build)
2656{
2657	enum isl_ast_build_domain_type type, type2;
2658
2659	for (type = atomic; type <= separate; ++type) {
2660		option[type] = isl_ast_build_get_option_domain(build, type);
2661		for (type2 = atomic; type2 < type; ++type2)
2662			option[type] = isl_set_subtract(option[type],
2663						isl_set_copy(option[type2]));
2664	}
2665
2666	option[unroll] = isl_set_coalesce(option[unroll]);
2667	option[unroll] = isl_set_make_disjoint(option[unroll]);
2668}
2669
2670/* Split up the domain at the current depth into disjoint
2671 * basic sets for which code should be generated separately,
2672 * based on the user-specified options.
2673 * Return the list of disjoint basic sets.
2674 *
2675 * There are three kinds of domains that we need to keep track of.
2676 * - the "schedule domain" is the domain of "executed"
2677 * - the "class domain" is the domain corresponding to the currrent
2678 *	separation class
2679 * - the "option domain" is the domain corresponding to one of the options
2680 *	atomic, unroll or separate
2681 *
2682 * We first consider the individial values of the separation classes
2683 * and split up the domain for each of them separately.
2684 * Finally, we consider the remainder.  If no separation classes were
2685 * specified, then we call compute_partial_domains with the universe
2686 * "class_domain".  Otherwise, we take the "schedule_domain" as "class_domain",
2687 * with inner dimensions removed.  We do this because we want to
2688 * avoid computing the complement of the class domains (i.e., the difference
2689 * between the universe and domains->done).
2690 */
2691static __isl_give isl_basic_set_list *compute_domains(
2692	__isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2693{
2694	struct isl_codegen_domains domains;
2695	isl_ctx *ctx;
2696	isl_set *domain;
2697	isl_union_set *schedule_domain;
2698	isl_set *classes;
2699	isl_space *space;
2700	int n_param;
2701	enum isl_ast_build_domain_type type;
2702	int empty;
2703
2704	if (!executed)
2705		return NULL;
2706
2707	ctx = isl_union_map_get_ctx(executed);
2708	domains.list = isl_basic_set_list_alloc(ctx, 0);
2709
2710	schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2711	domain = isl_set_from_union_set(schedule_domain);
2712
2713	compute_domains_init_options(domains.option, build);
2714
2715	domains.sep_class = isl_ast_build_get_separation_class(build);
2716	classes = isl_map_range(isl_map_copy(domains.sep_class));
2717	n_param = isl_set_dim(classes, isl_dim_param);
2718	classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2719
2720	space = isl_set_get_space(domain);
2721	domains.build = build;
2722	domains.schedule_domain = isl_set_copy(domain);
2723	domains.executed = executed;
2724	domains.done = isl_set_empty(space);
2725
2726	if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2727		domains.list = isl_basic_set_list_free(domains.list);
2728	isl_set_free(classes);
2729
2730	empty = isl_set_is_empty(domains.done);
2731	if (empty < 0) {
2732		domains.list = isl_basic_set_list_free(domains.list);
2733		domain = isl_set_free(domain);
2734	} else if (empty) {
2735		isl_set_free(domain);
2736		domain = isl_set_universe(isl_set_get_space(domains.done));
2737	} else {
2738		domain = isl_ast_build_eliminate(build, domain);
2739	}
2740	if (compute_partial_domains(&domains, domain) < 0)
2741		domains.list = isl_basic_set_list_free(domains.list);
2742
2743	isl_set_free(domains.schedule_domain);
2744	isl_set_free(domains.done);
2745	isl_map_free(domains.sep_class);
2746	for (type = atomic; type <= separate; ++type)
2747		isl_set_free(domains.option[type]);
2748
2749	return domains.list;
2750}
2751
2752/* Generate code for a single component, after shifting (if any)
2753 * has been applied.
2754 *
2755 * We first split up the domain at the current depth into disjoint
2756 * basic sets based on the user-specified options.
2757 * Then we generated code for each of them and concatenate the results.
2758 */
2759static __isl_give isl_ast_graft_list *generate_shifted_component(
2760	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2761{
2762	isl_basic_set_list *domain_list;
2763	isl_ast_graft_list *list = NULL;
2764
2765	domain_list = compute_domains(executed, build);
2766	list = generate_parallel_domains(domain_list, executed, build);
2767
2768	isl_basic_set_list_free(domain_list);
2769	isl_union_map_free(executed);
2770	isl_ast_build_free(build);
2771
2772	return list;
2773}
2774
2775struct isl_set_map_pair {
2776	isl_set *set;
2777	isl_map *map;
2778};
2779
2780/* Given an array "domain" of isl_set_map_pairs and an array "order"
2781 * of indices into the "domain" array,
2782 * return the union of the "map" fields of the elements
2783 * indexed by the first "n" elements of "order".
