1// Bitmap Allocator. -*- C++ -*-
2
3// Copyright (C) 2004-2015 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file ext/bitmap_allocator.h
26 *  This file is a GNU extension to the Standard C++ Library.
27 */
28
29#ifndef _BITMAP_ALLOCATOR_H
30#define _BITMAP_ALLOCATOR_H 1
31
32#include <utility> // For std::pair.
33#include <bits/functexcept.h> // For __throw_bad_alloc().
34#include <functional> // For greater_equal, and less_equal.
35#include <new> // For operator new.
36#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
37#include <ext/concurrence.h>
38#include <bits/move.h>
39
40/** @brief The constant in the expression below is the alignment
41 * required in bytes.
42 */
43#define _BALLOC_ALIGN_BYTES 8
44
45namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
46{
47  using std::size_t;
48  using std::ptrdiff_t;
49
50  namespace __detail
51  {
52  _GLIBCXX_BEGIN_NAMESPACE_VERSION
53    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
54     *
55     *  @brief  __mini_vector<> is a stripped down version of the
56     *  full-fledged std::vector<>.
57     *
58     *  It is to be used only for built-in types or PODs. Notable
59     *  differences are:
60     *
61     *  1. Not all accessor functions are present.
62     *  2. Used ONLY for PODs.
63     *  3. No Allocator template argument. Uses ::operator new() to get
64     *  memory, and ::operator delete() to free it.
65     *  Caveat: The dtor does NOT free the memory allocated, so this a
66     *  memory-leaking vector!
67     */
68    template<typename _Tp>
69      class __mini_vector
70      {
71	__mini_vector(const __mini_vector&);
72	__mini_vector& operator=(const __mini_vector&);
73
74      public:
75	typedef _Tp value_type;
76	typedef _Tp* pointer;
77	typedef _Tp& reference;
78	typedef const _Tp& const_reference;
79	typedef size_t size_type;
80	typedef ptrdiff_t difference_type;
81	typedef pointer iterator;
82
83      private:
84	pointer _M_start;
85	pointer _M_finish;
86	pointer _M_end_of_storage;
87
88	size_type
89	_M_space_left() const throw()
90	{ return _M_end_of_storage - _M_finish; }
91
92	pointer
93	allocate(size_type __n)
94	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
95
96	void
97	deallocate(pointer __p, size_type)
98	{ ::operator delete(__p); }
99
100      public:
101	// Members used: size(), push_back(), pop_back(),
102	// insert(iterator, const_reference), erase(iterator),
103	// begin(), end(), back(), operator[].
104
105	__mini_vector()
106        : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
107
108	size_type
109	size() const throw()
110	{ return _M_finish - _M_start; }
111
112	iterator
113	begin() const throw()
114	{ return this->_M_start; }
115
116	iterator
117	end() const throw()
118	{ return this->_M_finish; }
119
120	reference
121	back() const throw()
122	{ return *(this->end() - 1); }
123
124	reference
125	operator[](const size_type __pos) const throw()
126	{ return this->_M_start[__pos]; }
127
128	void
129	insert(iterator __pos, const_reference __x);
130
131	void
132	push_back(const_reference __x)
133	{
134	  if (this->_M_space_left())
135	    {
136	      *this->end() = __x;
137	      ++this->_M_finish;
138	    }
139	  else
140	    this->insert(this->end(), __x);
141	}
142
143	void
144	pop_back() throw()
145	{ --this->_M_finish; }
146
147	void
148	erase(iterator __pos) throw();
149
150	void
151	clear() throw()
152	{ this->_M_finish = this->_M_start; }
153      };
154
155    // Out of line function definitions.
