1/* This is a software decimal floating point library.
2   Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16Under Section 7 of GPL version 3, you are granted additional
17permissions described in the GCC Runtime Library Exception, version
183.1, as published by the Free Software Foundation.
19
20You should have received a copy of the GNU General Public License and
21a copy of the GCC Runtime Library Exception along with this program;
22see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23<http://www.gnu.org/licenses/>.  */
24
25/* This implements IEEE 754 decimal floating point arithmetic, but
26   does not provide a mechanism for setting the rounding mode, or for
27   generating or handling exceptions.  Conversions between decimal
28   floating point types and other types depend on C library functions.
29
30   Contributed by Ben Elliston  <bje@au.ibm.com>.  */
31
32#include <stdio.h>
33#include <stdlib.h>
34/* FIXME: compile with -std=gnu99 to get these from stdlib.h */
35extern float strtof (const char *, char **);
36extern long double strtold (const char *, char **);
37#include <string.h>
38#include <limits.h>
39
40#include "dfp-bit.h"
41
42/* Forward declarations.  */
43#if WIDTH == 32 || WIDTH_TO == 32
44void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
45void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
46#endif
47#if WIDTH == 64 || WIDTH_TO == 64
48void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
49void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
50#endif
51#if WIDTH == 128 || WIDTH_TO == 128
52void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
53void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
54#endif
55
56/* A pointer to a binary decFloat operation.  */
57typedef decFloat* (*dfp_binary_func)
58     (decFloat *, const decFloat *, const decFloat *, decContext *);
59
60/* Binary operations.  */
61
62/* Use a decFloat (decDouble or decQuad) function to perform a DFP
63   binary operation.  */
64static inline decFloat
65dfp_binary_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
66{
67  decFloat result;
68  decContext context;
69
70  decContextDefault (&context, CONTEXT_INIT);
71  DFP_INIT_ROUNDMODE (context.round);
72
73  /* Perform the operation.  */
74  op (&result, &arg_a, &arg_b, &context);
75
76  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
77    {
78      /* decNumber exception flags we care about here.  */
79      int ieee_flags;
80      int dec_flags = DEC_IEEE_854_Division_by_zero | DEC_IEEE_854_Inexact
81		      | DEC_IEEE_854_Invalid_operation | DEC_IEEE_854_Overflow
82		      | DEC_IEEE_854_Underflow;
83      dec_flags &= context.status;
84      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
85      if (ieee_flags != 0)
86        DFP_HANDLE_EXCEPTIONS (ieee_flags);
87    }
88
89  return result;
90}
91
92#if WIDTH == 32
93/* The decNumber package doesn't provide arithmetic for decSingle (32 bits);
94   convert to decDouble, use the operation for that, and convert back.  */
95static inline _Decimal32
96d32_binary_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
97{
98  union { _Decimal32 c; decSingle f; } a32, b32, res32;
99  decDouble a, b, res;
100  decContext context;
101
102  /* Widen the operands and perform the operation.  */
103  a32.c = arg_a;
104  b32.c = arg_b;
105  decSingleToWider (&a32.f, &a);
106  decSingleToWider (&b32.f, &b);
107  res = dfp_binary_op (op, a, b);
108
109  /* Narrow the result, which might result in an underflow or overflow.  */
110  decContextDefault (&context, CONTEXT_INIT);
111  DFP_INIT_ROUNDMODE (context.round);
112  decSingleFromWider (&res32.f, &res, &context);
113  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
114    {
115      /* decNumber exception flags we care about here.  */
116      int ieee_flags;
117      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Overflow
118		      | DEC_IEEE_854_Underflow;
119      dec_flags &= context.status;
120      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
121      if (ieee_flags != 0)
122        DFP_HANDLE_EXCEPTIONS (ieee_flags);
123    }
124
125  return res32.c;