2784 */
2785static __isl_give isl_union_map *construct_component_executed(
2786	struct isl_set_map_pair *domain, int *order, int n)
2787{
2788	int i;
2789	isl_map *map;
2790	isl_union_map *executed;
2791
2792	map = isl_map_copy(domain[order[0]].map);
2793	executed = isl_union_map_from_map(map);
2794	for (i = 1; i < n; ++i) {
2795		map = isl_map_copy(domain[order[i]].map);
2796		executed = isl_union_map_add_map(executed, map);
2797	}
2798
2799	return executed;
2800}
2801
2802/* Generate code for a single component, after shifting (if any)
2803 * has been applied.
2804 *
2805 * The component inverse schedule is specified as the "map" fields
2806 * of the elements of "domain" indexed by the first "n" elements of "order".
2807 */
2808static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2809	struct isl_set_map_pair *domain, int *order, int n,
2810	__isl_take isl_ast_build *build)
2811{
2812	isl_union_map *executed;
2813
2814	executed = construct_component_executed(domain, order, n);
2815	return generate_shifted_component(executed, build);
2816}
2817
2818/* Does set dimension "pos" of "set" have an obviously fixed value?
2819 */
2820static int dim_is_fixed(__isl_keep isl_set *set, int pos)
2821{
2822	int fixed;
2823	isl_val *v;
2824
2825	v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos);
2826	if (!v)
2827		return -1;
2828	fixed = !isl_val_is_nan(v);
2829	isl_val_free(v);
2830
2831	return fixed;
2832}
2833
2834/* Given an array "domain" of isl_set_map_pairs and an array "order"
2835 * of indices into the "domain" array,
2836 * do all (except for at most one) of the "set" field of the elements
2837 * indexed by the first "n" elements of "order" have a fixed value
2838 * at position "depth"?
2839 */
2840static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2841	int *order, int n, int depth)
2842{
2843	int i;
2844	int non_fixed = -1;
2845
2846	for (i = 0; i < n; ++i) {
2847		int f;
2848
2849		f = dim_is_fixed(domain[order[i]].set, depth);
2850		if (f < 0)
2851			return -1;
2852		if (f)
2853			continue;
2854		if (non_fixed >= 0)
2855			return 0;
2856		non_fixed = i;
2857	}
2858
2859	return 1;
2860}
2861
2862/* Given an array "domain" of isl_set_map_pairs and an array "order"
2863 * of indices into the "domain" array,
2864 * eliminate the inner dimensions from the "set" field of the elements
2865 * indexed by the first "n" elements of "order", provided the current
2866 * dimension does not have a fixed value.
2867 *
2868 * Return the index of the first element in "order" with a corresponding
2869 * "set" field that does not have an (obviously) fixed value.
2870 */
2871static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2872	int *order, int n, int depth, __isl_keep isl_ast_build *build)
2873{
2874	int i;
2875	int base = -1;
2876
2877	for (i = n - 1; i >= 0; --i) {
2878		int f;
2879		f = dim_is_fixed(domain[order[i]].set, depth);
2880		if (f < 0)
2881			return -1;
2882		if (f)
2883			continue;
2884		domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2885							domain[order[i]].set);
2886		base = i;
2887	}
2888
2889	return base;
2890}
2891
2892/* Given an array "domain" of isl_set_map_pairs and an array "order"
2893 * of indices into the "domain" array,
2894 * find the element of "domain" (amongst those indexed by the first "n"
2895 * elements of "order") with the "set" field that has the smallest
2896 * value for the current iterator.
2897 *
2898 * Note that the domain with the smallest value may depend on the parameters
2899 * and/or outer loop dimension.  Since the result of this function is only
2900 * used as heuristic, we only make a reasonable attempt at finding the best
2901 * domain, one that should work in case a single domain provides the smallest
2902 * value for the current dimension over all values of the parameters
2903 * and outer dimensions.
2904 *
2905 * In particular, we compute the smallest value of the first domain
2906 * and replace it by that of any later domain if that later domain
2907 * has a smallest value that is smaller for at least some value
2908 * of the parameters and outer dimensions.
2909 */
2910static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2911	__isl_keep isl_ast_build *build)
2912{
2913	int i;
2914	isl_map *min_first;
2915	int first = 0;
2916
2917	min_first = isl_ast_build_map_to_iterator(build,
2918					isl_set_copy(domain[order[0]].set));
2919	min_first = isl_map_lexmin(min_first);
2920
2921	for (i = 1; i < n; ++i) {
2922		isl_map *min, *test;
2923		int empty;
2924
2925		min = isl_ast_build_map_to_iterator(build,
2926					isl_set_copy(domain[order[i]].set));
2927		min = isl_map_lexmin(min);
2928		test = isl_map_copy(min);
2929		test = isl_map_apply_domain(isl_map_copy(min_first), test);
2930		test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2931		empty = isl_map_is_empty(test);
2932		isl_map_free(test);
2933		if (empty >= 0 && !empty) {
2934			isl_map_free(min_first);
2935			first = i;
2936			min_first = min;
2937		} else
2938			isl_map_free(min);
2939
2940		if (empty < 0)
2941			break;
2942	}
2943
2944	isl_map_free(min_first);
2945
2946	return i < n ? -1 : first;
2947}
2948
2949/* Construct a shifted inverse schedule based on the original inverse schedule,
2950 * the stride and the offset.