156    template<typename _Tp>
157      void __mini_vector<_Tp>::
158      insert(iterator __pos, const_reference __x)
159      {
160	if (this->_M_space_left())
161	  {
162	    size_type __to_move = this->_M_finish - __pos;
163	    iterator __dest = this->end();
164	    iterator __src = this->end() - 1;
165
166	    ++this->_M_finish;
167	    while (__to_move)
168	      {
169		*__dest = *__src;
170		--__dest; --__src; --__to_move;
171	      }
172	    *__pos = __x;
173	  }
174	else
175	  {
176	    size_type __new_size = this->size() ? this->size() * 2 : 1;
177	    iterator __new_start = this->allocate(__new_size);
178	    iterator __first = this->begin();
179	    iterator __start = __new_start;
180	    while (__first != __pos)
181	      {
182		*__start = *__first;
183		++__start; ++__first;
184	      }
185	    *__start = __x;
186	    ++__start;
187	    while (__first != this->end())
188	      {
189		*__start = *__first;
190		++__start; ++__first;
191	      }
192	    if (this->_M_start)
193	      this->deallocate(this->_M_start, this->size());
194
195	    this->_M_start = __new_start;
196	    this->_M_finish = __start;
197	    this->_M_end_of_storage = this->_M_start + __new_size;
198	  }
199      }
200
201    template<typename _Tp>
202      void __mini_vector<_Tp>::
203      erase(iterator __pos) throw()
204      {
205	while (__pos + 1 != this->end())
206	  {
207	    *__pos = __pos[1];
208	    ++__pos;
209	  }
210	--this->_M_finish;
211      }
212
213
214    template<typename _Tp>
215      struct __mv_iter_traits
216      {
217	typedef typename _Tp::value_type value_type;
218	typedef typename _Tp::difference_type difference_type;
219      };
220
221    template<typename _Tp>
222      struct __mv_iter_traits<_Tp*>
223      {
224	typedef _Tp value_type;
225	typedef ptrdiff_t difference_type;
226      };
227
228    enum
229      {
230	bits_per_byte = 8,
231	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
232      };
233
234    template<typename _ForwardIterator, typename _Tp, typename _Compare>
235      _ForwardIterator
236      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
237		    const _Tp& __val, _Compare __comp)
238      {
239	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
240	  _DistanceType;
241
242	_DistanceType __len = __last - __first;
243	_DistanceType __half;
244	_ForwardIterator __middle;
245
246	while (__len > 0)
247	  {
248	    __half = __len >> 1;
249	    __middle = __first;
250	    __middle += __half;
251	    if (__comp(*__middle, __val))
252	      {
253		__first = __middle;
254		++__first;
255		__len = __len - __half - 1;
256	      }
257	    else
258	      __len = __half;
259	  }
260	return __first;
261      }
262
263    /** @brief The number of Blocks pointed to by the address pair
264     *  passed to the function.
265     */
266    template<typename _AddrPair>
267      inline size_t
268      __num_blocks(_AddrPair __ap)
269      { return (__ap.second - __ap.first) + 1; }
270
271    /** @brief The number of Bit-maps pointed to by the address pair
272     *  passed to the function.
273     */
274    template<typename _AddrPair>
275      inline size_t
276      __num_bitmaps(_AddrPair __ap)
277      { return __num_blocks(__ap) / size_t(bits_per_block); }
278
279    // _Tp should be a pointer type.
280    template<typename _Tp>
281      class _Inclusive_between
282      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
283      {
284	typedef _Tp pointer;
285	pointer _M_ptr_value;
286	typedef typename std::pair<_Tp, _Tp> _Block_pair;
287
288      public:
289	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
290	{ }
291
292	bool
293	operator()(_Block_pair __bp) const throw()
294	{
295	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
296	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
297	    return true;
298	  else
299	    return false;
300	}
301      };
302
303    // Used to pass a Functor to functions by reference.
304    template<typename _Functor>
305      class _Functor_Ref
306      : public std::unary_function<typename _Functor::argument_type,
307				   typename _Functor::result_type>
308      {
309	_Functor& _M_fref;
310
311      public:
312	typedef typename _Functor::argument_type argument_type;
313	typedef typename _Functor::result_type result_type;
314
315	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
316	{ }
317
318	result_type
319	operator()(argument_type __arg)
320	{ return _M_fref(__arg); }
321      };
322
323    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
324     *
325     *  @brief  The class which acts as a predicate for applying the
326     *  first-fit memory allocation policy for the bitmap allocator.
