1/* mpfr_exp -- exponential of a floating-point number
2
3Copyright 1999, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4Contributed by the AriC and Caramel projects, INRIA.
5
6This file is part of the GNU MPFR Library.
7
8The GNU MPFR Library is free software; you can redistribute it and/or modify
9it under the terms of the GNU Lesser General Public License as published by
10the Free Software Foundation; either version 3 of the License, or (at your
11option) any later version.
12
13The GNU MPFR Library is distributed in the hope that it will be useful, but
14WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
16License for more details.
17
18You should have received a copy of the GNU Lesser General Public License
19along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
20http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
2151 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
22
23#define MPFR_NEED_LONGLONG_H /* for MPFR_MPZ_SIZEINBASE2 */
24#include "mpfr-impl.h"
25
26/* y <- exp(p/2^r) within 1 ulp, using 2^m terms from the series
27   Assume |p/2^r| < 1.
28   We use the following binary splitting formula:
29   P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
30   Q(a,b) = a*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
31   T(a,b) = P(a,b) if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise
32   Then exp(p/2^r) ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough.
33
34   Since P(a,b) = p^(b-a), and we consider only values of b-a of the form 2^j,
35   we don't need to compute P(), we only precompute p^(2^j) in the ptoj[] array
36   below.
37
38   Since Q(a,b) is divisible by 2^(r*(b-a-1)), we don't compute the power of
39   two part.
40*/
41static void
42mpfr_exp_rational (mpfr_ptr y, mpz_ptr p, long r, int m,
43                   mpz_t *Q, mpfr_prec_t *mult)
44{
45  unsigned long n, i, j;
46  mpz_t *S, *ptoj;
47  mpfr_prec_t *log2_nb_terms;
48  mpfr_exp_t diff, expo;
49  mpfr_prec_t precy = MPFR_PREC(y), prec_i_have, prec_ptoj;
50  int k, l;
51
52  MPFR_ASSERTN ((size_t) m < sizeof (long) * CHAR_BIT - 1);
53
54  S    = Q + (m+1);
55  ptoj = Q + 2*(m+1);                     /* ptoj[i] = mantissa^(2^i) */
56  log2_nb_terms = mult + (m+1);
57
58  /* Normalize p */
59  MPFR_ASSERTD (mpz_cmp_ui (p, 0) != 0);
60  n = mpz_scan1 (p, 0); /* number of trailing zeros in p */
61  mpz_tdiv_q_2exp (p, p, n);
62  r -= n; /* since |p/2^r| < 1 and p >= 1, r >= 1 */
63
64  /* Set initial var */
65  mpz_set (ptoj[0], p);
66  for (k = 1; k < m; k++)
67    mpz_mul (ptoj[k], ptoj[k-1], ptoj[k-1]); /* ptoj[k] = p^(2^k) */
68  mpz_set_ui (Q[0], 1);
69  mpz_set_ui (S[0], 1);
70  k = 0;
71  mult[0] = 0; /* the multiplier P[k]/Q[k] for the remaining terms
72                  satisfies P[k]/Q[k] <= 2^(-mult[k]) */
73  log2_nb_terms[0] = 0; /* log2(#terms) [exact in 1st loop where 2^k] */
74  prec_i_have = 0;
75
76  /* Main Loop */
77  n = 1UL << m;
78  for (i = 1; (prec_i_have < precy) && (i < n); i++)
79    {
80      /* invariant: Q[0]*Q[1]*...*Q[k] equals i! */
81      k++;
82      log2_nb_terms[k] = 0; /* 1 term */
83      mpz_set_ui (Q[k], i + 1);
84      mpz_set_ui (S[k], i + 1);
85      j = i + 1; /* we have computed j = i+1 terms so far */
86      l = 0;
87      while ((j & 1) == 0) /* combine and reduce */
88        {
89          /* invariant: S[k] corresponds to 2^l consecutive terms */
90          mpz_mul (S[k], S[k], ptoj[l]);
91          mpz_mul (S[k-1], S[k-1], Q[k]);
92          /* Q[k] corresponds to 2^l consecutive terms too.
