1/* mpfr_sin_cos -- sine and cosine of a floating-point number
2
3Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4Contributed by the AriC and Caramel projects, INRIA.
5
6This file is part of the GNU MPFR Library.
7
8The GNU MPFR Library is free software; you can redistribute it and/or modify
9it under the terms of the GNU Lesser General Public License as published by
10the Free Software Foundation; either version 3 of the License, or (at your
11option) any later version.
12
13The GNU MPFR Library is distributed in the hope that it will be useful, but
14WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
16License for more details.
17
18You should have received a copy of the GNU Lesser General Public License
19along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
20http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
2151 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
22
23#define MPFR_NEED_LONGLONG_H
24#include "mpfr-impl.h"
25
26/* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact
27   ie, iff x = 0 */
28int
29mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
30{
31  mpfr_prec_t prec, m;
32  int neg, reduce;
33  mpfr_t c, xr;
34  mpfr_srcptr xx;
35  mpfr_exp_t err, expx;
36  int inexy, inexz;
37  MPFR_ZIV_DECL (loop);
38  MPFR_SAVE_EXPO_DECL (expo);
39
40  MPFR_ASSERTN (y != z);
41
42  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
43    {
44      if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
45        {
46          MPFR_SET_NAN (y);
47          MPFR_SET_NAN (z);
48          MPFR_RET_NAN;
49        }
50      else /* x is zero */
51        {
52          MPFR_ASSERTD (MPFR_IS_ZERO (x));
53          MPFR_SET_ZERO (y);
54          MPFR_SET_SAME_SIGN (y, x);
55          /* y = 0, thus exact, but z is inexact in case of underflow
56             or overflow */
57          inexy = 0; /* y is exact */
58          inexz = mpfr_set_ui (z, 1, rnd_mode);
59          return INEX(inexy,inexz);
60        }
61    }
62
63  MPFR_LOG_FUNC
64    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
65     ("sin[%Pu]=%.*Rg cos[%Pu]=%.*Rg", mpfr_get_prec(y), mpfr_log_prec, y,
66      mpfr_get_prec (z), mpfr_log_prec, z));
67
68  MPFR_SAVE_EXPO_MARK (expo);
69
70  prec = MAX (MPFR_PREC (y), MPFR_PREC (z));
71  m = prec + MPFR_INT_CEIL_LOG2 (prec) + 13;
72  expx = MPFR_GET_EXP (x);
73
74  /* When x is close to 0, say 2^(-k), then there is a cancellation of about
75     2k bits in 1-cos(x)^2. FIXME: in that case, it would be more efficient
76     to compute sin(x) directly. VL: This is partly done by using
77     MPFR_FAST_COMPUTE_IF_SMALL_INPUT from the mpfr_sin and mpfr_cos
78     functions. Moreover, any overflow on m is avoided. */
79  if (expx < 0)
80    {
81      /* Warning: in case y = x, and the first call to
82         MPFR_FAST_COMPUTE_IF_SMALL_INPUT succeeds but the second fails,
83         we will have clobbered the original value of x.