327     */
328    // _Tp should be a pointer type, and _Alloc is the Allocator for
329    // the vector.
330    template<typename _Tp>
331      class _Ffit_finder
332      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
333      {
334	typedef typename std::pair<_Tp, _Tp> _Block_pair;
335	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
336	typedef typename _BPVector::difference_type _Counter_type;
337
338	size_t* _M_pbitmap;
339	_Counter_type _M_data_offset;
340
341      public:
342	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
343	{ }
344
345	bool
346	operator()(_Block_pair __bp) throw()
347	{
348	  // Set the _rover to the last physical location bitmap,
349	  // which is the bitmap which belongs to the first free
350	  // block. Thus, the bitmaps are in exact reverse order of
351	  // the actual memory layout. So, we count down the bitmaps,
352	  // which is the same as moving up the memory.
353
354	  // If the used count stored at the start of the Bit Map headers
355	  // is equal to the number of Objects that the current Block can
356	  // store, then there is definitely no space for another single
357	  // object, so just return false.
358	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
359
360	  if (*(reinterpret_cast<size_t*>
361		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
362	    return false;
363
364	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
365
366	  for (_Counter_type __i = 0; __i < __diff; ++__i)
367	    {
368	      _M_data_offset = __i;
369	      if (*__rover)
370		{
371		  _M_pbitmap = __rover;
372		  return true;
373		}
374	      --__rover;
375	    }
376	  return false;
377	}
378
379	size_t*
380	_M_get() const throw()
381	{ return _M_pbitmap; }
382
383	_Counter_type
384	_M_offset() const throw()
385	{ return _M_data_offset * size_t(bits_per_block); }
386      };
387
388    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
389     *
390     *  @brief  The bitmap counter which acts as the bitmap
391     *  manipulator, and manages the bit-manipulation functions and
392     *  the searching and identification functions on the bit-map.
393     */
394    // _Tp should be a pointer type.
395    template<typename _Tp>
396      class _Bitmap_counter
397      {
398	typedef typename
399	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
400	typedef typename _BPVector::size_type _Index_type;
401	typedef _Tp pointer;
402
403	_BPVector& _M_vbp;
404	size_t* _M_curr_bmap;
405	size_t* _M_last_bmap_in_block;
406	_Index_type _M_curr_index;
407
408      public:
409	// Use the 2nd parameter with care. Make sure that such an
410	// entry exists in the vector before passing that particular
411	// index to this ctor.
412	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
413	{ this->_M_reset(__index); }
414
415	void
416	_M_reset(long __index = -1) throw()
417	{
418	  if (__index == -1)
419	    {
420	      _M_curr_bmap = 0;
421	      _M_curr_index = static_cast<_Index_type>(-1);
422	      return;
423	    }
424
425	  _M_curr_index = __index;
426	  _M_curr_bmap = reinterpret_cast<size_t*>
427	    (_M_vbp[_M_curr_index].first) - 1;
428
429	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
430
431	  _M_last_bmap_in_block = _M_curr_bmap
432	    - ((_M_vbp[_M_curr_index].second
433		- _M_vbp[_M_curr_index].first + 1)
434	       / size_t(bits_per_block) - 1);
435	}
436
437	// Dangerous Function! Use with extreme care. Pass to this
438	// function ONLY those values that are known to be correct,
439	// otherwise this will mess up big time.
