1/* mpfr_erfc -- The Complementary Error Function of a floating-point number
2
3Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4Contributed by the AriC and Caramel projects, INRIA.
5
6This file is part of the GNU MPFR Library.
7
8The GNU MPFR Library is free software; you can redistribute it and/or modify
9it under the terms of the GNU Lesser General Public License as published by
10the Free Software Foundation; either version 3 of the License, or (at your
11option) any later version.
12
13The GNU MPFR Library is distributed in the hope that it will be useful, but
14WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
16License for more details.
17
18You should have received a copy of the GNU Lesser General Public License
19along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
20http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
2151 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
22
23#define MPFR_NEED_LONGLONG_H
24#include "mpfr-impl.h"
25
26/* erfc(x) = 1 - erf(x) */
27
28/* Put in y an approximation of erfc(x) for large x, using formulae 7.1.23 and
29   7.1.24 from Abramowitz and Stegun.
30   Returns e such that the error is bounded by 2^e ulp(y),
31   or returns 0 in case of underflow.
32*/
33static mpfr_exp_t
34mpfr_erfc_asympt (mpfr_ptr y, mpfr_srcptr x)
35{
36  mpfr_t t, xx, err;
37  unsigned long k;
38  mpfr_prec_t prec = MPFR_PREC(y);
39  mpfr_exp_t exp_err;
40
41  mpfr_init2 (t, prec);
42  mpfr_init2 (xx, prec);
43  mpfr_init2 (err, 31);
44  /* let u = 2^(1-p), and let us represent the error as (1+u)^err
45     with a bound for err */
46  mpfr_mul (xx, x, x, MPFR_RNDD); /* err <= 1 */
47  mpfr_ui_div (xx, 1, xx, MPFR_RNDU); /* upper bound for 1/(2x^2), err <= 2 */
48  mpfr_div_2ui (xx, xx, 1, MPFR_RNDU); /* exact */
49  mpfr_set_ui (t, 1, MPFR_RNDN); /* current term, exact */
50  mpfr_set (y, t, MPFR_RNDN);    /* current sum  */
51  mpfr_set_ui (err, 0, MPFR_RNDN);
52  for (k = 1; ; k++)
53    {
54      mpfr_mul_ui (t, t, 2 * k - 1, MPFR_RNDU); /* err <= 4k-3 */
55      mpfr_mul (t, t, xx, MPFR_RNDU);           /* err <= 4k */
56      /* for -1 < x < 1, and |nx| < 1, we have |(1+x)^n| <= 1+7/4|nx|.
57         Indeed, for x>=0: log((1+x)^n) = n*log(1+x) <= n*x. Let y=n*x < 1,
58         then exp(y) <= 1+7/4*y.
59         For x<=0, let x=-x, we can prove by induction that (1-x)^n >= 1-n*x.*/
60      mpfr_mul_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU);
61      mpfr_add_ui (err, err, 14 * k, MPFR_RNDU); /* 2^(1-p) * t <= 2 ulp(t) */
62      mpfr_div_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU);
63      if (MPFR_GET_EXP (t) + (mpfr_exp_t) prec <= MPFR_GET_EXP (y))
64        {
65          /* the truncation error is bounded by |t| < ulp(y) */
66          mpfr_add_ui (err, err, 1, MPFR_RNDU);
67          break;
68        }
69      if (k & 1)
70        mpfr_sub (y, y, t, MPFR_RNDN);
71      else
72        mpfr_add (y, y, t, MPFR_RNDN);
73    }
74  /* the error on y is bounded by err*ulp(y) */
75  mpfr_mul (t, x, x, MPFR_RNDU); /* rel. err <= 2^(1-p) */
76  mpfr_div_2ui (err, err, 3, MPFR_RNDU);  /* err/8 */
77  mpfr_add (err, err, t, MPFR_RNDU);      /* err/8 + xx */
78  mpfr_mul_2ui (err, err, 3, MPFR_RNDU);  /* err + 8*xx */
79  mpfr_exp (t, t, MPFR_RNDU); /* err <= 1/2*ulp(t) + err(x*x)*t
80                                <= 1/2*ulp(t)+2*|x*x|*ulp(t)
81                                <= (2*|x*x|+1/2)*ulp(t) */
82  mpfr_mul (t, t, x, MPFR_RNDN); /* err <= 1/2*ulp(t) + (4*|x*x|+1)*ulp(t)
83                                   <= (4*|x*x|+3/2)*ulp(t) */
84  mpfr_const_pi (xx, MPFR_RNDZ); /* err <= ulp(Pi) */
85  mpfr_sqrt (xx, xx, MPFR_RNDN); /* err <= 1/2*ulp(xx) + ulp(Pi)/2/sqrt(Pi)
86                                   <= 3/2*ulp(xx) */
87  mpfr_mul (t, t, xx, MPFR_RNDN); /* err <= (8 |xx| + 13/2) * ulp(t) */
88  mpfr_div (y, y, t, MPFR_RNDN); /* the relative error on input y is bounded
89                                   by (1+u)^err with u = 2^(1-p), that on
90                                   t is bounded by (1+u)^(8 |xx| + 13/2),
91                                   thus that on output y is bounded by
92                                   8 |xx| + 7 + err. */
93
94  if (MPFR_IS_ZERO(y))
95    {
96      /* If y is zero, most probably we have underflow. We check it directly
97         using the fact that erfc(x) <= exp(-x^2)/sqrt(Pi)/x for x >= 0.