126}
127#else
128/* decFloat operations are supported for decDouble (64 bits) and
129   decQuad (128 bits).  The bit patterns for the types are the same.  */
130static inline DFP_C_TYPE
131dnn_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
132{
133  union { DFP_C_TYPE c; decFloat f; } a, b, result;
134
135  a.c = arg_a;
136  b.c = arg_b;
137  result.f = dfp_binary_op (op, a.f, b.f);
138  return result.c;
139}
140#endif
141
142/* Comparison operations.  */
143
144/* Use a decFloat (decDouble or decQuad) function to perform a DFP
145   comparison.  */
146static inline CMPtype
147dfp_compare_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
148{
149  decContext context;
150  decFloat res;
151  int result;
152
153  decContextDefault (&context, CONTEXT_INIT);
154  DFP_INIT_ROUNDMODE (context.round);
155
156  /* Perform the comparison.  */
157  op (&res, &arg_a, &arg_b, &context);
158
159  if (DEC_FLOAT_IS_SIGNED (&res))
160    result = -1;
161  else if (DEC_FLOAT_IS_ZERO (&res))
162    result = 0;
163  else if (DEC_FLOAT_IS_NAN (&res))
164    result = -2;
165  else
166    result = 1;
167
168  return (CMPtype) result;
169}
170
171#if WIDTH == 32
172/* The decNumber package doesn't provide comparisons for decSingle (32 bits);
173   convert to decDouble, use the operation for that, and convert back.  */
174static inline CMPtype
175d32_compare_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
176{
177  union { _Decimal32 c; decSingle f; } a32, b32;
178  decDouble a, b;
179
180  a32.c = arg_a;
181  b32.c = arg_b;
182  decSingleToWider (&a32.f, &a);
183  decSingleToWider (&b32.f, &b);
184  return dfp_compare_op (op, a, b);
185}
186#else
187/* decFloat comparisons are supported for decDouble (64 bits) and
188   decQuad (128 bits).  The bit patterns for the types are the same.  */
189static inline CMPtype
190dnn_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
191{
192  union { DFP_C_TYPE c; decFloat f; } a, b;
193
194  a.c = arg_a;
195  b.c = arg_b;
196  return dfp_compare_op (op, a.f, b.f);
197}
198#endif
199
200#if defined(L_conv_sd)
201void
202__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
203{
204  memcpy (out, &in, 4);
205}
206
207void
208__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
209{
210  memcpy (out, &in, 4);
211}
212#endif /* L_conv_sd */
213
214#if defined(L_conv_dd)
215void
216__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
217{
218  memcpy (out, &in, 8);
219}
220
221void
222__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
223{
224  memcpy (out, &in, 8);
225}
226#endif /* L_conv_dd */
227
228#if defined(L_conv_td)
229void
230__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
231{
232  memcpy (out, &in, 16);
233}
234
235void
236__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
237{
238  memcpy (out, &in, 16);
239}
240#endif /* L_conv_td */
241
242#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
243DFP_C_TYPE
244DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
245{
246  return DFP_BINARY_OP (DEC_FLOAT_ADD, arg_a, arg_b);
247}
248
249DFP_C_TYPE
250DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
251{
252  return DFP_BINARY_OP (DEC_FLOAT_SUBTRACT, arg_a, arg_b);
253}
254#endif /* L_addsub */
255
256#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
257DFP_C_TYPE
258DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
259{
260  return DFP_BINARY_OP (DEC_FLOAT_MULTIPLY, arg_a, arg_b);
261}
262#endif /* L_mul */
263
264#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
265DFP_C_TYPE
266DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
267{
268  return DFP_BINARY_OP (DEC_FLOAT_DIVIDE, arg_a, arg_b);
269}
270#endif /* L_div */
271
272#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
273CMPtype
274DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
275{
276  CMPtype stat;
277  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
278  /* For EQ return zero for true, nonzero for false.  */
279  return stat != 0;
280}
281#endif /* L_eq */
282
283#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
284CMPtype
285DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
