1/* Instruction scheduling pass.
2   Copyright (C) 1992-2015 Free Software Foundation, Inc.
3   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4   and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22/* This pass implements list scheduling within basic blocks.  It is
23   run twice: (1) after flow analysis, but before register allocation,
24   and (2) after register allocation.
25
26   The first run performs interblock scheduling, moving insns between
27   different blocks in the same "region", and the second runs only
28   basic block scheduling.
29
30   Interblock motions performed are useful motions and speculative
31   motions, including speculative loads.  Motions requiring code
32   duplication are not supported.  The identification of motion type
33   and the check for validity of speculative motions requires
34   construction and analysis of the function's control flow graph.
35
36   The main entry point for this pass is schedule_insns(), called for
37   each function.  The work of the scheduler is organized in three
38   levels: (1) function level: insns are subject to splitting,
39   control-flow-graph is constructed, regions are computed (after
40   reload, each region is of one block), (2) region level: control
41   flow graph attributes required for interblock scheduling are
42   computed (dominators, reachability, etc.), data dependences and
43   priorities are computed, and (3) block level: insns in the block
44   are actually scheduled.  */
45
46#include "config.h"
47#include "system.h"
48#include "coretypes.h"
49#include "tm.h"
50#include "diagnostic-core.h"
51#include "rtl.h"
52#include "tm_p.h"
53#include "hard-reg-set.h"
54#include "regs.h"
55#include "hashtab.h"
56#include "hash-set.h"
57#include "vec.h"
58#include "machmode.h"
59#include "input.h"
60#include "function.h"
61#include "profile.h"
62#include "flags.h"
63#include "insn-config.h"
64#include "insn-attr.h"
65#include "except.h"
66#include "recog.h"
67#include "params.h"
68#include "dominance.h"
69#include "cfg.h"
70#include "cfganal.h"
71#include "predict.h"
72#include "basic-block.h"
73#include "sched-int.h"
74#include "sel-sched.h"
75#include "target.h"
76#include "tree-pass.h"
77#include "dbgcnt.h"
78
79#ifdef INSN_SCHEDULING
80
81/* Some accessor macros for h_i_d members only used within this file.  */
82#define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
83#define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
84
85/* nr_inter/spec counts interblock/speculative motion for the function.  */
86static int nr_inter, nr_spec;
87
88static int is_cfg_nonregular (void);
89
90/* Number of regions in the procedure.  */
91int nr_regions = 0;
92
93/* Same as above before adding any new regions.  */
94static int nr_regions_initial = 0;
95
96/* Table of region descriptions.  */
97region *rgn_table = NULL;
98
99/* Array of lists of regions' blocks.  */
100int *rgn_bb_table = NULL;
101
102/* Topological order of blocks in the region (if b2 is reachable from
103   b1, block_to_bb[b2] > block_to_bb[b1]).  Note: A basic block is
104   always referred to by either block or b, while its topological
105   order name (in the region) is referred to by bb.  */
106int *block_to_bb = NULL;
107
108/* The number of the region containing a block.  */
109int *containing_rgn = NULL;
110
111/* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
112   Currently we can get a ebb only through splitting of currently
113   scheduling block, therefore, we don't need ebb_head array for every region,
114   hence, its sufficient to hold it for current one only.  */
115int *ebb_head = NULL;
116
117/* The minimum probability of reaching a source block so that it will be
118   considered for speculative scheduling.  */
119static int min_spec_prob;
120
121static void find_single_block_region (bool);
122static void find_rgns (void);
123static bool too_large (int, int *, int *);
124
125/* Blocks of the current region being scheduled.  */
126int current_nr_blocks;
127int current_blocks;
128
129/* A speculative motion requires checking live information on the path
130   from 'source' to 'target'.  The split blocks are those to be checked.
131   After a speculative motion, live information should be modified in
132   the 'update' blocks.
133
134   Lists of split and update blocks for each candidate of the current
135   target are in array bblst_table.  */
136static basic_block *bblst_table;
137static int bblst_size, bblst_last;
138
139/* Arrays that hold the DFA state at the end of a basic block, to re-use
140   as the initial state at the start of successor blocks.  The BB_STATE
141   array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
142   into BB_STATE for basic block I.  FIXME: This should be a vec.  */
143static char *bb_state_array = NULL;
144static state_t *bb_state = NULL;
145
146/* Target info declarations.