440	void
441	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
442	{ _M_curr_bmap = __new_internal_marker; }
443
444	bool
445	_M_finished() const throw()
446	{ return(_M_curr_bmap == 0); }
447
448	_Bitmap_counter&
449	operator++() throw()
450	{
451	  if (_M_curr_bmap == _M_last_bmap_in_block)
452	    {
453	      if (++_M_curr_index == _M_vbp.size())
454		_M_curr_bmap = 0;
455	      else
456		this->_M_reset(_M_curr_index);
457	    }
458	  else
459	    --_M_curr_bmap;
460	  return *this;
461	}
462
463	size_t*
464	_M_get() const throw()
465	{ return _M_curr_bmap; }
466
467	pointer
468	_M_base() const throw()
469	{ return _M_vbp[_M_curr_index].first; }
470
471	_Index_type
472	_M_offset() const throw()
473	{
474	  return size_t(bits_per_block)
475	    * ((reinterpret_cast<size_t*>(this->_M_base())
476		- _M_curr_bmap) - 1);
477	}
478
479	_Index_type
480	_M_where() const throw()
481	{ return _M_curr_index; }
482      };
483
484    /** @brief  Mark a memory address as allocated by re-setting the
485     *  corresponding bit in the bit-map.
486     */
487    inline void
488    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
489    {
490      size_t __mask = 1 << __pos;
491      __mask = ~__mask;
492      *__pbmap &= __mask;
493    }
494
495    /** @brief  Mark a memory address as free by setting the
496     *  corresponding bit in the bit-map.
497     */
498    inline void
499    __bit_free(size_t* __pbmap, size_t __pos) throw()
500    {
501      size_t __mask = 1 << __pos;
502      *__pbmap |= __mask;
503    }
504
505  _GLIBCXX_END_NAMESPACE_VERSION
506  } // namespace __detail
507
508_GLIBCXX_BEGIN_NAMESPACE_VERSION
509
510  /** @brief  Generic Version of the bsf instruction.
511   */
512  inline size_t
513  _Bit_scan_forward(size_t __num)
514  { return static_cast<size_t>(__builtin_ctzl(__num)); }
515
516  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
517   *
518   *  @brief  The free list class for managing chunks of memory to be
519   *  given to and returned by the bitmap_allocator.
520   */
521  class free_list
522  {
523  public:
524    typedef size_t* 				value_type;
525    typedef __detail::__mini_vector<value_type> vector_type;
526    typedef vector_type::iterator 		iterator;
527    typedef __mutex				__mutex_type;
528
529  private:
530    struct _LT_pointer_compare
531    {
532      bool
533      operator()(const size_t* __pui,
534		 const size_t __cui) const throw()
535      { return *__pui < __cui; }
536    };
537
538#if defined __GTHREADS
539    __mutex_type&
540    _M_get_mutex()
541    {
542      static __mutex_type _S_mutex;
543      return _S_mutex;
544    }
545#endif
546
547    vector_type&
548    _M_get_free_list()
549    {
550      static vector_type _S_free_list;
551      return _S_free_list;
552    }
553
554    /** @brief  Performs validation of memory based on their size.
555     *
556     *  @param  __addr The pointer to the memory block to be
557     *  validated.
558     *
559     *  Validates the memory block passed to this function and
560     *  appropriately performs the action of managing the free list of
561     *  blocks by adding this block to the free list or deleting this
562     *  or larger blocks from the free list.
563     */
564    void
565    _M_validate(size_t* __addr) throw()
566    {
567      vector_type& __free_list = _M_get_free_list();
568      const vector_type::size_type __max_size = 64;
569      if (__free_list.size() >= __max_size)
570	{
571	  // Ok, the threshold value has been reached.  We determine
572	  // which block to remove from the list of free blocks.
573	  if (*__addr >= *__free_list.back())
574	    {
575	      // Ok, the new block is greater than or equal to the
576	      // last block in the list of free blocks. We just free
577	      // the new block.
578	      ::operator delete(static_cast<void*>(__addr));
579	      return;
580	    }
581	  else
582	    {
583	      // Deallocate the last block in the list of free lists,
584	      // and insert the new one in its correct position.
585	      ::operator delete(static_cast<void*>(__free_list.back()));
586	      __free_list.pop_back();
587	    }
588	}
589
590      // Just add the block to the list of free lists unconditionally.