84         The workaround is to first compute z = cos(x) in that case, since
85         y and z are different. */
86      if (y != x)
87        /* y and x differ, thus we can safely try to compute y first */
88        {
89          MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
90            y, x, -2 * expx, 2, 0, rnd_mode,
91            { inexy = _inexact;
92              goto small_input; });
93          if (0)
94            {
95            small_input:
96              /* we can go here only if we can round sin(x) */
97              MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
98                z, __gmpfr_one, -2 * expx, 1, 0, rnd_mode,
99                { inexz = _inexact;
100                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
101                  goto end; });
102            }
103
104          /* if we go here, one of the two MPFR_FAST_COMPUTE_IF_SMALL_INPUT
105             calls failed */
106        }
107      else /* y and x are the same variable: try to compute z first, which
108              necessarily differs */
109        {
110          MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
111            z, __gmpfr_one, -2 * expx, 1, 0, rnd_mode,
112            { inexz = _inexact;
113              goto small_input2; });
114          if (0)
115            {
116            small_input2:
117              /* we can go here only if we can round cos(x) */
118              MPFR_FAST_COMPUTE_IF_SMALL_INPUT (
119                y, x, -2 * expx, 2, 0, rnd_mode,
120                { inexy = _inexact;
121                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
122                  goto end; });
123            }
124        }
125      m += 2 * (-expx);
126    }
127
128  if (prec >= MPFR_SINCOS_THRESHOLD)
129    {
130      MPFR_SAVE_EXPO_FREE (expo);
131      return mpfr_sincos_fast (y, z, x, rnd_mode);
132    }
133
134  mpfr_init (c);
135  mpfr_init (xr);
136
137  MPFR_ZIV_INIT (loop, m);
138  for (;;)
139    {
140      /* the following is copied from sin.c */
141      if (expx >= 2) /* reduce the argument */
142        {
143          reduce = 1;
144          mpfr_set_prec (c, expx + m - 1);
145          mpfr_set_prec (xr, m);
146          mpfr_const_pi (c, MPFR_RNDN);
147          mpfr_mul_2ui (c, c, 1, MPFR_RNDN);
148          mpfr_remainder (xr, x, c, MPFR_RNDN);
149          mpfr_div_2ui (c, c, 1, MPFR_RNDN);
150          if (MPFR_SIGN (xr) > 0)
151            mpfr_sub (c, c, xr, MPFR_RNDZ);
152          else
153            mpfr_add (c, c, xr, MPFR_RNDZ);
154          if (MPFR_IS_ZERO(xr)
155              || MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m
156              || MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m)
157            goto next_step;
158          xx = xr;
159        }
160      else /* the input argument is already reduced */
161        {
162          reduce = 0;
163          xx = x;
164        }
165
166      neg = MPFR_IS_NEG (xx); /* gives sign of sin(x) */
167      mpfr_set_prec (c, m);
168      mpfr_cos (c, xx, MPFR_RNDZ);
169      /* If no argument reduction was performed, the error is at most ulp(c),
170         otherwise it is at most ulp(c) + 2^(2-m). Since |c| < 1, we have
171         ulp(c) <= 2^(-m), thus the error is bounded by 2^(3-m) in that later
172         case. */
173      if (reduce == 0)
174        err = m;
175      else
176        err = MPFR_GET_EXP (c) + (mpfr_exp_t) (m - 3);