98         We compute an upper approximation of exp(-x^2)/sqrt(Pi)/x.
99      */
100      mpfr_mul (t, x, x, MPFR_RNDD); /* t <= x^2 */
101      mpfr_neg (t, t, MPFR_RNDU);    /* -x^2 <= t */
102      mpfr_exp (t, t, MPFR_RNDU);    /* exp(-x^2) <= t */
103      mpfr_const_pi (xx, MPFR_RNDD); /* xx <= sqrt(Pi), cached */
104      mpfr_mul (xx, xx, x, MPFR_RNDD); /* xx <= sqrt(Pi)*x */
105      mpfr_div (y, t, xx, MPFR_RNDN); /* if y is zero, this means that the upper
106                                        approximation of exp(-x^2)/sqrt(Pi)/x
107                                        is nearer from 0 than from 2^(-emin-1),
108                                        thus we have underflow. */
109      exp_err = 0;
110    }
111  else
112    {
113      mpfr_add_ui (err, err, 7, MPFR_RNDU);
114      exp_err = MPFR_GET_EXP (err);
115    }
116
117  mpfr_clear (t);
118  mpfr_clear (xx);
119  mpfr_clear (err);
120  return exp_err;
121}
122
123int
124mpfr_erfc (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
125{
126  int inex;
127  mpfr_t tmp;
128  mpfr_exp_t te, err;
129  mpfr_prec_t prec;
130  mpfr_exp_t emin = mpfr_get_emin ();
131  MPFR_SAVE_EXPO_DECL (expo);
132  MPFR_ZIV_DECL (loop);
133
134  MPFR_LOG_FUNC
135    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
136     ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inex));
137
138  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
139    {
140      if (MPFR_IS_NAN (x))
141        {
142          MPFR_SET_NAN (y);
143          MPFR_RET_NAN;
144        }
145      /* erfc(+inf) = 0+, erfc(-inf) = 2 erfc (0) = 1 */
146      else if (MPFR_IS_INF (x))
147        return mpfr_set_ui (y, MPFR_IS_POS (x) ? 0 : 2, rnd);
148      else
149        return mpfr_set_ui (y, 1, rnd);
150    }
151
152  if (MPFR_SIGN (x) > 0)
153    {
154      /* by default, emin = 1-2^30, thus the smallest representable
155         number is 1/2*2^emin = 2^(-2^30):
156         for x >= 27282, erfc(x) < 2^(-2^30-1), and
157         for x >= 1787897414, erfc(x) < 2^(-2^62-1).
158      */
159      if ((emin >= -1073741823 && mpfr_cmp_ui (x, 27282) >= 0) ||
160          mpfr_cmp_ui (x, 1787897414) >= 0)
161        {
162          /* May be incorrect if MPFR_EMAX_MAX >= 2^62. */
163          MPFR_ASSERTN ((MPFR_EMAX_MAX >> 31) >> 31 == 0);
164          return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1);
165        }
166    }
167
168  /* Init stuff */
169  MPFR_SAVE_EXPO_MARK (expo);
170
171  if (MPFR_SIGN (x) < 0)
172    {
173      mpfr_exp_t e = MPFR_EXP(x);
174      /* For x < 0 going to -infinity, erfc(x) tends to 2 by below.
175         More precisely, we have 2 + 1/sqrt(Pi)/x/exp(x^2) < erfc(x) < 2.
176         Thus log2 |2 - erfc(x)| <= -log2|x| - x^2 / log(2).
177         If |2 - erfc(x)| < 2^(-PREC(y)) then the result is either 2 or
178         nextbelow(2).
