1// { dg-do compile { target powerpc*-*-* ia64-*-* i?86-*-* x86_64-*-* } }
2// { dg-options "-O3 -fselective-scheduling2" }
3
4namespace std {
5
6typedef long unsigned int size_t;
7
8template<typename _Tp> class new_allocator { public: typedef size_t size_type; typedef _Tp* pointer; };
9template<typename _Tp> class allocator: public new_allocator<_Tp> { public: typedef size_t size_type; template<typename _Tp1> struct rebind { typedef allocator<_Tp1> other; }; };
10
11class back_insert_iterator { };
12template<typename _Container> back_insert_iterator back_inserter(_Container& __x) { };
13
14class vector { };
15
16struct _List_node_base { };
17struct _List_node : public _List_node_base { };
18template<typename _Tp> struct _List_iterator { typedef _List_iterator<_Tp> _Self; typedef _Tp& reference; explicit _List_iterator(_List_node_base* __x) : _M_node(__x) { } reference operator*() const { } _Self& operator++() { } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _List_node_base* _M_node; };
19template<typename _Tp, typename _Alloc> class _List_base { protected: typedef typename _Alloc::template rebind<_List_node >::other _Node_alloc_type; struct _List_impl : public _Node_alloc_type { _List_node_base _M_node; }; _List_impl _M_impl; };
20template<typename _Tp, typename _Alloc = std::allocator<_Tp> > class list : protected _List_base<_Tp, _Alloc> { public: typedef _Tp value_type; typedef _List_iterator<_Tp> iterator; iterator begin() { } iterator end() { return iterator(&this->_M_impl._M_node); } };
21
22namespace tr1 { template<typename _Tp, size_t _Nm> struct array { typedef _Tp value_type; typedef const value_type& const_reference; typedef const value_type* const_iterator; typedef size_t size_type; value_type _M_instance[_Nm ? _Nm : 1]; const_iterator begin() const { return const_iterator(&_M_instance[0]); } const_reference operator[](size_type __n) const { return _M_instance[__n]; } }; }
23}
24
25namespace X {
26
27class Object { };
28struct Has_qrt { };
29template <typename F> struct qrt_or_not { typedef const typename F::result_type & type; };
30template <typename Functor, typename P1 = void> struct Qualified_result_of : qrt_or_not<Functor> { };
31
32using std::tr1::array;
33
34template <class R_> class Point_2 : public R_::Kernel_base::Point_2 {
35public:
36  typedef typename R_::Kernel_base::Point_2 RPoint_2;
37  typedef RPoint_2 Rep;
38  const Rep& rep() const { }
39};
40
41template <class R_> class Vector_2 : public R_::Kernel_base::Vector_2 {
42public:
43  typedef typename R_::Kernel_base::Vector_2 RVector_2;
44  typedef RVector_2 Rep;
45  const Rep& rep() const { return *this; }
46  typedef R_ R;
47  typename Qualified_result_of<typename R::Compute_x_2,Vector_2>::type x() const { return R().compute_x_2_object()(*this); }
48  typename Qualified_result_of<typename R::Compute_y_2,Vector_2>::type y() const { return R().compute_y_2_object()(*this); }
49  typename Qualified_result_of<typename R::Compute_y_2,Vector_2>::type cartesian(int i) const { return (i==0) ? x() : y(); }
50  typename Qualified_result_of<typename R::Compute_hx_2,Vector_2>::type hx() const { return R().compute_hx_2_object()(*this); }
51  typename Qualified_result_of<typename R::Compute_hy_2,Vector_2>::type hy() const { return R().compute_hy_2_object()(*this); }
52  typename Qualified_result_of<typename R::Compute_hw_2,Vector_2>::type hw() const { return R().compute_hw_2_object()(*this); }
53  typename Qualified_result_of<typename R::Compute_hx_2,Vector_2>::type homogeneous(int i) const { return (i==0) ? hx() : (i==1)? hy() : hw(); }
54};
55
56template <class R_> class Segment_2 : public R_::Kernel_base::Segment_2 { };
57template <class R_> class Iso_rectangle_2 : public R_::Kernel_base::Iso_rectangle_2 { };
58
59template <typename T, int i > const T& constant() { static const T t(i); return t; }
60template <class T, class Alloc = std::allocator<T > > class Handle_for { struct RefCounted { T t; }; typedef typename Alloc::template rebind<RefCounted>::other Allocator; typedef typename Allocator::pointer pointer; pointer ptr_; public: typedef T element_type; const T * Ptr() const { return &(ptr_->t); } };
61template <class T, class Allocator> const T& get(const Handle_for<T, Allocator> &h) { return *(h.Ptr()); }
62
63template <class R_> class PointC2 {
64public:
65  typedef typename R_::Vector_2 Vector_2; Vector_2 base;
66  typedef typename Vector_2::Cartesian_const_iterator Cartesian_const_iterator; Cartesian_const_iterator cartesian_begin() const { return base.cartesian_begin(); }