591      iterator __temp = __detail::__lower_bound
592	(__free_list.begin(), __free_list.end(),
593	 *__addr, _LT_pointer_compare());
594
595      // We may insert the new free list before _temp;
596      __free_list.insert(__temp, __addr);
597    }
598
599    /** @brief  Decides whether the wastage of memory is acceptable for
600     *  the current memory request and returns accordingly.
601     *
602     *  @param __block_size The size of the block available in the free
603     *  list.
604     *
605     *  @param __required_size The required size of the memory block.
606     *
607     *  @return true if the wastage incurred is acceptable, else returns
608     *  false.
609     */
610    bool
611    _M_should_i_give(size_t __block_size,
612		     size_t __required_size) throw()
613    {
614      const size_t __max_wastage_percentage = 36;
615      if (__block_size >= __required_size &&
616	  (((__block_size - __required_size) * 100 / __block_size)
617	   < __max_wastage_percentage))
618	return true;
619      else
620	return false;
621    }
622
623  public:
624    /** @brief This function returns the block of memory to the
625     *  internal free list.
626     *
627     *  @param  __addr The pointer to the memory block that was given
628     *  by a call to the _M_get function.
629     */
630    inline void
631    _M_insert(size_t* __addr) throw()
632    {
633#if defined __GTHREADS
634      __scoped_lock __bfl_lock(_M_get_mutex());
635#endif
636      // Call _M_validate to decide what should be done with
637      // this particular free list.
638      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
639      // See discussion as to why this is 1!
640    }
641
642    /** @brief  This function gets a block of memory of the specified
643     *  size from the free list.
644     *
645     *  @param  __sz The size in bytes of the memory required.
646     *
647     *  @return  A pointer to the new memory block of size at least
648     *  equal to that requested.
649     */
650    size_t*
651    _M_get(size_t __sz) throw(std::bad_alloc);
652
653    /** @brief  This function just clears the internal Free List, and
654     *  gives back all the memory to the OS.
655     */
656    void
657    _M_clear();
658  };
659
660
661  // Forward declare the class.
662  template<typename _Tp>
663    class bitmap_allocator;
664
665  // Specialize for void:
666  template<>
667    class bitmap_allocator<void>
668    {
669    public:
670      typedef void*       pointer;
671      typedef const void* const_pointer;
672
673      // Reference-to-void members are impossible.
674      typedef void  value_type;
675      template<typename _Tp1>
676        struct rebind
677	{
678	  typedef bitmap_allocator<_Tp1> other;
679	};
680    };
681
682  /**
683   * @brief Bitmap Allocator, primary template.
684   * @ingroup allocators
685   */
686  template<typename _Tp>
687    class bitmap_allocator : private free_list
688    {
689    public:
690      typedef size_t    		size_type;
691      typedef ptrdiff_t 		difference_type;
692      typedef _Tp*        		pointer;
693      typedef const _Tp*  		const_pointer;
694      typedef _Tp&        		reference;
695      typedef const _Tp&  		const_reference;
696      typedef _Tp         		value_type;
697      typedef free_list::__mutex_type 	__mutex_type;
698
699      template<typename _Tp1>
700        struct rebind
701	{
702	  typedef bitmap_allocator<_Tp1> other;
703	};
704
705#if __cplusplus >= 201103L
706      // _GLIBCXX_RESOLVE_LIB_DEFECTS
707      // 2103. propagate_on_container_move_assignment
708      typedef std::true_type propagate_on_container_move_assignment;
709#endif
710
711    private:
712      template<size_t _BSize, size_t _AlignSize>
713        struct aligned_size
714	{
715	  enum
716	    {
717	      modulus = _BSize % _AlignSize,
718	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
719	    };
720	};
721
722      struct _Alloc_block
723      {
724	char __M_unused[aligned_size<sizeof(value_type),
725			_BALLOC_ALIGN_BYTES>::value];
726      };
727
728
729      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
730
731      typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
732      typedef typename _BPVector::iterator _BPiter;
733
734      template<typename _Predicate>
735        static _BPiter
736        _S_find(_Predicate __p)
737        {
738	  _BPiter __first = _S_mem_blocks.begin();
739	  while (__first != _S_mem_blocks.end() && !__p(*__first))
740	    ++__first;
741	  return __first;
742	}
743
744#if defined _GLIBCXX_DEBUG
745      // Complexity: O(lg(N)). Where, N is the number of block of size
746      // sizeof(value_type).