147
148   The block currently being scheduled is referred to as the "target" block,
149   while other blocks in the region from which insns can be moved to the
150   target are called "source" blocks.  The candidate structure holds info
151   about such sources: are they valid?  Speculative?  Etc.  */
152typedef struct
153{
154  basic_block *first_member;
155  int nr_members;
156}
157bblst;
158
159typedef struct
160{
161  char is_valid;
162  char is_speculative;
163  int src_prob;
164  bblst split_bbs;
165  bblst update_bbs;
166}
167candidate;
168
169static candidate *candidate_table;
170#define IS_VALID(src) (candidate_table[src].is_valid)
171#define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
172#define IS_SPECULATIVE_INSN(INSN)			\
173  (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
174#define SRC_PROB(src) ( candidate_table[src].src_prob )
175
176/* The bb being currently scheduled.  */
177int target_bb;
178
179/* List of edges.  */
180typedef struct
181{
182  edge *first_member;
183  int nr_members;
184}
185edgelst;
186
187static edge *edgelst_table;
188static int edgelst_last;
189
190static void extract_edgelst (sbitmap, edgelst *);
191
192/* Target info functions.  */
193static void split_edges (int, int, edgelst *);
194static void compute_trg_info (int);
195void debug_candidate (int);
196void debug_candidates (int);
197
198/* Dominators array: dom[i] contains the sbitmap of dominators of
199   bb i in the region.  */
200static sbitmap *dom;
201
202/* bb 0 is the only region entry.  */
203#define IS_RGN_ENTRY(bb) (!bb)
204
205/* Is bb_src dominated by bb_trg.  */
206#define IS_DOMINATED(bb_src, bb_trg)                                 \
207( bitmap_bit_p (dom[bb_src], bb_trg) )
208
209/* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
210   the probability of bb i relative to the region entry.  */
211static int *prob;
212
213/* Bit-set of edges, where bit i stands for edge i.  */
214typedef sbitmap edgeset;
215
216/* Number of edges in the region.  */
217static int rgn_nr_edges;
218
219/* Array of size rgn_nr_edges.  */
220static edge *rgn_edges;
221
222/* Mapping from each edge in the graph to its number in the rgn.  */
223#define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
224#define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
225
226/* The split edges of a source bb is different for each target
227   bb.  In order to compute this efficiently, the 'potential-split edges'
228   are computed for each bb prior to scheduling a region.  This is actually
229   the split edges of each bb relative to the region entry.
230
231   pot_split[bb] is the set of potential split edges of bb.  */
232static edgeset *pot_split;
233
234/* For every bb, a set of its ancestor edges.  */
235static edgeset *ancestor_edges;
236
237#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
238
239/* Speculative scheduling functions.  */
240static int check_live_1 (int, rtx);
241static void update_live_1 (int, rtx);
242static int is_pfree (rtx, int, int);
243static int find_conditional_protection (rtx, int);
244static int is_conditionally_protected (rtx, int, int);
245static int is_prisky (rtx, int, int);
246static int is_exception_free (rtx, int, int);
247
248static bool sets_likely_spilled (rtx);
249static void sets_likely_spilled_1 (rtx, const_rtx, void *);
250static void add_branch_dependences (rtx_insn *, rtx_insn *);
251static void compute_block_dependences (int);
252
253static void schedule_region (int);
254static void concat_insn_mem_list (rtx_insn_list *, rtx_expr_list *,
255				  rtx_insn_list **, rtx_expr_list **);
256static void propagate_deps (int, struct deps_desc *);
257static void free_pending_lists (void);
258
259/* Functions for construction of the control flow graph.  */
260
261/* Return 1 if control flow graph should not be constructed, 0 otherwise.
262
263   We decide not to build the control flow graph if there is possibly more
264   than one entry to the function, if computed branches exist, if we
265   have nonlocal gotos, or if we have an unreachable loop.  */
266
267static int
268is_cfg_nonregular (void)
269{
270  basic_block b;
271  rtx_insn *insn;
272
273  /* If we have a label that could be the target of a nonlocal goto, then
274     the cfg is not well structured.  */
275  if (nonlocal_goto_handler_labels)
276    return 1;
277
278  /* If we have any forced labels, then the cfg is not well structured.  */
279  if (forced_labels)
280    return 1;
281
282  /* If we have exception handlers, then we consider the cfg not well
283     structured.  ?!?  We should be able to handle this now that we
284     compute an accurate cfg for EH.  */
285  if (current_function_has_exception_handlers ())
286    return 1;
287
288  /* If we have insns which refer to labels as non-jumped-to operands,
289     then we consider the cfg not well structured.  */
290  FOR_EACH_BB_FN (b, cfun)
291    FOR_BB_INSNS (b, insn)
292      {
293	rtx note, set, dest;
294	rtx_insn *next;
295
296	/* If this function has a computed jump, then we consider the cfg
297	   not well structured.  */
298	if (JUMP_P (insn) && computed_jump_p (insn))
299	  return 1;
300
301	if (!INSN_P (insn))
302	  continue;
303
304	note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
305	if (note == NULL_RTX)
306	  continue;
307
308	/* For that label not to be seen as a referred-to label, this
309	   must be a single-set which is feeding a jump *only*.  This
310	   could be a conditional jump with the label split off for
311	   machine-specific reasons or a casesi/tablejump.  */
312	next = next_nonnote_insn (insn);
313	if (next == NULL_RTX
314	    || !JUMP_P (next)
315	    || (JUMP_LABEL (next) != XEXP (note, 0)
316		&& find_reg_note (next, REG_LABEL_TARGET,
317				  XEXP (note, 0)) == NULL_RTX)
318	    || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
319	  return 1;
320
321	set = single_set (insn);
322	if (set == NULL_RTX)
323	  return 1;
324
325	dest = SET_DEST (set);
326	if (!REG_P (dest) || !dead_or_set_p (next, dest))
327	  return 1;
328      }
329
330  /* Unreachable loops with more than one basic block are detected
331     during the DFS traversal in find_rgns.