2951 *
2952 * The original inverse schedule is specified as the "map" fields
2953 * of the elements of "domain" indexed by the first "n" elements of "order".
2954 *
2955 * "stride" and "offset" are such that the difference
2956 * between the values of the current dimension of domain "i"
2957 * and the values of the current dimension for some reference domain are
2958 * equal to
2959 *
2960 *	stride * integer + offset[i]
2961 *
2962 * Moreover, 0 <= offset[i] < stride.
2963 *
2964 * For each domain, we create a map
2965 *
2966 *	{ [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2967 *
2968 * where j refers to the current dimension and the other dimensions are
2969 * unchanged, and apply this map to the original schedule domain.
2970 *
2971 * For example, for the original schedule
2972 *
2973 *	{ A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2974 *
2975 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2976 * we apply the mapping
2977 *
2978 *	{ [j] -> [j, 0] }
2979 *
2980 * to the schedule of the "A" domain and the mapping
2981 *
2982 *	{ [j - 1] -> [j, 1] }
2983 *
2984 * to the schedule of the "B" domain.
2985 *
2986 *
2987 * Note that after the transformation, the differences between pairs
2988 * of values of the current dimension over all domains are multiples
2989 * of stride and that we have therefore exposed the stride.
2990 *
2991 *
2992 * To see that the mapping preserves the lexicographic order,
2993 * first note that each of the individual maps above preserves the order.
2994 * If the value of the current iterator is j1 in one domain and j2 in another,
2995 * then if j1 = j2, we know that the same map is applied to both domains
2996 * and the order is preserved.
2997 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2998 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2999 *
3000 *	j1 - c1 < j2 - c2
3001 *
3002 * and the order is preserved.
3003 * If c1 < c2, then we know
3004 *
3005 *	0 <= c2 - c1 < s
3006 *
3007 * We also have
3008 *
3009 *	j2 - j1 = n * s + r
3010 *
3011 * with n >= 0 and 0 <= r < s.
3012 * In other words, r = c2 - c1.
3013 * If n > 0, then
3014 *
3015 *	j1 - c1 < j2 - c2
3016 *
3017 * If n = 0, then
3018 *
3019 *	j1 - c1 = j2 - c2
3020 *
3021 * and so
3022 *
3023 *	(j1 - c1, c1) << (j2 - c2, c2)
3024 *
3025 * with "<<" the lexicographic order, proving that the order is preserved
3026 * in all cases.
3027 */
3028static __isl_give isl_union_map *contruct_shifted_executed(
3029	struct isl_set_map_pair *domain, int *order, int n,
3030	__isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3031	__isl_take isl_ast_build *build)
3032{
3033	int i;
3034	isl_union_map *executed;
3035	isl_space *space;
3036	isl_map *map;
3037	int depth;
3038	isl_constraint *c;
3039
3040	depth = isl_ast_build_get_depth(build);
3041	space = isl_ast_build_get_space(build, 1);
3042	executed = isl_union_map_empty(isl_space_copy(space));
3043	space = isl_space_map_from_set(space);
3044	map = isl_map_identity(isl_space_copy(space));
3045	map = isl_map_eliminate(map, isl_dim_out, depth, 1);
3046	map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
3047	space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
3048
3049	c = isl_equality_alloc(isl_local_space_from_space(space));
3050	c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
3051	c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
3052
3053	for (i = 0; i < n; ++i) {
3054		isl_map *map_i;
3055		isl_val *v;
3056
3057		v = isl_multi_val_get_val(offset, i);
3058		if (!v)
3059			break;
3060		map_i = isl_map_copy(map);
3061		map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1,
3062					isl_val_copy(v));
3063		v = isl_val_neg(v);
3064		c = isl_constraint_set_constant_val(c, v);
3065		map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
3066
3067		map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
3068						map_i);
3069		executed = isl_union_map_add_map(executed, map_i);
3070	}
3071
3072	isl_constraint_free(c);
3073	isl_map_free(map);
3074
3075	if (i < n)
3076		executed = isl_union_map_free(executed);
3077
3078	return executed;
3079}
3080
3081/* Generate code for a single component, after exposing the stride,
3082 * given that the schedule domain is "shifted strided".
3083 *
3084 * The component inverse schedule is specified as the "map" fields
3085 * of the elements of "domain" indexed by the first "n" elements of "order".
3086 *
3087 * The schedule domain being "shifted strided" means that the differences
3088 * between the values of the current dimension of domain "i"
3089 * and the values of the current dimension for some reference domain are
3090 * equal to
3091 *
3092 *	stride * integer + offset[i]
3093 *
3094 * We first look for the domain with the "smallest" value for the current
3095 * dimension and adjust the offsets such that the offset of the "smallest"
3096 * domain is equal to zero.  The other offsets are reduced modulo stride.