179         For x <= -27282, -log2|x| - x^2 / log(2) <= -2^30.
180      */
181      if ((MPFR_PREC(y) <= 7 && e >= 2) ||  /* x <= -2 */
182          (MPFR_PREC(y) <= 25 && e >= 3) || /* x <= -4 */
183          (MPFR_PREC(y) <= 120 && mpfr_cmp_si (x, -9) <= 0) ||
184          mpfr_cmp_si (x, -27282) <= 0)
185        {
186        near_two:
187          mpfr_set_ui (y, 2, MPFR_RNDN);
188          mpfr_set_inexflag ();
189          if (rnd == MPFR_RNDZ || rnd == MPFR_RNDD)
190            {
191              mpfr_nextbelow (y);
192              inex = -1;
193            }
194          else
195            inex = 1;
196          goto end;
197        }
198      else if (e >= 3) /* more accurate test */
199        {
200          mpfr_t t, u;
201          int near_2;
202          mpfr_init2 (t, 32);
203          mpfr_init2 (u, 32);
204          /* the following is 1/log(2) rounded to zero on 32 bits */
205          mpfr_set_str_binary (t, "1.0111000101010100011101100101001");
206          mpfr_sqr (u, x, MPFR_RNDZ);
207          mpfr_mul (t, t, u, MPFR_RNDZ); /* t <= x^2/log(2) */
208          mpfr_neg (u, x, MPFR_RNDZ); /* 0 <= u <= |x| */
209          mpfr_log2 (u, u, MPFR_RNDZ); /* u <= log2(|x|) */
210          mpfr_add (t, t, u, MPFR_RNDZ); /* t <= log2|x| + x^2 / log(2) */
211          /* Taking into account that mpfr_exp_t >= mpfr_prec_t */
212          mpfr_set_exp_t (u, MPFR_PREC (y), MPFR_RNDU);
213          near_2 = mpfr_cmp (t, u) >= 0;  /* 1 if PREC(y) <= u <= t <= ... */
214          mpfr_clear (t);
215          mpfr_clear (u);
216          if (near_2)
217            goto near_two;
218        }
219    }
220
221  /* erfc(x) ~ 1, with error < 2^(EXP(x)+1) */
222  MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, __gmpfr_one, - MPFR_GET_EXP (x) - 1,
223                                    0, MPFR_SIGN(x) < 0,
224                                    rnd, inex = _inexact; goto end);
225
226  prec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 3;
227  if (MPFR_GET_EXP (x) > 0)
228    prec += 2 * MPFR_GET_EXP(x);
229
230  mpfr_init2 (tmp, prec);
231
232  MPFR_ZIV_INIT (loop, prec);            /* Initialize the ZivLoop controler */
233  for (;;)                               /* Infinite loop */
234    {
235      /* use asymptotic formula only whenever x^2 >= p*log(2),
236         otherwise it will not converge */
237      if (MPFR_SIGN (x) > 0 &&
238          2 * MPFR_GET_EXP (x) - 2 >= MPFR_INT_CEIL_LOG2 (prec))
239        /* we have x^2 >= p in that case */
240        {
241          err = mpfr_erfc_asympt (tmp, x);
242          if (err == 0) /* underflow case */
243            {
244              mpfr_clear (tmp);
245              MPFR_SAVE_EXPO_FREE (expo);
246              return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1);
247            }
248        }
249      else
250        {
251          mpfr_erf (tmp, x, MPFR_RNDN);
252          MPFR_ASSERTD (!MPFR_IS_SINGULAR (tmp)); /* FIXME: 0 only for x=0 ? */
253          te = MPFR_GET_EXP (tmp);
254          mpfr_ui_sub (tmp, 1, tmp, MPFR_RNDN);
255          /* See error analysis in algorithms.tex for details */
256          if (MPFR_IS_ZERO (tmp))
257            {
258              prec *= 2;
259              err = prec; /* ensures MPFR_CAN_ROUND fails */
260            }
261          else
262            err = MAX (te - MPFR_GET_EXP (tmp), 0) + 1;
263        }
264      if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd)))
265        break;
266      MPFR_ZIV_NEXT (loop, prec);        /* Increase used precision */
267      mpfr_set_prec (tmp, prec);
268    }
269  MPFR_ZIV_FREE (loop);                  /* Free the ZivLoop Controler */
270
271  inex = mpfr_set (y, tmp, rnd);    /* Set y to the computed value */
272  mpfr_clear (tmp);
273
274 end:
275  MPFR_SAVE_EXPO_FREE (expo);
276  return mpfr_check_range (y, inex, rnd);
277}
278