286{
287  int stat;
288  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
289  /* For NE return zero for true, nonzero for false.  */
290  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
291    return 1;
292  return stat != 0;
293}
294#endif /* L_ne */
295
296#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
297CMPtype
298DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
299{
300  int stat;
301  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
302  /* For LT return -1 (<0) for true, 1 for false.  */
303  return (stat == -1) ? -1 : 1;
304}
305#endif /* L_lt */
306
307#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
308CMPtype
309DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
310{
311  int stat;
312  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
313  /* For GT return 1 (>0) for true, -1 for false.  */
314  return (stat == 1) ? 1 : -1;
315}
316#endif
317
318#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
319CMPtype
320DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
321{
322  int stat;
323  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
324  /* For LE return 0 (<= 0) for true, 1 for false.  */
325  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
326    return 1;
327  return stat == 1;
328}
329#endif /* L_le */
330
331#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
332CMPtype
333DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
334{
335  int stat;
336  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
337  /* For GE return 1 (>=0) for true, -1 for false.  */
338  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
339    return -1;
340  return (stat != -1) ? 1 : -1;
341}
342#endif /* L_ge */
343
344#define BUFMAX 128
345
346/* Check for floating point exceptions that are relevant for conversions
347   between decimal float values and handle them.  */
348static inline void
349dfp_conversion_exceptions (const int status)
350{
351  /* decNumber exception flags we care about here.  */
352  int ieee_flags;
353  int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
354		  | DEC_IEEE_854_Overflow;
355  dec_flags &= status;
356  ieee_flags = DFP_IEEE_FLAGS (dec_flags);
357  if (ieee_flags != 0)
358    DFP_HANDLE_EXCEPTIONS (ieee_flags);
359}
360
361#if defined (L_sd_to_dd)
362/* Use decNumber to convert directly from _Decimal32 to _Decimal64.  */
363_Decimal64
364DFP_TO_DFP (_Decimal32 f_from)
365{
366  union { _Decimal32 c; decSingle f; } from;
367  union { _Decimal64 c; decDouble f; } to;
368
369  from.c = f_from;
370  to.f = *decSingleToWider (&from.f, &to.f);
371  return to.c;
372}
373#endif
374
375#if defined (L_sd_to_td)
376/* Use decNumber to convert directly from _Decimal32 to _Decimal128.  */
377_Decimal128
378DFP_TO_DFP (_Decimal32 f_from)
379{
380  union { _Decimal32 c; decSingle f; } from;
381  union { _Decimal128 c; decQuad f; } to;
382  decDouble temp;
383
384  from.c = f_from;
385  temp = *decSingleToWider (&from.f, &temp);
386  to.f = *decDoubleToWider (&temp, &to.f);
387  return to.c;
388}
389#endif
390
391#if defined (L_dd_to_td)
392/* Use decNumber to convert directly from _Decimal64 to _Decimal128.  */
393_Decimal128
394DFP_TO_DFP (_Decimal64 f_from)
395{
396  union { _Decimal64 c; decDouble f; } from;
397  union { _Decimal128 c; decQuad f; } to;
398
399  from.c = f_from;
400  to.f = *decDoubleToWider (&from.f, &to.f);
401  return to.c;
402}
403#endif
404
405#if defined (L_dd_to_sd)
406/* Use decNumber to convert directly from _Decimal64 to _Decimal32.  */
407_Decimal32
408DFP_TO_DFP (_Decimal64 f_from)
409{
410  union { _Decimal32 c; decSingle f; } to;
411  union { _Decimal64 c; decDouble f; } from;
412  decContext context;
413
414  decContextDefault (&context, CONTEXT_INIT);
415  DFP_INIT_ROUNDMODE (context.round);
416  from.c = f_from;
417  to.f = *decSingleFromWider (&to.f, &from.f, &context);
418  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
419    dfp_conversion_exceptions (context.status);
420  return to.c;
421}
422#endif
423
424#if defined (L_td_to_sd)
425/* Use decNumber to convert directly from _Decimal128 to _Decimal32.  */
426_Decimal32