177      if (!mpfr_can_round (c, err, MPFR_RNDN, MPFR_RNDZ,
178                           MPFR_PREC (z) + (rnd_mode == MPFR_RNDN)))
179        goto next_step;
180
181      /* we can't set z now, because in case z = x, and the mpfr_can_round()
182         call below fails, we will have clobbered the input */
183      mpfr_set_prec (xr, MPFR_PREC(c));
184      mpfr_swap (xr, c); /* save the approximation of the cosine in xr */
185      mpfr_sqr (c, xr, MPFR_RNDU); /* the absolute error is bounded by
186                                      2^(5-m) if reduce=1, and by 2^(2-m)
187                                      otherwise */
188      mpfr_ui_sub (c, 1, c, MPFR_RNDN); /* error bounded by 2^(6-m) if reduce
189                                           is 1, and 2^(3-m) otherwise */
190      mpfr_sqrt (c, c, MPFR_RNDN); /* the absolute error is bounded by
191                                      2^(6-m-Exp(c)) if reduce=1, and
192                                      2^(3-m-Exp(c)) otherwise */
193      err = 3 + 3 * reduce - MPFR_GET_EXP (c);
194      if (neg)
195        MPFR_CHANGE_SIGN (c);
196
197      /* the absolute error on c is at most 2^(err-m), which we must put
198         in the form 2^(EXP(c)-err). */
199      err = MPFR_GET_EXP (c) + (mpfr_exp_t) m - err;
200      if (mpfr_can_round (c, err, MPFR_RNDN, MPFR_RNDZ,
201                          MPFR_PREC (y) + (rnd_mode == MPFR_RNDN)))
202        break;
203      /* check for huge cancellation */
204      if (err < (mpfr_exp_t) MPFR_PREC (y))
205        m += MPFR_PREC (y) - err;
206      /* Check if near 1 */
207      if (MPFR_GET_EXP (c) == 1
208          && MPFR_MANT (c)[MPFR_LIMB_SIZE (c)-1] == MPFR_LIMB_HIGHBIT)
209        m += m;
210
211    next_step:
212      MPFR_ZIV_NEXT (loop, m);
213      mpfr_set_prec (c, m);
214    }
215  MPFR_ZIV_FREE (loop);
216
217  inexy = mpfr_set (y, c, rnd_mode);
218  inexz = mpfr_set (z, xr, rnd_mode);
219
220  mpfr_clear (c);
221  mpfr_clear (xr);
222
223 end:
224  MPFR_SAVE_EXPO_FREE (expo);
225  /* FIXME: add a test for bug before revision 7355 */
226  inexy = mpfr_check_range (y, inexy, rnd_mode);
227  inexz = mpfr_check_range (z, inexz, rnd_mode);
228  MPFR_RET (INEX(inexy,inexz));
229}
230
231/*************** asymptotically fast implementation below ********************/
232
233/* truncate Q from R to at most prec bits.
234   Return the number of truncated bits.
235 */
236static mpfr_prec_t
237reduce (mpz_t Q, mpz_srcptr R, mpfr_prec_t prec)
238{
239  mpfr_prec_t l = mpz_sizeinbase (R, 2);
240
241  l = (l > prec) ? l - prec : 0;
242  mpz_fdiv_q_2exp (Q, R, l);
243  return l;
244}
245
246/* truncate S and C so that the smaller has prec bits.
247   Return the number of truncated bits.
248 */
249static unsigned long
250reduce2 (mpz_t S, mpz_t C, mpfr_prec_t prec)
251{
252  unsigned long ls = mpz_sizeinbase (S, 2);
253  unsigned long lc = mpz_sizeinbase (C, 2);
254  unsigned long l;
255
256  l = (ls < lc) ? ls : lc; /* smaller length */
257  l = (l > prec) ? l - prec : 0;
258  mpz_fdiv_q_2exp (S, S, l);
259  mpz_fdiv_q_2exp (C, C, l);
260  return l;
261}
262
263/* return in S0/Q0 a rational approximation of sin(X) with absolute error
264                     bounded by 9*2^(-prec), where 0 <= X=p/2^r <= 1/2,
265   and in    C0/Q0 a rational approximation of cos(X), with relative error
266                     bounded by 9*2^(-prec) (and also absolute error, since
267                     |cos(X)| <= 1).