3097 *
3098 * Based on this information, we construct a new inverse schedule in
3099 * contruct_shifted_executed that exposes the stride.
3100 * Since this involves the introduction of a new schedule dimension,
3101 * the build needs to be changed accodingly.
3102 * After computing the AST, the newly introduced dimension needs
3103 * to be removed again from the list of grafts.  We do this by plugging
3104 * in a mapping that represents the new schedule domain in terms of the
3105 * old schedule domain.
3106 */
3107static __isl_give isl_ast_graft_list *generate_shift_component(
3108	struct isl_set_map_pair *domain, int *order, int n,
3109	__isl_keep isl_val *stride, __isl_keep isl_multi_val *offset,
3110	__isl_take isl_ast_build *build)
3111{
3112	isl_ast_graft_list *list;
3113	int first;
3114	int depth;
3115	isl_ctx *ctx;
3116	isl_val *val;
3117	isl_multi_val *mv;
3118	isl_space *space;
3119	isl_multi_aff *ma, *zero;
3120	isl_union_map *executed;
3121
3122	ctx = isl_ast_build_get_ctx(build);
3123	depth = isl_ast_build_get_depth(build);
3124
3125	first = first_offset(domain, order, n, build);
3126	if (first < 0)
3127		return isl_ast_build_free(build);
3128
3129	mv = isl_multi_val_copy(offset);
3130	val = isl_multi_val_get_val(offset, first);
3131	val = isl_val_neg(val);
3132	mv = isl_multi_val_add_val(mv, val);
3133	mv = isl_multi_val_mod_val(mv, isl_val_copy(stride));
3134
3135	executed = contruct_shifted_executed(domain, order, n, stride, mv,
3136						build);
3137	space = isl_ast_build_get_space(build, 1);
3138	space = isl_space_map_from_set(space);
3139	ma = isl_multi_aff_identity(isl_space_copy(space));
3140	space = isl_space_from_domain(isl_space_domain(space));
3141	space = isl_space_add_dims(space, isl_dim_out, 1);
3142	zero = isl_multi_aff_zero(space);
3143	ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3144	build = isl_ast_build_insert_dim(build, depth + 1);
3145	list = generate_shifted_component(executed, build);
3146
3147	list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3148
3149	isl_multi_val_free(mv);
3150
3151	return list;
3152}
3153
3154/* Generate code for a single component.
3155 *
3156 * The component inverse schedule is specified as the "map" fields
3157 * of the elements of "domain" indexed by the first "n" elements of "order".
3158 *
3159 * This function may modify the "set" fields of "domain".
3160 *
3161 * Before proceeding with the actual code generation for the component,
3162 * we first check if there are any "shifted" strides, meaning that
3163 * the schedule domains of the individual domains are all strided,
3164 * but that they have different offsets, resulting in the union
3165 * of schedule domains not being strided anymore.
3166 *
3167 * The simplest example is the schedule
3168 *
3169 *	{ A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3170 *
3171 * Both schedule domains are strided, but their union is not.
3172 * This function detects such cases and then rewrites the schedule to
3173 *
3174 *	{ A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3175 *
3176 * In the new schedule, the schedule domains have the same offset (modulo
3177 * the stride), ensuring that the union of schedule domains is also strided.
3178 *
3179 *
3180 * If there is only a single domain in the component, then there is
3181 * nothing to do.   Similarly, if the current schedule dimension has
3182 * a fixed value for almost all domains then there is nothing to be done.
3183 * In particular, we need at least two domains where the current schedule
3184 * dimension does not have a fixed value.
3185 * Finally, if any of the options refer to the current schedule dimension,
3186 * then we bail out as well.  It would be possible to reformulate the options
3187 * in terms of the new schedule domain, but that would introduce constraints
3188 * that separate the domains in the options and that is something we would
3189 * like to avoid.
3190 *
3191 *
3192 * To see if there is any shifted stride, we look at the differences
3193 * between the values of the current dimension in pairs of domains
3194 * for equal values of outer dimensions.  These differences should be
3195 * of the form
3196 *
3197 *	m x + r
3198 *
3199 * with "m" the stride and "r" a constant.  Note that we cannot perform
3200 * this analysis on individual domains as the lower bound in each domain
3201 * may depend on parameters or outer dimensions and so the current dimension
3202 * itself may not have a fixed remainder on division by the stride.
3203 *
3204 * In particular, we compare the first domain that does not have an
3205 * obviously fixed value for the current dimension to itself and all
3206 * other domains and collect the offsets and the gcd of the strides.
3207 * If the gcd becomes one, then we failed to find shifted strides.
3208 * If the gcd is zero, then the differences were all fixed, meaning
3209 * that some domains had non-obviously fixed values for the current dimension.
3210 * If all the offsets are the same (for those domains that do not have
3211 * an obviously fixed value for the current dimension), then we do not
3212 * apply the transformation.
