1// Special functions -*- C++ -*-
2
3// Copyright (C) 2006-2015 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10//
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15//
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file tr1/legendre_function.tcc
26 *  This is an internal header file, included by other library headers.
27 *  Do not attempt to use it directly. @headername{tr1/cmath}
28 */
29
30//
31// ISO C++ 14882 TR1: 5.2  Special functions
32//
33
34// Written by Edward Smith-Rowland based on:
35//   (1) Handbook of Mathematical Functions,
36//       ed. Milton Abramowitz and Irene A. Stegun,
37//       Dover Publications,
38//       Section 8, pp. 331-341
39//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
41//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
42//       2nd ed, pp. 252-254
43
44#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
45#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
46
47#include "special_function_util.h"
48
49namespace std _GLIBCXX_VISIBILITY(default)
50{
51namespace tr1
52{
53  // [5.2] Special functions
54
55  // Implementation-space details.
56  namespace __detail
57  {
58  _GLIBCXX_BEGIN_NAMESPACE_VERSION
59
60    /**
61     *   @brief  Return the Legendre polynomial by recursion on order
62     *           @f$ l @f$.
63     * 
64     *   The Legendre function of @f$ l @f$ and @f$ x @f$,
65     *   @f$ P_l(x) @f$, is defined by:
66     *   @f[
67     *     P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
68     *   @f]
69     * 
70     *   @param  l  The order of the Legendre polynomial.  @f$l >= 0@f$.
71     *   @param  x  The argument of the Legendre polynomial.  @f$|x| <= 1@f$.
72     */
73    template<typename _Tp>
74    _Tp
75    __poly_legendre_p(unsigned int __l, _Tp __x)
76    {
77
78      if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
79        std::__throw_domain_error(__N("Argument out of range"
80                                      " in __poly_legendre_p."));
81      else if (__isnan(__x))
82        return std::numeric_limits<_Tp>::quiet_NaN();
83      else if (__x == +_Tp(1))
84        return +_Tp(1);
85      else if (__x == -_Tp(1))
86        return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
87      else
88        {
89          _Tp __p_lm2 = _Tp(1);
90          if (__l == 0)
91            return __p_lm2;
92
93          _Tp __p_lm1 = __x;
94          if (__l == 1)
95            return __p_lm1;
96
97          _Tp __p_l = 0;
98          for (unsigned int __ll = 2; __ll <= __l; ++__ll)
99            {
100              //  This arrangement is supposed to be better for roundoff
101              //  protection, Arfken, 2nd Ed, Eq 12.17a.
102              __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
103                    - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
104              __p_lm2 = __p_lm1;
105              __p_lm1 = __p_l;
106            }
107
108          return __p_l;
109        }
110    }
111
112
113    /**
114     *   @brief  Return the associated Legendre function by recursion
115     *           on @f$ l @f$.
116     * 
117     *   The associated Legendre function is derived from the Legendre function
118     *   @f$ P_l(x) @f$ by the Rodrigues formula:
119     *   @f[
120     *     P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
121     *   @f]
122     * 
123     *   @param  l  The order of the associated Legendre function.
124     *              @f$ l >= 0 @f$.
125     *   @param  m  The order of the associated Legendre function.
126     *              @f$ m <= l @f$.
127     *   @param  x  The argument of the associated Legendre function.
128     *              @f$ |x| <= 1 @f$.
129     */
130    template<typename _Tp>
131    _Tp
132    __assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x)
133    {
134
135      if (__x < _Tp(-1) || __x > _Tp(+1))
136        std::__throw_domain_error(__N("Argument out of range"
137                                      " in __assoc_legendre_p."));
138      else if (__m > __l)
139        std::__throw_domain_error(__N("Degree out of range"
140                                      " in __assoc_legendre_p."));
141      else if (__isnan(__x))
142        return std::numeric_limits<_Tp>::quiet_NaN();
143      else if (__m == 0)
144        return __poly_legendre_p(__l, __x);
145      else
146        {
147          _Tp __p_mm = _Tp(1);
148          if (__m > 0)
149            {
150              //  Two square roots seem more accurate more of the time
151              //  than just one.