268   We have sin(X)/X = sum((-1)^i*(p/2^r)^i/(2i+1)!, i=0..infinity).
269   We use the following binary splitting formula:
270   P(a,b) = (-p)^(b-a)
271   Q(a,b) = (2a)*(2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
272   T(a,b) = 1 if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise.
273
274   Since we use P(a,b) for b-a=2^k only, we compute only p^(2^k).
275   We do not store the factor 2^r in Q().
276
277   Then sin(X)/X ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough.
278
279   Return l such that Q0 has to be multiplied by 2^l.
280
281   Assumes prec >= 10.
282*/
283static unsigned long
284sin_bs_aux (mpz_t Q0, mpz_t S0, mpz_t C0, mpz_srcptr p, mpfr_prec_t r,
285            mpfr_prec_t prec)
286{
287  mpz_t T[GMP_NUMB_BITS], Q[GMP_NUMB_BITS], ptoj[GMP_NUMB_BITS], pp;
288  mpfr_prec_t log2_nb_terms[GMP_NUMB_BITS], mult[GMP_NUMB_BITS];
289  mpfr_prec_t accu[GMP_NUMB_BITS], size_ptoj[GMP_NUMB_BITS];
290  mpfr_prec_t prec_i_have, r0 = r;
291  unsigned long alloc, i, j, k;
292  mpfr_prec_t l;
293
294  if (MPFR_UNLIKELY(mpz_cmp_ui (p, 0) == 0)) /* sin(x)/x -> 1 */
295    {
296      mpz_set_ui (Q0, 1);
297      mpz_set_ui (S0, 1);
298      mpz_set_ui (C0, 1);
299      return 0;
300    }
301
302  /* check that X=p/2^r <= 1/2 */
303  MPFR_ASSERTN(mpz_sizeinbase (p, 2) - (mpfr_exp_t) r <= -1);
304
305  mpz_init (pp);
306
307  /* normalize p (non-zero here) */
308  l = mpz_scan1 (p, 0);
309  mpz_fdiv_q_2exp (pp, p, l); /* p = pp * 2^l */
310  mpz_mul (pp, pp, pp);
311  r = 2 * (r - l);            /* x^2 = (p/2^r0)^2 = pp / 2^r */
312
313  /* now p is odd */
314  alloc = 2;
315  mpz_init_set_ui (T[0], 6);
316  mpz_init_set_ui (Q[0], 6);
317  mpz_init_set (ptoj[0], pp); /* ptoj[i] = pp^(2^i) */
318  mpz_init (T[1]);
319  mpz_init (Q[1]);
320  mpz_init (ptoj[1]);
321  mpz_mul (ptoj[1], pp, pp);  /* ptoj[1] = pp^2 */
322  size_ptoj[1] = mpz_sizeinbase (ptoj[1], 2);
323
324  mpz_mul_2exp (T[0], T[0], r);
325  mpz_sub (T[0], T[0], pp);      /* 6*2^r - pp = 6*2^r*(1 - x^2/6) */
326  log2_nb_terms[0] = 1;
327
328  /* already take into account the factor x=p/2^r in sin(x) = x * (...) */
329  mult[0] = r  - mpz_sizeinbase (pp, 2) + r0 - mpz_sizeinbase (p, 2);
330  /* we have x^3 < 1/2^mult[0] */
331
332  for (i = 2, k = 0, prec_i_have = mult[0]; prec_i_have < prec; i += 2)
333    {
334      /* i is even here */
335      /* invariant: Q[0]*Q[1]*...*Q[k] equals (2i-1)!,
336         we have already summed terms of index < i
337         in S[0]/Q[0], ..., S[k]/Q[k] */
338      k ++;
339      if (k + 1 >= alloc) /* necessarily k + 1 = alloc */
340        {
341          alloc ++;
342          mpz_init (T[k+1]);
343          mpz_init (Q[k+1]);
344          mpz_init (ptoj[k+1]);
345          mpz_mul (ptoj[k+1], ptoj[k], ptoj[k]); /* pp^(2^(k+1)) */
346          size_ptoj[k+1] = mpz_sizeinbase (ptoj[k+1], 2);
347        }
348      /* for i even, we have Q[k] = (2*i)*(2*i+1), T[k] = 1,
349         then                Q[k+1] = (2*i+2)*(2*i+3), T[k+1] = 1,
350         which reduces to T[k] = (2*i+2)*(2*i+3)*2^r-pp,
351         Q[k] = (2*i)*(2*i+1)*(2*i+2)*(2*i+3). */