427DFP_TO_DFP (_Decimal128 f_from)
428{
429  union { _Decimal32 c; decSingle f; } to;
430  union { _Decimal128 c; decQuad f; } from;
431  decDouble temp;
432  decContext context;
433
434  decContextDefault (&context, CONTEXT_INIT);
435  DFP_INIT_ROUNDMODE (context.round);
436  from.c = f_from;
437  temp = *decDoubleFromWider (&temp, &from.f, &context);
438  to.f = *decSingleFromWider (&to.f, &temp, &context);
439  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
440    dfp_conversion_exceptions (context.status);
441  return to.c;
442}
443#endif
444
445#if defined (L_td_to_dd)
446/* Use decNumber to convert directly from _Decimal128 to _Decimal64.  */
447_Decimal64
448DFP_TO_DFP (_Decimal128 f_from)
449{
450  union { _Decimal64 c; decDouble f; } to;
451  union { _Decimal128 c; decQuad f; } from;
452  decContext context;
453
454  decContextDefault (&context, CONTEXT_INIT);
455  DFP_INIT_ROUNDMODE (context.round);
456  from.c = f_from;
457  to.f = *decDoubleFromWider (&to.f, &from.f, &context);
458  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
459    dfp_conversion_exceptions (context.status);
460  return to.c;
461}
462#endif
463
464#if defined (L_dd_to_si) || defined (L_td_to_si) \
465  || defined (L_dd_to_usi) || defined (L_td_to_usi)
466/* Use decNumber to convert directly from decimal float to integer types.  */
467INT_TYPE
468DFP_TO_INT (DFP_C_TYPE x)
469{
470  union { DFP_C_TYPE c; decFloat f; } u;
471  decContext context;
472  INT_TYPE i;
473
474  decContextDefault (&context, DEC_INIT_DECIMAL128);
475  context.round = DEC_ROUND_DOWN;
476  u.c = x;
477  i = DEC_FLOAT_TO_INT (&u.f, &context, context.round);
478  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
479    dfp_conversion_exceptions (context.status);
480  return i;
481}
482#endif
483
484#if defined (L_sd_to_si) || (L_sd_to_usi)
485/* Use decNumber to convert directly from decimal float to integer types.  */
486INT_TYPE
487DFP_TO_INT (_Decimal32 x)
488{
489  union { _Decimal32 c; decSingle f; } u32;
490  decDouble f64;
491  decContext context;
492  INT_TYPE i;
493
494  decContextDefault (&context, DEC_INIT_DECIMAL128);
495  context.round = DEC_ROUND_DOWN;
496  u32.c = x;
497  f64 = *decSingleToWider (&u32.f, &f64);
498  i = DEC_FLOAT_TO_INT (&f64, &context, context.round);
499  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
500    dfp_conversion_exceptions (context.status);
501  return i;
502}
503#endif
504
505#if defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
506  || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
507/* decNumber doesn't provide support for conversions to 64-bit integer
508   types, so do it the hard way.  */
509INT_TYPE
510DFP_TO_INT (DFP_C_TYPE x)
511{
512  /* decNumber's decimal* types have the same format as C's _Decimal*
513     types, but they have different calling conventions.  */
514
515  /* TODO: Decimal float to integer conversions should raise FE_INVALID
516     if the result value does not fit into the result type.  */
517
518  IEEE_TYPE s;
519  char buf[BUFMAX];
520  char *pos;
521  decNumber qval, n1, n2;
522  decContext context;
523
524  /* Use a large context to avoid losing precision.  */
525  decContextDefault (&context, DEC_INIT_DECIMAL128);
526  /* Need non-default rounding mode here.  */
527  context.round = DEC_ROUND_DOWN;
528
529  HOST_TO_IEEE (x, &s);
530  TO_INTERNAL (&s, &n1);
531  /* Rescale if the exponent is less than zero.  */
532  decNumberToIntegralValue (&n2, &n1, &context);
533  /* Get a value to use for the quantize call.  */
534  decNumberFromString (&qval, "1.", &context);
535  /* Force the exponent to zero.  */
536  decNumberQuantize (&n1, &n2, &qval, &context);
537  /* Get a string, which at this point will not include an exponent.  */
538  decNumberToString (&n1, buf);
539  /* Ignore the fractional part.  */
540  pos = strchr (buf, '.');
541  if (pos)
542    *pos = 0;
543  /* Use a C library function to convert to the integral type.  */
544  return STR_TO_INT (buf, NULL, 10);
545}
546#endif
547
548#if defined (L_si_to_dd) || defined (L_si_to_td) \
549  || defined (L_usi_to_dd) || defined (L_usi_to_td)