747      void
748      _S_check_for_free_blocks() throw()
749      {
750	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
751	_BPiter __bpi = _S_find(_FFF());
752
753	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
754      }
755#endif
756
757      /** @brief  Responsible for exponentially growing the internal
758       *  memory pool.
759       *
760       *  @throw  std::bad_alloc. If memory can not be allocated.
761       *
762       *  Complexity: O(1), but internally depends upon the
763       *  complexity of the function free_list::_M_get. The part where
764       *  the bitmap headers are written has complexity: O(X),where X
765       *  is the number of blocks of size sizeof(value_type) within
766       *  the newly acquired block. Having a tight bound.
767       */
768      void
769      _S_refill_pool() throw(std::bad_alloc)
770      {
771#if defined _GLIBCXX_DEBUG
772	_S_check_for_free_blocks();
773#endif
774
775	const size_t __num_bitmaps = (_S_block_size
776				      / size_t(__detail::bits_per_block));
777	const size_t __size_to_allocate = sizeof(size_t)
778	  + _S_block_size * sizeof(_Alloc_block)
779	  + __num_bitmaps * sizeof(size_t);
780
781	size_t* __temp =
782	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
783	*__temp = 0;
784	++__temp;
785
786	// The Header information goes at the Beginning of the Block.
787	_Block_pair __bp =
788	  std::make_pair(reinterpret_cast<_Alloc_block*>
789			 (__temp + __num_bitmaps),
790			 reinterpret_cast<_Alloc_block*>
791			 (__temp + __num_bitmaps)
792			 + _S_block_size - 1);
793
794	// Fill the Vector with this information.
795	_S_mem_blocks.push_back(__bp);
796
797	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
798	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
799
800	_S_block_size *= 2;
801      }
802
803      static _BPVector _S_mem_blocks;
804      static size_t _S_block_size;
805      static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
806      static typename _BPVector::size_type _S_last_dealloc_index;
807#if defined __GTHREADS
808      static __mutex_type _S_mut;
809#endif
810
811    public:
812
813      /** @brief  Allocates memory for a single object of size
814       *  sizeof(_Tp).
815       *
816       *  @throw  std::bad_alloc. If memory can not be allocated.
817       *
818       *  Complexity: Worst case complexity is O(N), but that
819       *  is hardly ever hit. If and when this particular case is
820       *  encountered, the next few cases are guaranteed to have a
821       *  worst case complexity of O(1)!  That's why this function
822       *  performs very well on average. You can consider this
823       *  function to have a complexity referred to commonly as:
824       *  Amortized Constant time.
825       */
826      pointer
827      _M_allocate_single_object() throw(std::bad_alloc)
828      {
829#if defined __GTHREADS
830	__scoped_lock __bit_lock(_S_mut);
831#endif
832
833	// The algorithm is something like this: The last_request
834	// variable points to the last accessed Bit Map. When such a
835	// condition occurs, we try to find a free block in the
836	// current bitmap, or succeeding bitmaps until the last bitmap
837	// is reached. If no free block turns up, we resort to First
838	// Fit method.
839
840	// WARNING: Do not re-order the condition in the while
841	// statement below, because it relies on C++'s short-circuit
842	// evaluation. The return from _S_last_request->_M_get() will
843	// NOT be dereference able if _S_last_request->_M_finished()
844	// returns true. This would inevitably lead to a NULL pointer
845	// dereference if tinkered with.
846	while (_S_last_request._M_finished() == false
847	       && (*(_S_last_request._M_get()) == 0))
848	  _S_last_request.operator++();
849
850	if (__builtin_expect(_S_last_request._M_finished() == true, false))
851	  {
852	    // Fall Back to First Fit algorithm.