352      log2_nb_terms[k] = 1;
353      mpz_set_ui (Q[k], (2 * i + 2) * (2 * i + 3));
354      mpz_mul_2exp (T[k], Q[k], r);
355      mpz_sub (T[k], T[k], pp);
356      mpz_mul_ui (Q[k], Q[k], (2 * i) * (2 * i + 1));
357      /* the next term of the series is divided by Q[k] and multiplied
358         by pp^2/2^(2r), thus the mult. factor < 1/2^mult[k] */
359      mult[k] = mpz_sizeinbase (Q[k], 2) + 2 * r - size_ptoj[1] - 1;
360      /* the absolute contribution of the next term is 1/2^accu[k] */
361      accu[k] = (k == 0) ? mult[k] : mult[k] + accu[k-1];
362      prec_i_have = accu[k]; /* the current term is < 1/2^accu[k] */
363      j = (i + 2) / 2;
364      l = 1;
365      while ((j & 1) == 0) /* combine and reduce */
366        {
367          mpz_mul (T[k], T[k], ptoj[l]);
368          mpz_mul (T[k-1], T[k-1], Q[k]);
369          mpz_mul_2exp (T[k-1], T[k-1], r << l);
370          mpz_add (T[k-1], T[k-1], T[k]);
371          mpz_mul (Q[k-1], Q[k-1], Q[k]);
372          log2_nb_terms[k-1] ++; /* number of terms in S[k-1]
373                                    is a power of 2 by construction */
374          prec_i_have = mpz_sizeinbase (Q[k], 2);
375          mult[k-1] += prec_i_have + (r << l) - size_ptoj[l] - 1;
376          accu[k-1] = (k == 1) ? mult[k-1] : mult[k-1] + accu[k-2];
377          prec_i_have = accu[k-1];
378          l ++;
379          j >>= 1;
380          k --;
381        }
382    }
383
384  /* accumulate all products in T[0] and Q[0]. Warning: contrary to above,
385     here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */
386  l = 0; /* number of accumulated terms in the right part T[k]/Q[k] */
387  while (k > 0)
388    {
389      j = log2_nb_terms[k-1];
390      mpz_mul (T[k], T[k], ptoj[j]);
391      mpz_mul (T[k-1], T[k-1], Q[k]);
392      l += 1 << log2_nb_terms[k];
393      mpz_mul_2exp (T[k-1], T[k-1], r * l);
394      mpz_add (T[k-1], T[k-1], T[k]);
395      mpz_mul (Q[k-1], Q[k-1], Q[k]);
396      k--;
397    }
398
399  l = r0 + r * (i - 1); /* implicit multiplier 2^r for Q0 */
400  /* at this point T[0]/(2^l*Q[0]) is an approximation of sin(x) where the 1st
401     neglected term has contribution < 1/2^prec, thus since the series has
402     alternate signs, the error is < 1/2^prec */
403
404  /* we truncate Q0 to prec bits: the relative error is at most 2^(1-prec),
405     which means that Q0 = Q[0] * (1+theta) with |theta| <= 2^(1-prec)
406     [up to a power of two] */
407  l += reduce (Q0, Q[0], prec);
408  l -= reduce (T[0], T[0], prec);
409  /* multiply by x = p/2^l */
410  mpz_mul (S0, T[0], p);
411  l -= reduce (S0, S0, prec); /* S0 = T[0] * (1 + theta)^2 up to power of 2 */
412  /* sin(X) ~ S0/Q0*(1 + theta)^3 + err with |theta| <= 2^(1-prec) and
413              |err| <= 2^(-prec), thus since |S0/Q0| <= 1:
414     |sin(X) - S0/Q0| <= 4*|theta*S0/Q0| + |err| <= 9*2^(-prec) */
415
416  mpz_clear (pp);
417  for (j = 0; j < alloc; j ++)
418    {
419      mpz_clear (T[j]);
420      mpz_clear (Q[j]);
421      mpz_clear (ptoj[j]);
422    }
423
424  /* compute cos(X) from sin(X): sqrt(1-(S/Q)^2) = sqrt(Q^2-S^2)/Q
425     = sqrt(Q0^2*2^(2l)-S0^2)/Q0.