332
333     Unreachable loops with a single block are detected here.  This
334     test is redundant with the one in find_rgns, but it's much
335     cheaper to go ahead and catch the trivial case here.  */
336  FOR_EACH_BB_FN (b, cfun)
337    {
338      if (EDGE_COUNT (b->preds) == 0
339	  || (single_pred_p (b)
340	      && single_pred (b) == b))
341	return 1;
342    }
343
344  /* All the tests passed.  Consider the cfg well structured.  */
345  return 0;
346}
347
348/* Extract list of edges from a bitmap containing EDGE_TO_BIT bits.  */
349
350static void
351extract_edgelst (sbitmap set, edgelst *el)
352{
353  unsigned int i = 0;
354  sbitmap_iterator sbi;
355
356  /* edgelst table space is reused in each call to extract_edgelst.  */
357  edgelst_last = 0;
358
359  el->first_member = &edgelst_table[edgelst_last];
360  el->nr_members = 0;
361
362  /* Iterate over each word in the bitset.  */
363  EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
364    {
365      edgelst_table[edgelst_last++] = rgn_edges[i];
366      el->nr_members++;
367    }
368}
369
370/* Functions for the construction of regions.  */
371
372/* Print the regions, for debugging purposes.  Callable from debugger.  */
373
374DEBUG_FUNCTION void
375debug_regions (void)
376{
377  int rgn, bb;
378
379  fprintf (sched_dump, "\n;;   ------------ REGIONS ----------\n\n");
380  for (rgn = 0; rgn < nr_regions; rgn++)
381    {
382      fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
383	       rgn_table[rgn].rgn_nr_blocks);
384      fprintf (sched_dump, ";;\tbb/block: ");
385
386      /* We don't have ebb_head initialized yet, so we can't use
387	 BB_TO_BLOCK ().  */
388      current_blocks = RGN_BLOCKS (rgn);
389
390      for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
391	fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
392
393      fprintf (sched_dump, "\n\n");
394    }
395}
396
397/* Print the region's basic blocks.  */
398
399DEBUG_FUNCTION void
400debug_region (int rgn)
401{
402  int bb;
403
404  fprintf (stderr, "\n;;   ------------ REGION %d ----------\n\n", rgn);
405  fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
406	   rgn_table[rgn].rgn_nr_blocks);
407  fprintf (stderr, ";;\tbb/block: ");
408
409  /* We don't have ebb_head initialized yet, so we can't use
410     BB_TO_BLOCK ().  */
411  current_blocks = RGN_BLOCKS (rgn);
412
413  for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
414    fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
415
416  fprintf (stderr, "\n\n");
417
418  for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
419    {
420      dump_bb (stderr,
421	       BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
422	       0, TDF_SLIM | TDF_BLOCKS);
423      fprintf (stderr, "\n");
424    }
425
426  fprintf (stderr, "\n");
427
428}
429
430/* True when a bb with index BB_INDEX contained in region RGN.  */
431static bool
432bb_in_region_p (int bb_index, int rgn)
433{
434  int i;
435
436  for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
437    if (rgn_bb_table[current_blocks + i] == bb_index)
438      return true;
439
440  return false;
441}
442
443/* Dump region RGN to file F using dot syntax.  */
444void
445dump_region_dot (FILE *f, int rgn)
446{
447  int i;
448
449  fprintf (f, "digraph Region_%d {\n", rgn);
450
451  /* We don't have ebb_head initialized yet, so we can't use
452     BB_TO_BLOCK ().  */
453  current_blocks = RGN_BLOCKS (rgn);
454
455  for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
456    {
457      edge e;
458      edge_iterator ei;
459      int src_bb_num = rgn_bb_table[current_blocks + i];
460      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
461
462      FOR_EACH_EDGE (e, ei, bb->succs)
463        if (bb_in_region_p (e->dest->index, rgn))
464	  fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
465    }
466  fprintf (f, "}\n");
467}
468
469/* The same, but first open a file specified by FNAME.  */
470void
471dump_region_dot_file (const char *fname, int rgn)
472{
473  FILE *f = fopen (fname, "wt");
474  dump_region_dot (f, rgn);
475  fclose (f);
476}
477
478/* Build a single block region for each basic block in the function.