853	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
854	    _FFF __fff;
855	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
856
857	    if (__bpi != _S_mem_blocks.end())
858	      {
859		// Search was successful. Ok, now mark the first bit from
860		// the right as 0, meaning Allocated. This bit is obtained
861		// by calling _M_get() on __fff.
862		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
863		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
864
865		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
866
867		// Now, get the address of the bit we marked as allocated.
868		pointer __ret = reinterpret_cast<pointer>
869		  (__bpi->first + __fff._M_offset() + __nz_bit);
870		size_t* __puse_count =
871		  reinterpret_cast<size_t*>
872		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
873
874		++(*__puse_count);
875		return __ret;
876	      }
877	    else
878	      {
879		// Search was unsuccessful. We Add more memory to the
880		// pool by calling _S_refill_pool().
881		_S_refill_pool();
882
883		// _M_Reset the _S_last_request structure to the first
884		// free block's bit map.
885		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
886
887		// Now, mark that bit as allocated.
888	      }
889	  }
890
891	// _S_last_request holds a pointer to a valid bit map, that
892	// points to a free block in memory.
893	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
894	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
895
896	pointer __ret = reinterpret_cast<pointer>
897	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
898
899	size_t* __puse_count = reinterpret_cast<size_t*>
900	  (_S_mem_blocks[_S_last_request._M_where()].first)
901	  - (__detail::
902	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
903
904	++(*__puse_count);
905	return __ret;
906      }
907
908      /** @brief  Deallocates memory that belongs to a single object of
909       *  size sizeof(_Tp).
910       *
911       *  Complexity: O(lg(N)), but the worst case is not hit
912       *  often!  This is because containers usually deallocate memory
913       *  close to each other and this case is handled in O(1) time by
914       *  the deallocate function.
915       */
916      void
917      _M_deallocate_single_object(pointer __p) throw()
918      {
919#if defined __GTHREADS
920	__scoped_lock __bit_lock(_S_mut);
921#endif
922	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
923
924	typedef typename _BPVector::iterator _Iterator;
925	typedef typename _BPVector::difference_type _Difference_type;
926
927	_Difference_type __diff;
928	long __displacement;
929
930	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
931
932	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
933	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
934	  {
935	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
936				  <= _S_mem_blocks.size() - 1);
937
938	    // Initial Assumption was correct!
939	    __diff = _S_last_dealloc_index;
940	    __displacement = __real_p - _S_mem_blocks[__diff].first;
941	  }
942	else
943	  {
944	    _Iterator _iter = _S_find(__ibt);
945
946	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
947
948	    __diff = _iter - _S_mem_blocks.begin();
949	    __displacement = __real_p - _S_mem_blocks[__diff].first;
950	    _S_last_dealloc_index = __diff;
951	  }
952
953	// Get the position of the iterator that has been found.
954	const size_t __rotate = (__displacement
955				 % size_t(__detail::bits_per_block));
956	size_t* __bitmapC =
957	  reinterpret_cast<size_t*>
958	  (_S_mem_blocks[__diff].first) - 1;
959	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
960
961	__detail::__bit_free(__bitmapC, __rotate);
962	size_t* __puse_count = reinterpret_cast<size_t*>
963	  (_S_mem_blocks[__diff].first)
964	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
965
966	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
967
968	--(*__puse_count);
969
970	if (__builtin_expect(*__puse_count == 0, false))
971	  {
972	    _S_block_size /= 2;
973
974	    // We can safely remove this block.
975	    // _Block_pair __bp = _S_mem_blocks[__diff];
976	    this->_M_insert(__puse_count);
977	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
978
979	    // Reset the _S_last_request variable to reflect the
980	    // erased block. We do this to protect future requests
981	    // after the last block has been removed from a particular
982	    // memory Chunk, which in turn has been returned to the
983	    // free list, and hence had been erased from the vector,
984	    // so the size of the vector gets reduced by 1.