550/* Use decNumber to convert directly from integer to decimal float types.  */
551DFP_C_TYPE
552INT_TO_DFP (INT_TYPE i)
553{
554  union { DFP_C_TYPE c; decFloat f; } u;
555
556  u.f = *DEC_FLOAT_FROM_INT (&u.f, i);
557  return u.c;
558}
559#endif
560
561#if defined (L_si_to_sd) || defined (L_usi_to_sd)
562_Decimal32
563/* Use decNumber to convert directly from integer to decimal float types.  */
564INT_TO_DFP (INT_TYPE i)
565{
566  union { _Decimal32 c; decSingle f; } u32;
567  decDouble f64;
568  decContext context;
569
570  decContextDefault (&context, DEC_INIT_DECIMAL128);
571  f64 = *DEC_FLOAT_FROM_INT (&f64, i);
572  u32.f = *decSingleFromWider (&u32.f, &f64, &context);
573  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
574    dfp_conversion_exceptions (context.status);
575  return u32.c;
576}
577#endif
578
579#if defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
580  || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
581/* decNumber doesn't provide support for conversions from 64-bit integer
582   types, so do it the hard way.  */
583DFP_C_TYPE
584INT_TO_DFP (INT_TYPE i)
585{
586  DFP_C_TYPE f;
587  IEEE_TYPE s;
588  char buf[BUFMAX];
589  decContext context;
590
591  decContextDefault (&context, CONTEXT_INIT);
592  DFP_INIT_ROUNDMODE (context.round);
593
594  /* Use a C library function to get a floating point string.  */
595  sprintf (buf, INT_FMT ".", CAST_FOR_FMT(i));
596  /* Convert from the floating point string to a decimal* type.  */
597  FROM_STRING (&s, buf, &context);
598  IEEE_TO_HOST (s, &f);
599
600  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
601    dfp_conversion_exceptions (context.status);
602
603  return f;
604}
605#endif
606
607#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
608 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
609 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
610     && LONG_DOUBLE_HAS_XF_MODE) \
611 || ((defined (L_sd_to_tf) || defined (L_dd_to_tf) || defined (L_td_to_tf)) \
612     && LONG_DOUBLE_HAS_TF_MODE)
613BFP_TYPE
614DFP_TO_BFP (DFP_C_TYPE f)
615{
616  IEEE_TYPE s;
617  char buf[BUFMAX];
618
619  HOST_TO_IEEE (f, &s);
620  /* Write the value to a string.  */
621  TO_STRING (&s, buf);
622  /* Read it as the binary floating point type and return that.  */
623  return STR_TO_BFP (buf, NULL);
624}
625#endif
626
627#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
628 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
629 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
630     && LONG_DOUBLE_HAS_XF_MODE) \
631 || ((defined (L_tf_to_sd) || defined (L_tf_to_dd) || defined (L_tf_to_td)) \
632     && LONG_DOUBLE_HAS_TF_MODE)
633DFP_C_TYPE
634BFP_TO_DFP (BFP_TYPE x)
635{
636  DFP_C_TYPE f;
637  IEEE_TYPE s;
638  char buf[BUFMAX];
639  decContext context;
640
641  decContextDefault (&context, CONTEXT_INIT);
642  DFP_INIT_ROUNDMODE (context.round);
643
644  /* Use a C library function to write the floating point value to a string.  */
645  sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x);
646
647  /* Convert from the floating point string to a decimal* type.  */
648  FROM_STRING (&s, buf, &context);
649  IEEE_TO_HOST (s, &f);
650
651  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
652    {
653      /* decNumber exception flags we care about here.  */
654      int ieee_flags;
655      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
656		      | DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow;
657      dec_flags &= context.status;
658      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
659      if (ieee_flags != 0)
660        DFP_HANDLE_EXCEPTIONS (ieee_flags);
661    }
662
663  return f;
664}
665#endif
666
667#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
668CMPtype
669DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
670{
671  decNumber arg1, arg2;
672  IEEE_TYPE a, b;
673
674  HOST_TO_IEEE (arg_a, &a);
675  HOST_TO_IEEE (arg_b, &b);
676  TO_INTERNAL (&a, &arg1);
677  TO_INTERNAL (&b, &arg2);
678  return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
679}
680#endif /* L_unord_sd || L_unord_dd || L_unord_td */
681