479   This allows for using the same code for interblock and basic block
480   scheduling.  */
481
482static void
483find_single_block_region (bool ebbs_p)
484{
485  basic_block bb, ebb_start;
486  int i = 0;
487
488  nr_regions = 0;
489
490  if (ebbs_p) {
491    int probability_cutoff;
492    if (profile_info && flag_branch_probabilities)
493      probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
494    else
495      probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
496    probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
497
498    FOR_EACH_BB_FN (ebb_start, cfun)
499      {
500        RGN_NR_BLOCKS (nr_regions) = 0;
501        RGN_BLOCKS (nr_regions) = i;
502        RGN_DONT_CALC_DEPS (nr_regions) = 0;
503        RGN_HAS_REAL_EBB (nr_regions) = 0;
504
505        for (bb = ebb_start; ; bb = bb->next_bb)
506          {
507            edge e;
508
509            rgn_bb_table[i] = bb->index;
510            RGN_NR_BLOCKS (nr_regions)++;
511            CONTAINING_RGN (bb->index) = nr_regions;
512            BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
513            i++;
514
515	    if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
516                || LABEL_P (BB_HEAD (bb->next_bb)))
517              break;
518
519	    e = find_fallthru_edge (bb->succs);
520            if (! e)
521              break;
522            if (e->probability <= probability_cutoff)
523              break;
524          }
525
526        ebb_start = bb;
527        nr_regions++;
528      }
529  }
530  else
531    FOR_EACH_BB_FN (bb, cfun)
532      {
533        rgn_bb_table[nr_regions] = bb->index;
534        RGN_NR_BLOCKS (nr_regions) = 1;
535        RGN_BLOCKS (nr_regions) = nr_regions;
536        RGN_DONT_CALC_DEPS (nr_regions) = 0;
537        RGN_HAS_REAL_EBB (nr_regions) = 0;
538
539        CONTAINING_RGN (bb->index) = nr_regions;
540        BLOCK_TO_BB (bb->index) = 0;
541        nr_regions++;
542      }
543}
544
545/* Estimate number of the insns in the BB.  */
546static int
547rgn_estimate_number_of_insns (basic_block bb)
548{
549  int count;
550
551  count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
552
553  if (MAY_HAVE_DEBUG_INSNS)
554    {
555      rtx_insn *insn;
556
557      FOR_BB_INSNS (bb, insn)
558	if (DEBUG_INSN_P (insn))
559	  count--;
560    }
561
562  return count;
563}
564
565/* Update number of blocks and the estimate for number of insns
566   in the region.  Return true if the region is "too large" for interblock
567   scheduling (compile time considerations).  */
568
569static bool
570too_large (int block, int *num_bbs, int *num_insns)
571{
572  (*num_bbs)++;
573  (*num_insns) += (common_sched_info->estimate_number_of_insns
574                   (BASIC_BLOCK_FOR_FN (cfun, block)));
575
576  return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
577	  || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
578}
579
580/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
581   is still an inner loop.  Put in max_hdr[blk] the header of the most inner
582   loop containing blk.  */
583#define UPDATE_LOOP_RELATIONS(blk, hdr)		\
584{						\
585  if (max_hdr[blk] == -1)			\
586    max_hdr[blk] = hdr;				\
587  else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr])	\
588    bitmap_clear_bit (inner, hdr);			\
589  else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr])	\
590    {						\
591      bitmap_clear_bit (inner,max_hdr[blk]);		\
592      max_hdr[blk] = hdr;			\
593    }						\
594}
595
596/* Find regions for interblock scheduling.
597
598   A region for scheduling can be:
599
600     * A loop-free procedure, or
601
602     * A reducible inner loop, or
603
604     * A basic block not contained in any other region.
605
606   ?!? In theory we could build other regions based on extended basic
607   blocks or reverse extended basic blocks.  Is it worth the trouble?
608
609   Loop blocks that form a region are put into the region's block list
610   in topological order.
611
612   This procedure stores its results into the following global (ick) variables
613
614     * rgn_nr
615     * rgn_table
616     * rgn_bb_table
617     * block_to_bb
618     * containing region
619
620   We use dominator relationships to avoid making regions out of non-reducible
621   loops.
622
623   This procedure needs to be converted to work on pred/succ lists instead
624   of edge tables.  That would simplify it somewhat.  */
625
626static void
627haifa_find_rgns (void)
628{
629  int *max_hdr, *dfs_nr, *degree;
630  char no_loops = 1;
631  int node, child, loop_head, i, head, tail;
632  int count = 0, sp, idx = 0;
633  edge_iterator current_edge;
634  edge_iterator *stack;
635  int num_bbs, num_insns, unreachable;
636  int too_large_failure;
637  basic_block bb;
638
639  /* Note if a block is a natural loop header.  */
640  sbitmap header;
641
642  /* Note if a block is a natural inner loop header.  */
643  sbitmap inner;
644
645  /* Note if a block is in the block queue.  */
646  sbitmap in_queue;
647
648  /* Note if a block is in the block queue.  */
649  sbitmap in_stack;
650
651  /* Perform a DFS traversal of the cfg.  Identify loop headers, inner loops
652     and a mapping from block to its loop header (if the block is contained
653     in a loop, else -1).
654
655     Store results in HEADER, INNER, and MAX_HDR respectively, these will
656     be used as inputs to the second traversal.
657
658     STACK, SP and DFS_NR are only used during the first traversal.  */
659
660  /* Allocate and initialize variables for the first traversal.  */
661  max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
662  dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
663  stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
664
665  inner = sbitmap_alloc (last_basic_block_for_fn (cfun));
666  bitmap_ones (inner);
667
668  header = sbitmap_alloc (last_basic_block_for_fn (cfun));
669  bitmap_clear (header);
670
671  in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
672  bitmap_clear (in_queue);
673
674  in_stack = sbitmap_alloc (last_basic_block_for_fn (cfun));
675  bitmap_clear (in_stack);
676
677  for (i = 0; i < last_basic_block_for_fn (cfun); i++)
678    max_hdr[i] = -1;
679
680  #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
681  #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
682
683  /* DFS traversal to find inner loops in the cfg.  */
684
685  current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
686  sp = -1;
687
688  while (1)
689    {
690      if (EDGE_PASSED (current_edge))
691	{
692	  /* We have reached a leaf node or a node that was already
693	     processed.  Pop edges off the stack until we find
694	     an edge that has not yet been processed.  */
695	  while (sp >= 0 && EDGE_PASSED (current_edge))
696	    {
697	      /* Pop entry off the stack.  */
698	      current_edge = stack[sp--];
699	      node = ei_edge (current_edge)->src->index;
700	      gcc_assert (node != ENTRY_BLOCK);
701	      child = ei_edge (current_edge)->dest->index;
702	      gcc_assert (child != EXIT_BLOCK);
703	      bitmap_clear_bit (in_stack, child);
704	      if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
705		UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
706	      ei_next (&current_edge);
707	    }
708
709	  /* See if have finished the DFS tree traversal.  */
710	  if (sp < 0 && EDGE_PASSED (current_edge))
711	    break;
712
713	  /* Nope, continue the traversal with the popped node.  */
714	  continue;
715	}
716
717      /* Process a node.  */
718      node = ei_edge (current_edge)->src->index;
719      gcc_assert (node != ENTRY_BLOCK);
720      bitmap_set_bit (in_stack, node);
721      dfs_nr[node] = ++count;
722
723      /* We don't traverse to the exit block.  */
724      child = ei_edge (current_edge)->dest->index;
725      if (child == EXIT_BLOCK)
726	{
727	  SET_EDGE_PASSED (current_edge);
728	  ei_next (&current_edge);
729	  continue;
730	}
731
732      /* If the successor is in the stack, then we've found a loop.