426     Write S/Q = sin(X) + eps with |eps| <= 9*2^(-prec),
427     then sqrt(Q^2-S^2) = sqrt(Q^2-Q^2*(sin(X)+eps)^2)
428                        = sqrt(Q^2*cos(X)^2-Q^2*(2*sin(X)*eps+eps^2))
429                        = sqrt(Q^2*cos(X)^2-Q^2*eps1) with |eps1|<=9*2^(-prec)
430                          [using X<=1/2 and eps<=9*2^(-prec) and prec>=10]
431
432                        Since we truncate the square root, we get:
433                          sqrt(Q^2*cos(X)^2-Q^2*eps1)+eps2 with |eps2|<1
434                        = Q*sqrt(cos(X)^2-eps1)+eps2
435                        = Q*cos(X)*(1+eps3)+eps2 with |eps3| <= 6*2^(-prec)
436                        = Q*cos(X)*(1+eps3+eps2/(Q*cos(X)))
437                        = Q*cos(X)*(1+eps4) with |eps4| <= 9*2^(-prec)
438                          since |Q| >= 2^(prec-1) */
439  /* we assume that Q0*2^l >= 2^(prec-1) */
440  MPFR_ASSERTN(l + mpz_sizeinbase (Q0, 2) >= prec);
441  mpz_mul (C0, Q0, Q0);
442  mpz_mul_2exp (C0, C0, 2 * l);
443  mpz_submul (C0, S0, S0);
444  mpz_sqrt (C0, C0);
445
446  return l;
447}
448
449/* Put in s and c approximations of sin(x) and cos(x) respectively.
450   Assumes 0 < x < Pi/4 and PREC(s) = PREC(c) >= 10.
451   Return err such that the relative error is bounded by 2^err ulps.
452*/
453static int
454sincos_aux (mpfr_t s, mpfr_t c, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
455{
456  mpfr_prec_t prec_s, sh;
457  mpz_t Q, S, C, Q2, S2, C2, y;
458  mpfr_t x2;
459  unsigned long l, l2, j, err;
460
461  MPFR_ASSERTD(MPFR_PREC(s) == MPFR_PREC(c));
462
463  prec_s = MPFR_PREC(s);
464
465  mpfr_init2 (x2, MPFR_PREC(x));
466  mpz_init (Q);
467  mpz_init (S);
468  mpz_init (C);
469  mpz_init (Q2);
470  mpz_init (S2);
471  mpz_init (C2);
472  mpz_init (y);
473
474  mpfr_set (x2, x, MPFR_RNDN); /* exact */
475  mpz_set_ui (Q, 1);
476  l = 0;
477  mpz_set_ui (S, 0); /* sin(0) = S/(2^l*Q), exact */
478  mpz_set_ui (C, 1); /* cos(0) = C/(2^l*Q), exact */
479
480  /* Invariant: x = X + x2/2^(sh-1), where the part X was already treated,
481     S/(2^l*Q) ~ sin(X), C/(2^l*Q) ~ cos(X), and x2/2^(sh-1) < Pi/4.
482     'sh-1' is the number of already shifted bits in x2.