93             Since it does not contains the factor 2^(r*2^l),
94             when going from l to l+1 we need to multiply
95             by 2^(r*2^(l+1))/2^(r*2^l) = 2^(r*2^l) */
96          mpz_mul_2exp (S[k-1], S[k-1], r << l);
97          mpz_add (S[k-1], S[k-1], S[k]);
98          mpz_mul (Q[k-1], Q[k-1], Q[k]);
99          log2_nb_terms[k-1] ++; /* number of terms in S[k-1]
100                                    is a power of 2 by construction */
101          MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[k]);
102          MPFR_MPZ_SIZEINBASE2 (prec_ptoj, ptoj[l]);
103          mult[k-1] += prec_i_have + (r << l) - prec_ptoj - 1;
104          prec_i_have = mult[k] = mult[k-1];
105          /* since mult[k] >= mult[k-1] + nbits(Q[k]),
106             we have Q[0]*...*Q[k] <= 2^mult[k] = 2^prec_i_have */
107          l ++;
108          j >>= 1;
109          k --;
110        }
111    }
112
113  /* accumulate all products in S[0] and Q[0]. Warning: contrary to above,
114     here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */
115  l = 0; /* number of accumulated terms in the right part S[k]/Q[k] */
116  while (k > 0)
117    {
118      j = log2_nb_terms[k-1];
119      mpz_mul (S[k], S[k], ptoj[j]);
120      mpz_mul (S[k-1], S[k-1], Q[k]);
121      l += 1 << log2_nb_terms[k];
122      mpz_mul_2exp (S[k-1], S[k-1], r * l);
123      mpz_add (S[k-1], S[k-1], S[k]);
124      mpz_mul (Q[k-1], Q[k-1], Q[k]);
125      k--;
126    }
127
128  /* Q[0] now equals i! */
129  MPFR_MPZ_SIZEINBASE2 (prec_i_have, S[0]);
130  diff = (mpfr_exp_t) prec_i_have - 2 * (mpfr_exp_t) precy;
131  expo = diff;
132  if (diff >= 0)
133    mpz_fdiv_q_2exp (S[0], S[0], diff);
134  else
135    mpz_mul_2exp (S[0], S[0], -diff);
136
137  MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[0]);
138  diff = (mpfr_exp_t) prec_i_have - (mpfr_prec_t) precy;
139  expo -= diff;
140  if (diff > 0)
141    mpz_fdiv_q_2exp (Q[0], Q[0], diff);
142  else
143    mpz_mul_2exp (Q[0], Q[0], -diff);
144
145  mpz_tdiv_q (S[0], S[0], Q[0]);
146  mpfr_set_z (y, S[0], MPFR_RNDD);
147  MPFR_SET_EXP (y, MPFR_GET_EXP (y) + expo - r * (i - 1) );
148}
149
150#define shift (GMP_NUMB_BITS/2)
151
152int
153mpfr_exp_3 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
154{
155  mpfr_t t, x_copy, tmp;
156  mpz_t uk;
157  mpfr_exp_t ttt, shift_x;
158  unsigned long twopoweri;
159  mpz_t *P;
160  mpfr_prec_t *mult;
161  int i, k, loop;
162  int prec_x;
163  mpfr_prec_t realprec, Prec;
164  int iter;
165  int inexact = 0;
166  MPFR_SAVE_EXPO_DECL (expo);
167  MPFR_ZIV_DECL (ziv_loop);
168
169  MPFR_LOG_FUNC
170    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
171     ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y,
172      inexact));
173
174  MPFR_SAVE_EXPO_MARK (expo);
175
176  /* decompose x */
177  /* we first write x = 1.xxxxxxxxxxxxx
178     ----- k bits -- */
179  prec_x = MPFR_INT_CEIL_LOG2 (MPFR_PREC (x)) - MPFR_LOG2_GMP_NUMB_BITS;
180  if (prec_x < 0)
181    prec_x = 0;
182
183  ttt = MPFR_GET_EXP (x);
184  mpfr_init2 (x_copy, MPFR_PREC(x));
185  mpfr_set (x_copy, x, MPFR_RNDD);
186
187  /* we shift to get a number less than 1 */
188  if (ttt > 0)
189    {
190      shift_x = ttt;
191      mpfr_div_2ui (x_copy, x, ttt, MPFR_RNDN);
192      ttt = MPFR_GET_EXP (x_copy);
193    }
194  else
195    shift_x = 0;
196  MPFR_ASSERTD (ttt <= 0);
197
198  /* Init prec and vars */
199  realprec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (prec_x + MPFR_PREC (y));
200  Prec = realprec + shift + 2 + shift_x;
201  mpfr_init2 (t, Prec);
202  mpfr_init2 (tmp, Prec);
203  mpz_init (uk);
204
205  /* Main loop */
206  MPFR_ZIV_INIT (ziv_loop, realprec);
207  for (;;)
208    {
209      int scaled = 0;
210      MPFR_BLOCK_DECL (flags);
211
212      k = MPFR_INT_CEIL_LOG2 (Prec) - MPFR_LOG2_GMP_NUMB_BITS;
213
214      /* now we have to extract */
215      twopoweri = GMP_NUMB_BITS;
216
217      /* Allocate tables */
218      P    = (mpz_t*) (*__gmp_allocate_func) (3*(k+2)*sizeof(mpz_t));
219      for (i = 0; i < 3*(k+2); i++)
220        mpz_init (P[i]);
221      mult = (mpfr_prec_t*) (*__gmp_allocate_func) (2*(k+2)*sizeof(mpfr_prec_t));
222
223      /* Particular case for i==0 */
224      mpfr_extract (uk, x_copy, 0);
225      MPFR_ASSERTD (mpz_cmp_ui (uk, 0) != 0);