733	 Mark the loop, if it is not a natural loop, then it will
734	 be rejected during the second traversal.  */
735      if (bitmap_bit_p (in_stack, child))
736	{
737	  no_loops = 0;
738	  bitmap_set_bit (header, child);
739	  UPDATE_LOOP_RELATIONS (node, child);
740	  SET_EDGE_PASSED (current_edge);
741	  ei_next (&current_edge);
742	  continue;
743	}
744
745      /* If the child was already visited, then there is no need to visit
746	 it again.  Just update the loop relationships and restart
747	 with a new edge.  */
748      if (dfs_nr[child])
749	{
750	  if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
751	    UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
752	  SET_EDGE_PASSED (current_edge);
753	  ei_next (&current_edge);
754	  continue;
755	}
756
757      /* Push an entry on the stack and continue DFS traversal.  */
758      stack[++sp] = current_edge;
759      SET_EDGE_PASSED (current_edge);
760      current_edge = ei_start (ei_edge (current_edge)->dest->succs);
761    }
762
763  /* Reset ->aux field used by EDGE_PASSED.  */
764  FOR_ALL_BB_FN (bb, cfun)
765    {
766      edge_iterator ei;
767      edge e;
768      FOR_EACH_EDGE (e, ei, bb->succs)
769	e->aux = NULL;
770    }
771
772
773  /* Another check for unreachable blocks.  The earlier test in
774     is_cfg_nonregular only finds unreachable blocks that do not
775     form a loop.
776
777     The DFS traversal will mark every block that is reachable from
778     the entry node by placing a nonzero value in dfs_nr.  Thus if
779     dfs_nr is zero for any block, then it must be unreachable.  */
780  unreachable = 0;
781  FOR_EACH_BB_FN (bb, cfun)
782    if (dfs_nr[bb->index] == 0)
783      {
784	unreachable = 1;
785	break;
786      }
787
788  /* Gross.  To avoid wasting memory, the second pass uses the dfs_nr array
789     to hold degree counts.  */
790  degree = dfs_nr;
791
792  FOR_EACH_BB_FN (bb, cfun)
793    degree[bb->index] = EDGE_COUNT (bb->preds);
794
795  /* Do not perform region scheduling if there are any unreachable
796     blocks.  */
797  if (!unreachable)
798    {
799      int *queue, *degree1 = NULL;
800      /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
801	 there basic blocks, which are forced to be region heads.
802	 This is done to try to assemble few smaller regions
803	 from a too_large region.  */
804      sbitmap extended_rgn_header = NULL;
805      bool extend_regions_p;
806
807      if (no_loops)
808	bitmap_set_bit (header, 0);
809
810      /* Second traversal:find reducible inner loops and topologically sort
811	 block of each region.  */
812
813      queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
814
815      extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
816      if (extend_regions_p)
817        {
818          degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
819          extended_rgn_header =
820	    sbitmap_alloc (last_basic_block_for_fn (cfun));
821          bitmap_clear (extended_rgn_header);
822	}
823
824      /* Find blocks which are inner loop headers.  We still have non-reducible
825	 loops to consider at this point.  */
826      FOR_EACH_BB_FN (bb, cfun)
827	{
828	  if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
829	    {
830	      edge e;
831	      edge_iterator ei;
832	      basic_block jbb;
833
834	      /* Now check that the loop is reducible.  We do this separate
835		 from finding inner loops so that we do not find a reducible
836		 loop which contains an inner non-reducible loop.
837
838		 A simple way to find reducible/natural loops is to verify
839		 that each block in the loop is dominated by the loop
840		 header.