3213 * If none of the domains were skipped, then there is nothing to do.
3214 * If some of them were skipped, then if we apply separation, the schedule
3215 * domain should get split in pieces with a (non-shifted) stride.
3216 *
3217 * Otherwise, we apply a shift to expose the stride in
3218 * generate_shift_component.
3219 */
3220static __isl_give isl_ast_graft_list *generate_component(
3221	struct isl_set_map_pair *domain, int *order, int n,
3222	__isl_take isl_ast_build *build)
3223{
3224	int i, d;
3225	int depth;
3226	isl_ctx *ctx;
3227	isl_map *map;
3228	isl_set *deltas;
3229	isl_val *gcd = NULL;
3230	isl_multi_val *mv;
3231	int fixed, skip;
3232	int base;
3233	isl_ast_graft_list *list;
3234	int res = 0;
3235
3236	depth = isl_ast_build_get_depth(build);
3237
3238	skip = n == 1;
3239	if (skip >= 0 && !skip)
3240		skip = at_most_one_non_fixed(domain, order, n, depth);
3241	if (skip >= 0 && !skip)
3242		skip = isl_ast_build_options_involve_depth(build);
3243	if (skip < 0)
3244		return isl_ast_build_free(build);
3245	if (skip)
3246		return generate_shifted_component_from_list(domain,
3247							    order, n, build);
3248
3249	base = eliminate_non_fixed(domain, order, n, depth, build);
3250	if (base < 0)
3251		return isl_ast_build_free(build);
3252
3253	ctx = isl_ast_build_get_ctx(build);
3254
3255	mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n));
3256
3257	fixed = 1;
3258	for (i = 0; i < n; ++i) {
3259		isl_val *r, *m;
3260
3261		map = isl_map_from_domain_and_range(
3262					isl_set_copy(domain[order[base]].set),
3263					isl_set_copy(domain[order[i]].set));
3264		for (d = 0; d < depth; ++d)
3265			map = isl_map_equate(map, isl_dim_in, d,
3266						    isl_dim_out, d);
3267		deltas = isl_map_deltas(map);
3268		res = isl_set_dim_residue_class_val(deltas, depth, &m, &r);
3269		isl_set_free(deltas);
3270		if (res < 0)
3271			break;
3272
3273		if (i == 0)
3274			gcd = m;
3275		else
3276			gcd = isl_val_gcd(gcd, m);
3277		if (isl_val_is_one(gcd)) {
3278			isl_val_free(r);
3279			break;
3280		}
3281		mv = isl_multi_val_set_val(mv, i, r);
3282
3283		res = dim_is_fixed(domain[order[i]].set, depth);
3284		if (res < 0)
3285			break;
3286		if (res)
3287			continue;
3288
3289		if (fixed && i > base) {
3290			isl_val *a, *b;
3291			a = isl_multi_val_get_val(mv, i);
3292			b = isl_multi_val_get_val(mv, base);
3293			if (isl_val_ne(a, b))
3294				fixed = 0;
3295			isl_val_free(a);
3296			isl_val_free(b);
3297		}
3298	}
3299
3300	if (res < 0 || !gcd) {
3301		isl_ast_build_free(build);
3302		list = NULL;
3303	} else if (i < n || fixed || isl_val_is_zero(gcd)) {
3304		list = generate_shifted_component_from_list(domain,
3305							    order, n, build);
3306	} else {
3307		list = generate_shift_component(domain, order, n, gcd, mv,
3308						build);
3309	}
3310
3311	isl_val_free(gcd);
3312	isl_multi_val_free(mv);
3313
3314	return list;
3315}
3316
3317/* Store both "map" itself and its domain in the
3318 * structure pointed to by *next and advance to the next array element.
3319 */
3320static int extract_domain(__isl_take isl_map *map, void *user)
3321{
3322	struct isl_set_map_pair **next = user;
3323
3324	(*next)->map = isl_map_copy(map);
3325	(*next)->set = isl_map_domain(map);
3326	(*next)++;
3327
3328	return 0;
3329}
3330
3331/* Internal data for any_scheduled_after.
3332 *
3333 * "depth" is the number of loops that have already been generated
3334 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3335 * "domain" is an array of set-map pairs corresponding to the different
3336 * iteration domains.  The set is the schedule domain, i.e., the domain
3337 * of the inverse schedule, while the map is the inverse schedule itself.
3338 */
3339struct isl_any_scheduled_after_data {
3340	int depth;
3341	int group_coscheduled;
3342	struct isl_set_map_pair *domain;
3343};
3344
3345/* Is any element of domain "i" scheduled after any element of domain "j"
3346 * (for a common iteration of the first data->depth loops)?
3347 *
3348 * data->domain[i].set contains the domain of the inverse schedule
3349 * for domain "i", i.e., elements in the schedule domain.
3350 *
3351 * If data->group_coscheduled is set, then we also return 1 if there
3352 * is any pair of elements in the two domains that are scheduled together.