226      mpfr_exp_rational (tmp, uk, shift + twopoweri - ttt, k + 1, P, mult);
227      for (loop = 0; loop < shift; loop++)
228        mpfr_sqr (tmp, tmp, MPFR_RNDD);
229      twopoweri *= 2;
230
231      /* General case */
232      iter = (k <= prec_x) ? k : prec_x;
233      for (i = 1; i <= iter; i++)
234        {
235          mpfr_extract (uk, x_copy, i);
236          if (MPFR_LIKELY (mpz_cmp_ui (uk, 0) != 0))
237            {
238              mpfr_exp_rational (t, uk, twopoweri - ttt, k  - i + 1, P, mult);
239              mpfr_mul (tmp, tmp, t, MPFR_RNDD);
240            }
241          MPFR_ASSERTN (twopoweri <= LONG_MAX/2);
242          twopoweri *=2;
243        }
244
245      /* Clear tables */
246      for (i = 0; i < 3*(k+2); i++)
247        mpz_clear (P[i]);
248      (*__gmp_free_func) (P, 3*(k+2)*sizeof(mpz_t));
249      (*__gmp_free_func) (mult, 2*(k+2)*sizeof(mpfr_prec_t));
250
251      if (shift_x > 0)
252        {
253          MPFR_BLOCK (flags, {
254              for (loop = 0; loop < shift_x - 1; loop++)
255                mpfr_sqr (tmp, tmp, MPFR_RNDD);
256              mpfr_sqr (t, tmp, MPFR_RNDD);
257            } );
258
259          if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
260            {
261              /* tmp <= exact result, so that it is a real overflow. */
262              inexact = mpfr_overflow (y, rnd_mode, 1);
263              MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
264              break;
265            }
266
267          if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
268            {
269              /* This may be a spurious underflow. So, let's scale
270                 the result. */
271              mpfr_mul_2ui (tmp, tmp, 1, MPFR_RNDD);  /* no overflow, exact */
272              mpfr_sqr (t, tmp, MPFR_RNDD);
273              if (MPFR_IS_ZERO (t))
274                {
275                  /* approximate result < 2^(emin - 3), thus
276                     exact result < 2^(emin - 2). */
277                  inexact = mpfr_underflow (y, (rnd_mode == MPFR_RNDN) ?
278                                            MPFR_RNDZ : rnd_mode, 1);
279                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
280                  break;
281                }
282              scaled = 1;
283            }
284        }
285
286      if (mpfr_can_round (shift_x > 0 ? t : tmp, realprec, MPFR_RNDD, MPFR_RNDZ,
287                          MPFR_PREC(y) + (rnd_mode == MPFR_RNDN)))
288        {
289          inexact = mpfr_set (y, shift_x > 0 ? t : tmp, rnd_mode);
290          if (MPFR_UNLIKELY (scaled && MPFR_IS_PURE_FP (y)))
291            {
292              int inex2;
293              mpfr_exp_t ey;
294
295              /* The result has been scaled and needs to be corrected. */
296              ey = MPFR_GET_EXP (y);
297              inex2 = mpfr_mul_2si (y, y, -2, rnd_mode);
298              if (inex2)  /* underflow */
299                {
300                  if (rnd_mode == MPFR_RNDN && inexact < 0 &&
301                      MPFR_IS_ZERO (y) && ey == __gmpfr_emin + 1)
302                    {
303                      /* Double rounding case: in MPFR_RNDN, the scaled
304                         result has been rounded downward to 2^emin.
305                         As the exact result is > 2^(emin - 2), correct
306                         rounding must be done upward. */
307                      /* TODO: make sure in coverage tests that this line
308                         is reached. */
309                      inexact = mpfr_underflow (y, MPFR_RNDU, 1);
310                    }
311                  else
312                    {
313                      /* No double rounding. */
314                      inexact = inex2;
315                    }
316                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
317                }
318            }
319          break;
320        }
321
322      MPFR_ZIV_NEXT (ziv_loop, realprec);
323      Prec = realprec + shift + 2 + shift_x;
324      mpfr_set_prec (t, Prec);
325      mpfr_set_prec (tmp, Prec);
326    }
327  MPFR_ZIV_FREE (ziv_loop);
328
329  mpz_clear (uk);
330  mpfr_clear (tmp);
331  mpfr_clear (t);
332  mpfr_clear (x_copy);
333  MPFR_SAVE_EXPO_FREE (expo);
334  return inexact;
335}
336