841
842		 If there exists a block that is not dominated by the loop
843		 header, then the block is reachable from outside the loop
844		 and thus the loop is not a natural loop.  */
845	      FOR_EACH_BB_FN (jbb, cfun)
846		{
847		  /* First identify blocks in the loop, except for the loop
848		     entry block.  */
849		  if (bb->index == max_hdr[jbb->index] && bb != jbb)
850		    {
851		      /* Now verify that the block is dominated by the loop
852			 header.  */
853		      if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
854			break;
855		    }
856		}
857
858	      /* If we exited the loop early, then I is the header of
859		 a non-reducible loop and we should quit processing it
860		 now.  */
861	      if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
862		continue;
863
864	      /* I is a header of an inner loop, or block 0 in a subroutine
865		 with no loops at all.  */
866	      head = tail = -1;
867	      too_large_failure = 0;
868	      loop_head = max_hdr[bb->index];
869
870              if (extend_regions_p)
871                /* We save degree in case when we meet a too_large region
872		   and cancel it.  We need a correct degree later when
873                   calling extend_rgns.  */
874                memcpy (degree1, degree,
875			last_basic_block_for_fn (cfun) * sizeof (int));
876
877	      /* Decrease degree of all I's successors for topological
878		 ordering.  */
879	      FOR_EACH_EDGE (e, ei, bb->succs)
880		if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
881		  --degree[e->dest->index];
882
883	      /* Estimate # insns, and count # blocks in the region.  */
884	      num_bbs = 1;
885	      num_insns = common_sched_info->estimate_number_of_insns (bb);
886
887	      /* Find all loop latches (blocks with back edges to the loop
888		 header) or all the leaf blocks in the cfg has no loops.
889
890		 Place those blocks into the queue.  */
891	      if (no_loops)
892		{
893		  FOR_EACH_BB_FN (jbb, cfun)
894		    /* Leaf nodes have only a single successor which must
895		       be EXIT_BLOCK.  */
896		    if (single_succ_p (jbb)
897			&& single_succ (jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
898		      {
899			queue[++tail] = jbb->index;
900			bitmap_set_bit (in_queue, jbb->index);
901
902			if (too_large (jbb->index, &num_bbs, &num_insns))
903			  {
904			    too_large_failure = 1;
905			    break;
906			  }
907		      }
908		}
909	      else
910		{
911		  edge e;
912
913		  FOR_EACH_EDGE (e, ei, bb->preds)
914		    {
915		      if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
916			continue;
917
918		      node = e->src->index;
919
920		      if (max_hdr[node] == loop_head && node != bb->index)
921			{
922			  /* This is a loop latch.  */
923			  queue[++tail] = node;
924			  bitmap_set_bit (in_queue, node);
925
926			  if (too_large (node, &num_bbs, &num_insns))
927			    {
928			      too_large_failure = 1;
929			      break;
930			    }
931			}
932		    }
933		}
934
935	      /* Now add all the blocks in the loop to the queue.
936
937	     We know the loop is a natural loop; however the algorithm
938	     above will not always mark certain blocks as being in the
939	     loop.  Consider:
940		node   children
941		 a	  b,c
942		 b	  c
943		 c	  a,d
944		 d	  b
945
946	     The algorithm in the DFS traversal may not mark B & D as part
947	     of the loop (i.e. they will not have max_hdr set to A).
948
949	     We know they can not be loop latches (else they would have
950	     had max_hdr set since they'd have a backedge to a dominator
951	     block).  So we don't need them on the initial queue.
952
953	     We know they are part of the loop because they are dominated
954	     by the loop header and can be reached by a backwards walk of
955	     the edges starting with nodes on the initial queue.
956
957	     It is safe and desirable to include those nodes in the
958	     loop/scheduling region.  To do so we would need to decrease
959	     the degree of a node if it is the target of a backedge
960	     within the loop itself as the node is placed in the queue.
961
962	     We do not do this because I'm not sure that the actual
963	     scheduling code will properly handle this case. ?!? */
964
965	      while (head < tail && !too_large_failure)
966		{
967		  edge e;
968		  child = queue[++head];
969
970		  FOR_EACH_EDGE (e, ei,
971				 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
972		    {
973		      node = e->src->index;
974
975		      /* See discussion above about nodes not marked as in
976			 this loop during the initial DFS traversal.  */
977		      if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
978			  || max_hdr[node] != loop_head)
979			{
980			  tail = -1;
981			  break;
982			}
983		      else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
984			{
985			  queue[++tail] = node;
986			  bitmap_set_bit (in_queue, node);
987
988			  if (too_large (node, &num_bbs, &num_insns))
989			    {
990			      too_large_failure = 1;
991			      break;
992			    }
993			}
994		    }
995		}
996
997	      if (tail >= 0 && !too_large_failure)
998		{
999		  /* Place the loop header into list of region blocks.  */
1000		  degree[bb->index] = -1;
1001		  rgn_bb_table[idx] = bb->index;
1002		  RGN_NR_BLOCKS (nr_regions) = num_bbs;
1003		  RGN_BLOCKS (nr_regions) = idx++;
1004                  RGN_DONT_CALC_DEPS (nr_regions) = 0;
1005		  RGN_HAS_REAL_EBB (nr_regions) = 0;
1006		  CONTAINING_RGN (bb->index) = nr_regions;
1007		  BLOCK_TO_BB (bb->index) = count = 0;
1008
1009		  /* Remove blocks from queue[] when their in degree
1010		     becomes zero.  Repeat until no blocks are left on the
1011		     list.  This produces a topological list of blocks in
1012		     the region.  */
1013		  while (tail >= 0)
1014		    {
1015		      if (head < 0)
1016			head = tail;
1017		      child = queue[head];
1018		      if (degree[child] == 0)
1019			{
1020			  edge e;
1021
1022			  degree[child] = -1;
1023			  rgn_bb_table[idx++] = child;
1024			  BLOCK_TO_BB (child) = ++count;
1025			  CONTAINING_RGN (child) = nr_regions;
1026			  queue[head] = queue[tail--];
1027
1028			  FOR_EACH_EDGE (e, ei,
1029					 BASIC_BLOCK_FOR_FN (cfun,
1030							     child)->succs)
1031			    if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1032			      --degree[e->dest->index];
1033			}
1034		      else
1035			--head;
1036		    }
1037		  ++nr_regions;
1038		}
1039              else if (extend_regions_p)
1040                {
1041                  /* Restore DEGREE.  */
1042                  int *t = degree;
1043
1044                  degree = degree1;
1045                  degree1 = t;
1046
1047                  /* And force successors of BB to be region heads.