152              _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
153              _Tp __fact = _Tp(1);
154              for (unsigned int __i = 1; __i <= __m; ++__i)
155                {
156                  __p_mm *= -__fact * __root;
157                  __fact += _Tp(2);
158                }
159            }
160          if (__l == __m)
161            return __p_mm;
162
163          _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
164          if (__l == __m + 1)
165            return __p_mp1m;
166
167          _Tp __p_lm2m = __p_mm;
168          _Tp __P_lm1m = __p_mp1m;
169          _Tp __p_lm = _Tp(0);
170          for (unsigned int __j = __m + 2; __j <= __l; ++__j)
171            {
172              __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
173                      - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
174              __p_lm2m = __P_lm1m;
175              __P_lm1m = __p_lm;
176            }
177
178          return __p_lm;
179        }
180    }
181
182
183    /**
184     *   @brief  Return the spherical associated Legendre function.
185     * 
186     *   The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
187     *   and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
188     *   @f[
189     *      Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
190     *                                  \frac{(l-m)!}{(l+m)!}]
191     *                     P_l^m(\cos\theta) \exp^{im\phi}
192     *   @f]
193     *   is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
194     *   associated Legendre function.
195     * 
196     *   This function differs from the associated Legendre function by
197     *   argument (@f$x = \cos(\theta)@f$) and by a normalization factor
198     *   but this factor is rather large for large @f$ l @f$ and @f$ m @f$
199     *   and so this function is stable for larger differences of @f$ l @f$
200     *   and @f$ m @f$.
201     * 
202     *   @param  l  The order of the spherical associated Legendre function.
203     *              @f$ l >= 0 @f$.
204     *   @param  m  The order of the spherical associated Legendre function.
205     *              @f$ m <= l @f$.
206     *   @param  theta  The radian angle argument of the spherical associated
207     *                  Legendre function.
208     */
209    template <typename _Tp>
210    _Tp
211    __sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
212    {
213      if (__isnan(__theta))
214        return std::numeric_limits<_Tp>::quiet_NaN();
215
216      const _Tp __x = std::cos(__theta);
217
218      if (__l < __m)
219        {
220          std::__throw_domain_error(__N("Bad argument "
221                                        "in __sph_legendre."));
222        }
223      else if (__m == 0)
224        {
225          _Tp __P = __poly_legendre_p(__l, __x);
226          _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
227                     / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
228          __P *= __fact;
229          return __P;
230        }
231      else if (__x == _Tp(1) || __x == -_Tp(1))
232        {
233          //  m > 0 here
234          return _Tp(0);
235        }
236      else
237        {
238          // m > 0 and |x| < 1 here
239
240          // Starting value for recursion.
241          // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
242          //             (-1)^m (1-x^2)^(m/2) / pi^(1/4)
243          const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
244          const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
245#if _GLIBCXX_USE_C99_MATH_TR1
246          const _Tp __lncirc = std::tr1::log1p(-__x * __x);
247#else
248          const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
249#endif
250          //  Gamma(m+1/2) / Gamma(m)
251#if _GLIBCXX_USE_C99_MATH_TR1
252          const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
253                             - std::tr1::lgamma(_Tp(__m));
254#else
255          const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
256                             - __log_gamma(_Tp(__m));
257#endif
258          const _Tp __lnpre_val =
259                    -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
260                    + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
261          _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
262                   / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
263          _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
264          _Tp __y_mp1m = __y_mp1m_factor * __y_mm;
265
266          if (__l == __m)
267            {
268              return __y_mm;
269            }
270          else if (__l == __m + 1)
271            {
272              return __y_mp1m;
273            }
274          else
275            {
276              _Tp __y_lm = _Tp(0);
277
278              // Compute Y_l^m, l > m+1, upward recursion on l.
279              for ( int __ll = __m + 2; __ll <= __l; ++__ll)
280                {
281                  const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
282                  const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
283                  const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
284                                                       * _Tp(2 * __ll - 1));
285                  const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
286                                                                / _Tp(2 * __ll - 3));
287                  __y_lm = (__x * __y_mp1m * __fact1
288                         - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
289                  __y_mm = __y_mp1m;
290                  __y_mp1m = __y_lm;
291                }
292
293              return __y_lm;
294            }
295        }
296    }
297
298  _GLIBCXX_END_NAMESPACE_VERSION
299  } // namespace std::tr1::__detail
300}
301}
302
303#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
304