3353 */
3354static int any_scheduled_after(int i, int j, void *user)
3355{
3356	struct isl_any_scheduled_after_data *data = user;
3357	int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3358	int pos;
3359
3360	for (pos = data->depth; pos < dim; ++pos) {
3361		int follows;
3362
3363		follows = isl_set_follows_at(data->domain[i].set,
3364						data->domain[j].set, pos);
3365
3366		if (follows < -1)
3367			return -1;
3368		if (follows > 0)
3369			return 1;
3370		if (follows < 0)
3371			return 0;
3372	}
3373
3374	return data->group_coscheduled;
3375}
3376
3377/* Look for independent components at the current depth and generate code
3378 * for each component separately.  The resulting lists of grafts are
3379 * merged in an attempt to combine grafts with identical guards.
3380 *
3381 * Code for two domains can be generated separately if all the elements
3382 * of one domain are scheduled before (or together with) all the elements
3383 * of the other domain.  We therefore consider the graph with as nodes
3384 * the domains and an edge between two nodes if any element of the first
3385 * node is scheduled after any element of the second node.
3386 * If the ast_build_group_coscheduled is set, then we also add an edge if
3387 * there is any pair of elements in the two domains that are scheduled
3388 * together.
3389 * Code is then generated (by generate_component)
3390 * for each of the strongly connected components in this graph
3391 * in their topological order.
3392 *
3393 * Since the test is performed on the domain of the inverse schedules of
3394 * the different domains, we precompute these domains and store
3395 * them in data.domain.
3396 */
3397static __isl_give isl_ast_graft_list *generate_components(
3398	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3399{
3400	int i;
3401	isl_ctx *ctx = isl_ast_build_get_ctx(build);
3402	int n = isl_union_map_n_map(executed);
3403	struct isl_any_scheduled_after_data data;
3404	struct isl_set_map_pair *next;
3405	struct isl_tarjan_graph *g = NULL;
3406	isl_ast_graft_list *list = NULL;
3407	int n_domain = 0;
3408
3409	data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3410	if (!data.domain)
3411		goto error;
3412	n_domain = n;
3413
3414	next = data.domain;
3415	if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3416		goto error;
3417
3418	if (!build)
3419		goto error;
3420	data.depth = isl_ast_build_get_depth(build);
3421	data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3422	g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3423
3424	list = isl_ast_graft_list_alloc(ctx, 0);
3425
3426	i = 0;
3427	while (list && n) {
3428		isl_ast_graft_list *list_c;
3429		int first = i;
3430
3431		if (g->order[i] == -1)
3432			isl_die(ctx, isl_error_internal, "cannot happen",
3433				goto error);
3434		++i; --n;
3435		while (g->order[i] != -1) {
3436			++i; --n;
3437		}
3438
3439		list_c = generate_component(data.domain,
3440					    g->order + first, i - first,
3441					    isl_ast_build_copy(build));
3442		list = isl_ast_graft_list_merge(list, list_c, build);
3443
3444		++i;
3445	}
3446
3447	if (0)
3448error:		list = isl_ast_graft_list_free(list);
3449	isl_tarjan_graph_free(g);
3450	for (i = 0; i < n_domain; ++i) {
3451		isl_map_free(data.domain[i].map);
3452		isl_set_free(data.domain[i].set);
3453	}
3454	free(data.domain);
3455	isl_union_map_free(executed);
3456	isl_ast_build_free(build);
3457
3458	return list;
3459}
3460
3461/* Generate code for the next level (and all inner levels).
3462 *
3463 * If "executed" is empty, i.e., no code needs to be generated,
3464 * then we return an empty list.
3465 *
3466 * If we have already generated code for all loop levels, then we pass
3467 * control to generate_inner_level.
3468 *
3469 * If "executed" lives in a single space, i.e., if code needs to be
3470 * generated for a single domain, then there can only be a single
3471 * component and we go directly to generate_shifted_component.
3472 * Otherwise, we call generate_components to detect the components
3473 * and to call generate_component on each of them separately.
3474 */
3475static __isl_give isl_ast_graft_list *generate_next_level(
3476	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3477{
3478	int depth;
3479
3480	if (!build || !executed)
3481		goto error;
3482
3483	if (isl_union_map_is_empty(executed)) {
3484		isl_ctx *ctx = isl_ast_build_get_ctx(build);
3485		isl_union_map_free(executed);
3486		isl_ast_build_free(build);
3487		return isl_ast_graft_list_alloc(ctx, 0);
3488	}
3489
3490	depth = isl_ast_build_get_depth(build);
3491	if (depth >= isl_set_dim(build->domain, isl_dim_set))
3492		return generate_inner_level(executed, build);
3493
3494	if (isl_union_map_n_map(executed) == 1)
3495		return generate_shifted_component(executed, build);
3496
3497	return generate_components(executed, build);
3498error:
3499	isl_union_map_free(executed);
3500	isl_ast_build_free(build);
3501	return NULL;
3502}
3503
3504/* Internal data structure used by isl_ast_build_ast_from_schedule.