1048		     This may provide several smaller regions instead
1049		     of one too_large region.  */
1050                  FOR_EACH_EDGE (e, ei, bb->succs)
1051		    if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1052                      bitmap_set_bit (extended_rgn_header, e->dest->index);
1053                }
1054	    }
1055	}
1056      free (queue);
1057
1058      if (extend_regions_p)
1059        {
1060          free (degree1);
1061
1062          bitmap_ior (header, header, extended_rgn_header);
1063          sbitmap_free (extended_rgn_header);
1064
1065          extend_rgns (degree, &idx, header, max_hdr);
1066        }
1067    }
1068
1069  /* Any block that did not end up in a region is placed into a region
1070     by itself.  */
1071  FOR_EACH_BB_FN (bb, cfun)
1072    if (degree[bb->index] >= 0)
1073      {
1074	rgn_bb_table[idx] = bb->index;
1075	RGN_NR_BLOCKS (nr_regions) = 1;
1076	RGN_BLOCKS (nr_regions) = idx++;
1077        RGN_DONT_CALC_DEPS (nr_regions) = 0;
1078	RGN_HAS_REAL_EBB (nr_regions) = 0;
1079	CONTAINING_RGN (bb->index) = nr_regions++;
1080	BLOCK_TO_BB (bb->index) = 0;
1081      }
1082
1083  free (max_hdr);
1084  free (degree);
1085  free (stack);
1086  sbitmap_free (header);
1087  sbitmap_free (inner);
1088  sbitmap_free (in_queue);
1089  sbitmap_free (in_stack);
1090}
1091
1092
1093/* Wrapper function.
1094   If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1095   regions.  Otherwise just call find_rgns_haifa.  */
1096static void
1097find_rgns (void)
1098{
1099  if (sel_sched_p () && flag_sel_sched_pipelining)
1100    sel_find_rgns ();
1101  else
1102    haifa_find_rgns ();
1103}
1104
1105static int gather_region_statistics (int **);
1106static void print_region_statistics (int *, int, int *, int);
1107
1108/* Calculate the histogram that shows the number of regions having the
1109   given number of basic blocks, and store it in the RSP array.  Return
1110   the size of this array.  */
1111static int
1112gather_region_statistics (int **rsp)
1113{
1114  int i, *a = 0, a_sz = 0;
1115
1116  /* a[i] is the number of regions that have (i + 1) basic blocks.  */
1117  for (i = 0; i < nr_regions; i++)
1118    {
1119      int nr_blocks = RGN_NR_BLOCKS (i);
1120
1121      gcc_assert (nr_blocks >= 1);
1122
1123      if (nr_blocks > a_sz)
1124	{
1125	  a = XRESIZEVEC (int, a, nr_blocks);
1126	  do
1127	    a[a_sz++] = 0;
1128	  while (a_sz != nr_blocks);
1129	}
1130
1131      a[nr_blocks - 1]++;
1132    }
1133
1134  *rsp = a;
1135  return a_sz;
1136}
1137
1138/* Print regions statistics.  S1 and S2 denote the data before and after
1139   calling extend_rgns, respectively.  */
1140static void
1141print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1142{
1143  int i;
1144
1145  /* We iterate until s2_sz because extend_rgns does not decrease
1146     the maximal region size.  */
1147  for (i = 1; i < s2_sz; i++)
1148    {
1149      int n1, n2;
1150
1151      n2 = s2[i];
1152
1153      if (n2 == 0)
1154	continue;
1155
1156      if (i >= s1_sz)
1157	n1 = 0;
1158      else
1159	n1 = s1[i];
1160
1161      fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1162	       "was %d + %d more\n", i + 1, n1, n2 - n1);
1163    }
1164}
1165
1166/* Extend regions.
1167   DEGREE - Array of incoming edge count, considering only
1168   the edges, that don't have their sources in formed regions yet.
1169   IDXP - pointer to the next available index in rgn_bb_table.
1170   HEADER - set of all region heads.
1171   LOOP_HDR - mapping from block to the containing loop
1172   (two blocks can reside within one region if they have
1173   the same loop header).  */
1174void
1175extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1176{
1177  int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1178  int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1179
1180  max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1181
1182  max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
1183
1184  order = XNEWVEC (int, last_basic_block_for_fn (cfun));
1185  post_order_compute (order, false, false);
1186
1187  for (i = nblocks - 1; i >= 0; i--)
1188    {
1189      int bbn = order[i];
1190      if (degree[bbn] >= 0)
1191	{
1192	  max_hdr[bbn] = bbn;
1193	  rescan = 1;
1194	}
1195      else
1196        /* This block already was processed in find_rgns.  */
1197        max_hdr[bbn] = -1;
1198    }
1199
1200  /* The idea is to topologically walk through CFG in top-down order.