985	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
986	      _S_last_request._M_reset(__diff);
987
988	    // If the Index into the vector of the region of memory
989	    // that might hold the next address that will be passed to
990	    // deallocated may have been invalidated due to the above
991	    // erase procedure being called on the vector, hence we
992	    // try to restore this invariant too.
993	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
994	      {
995		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
996		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
997	      }
998	  }
999      }
1000
1001    public:
1002      bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1003      { }
1004
1005      bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1006      { }
1007
1008      template<typename _Tp1>
1009        bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1010        { }
1011
1012      ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1013      { }
1014
1015      pointer
1016      allocate(size_type __n)
1017      {
1018	if (__n > this->max_size())
1019	  std::__throw_bad_alloc();
1020
1021	if (__builtin_expect(__n == 1, true))
1022	  return this->_M_allocate_single_object();
1023	else
1024	  {
1025	    const size_type __b = __n * sizeof(value_type);
1026	    return reinterpret_cast<pointer>(::operator new(__b));
1027	  }
1028      }
1029
1030      pointer
1031      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1032      { return allocate(__n); }
1033
1034      void
1035      deallocate(pointer __p, size_type __n) throw()
1036      {
1037	if (__builtin_expect(__p != 0, true))
1038	  {
1039	    if (__builtin_expect(__n == 1, true))
1040	      this->_M_deallocate_single_object(__p);
1041	    else
1042	      ::operator delete(__p);
1043	  }
1044      }
1045
1046      pointer
1047      address(reference __r) const _GLIBCXX_NOEXCEPT
1048      { return std::__addressof(__r); }
1049
1050      const_pointer
1051      address(const_reference __r) const _GLIBCXX_NOEXCEPT
1052      { return std::__addressof(__r); }
1053
1054      size_type
1055      max_size() const _GLIBCXX_USE_NOEXCEPT
1056      { return size_type(-1) / sizeof(value_type); }
1057
1058#if __cplusplus >= 201103L
1059      template<typename _Up, typename... _Args>
1060        void
1061        construct(_Up* __p, _Args&&... __args)
1062	{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1063
1064      template<typename _Up>
1065        void
1066        destroy(_Up* __p)
1067        { __p->~_Up(); }
1068#else
1069      void
1070      construct(pointer __p, const_reference __data)
1071      { ::new((void *)__p) value_type(__data); }
1072
1073      void
1074      destroy(pointer __p)
1075      { __p->~value_type(); }
1076#endif
1077    };
1078
1079  template<typename _Tp1, typename _Tp2>
1080    bool
1081    operator==(const bitmap_allocator<_Tp1>&,
1082	       const bitmap_allocator<_Tp2>&) throw()
1083    { return true; }
1084
1085  template<typename _Tp1, typename _Tp2>
1086    bool
1087    operator!=(const bitmap_allocator<_Tp1>&,
1088	       const bitmap_allocator<_Tp2>&) throw()
1089  { return false; }
1090
1091  // Static member definitions.
1092  template<typename _Tp>
1093    typename bitmap_allocator<_Tp>::_BPVector
1094    bitmap_allocator<_Tp>::_S_mem_blocks;
1095
1096  template<typename _Tp>
1097    size_t bitmap_allocator<_Tp>::_S_block_size =
1098    2 * size_t(__detail::bits_per_block);
1099
1100  template<typename _Tp>
1101    typename bitmap_allocator<_Tp>::_BPVector::size_type
1102    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1103
1104  template<typename _Tp>
1105    __detail::_Bitmap_counter
1106      <typename bitmap_allocator<_Tp>::_Alloc_block*>
1107    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1108
1109#if defined __GTHREADS
1110  template<typename _Tp>
1111    typename bitmap_allocator<_Tp>::__mutex_type
1112    bitmap_allocator<_Tp>::_S_mut;
1113#endif
1114
1115_GLIBCXX_END_NAMESPACE_VERSION
1116} // namespace __gnu_cxx
1117
1118#endif
1119
1120