483  */
484
485  for (sh = 1, j = 0; mpfr_cmp_ui (x2, 0) != 0 && sh <= prec_s; sh <<= 1, j++)
486    {
487      if (sh > prec_s / 2) /* sin(x) = x + O(x^3), cos(x) = 1 + O(x^2) */
488        {
489          l2 = -mpfr_get_z_2exp (S2, x2); /* S2/2^l2 = x2 */
490          l2 += sh - 1;
491          mpz_set_ui (Q2, 1);
492          mpz_set_ui (C2, 1);
493          mpz_mul_2exp (C2, C2, l2);
494          mpfr_set_ui (x2, 0, MPFR_RNDN);
495        }
496      else
497        {
498          /* y <- trunc(x2 * 2^sh) = trunc(x * 2^(2*sh-1)) */
499          mpfr_mul_2exp (x2, x2, sh, MPFR_RNDN); /* exact */
500          mpfr_get_z (y, x2, MPFR_RNDZ); /* round towards zero: now
501                                           0 <= x2 < 2^sh, thus
502                                           0 <= x2/2^(sh-1) < 2^(1-sh) */
503          if (mpz_cmp_ui (y, 0) == 0)
504            continue;
505          mpfr_sub_z (x2, x2, y, MPFR_RNDN); /* should be exact */
506          l2 = sin_bs_aux (Q2, S2, C2, y, 2 * sh - 1, prec_s);
507          /* we now have |S2/Q2/2^l2 - sin(X)| <= 9*2^(prec_s)
508             and |C2/Q2/2^l2 - cos(X)| <= 6*2^(prec_s), with X=y/2^(2sh-1) */
509        }
510      if (sh == 1) /* S=0, C=1 */
511        {
512          l = l2;
513          mpz_swap (Q, Q2);
514          mpz_swap (S, S2);
515          mpz_swap (C, C2);
516        }
517      else
518        {
519          /* s <- s*c2+c*s2, c <- c*c2-s*s2, using Karatsuba:
520             a = s+c, b = s2+c2, t = a*b, d = s*s2, e = c*c2,
521             s <- t - d - e, c <- e - d */
522          mpz_add (y, S, C); /* a */
523          mpz_mul (C, C, C2); /* e */
524          mpz_add (C2, C2, S2); /* b */
525          mpz_mul (S2, S, S2); /* d */
526          mpz_mul (y, y, C2); /* a*b */
527          mpz_sub (S, y, S2); /* t - d */
528          mpz_sub (S, S, C); /* t - d - e */
529          mpz_sub (C, C, S2); /* e - d */
530          mpz_mul (Q, Q, Q2);
531          /* after j loops, the error is <= (11j-2)*2^(prec_s) */
532          l += l2;
533          /* reduce Q to prec_s bits */
534          l += reduce (Q, Q, prec_s);
535          /* reduce S,C to prec_s bits, error <= 11*j*2^(prec_s) */
536          l -= reduce2 (S, C, prec_s);
537        }
538    }
539
540  j = 11 * j;
541  for (err = 0; j > 1; j = (j + 1) / 2, err ++);
542
543  mpfr_set_z (s, S, MPFR_RNDN);
544  mpfr_div_z (s, s, Q, MPFR_RNDN);
545  mpfr_div_2exp (s, s, l, MPFR_RNDN);
546
547  mpfr_set_z (c, C, MPFR_RNDN);
548  mpfr_div_z (c, c, Q, MPFR_RNDN);
549  mpfr_div_2exp (c, c, l, MPFR_RNDN);
550
551  mpz_clear (Q);
552  mpz_clear (S);
553  mpz_clear (C);
554  mpz_clear (Q2);
555  mpz_clear (S2);
556  mpz_clear (C2);
557  mpz_clear (y);
558  mpfr_clear (x2);
559  return err;
560}
561
562/* Assumes x is neither NaN, +/-Inf, nor +/- 0.
563   One of s and c might be NULL, in which case the corresponding value is
564   not computed.