67};
68
69template <class R_> class VectorC2 {
70public:
71  typedef typename R_::FT FT;
72  typedef array<FT, 2> Rep;
73  typedef typename R_::template Handle<Rep>::type Base;
74  Base base;
75  typedef typename Rep::const_iterator Cartesian_const_iterator;
76  const FT & x() const { return X::get(base)[0]; }
77  const FT & y() const { return X::get(base)[1]; }
78  const FT & hx() const { return x(); }
79  const FT & hy() const { return y(); }
80  const FT & hw() const { return constant<FT, 1>(); }
81  Cartesian_const_iterator cartesian_begin() const { return X::get(base).begin(); }
82};
83
84template <class R_> class SegmentC2 { };
85template <class R_> class Iso_rectangleC2 { };
86
87namespace internal {
88  template <class K> class Segment_2_Iso_rectangle_2_pair {
89    public:
90      enum Intersection_results { NO_INTERSECTION };
91      Segment_2_Iso_rectangle_2_pair(typename K::Segment_2 const *seg, typename K::Iso_rectangle_2 const *rect) ;
92      Intersection_results intersection_type() const;
93      mutable Intersection_results _result;
94      typename K::Point_2 _ref_point;
95      typename K::Vector_2 _dir;
96      typename K::Point_2 _isomin;
97      typename K::Point_2 _isomax;
98      mutable typename K::FT _min, _max;
99  };
100  template <class K> Object intersection( const typename K::Segment_2 &seg, const typename K::Iso_rectangle_2 &iso, const K&) {
101    typedef Segment_2_Iso_rectangle_2_pair<K> is_t; is_t ispair(&seg, &iso); switch (ispair.intersection_type()) { }
102  }
103  template <class K> typename Segment_2_Iso_rectangle_2_pair<K>::Intersection_results Segment_2_Iso_rectangle_2_pair<K>::intersection_type() const {
104    typedef typename K::RT RT;
105    typedef typename K::FT FT;
106    typename K::Construct_cartesian_const_iterator_2 construct_cccit;
107    typename K::Cartesian_const_iterator_2 ref_point_it = construct_cccit(_ref_point);
108    typename K::Cartesian_const_iterator_2 end = construct_cccit(_ref_point, 0);
109    typename K::Cartesian_const_iterator_2 isomin_it = construct_cccit(_isomin);
110    typename K::Cartesian_const_iterator_2 isomax_it = construct_cccit(_isomax);
111    for (unsigned int i=0; ref_point_it != end; ++i, ++ref_point_it, ++isomin_it, ++isomax_it) {
112      if (_dir.homogeneous(i) == RT(0)) {
113        if ( *(ref_point_it) <*(isomin_it) ) {
114          _result = NO_INTERSECTION;
115        }
116        if ( *(ref_point_it) > *(isomax_it)) {
117          _result = NO_INTERSECTION;
118        }
119      } else {
120        FT newmin, newmax;
121        if (_dir.homogeneous(i) > RT(0)) {
122          newmin = ( *(isomin_it) - (*ref_point_it)) / _dir.cartesian(i);
123          newmax = ( *(isomax_it) - (*ref_point_it)) / _dir.cartesian(i);
124        } else {
125          newmin = ( (*isomax_it) - (*ref_point_it)) / _dir.cartesian(i);
126          newmax = ( (*isomin_it) - (*ref_point_it)) / _dir.cartesian(i);
127        }
128        if (newmin > _min) _min = newmin;
129        if (newmax <_max) _max = newmax;
130        if (_max <_min) { return _result; }
131      }
132    }
133  }
134}
135
136template <class K> Object intersection(const Segment_2<K> &seg, const Iso_rectangle_2<K> &iso) { typedef typename K::Intersect_2 Intersect; return Intersect()(seg, iso); }
137
138namespace CommonKernelFunctors {
139  template <typename K> class Construct_cartesian_const_iterator_2 {
140    typedef typename K::Point_2 Point_2;
141    typedef typename K::Cartesian_const_iterator_2 Cartesian_const_iterator_2;
142public:
143    typedef Cartesian_const_iterator_2 result_type;
144    Cartesian_const_iterator_2 operator()( const Point_2& p) const { return p.rep().cartesian_begin(); }
145    Cartesian_const_iterator_2 operator()( const Point_2& p, int) const { }
146  };
147  template <typename K> class Intersect_2 {
148    typedef typename K::Object_2 Object_2;
149  public:
150    typedef Object_2 result_type;
151    template <class T1, class T2> Object_2 operator()(const T1& t1, const T2& t2) const { return internal::intersection(t1, t2, K()); }
152  };
153}
154
155namespace CartesianKernelFunctors {
156  using namespace CommonKernelFunctors;
157  template <typename K> class Compute_x_2 : Has_qrt {
158    typedef typename K::FT FT;
159    typedef typename K::Vector_2 Vector_2;
160  public:
161    typedef FT result_type;