3505 * internal, executed and build are the inputs to generate_code.
3506 * list collects the output.
3507 */
3508struct isl_generate_code_data {
3509	int internal;
3510	isl_union_map *executed;
3511	isl_ast_build *build;
3512
3513	isl_ast_graft_list *list;
3514};
3515
3516/* Given an inverse schedule in terms of the external build schedule, i.e.,
3517 *
3518 *	[E -> S] -> D
3519 *
3520 * with E the external build schedule and S the additional schedule "space",
3521 * reformulate the inverse schedule in terms of the internal schedule domain,
3522 * i.e., return
3523 *
3524 *	[I -> S] -> D
3525 *
3526 * We first obtain a mapping
3527 *
3528 *	I -> E
3529 *
3530 * take the inverse and the product with S -> S, resulting in
3531 *
3532 *	[I -> S] -> [E -> S]
3533 *
3534 * Applying the map to the input produces the desired result.
3535 */
3536static __isl_give isl_union_map *internal_executed(
3537	__isl_take isl_union_map *executed, __isl_keep isl_space *space,
3538	__isl_keep isl_ast_build *build)
3539{
3540	isl_map *id, *proj;
3541
3542	proj = isl_ast_build_get_schedule_map(build);
3543	proj = isl_map_reverse(proj);
3544	space = isl_space_map_from_set(isl_space_copy(space));
3545	id = isl_map_identity(space);
3546	proj = isl_map_product(proj, id);
3547	executed = isl_union_map_apply_domain(executed,
3548						isl_union_map_from_map(proj));
3549	return executed;
3550}
3551
3552/* Generate an AST that visits the elements in the range of data->executed
3553 * in the relative order specified by the corresponding image element(s)
3554 * for those image elements that belong to "set".
3555 * Add the result to data->list.
3556 *
3557 * The caller ensures that "set" is a universe domain.
3558 * "space" is the space of the additional part of the schedule.
3559 * It is equal to the space of "set" if build->domain is parametric.
3560 * Otherwise, it is equal to the range of the wrapped space of "set".
3561 *
3562 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3563 * was called from an outside user (data->internal not set), then
3564 * the (inverse) schedule refers to the external build domain and needs to
3565 * be transformed to refer to the internal build domain.
3566 *
3567 * The build is extended to include the additional part of the schedule.
3568 * If the original build space was not parametric, then the options
3569 * in data->build refer only to the additional part of the schedule
3570 * and they need to be adjusted to refer to the complete AST build
3571 * domain.
3572 *
3573 * After having adjusted inverse schedule and build, we start generating
3574 * code with the outer loop of the current code generation
3575 * in generate_next_level.
3576 *
3577 * If the original build space was not parametric, we undo the embedding
3578 * on the resulting isl_ast_node_list so that it can be used within
3579 * the outer AST build.
3580 */
3581static int generate_code_in_space(struct isl_generate_code_data *data,
3582	__isl_take isl_set *set, __isl_take isl_space *space)
3583{
3584	isl_union_map *executed;
3585	isl_ast_build *build;
3586	isl_ast_graft_list *list;
3587	int embed;
3588
3589	executed = isl_union_map_copy(data->executed);
3590	executed = isl_union_map_intersect_domain(executed,
3591						 isl_union_set_from_set(set));
3592
3593	embed = !isl_set_is_params(data->build->domain);
3594	if (embed && !data->internal)
3595		executed = internal_executed(executed, space, data->build);
3596
3597	build = isl_ast_build_copy(data->build);
3598	build = isl_ast_build_product(build, space);
3599
3600	list = generate_next_level(executed, build);
3601
3602	list = isl_ast_graft_list_unembed(list, embed);
3603
3604	data->list = isl_ast_graft_list_concat(data->list, list);
3605
3606	return 0;
3607}
3608
3609/* Generate an AST that visits the elements in the range of data->executed
3610 * in the relative order specified by the corresponding domain element(s)
3611 * for those domain elements that belong to "set".
3612 * Add the result to data->list.
3613 *
3614 * The caller ensures that "set" is a universe domain.
3615 *
3616 * If the build space S is not parametric, then the space of "set"
3617 * need to be a wrapped relation with S as domain.  That is, it needs
3618 * to be of the form
3619 *
3620 *	[S -> T]
3621 *
3622 * Check this property and pass control to generate_code_in_space
3623 * passing along T.
3624 * If the build space is not parametric, then T is the space of "set".