565   Assumes s differs from c.
566 */
567int
568mpfr_sincos_fast (mpfr_t s, mpfr_t c, mpfr_srcptr x, mpfr_rnd_t rnd)
569{
570  int inexs, inexc;
571  mpfr_t x_red, ts, tc;
572  mpfr_prec_t w;
573  mpfr_exp_t err, errs, errc;
574  MPFR_ZIV_DECL (loop);
575
576  MPFR_ASSERTN(s != c);
577  if (s == NULL)
578    w = MPFR_PREC(c);
579  else if (c == NULL)
580    w = MPFR_PREC(s);
581  else
582    w = MPFR_PREC(s) >= MPFR_PREC(c) ? MPFR_PREC(s) : MPFR_PREC(c);
583  w += MPFR_INT_CEIL_LOG2(w) + 9; /* ensures w >= 10 (needed by sincos_aux) */
584  mpfr_init2 (ts, w);
585  mpfr_init2 (tc, w);
586
587  MPFR_ZIV_INIT (loop, w);
588  for (;;)
589    {
590      /* if 0 < x <= Pi/4, we can call sincos_aux directly */
591      if (MPFR_IS_POS(x) && mpfr_cmp_ui_2exp (x, 1686629713, -31) <= 0)
592        {
593          err = sincos_aux (ts, tc, x, MPFR_RNDN);
594        }
595      /* if -Pi/4 <= x < 0, use sin(-x)=-sin(x) */
596      else if (MPFR_IS_NEG(x) && mpfr_cmp_si_2exp (x, -1686629713, -31) >= 0)
597        {
598          mpfr_init2 (x_red, MPFR_PREC(x));
599          mpfr_neg (x_red, x, rnd); /* exact */
600          err = sincos_aux (ts, tc, x_red, MPFR_RNDN);
601          mpfr_neg (ts, ts, MPFR_RNDN);
602          mpfr_clear (x_red);
603        }
604      else /* argument reduction is needed */
605        {
606          long q;
607          mpfr_t pi;
608          int neg = 0;
609
610          mpfr_init2 (x_red, w);
611          mpfr_init2 (pi, (MPFR_EXP(x) > 0) ? w + MPFR_EXP(x) : w);
612          mpfr_const_pi (pi, MPFR_RNDN);
613          mpfr_div_2exp (pi, pi, 1, MPFR_RNDN); /* Pi/2 */
614          mpfr_remquo (x_red, &q, x, pi, MPFR_RNDN);
615          /* x = q * (Pi/2 + eps1) + x_red + eps2,
616             where |eps1| <= 1/2*ulp(Pi/2) = 2^(-w-MAX(0,EXP(x))),
617             and eps2 <= 1/2*ulp(x_red) <= 1/2*ulp(Pi/2) = 2^(-w)
618             Since |q| <= x/(Pi/2) <= |x|, we have
619             q*|eps1| <= 2^(-w), thus
620             |x - q * Pi/2 - x_red| <= 2^(1-w) */
621          /* now -Pi/4 <= x_red <= Pi/4: if x_red < 0, consider -x_red */
622          if (MPFR_IS_NEG(x_red))
623            {
624              mpfr_neg (x_red, x_red, MPFR_RNDN);
625              neg = 1;
626            }
627          err = sincos_aux (ts, tc, x_red, MPFR_RNDN);
628          err ++; /* to take into account the argument reduction */
629          if (neg) /* sin(-x) = -sin(x), cos(-x) = cos(x) */
630            mpfr_neg (ts, ts, MPFR_RNDN);
631          if (q & 2) /* sin(x+Pi) = -sin(x), cos(x+Pi) = -cos(x) */
632            {
633              mpfr_neg (ts, ts, MPFR_RNDN);
634              mpfr_neg (tc, tc, MPFR_RNDN);
635            }
636          if (q & 1) /* sin(x+Pi/2) = cos(x), cos(x+Pi/2) = -sin(x) */
637            {
638              mpfr_neg (ts, ts, MPFR_RNDN);
639              mpfr_swap (ts, tc);
640            }
641          mpfr_clear (x_red);
642          mpfr_clear (pi);
643        }
644      /* adjust errors with respect to absolute values */
645      errs = err - MPFR_EXP(ts);
646      errc = err - MPFR_EXP(tc);
647      if ((s == NULL || MPFR_CAN_ROUND (ts, w - errs, MPFR_PREC(s), rnd)) &&
648          (c == NULL || MPFR_CAN_ROUND (tc, w - errc, MPFR_PREC(c), rnd)))
649        break;
650      MPFR_ZIV_NEXT (loop, w);
651      mpfr_set_prec (ts, w);
652      mpfr_set_prec (tc, w);
653    }
654  MPFR_ZIV_FREE (loop);
655
656  inexs = (s == NULL) ? 0 : mpfr_set (s, ts, rnd);
657  inexc = (c == NULL) ? 0 : mpfr_set (c, tc, rnd);
658
659  mpfr_clear (ts);
660  mpfr_clear (tc);
661  return INEX(inexs,inexc);
662}
663