162    const result_type & operator()(const Vector_2& v) const { return v.rep().x(); }
163  };
164  template <typename K> class Compute_y_2 : Has_qrt {
165    typedef typename K::FT FT;
166    typedef typename K::Vector_2 Vector_2;
167  public:
168    typedef FT result_type;
169    const result_type & operator()(const Vector_2& v) const { return v.rep().y(); }
170  };
171  template <typename K> class Compute_hx_2 : public Has_qrt {
172    typedef typename K::FT FT;
173    typedef typename K::Vector_2 Vector_2;
174  public:
175    typedef FT result_type;
176    const result_type & operator()(const Vector_2& v) const { return v.rep().hx(); }
177  };
178  template <typename K> class Compute_hy_2 : public Has_qrt {
179    typedef typename K::FT FT;
180    typedef typename K::Vector_2 Vector_2;
181  public:
182    typedef FT result_type;
183    const result_type & operator()(const Vector_2& v) const { return v.rep().hy(); }
184  };
185  template <typename K> class Compute_hw_2 : public Has_qrt {
186    typedef typename K::FT FT;
187    typedef typename K::Vector_2 Vector_2;
188  public:
189    typedef FT result_type;
190    const result_type & operator()(const Vector_2& v) const { return v.rep().hw(); }
191  };
192}
193
194template <typename K_, typename FT_> struct Cartesian_base {
195  typedef K_ Kernel;
196  typedef X::Object Object_2;
197  typedef PointC2<Kernel> Point_2;
198  typedef VectorC2<Kernel> Vector_2;
199  typedef SegmentC2<Kernel> Segment_2;
200  typedef Iso_rectangleC2<Kernel> Iso_rectangle_2;
201  typedef typename array<FT_, 2>::const_iterator Cartesian_const_iterator_2;
202};
203
204template <typename K_base, typename Kernel_ > struct Type_equality_wrapper : public K_base {
205  typedef K_base Kernel_base;
206  typedef X::Point_2<Kernel_> Point_2;
207  typedef X::Vector_2<Kernel_> Vector_2;
208  typedef X::Segment_2<Kernel_> Segment_2;
209  typedef X::Iso_rectangle_2<Kernel_> Iso_rectangle_2;
210};
211
212template <typename FT_, typename Kernel_ > struct Cartesian_base_ref_count : public Cartesian_base<Kernel_, FT_ > {
213  typedef FT_ RT;
214  typedef FT_ FT;
215  template <typename T > struct Handle { typedef Handle_for<T> type; };
216  typedef Kernel_ K;
217  typedef CartesianKernelFunctors::Compute_x_2<K> Compute_x_2;
218  Compute_x_2 compute_x_2_object() const { }
219  typedef CartesianKernelFunctors::Compute_y_2<K> Compute_y_2;
220  Compute_y_2 compute_y_2_object() const { }
221  typedef CartesianKernelFunctors::Compute_hx_2<K> Compute_hx_2;
222  Compute_hx_2 compute_hx_2_object() const { }
223  typedef CartesianKernelFunctors::Compute_hy_2<K> Compute_hy_2;
224  Compute_hy_2 compute_hy_2_object() const { }
225  typedef CartesianKernelFunctors::Compute_hw_2<K> Compute_hw_2;
226  Compute_hw_2 compute_hw_2_object() const { }
227  typedef CartesianKernelFunctors::Construct_cartesian_const_iterator_2<K> Construct_cartesian_const_iterator_2;
228  typedef CartesianKernelFunctors::Intersect_2<K> Intersect_2;
229};
230
231template <typename FT_ > struct Cartesian : public Type_equality_wrapper<Cartesian_base_ref_count<FT_, Cartesian<FT_> >, Cartesian<FT_> > { };
232
233template <class Kernel> class Ipelet_base {
234public:
235  typedef typename X::Point_2<Kernel> Point_2;
236  typedef typename Kernel::Segment_2 Segment_2;
237  typedef typename Kernel::Iso_rectangle_2 Iso_rectangle_2;
238
239  Iso_rectangle_2 read_active_objects () const { }
240  struct Voronoi_from_tri{ std::list<Segment_2> seg_list; };
241
242  template <class T,class output_iterator> bool cast_into_seg(const T& obj,const Iso_rectangle_2& bbox,output_iterator out_it) const{ X::intersection(obj,bbox); }
243  template<class iterator,class output_iterator> void cast_into_seg(const iterator first,const iterator end, const Iso_rectangle_2& bbox, output_iterator out_it) const { for (iterator it=first; it!=end; ++it) cast_into_seg(*it,bbox,out_it); }
244  void draw_dual_(Voronoi_from_tri& v_recup,const Iso_rectangle_2& bbox) const { std::vector seg_cont; cast_into_seg(v_recup.seg_list.begin(),v_recup.seg_list.end(),bbox,std::back_inserter(seg_cont)); }
245  void draw_dual_in_ipe(const Iso_rectangle_2& bbox) const { Voronoi_from_tri v_recup; draw_dual_(v_recup,bbox); }
246};
247
248typedef X::Cartesian<double> Kernel;
249
250class diagrammeIpelet : public X::Ipelet_base<Kernel> { void protected_run(); };
251void diagrammeIpelet::protected_run() { Iso_rectangle_2 bbox = read_active_objects( ); draw_dual_in_ipe(bbox); }
252
253}
254