3625 */
3626static int generate_code_set(__isl_take isl_set *set, void *user)
3627{
3628	struct isl_generate_code_data *data = user;
3629	isl_space *space, *build_space;
3630	int is_domain;
3631
3632	space = isl_set_get_space(set);
3633
3634	if (isl_set_is_params(data->build->domain))
3635		return generate_code_in_space(data, set, space);
3636
3637	build_space = isl_ast_build_get_space(data->build, data->internal);
3638	space = isl_space_unwrap(space);
3639	is_domain = isl_space_is_domain(build_space, space);
3640	isl_space_free(build_space);
3641	space = isl_space_range(space);
3642
3643	if (is_domain < 0)
3644		goto error;
3645	if (!is_domain)
3646		isl_die(isl_set_get_ctx(set), isl_error_invalid,
3647			"invalid nested schedule space", goto error);
3648
3649	return generate_code_in_space(data, set, space);
3650error:
3651	isl_set_free(set);
3652	isl_space_free(space);
3653	return -1;
3654}
3655
3656/* Generate an AST that visits the elements in the range of "executed"
3657 * in the relative order specified by the corresponding domain element(s).
3658 *
3659 * "build" is an isl_ast_build that has either been constructed by
3660 * isl_ast_build_from_context or passed to a callback set by
3661 * isl_ast_build_set_create_leaf.
3662 * In the first case, the space of the isl_ast_build is typically
3663 * a parametric space, although this is currently not enforced.
3664 * In the second case, the space is never a parametric space.
3665 * If the space S is not parametric, then the domain space(s) of "executed"
3666 * need to be wrapped relations with S as domain.
3667 *
3668 * If the domain of "executed" consists of several spaces, then an AST
3669 * is generated for each of them (in arbitrary order) and the results
3670 * are concatenated.
3671 *
3672 * If "internal" is set, then the domain "S" above refers to the internal
3673 * schedule domain representation.  Otherwise, it refers to the external
3674 * representation, as returned by isl_ast_build_get_schedule_space.
3675 *
3676 * We essentially run over all the spaces in the domain of "executed"
3677 * and call generate_code_set on each of them.
3678 */
3679static __isl_give isl_ast_graft_list *generate_code(
3680	__isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3681	int internal)
3682{
3683	isl_ctx *ctx;
3684	struct isl_generate_code_data data = { 0 };
3685	isl_space *space;
3686	isl_union_set *schedule_domain;
3687	isl_union_map *universe;
3688
3689	if (!build)
3690		goto error;
3691	space = isl_ast_build_get_space(build, 1);
3692	space = isl_space_align_params(space,
3693				    isl_union_map_get_space(executed));
3694	space = isl_space_align_params(space,
3695				    isl_union_map_get_space(build->options));
3696	build = isl_ast_build_align_params(build, isl_space_copy(space));
3697	executed = isl_union_map_align_params(executed, space);
3698	if (!executed || !build)
3699		goto error;
3700
3701	ctx = isl_ast_build_get_ctx(build);
3702
3703	data.internal = internal;
3704	data.executed = executed;
3705	data.build = build;
3706	data.list = isl_ast_graft_list_alloc(ctx, 0);
3707
3708	universe = isl_union_map_universe(isl_union_map_copy(executed));
3709	schedule_domain = isl_union_map_domain(universe);
3710	if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3711					&data) < 0)
3712		data.list = isl_ast_graft_list_free(data.list);
3713
3714	isl_union_set_free(schedule_domain);
3715	isl_union_map_free(executed);
3716
3717	isl_ast_build_free(build);
3718	return data.list;
3719error:
3720	isl_union_map_free(executed);
3721	isl_ast_build_free(build);
3722	return NULL;
3723}
3724
3725/* Generate an AST that visits the elements in the domain of "schedule"
3726 * in the relative order specified by the corresponding image element(s).
3727 *
3728 * "build" is an isl_ast_build that has either been constructed by
3729 * isl_ast_build_from_context or passed to a callback set by
3730 * isl_ast_build_set_create_leaf.
3731 * In the first case, the space of the isl_ast_build is typically
3732 * a parametric space, although this is currently not enforced.
3733 * In the second case, the space is never a parametric space.
3734 * If the space S is not parametric, then the range space(s) of "schedule"
3735 * need to be wrapped relations with S as domain.
3736 *
3737 * If the range of "schedule" consists of several spaces, then an AST
3738 * is generated for each of them (in arbitrary order) and the results
3739 * are concatenated.
3740 *
3741 * We first initialize the local copies of the relevant options.
3742 * We do this here rather than when the isl_ast_build is created
3743 * because the options may have changed between the construction
3744 * of the isl_ast_build and the call to isl_generate_code.
3745 *
3746 * The main computation is performed on an inverse schedule (with
3747 * the schedule domain in the domain and the elements to be executed
3748 * in the range) called "executed".
3749 */
3750__isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3751	__isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3752{
3753	isl_ast_graft_list *list;
3754	isl_ast_node *node;
3755	isl_union_map *executed;
3756
3757	build = isl_ast_build_copy(build);
3758	build = isl_ast_build_set_single_valued(build, 0);
3759	executed = isl_union_map_reverse(schedule);
3760	list = generate_code(executed, isl_ast_build_copy(build), 0);
3761	node = isl_ast_node_from_graft_list(list, build);
3762	isl_ast_build_free(build);
3763
3764	return node;
3765}
3766