1201     During the traversal, if all the predecessors of a node are
1202     marked to be in the same region (they all have the same max_hdr),
1203     then current node is also marked to be a part of that region.
1204     Otherwise the node starts its own region.
1205     CFG should be traversed until no further changes are made.  On each
1206     iteration the set of the region heads is extended (the set of those
1207     blocks that have max_hdr[bbi] == bbi).  This set is upper bounded by the
1208     set of all basic blocks, thus the algorithm is guaranteed to
1209     terminate.  */
1210
1211  while (rescan && iter < max_iter)
1212    {
1213      rescan = 0;
1214
1215      for (i = nblocks - 1; i >= 0; i--)
1216	{
1217	  edge e;
1218	  edge_iterator ei;
1219	  int bbn = order[i];
1220
1221	  if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1222	    {
1223	      int hdr = -1;
1224
1225	      FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
1226		{
1227		  int predn = e->src->index;
1228
1229		  if (predn != ENTRY_BLOCK
1230		      /* If pred wasn't processed in find_rgns.  */
1231		      && max_hdr[predn] != -1
1232		      /* And pred and bb reside in the same loop.
1233			 (Or out of any loop).  */
1234		      && loop_hdr[bbn] == loop_hdr[predn])
1235		    {
1236		      if (hdr == -1)
1237			/* Then bb extends the containing region of pred.  */
1238			hdr = max_hdr[predn];
1239		      else if (hdr != max_hdr[predn])
1240			/* Too bad, there are at least two predecessors
1241			   that reside in different regions.  Thus, BB should
1242			   begin its own region.  */
1243			{
1244			  hdr = bbn;
1245			  break;
1246			}
1247		    }
1248		  else
1249		    /* BB starts its own region.  */
1250		    {
1251		      hdr = bbn;
1252		      break;
1253		    }
1254		}
1255
1256	      if (hdr == bbn)
1257		{
1258		  /* If BB start its own region,
1259		     update set of headers with BB.  */
1260		  bitmap_set_bit (header, bbn);
1261		  rescan = 1;
1262		}
1263	      else
1264		gcc_assert (hdr != -1);
1265
1266	      max_hdr[bbn] = hdr;
1267	    }
1268	}
1269
1270      iter++;
1271    }
1272
1273  /* Statistics were gathered on the SPEC2000 package of tests with
1274     mainline weekly snapshot gcc-4.1-20051015 on ia64.
1275
1276     Statistics for SPECint:
1277     1 iteration : 1751 cases (38.7%)
1278     2 iterations: 2770 cases (61.3%)
1279     Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1280     Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1281     (We don't count single block regions here).
1282
1283     Statistics for SPECfp:
1284     1 iteration : 621 cases (35.9%)
1285     2 iterations: 1110 cases (64.1%)
1286     Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1287     Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1288     (We don't count single block regions here).
1289
1290     By default we do at most 2 iterations.
1291     This can be overridden with max-sched-extend-regions-iters parameter:
1292     0 - disable region extension,
1293     N > 0 - do at most N iterations.  */
1294
1295  if (sched_verbose && iter != 0)
1296    fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1297	     rescan ? "... failed" : "");
1298
1299  if (!rescan && iter != 0)
1300    {
1301      int *s1 = NULL, s1_sz = 0;
1302
1303      /* Save the old statistics for later printout.  */
1304      if (sched_verbose >= 6)
1305	s1_sz = gather_region_statistics (&s1);
1306
1307      /* We have succeeded.  Now assemble the regions.  */
1308      for (i = nblocks - 1; i >= 0; i--)
1309	{
1310	  int bbn = order[i];
1311
1312	  if (max_hdr[bbn] == bbn)
1313	    /* BBN is a region head.  */
1314	    {
1315	      edge e;
1316	      edge_iterator ei;
1317	      int num_bbs = 0, j, num_insns = 0, large;
1318
1319	      large = too_large (bbn, &num_bbs, &num_insns);
1320
1321	      degree[bbn] = -1;
1322	      rgn_bb_table[idx] = bbn;
1323	      RGN_BLOCKS (nr_regions) = idx++;
1324	      RGN_DONT_CALC_DEPS (nr_regions) = 0;
1325	      RGN_HAS_REAL_EBB (nr_regions) = 0;
1326	      CONTAINING_RGN (bbn) = nr_regions;
1327	      BLOCK_TO_BB (bbn) = 0;
1328
1329	      FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
1330		if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1331		  degree[e->dest->index]--;
1332
1333	      if (!large)
1334		/* Here we check whether the region is too_large.  */
1335		for (j = i - 1; j >= 0; j--)
1336		  {
1337		    int succn = order[j];
1338		    if (max_hdr[succn] == bbn)
1339		      {
1340			if ((large = too_large (succn, &num_bbs, &num_insns)))
1341			  break;
1342		      }
1343		  }
1344
1345	      if (large)
1346		/* If the region is too_large, then wrap every block of
1347		   the region into single block region.
1348		   Here we wrap region head only.  Other blocks are
1349		   processed in the below cycle.  */
1350		{
1351		  RGN_NR_BLOCKS (nr_regions) = 1;
1352		  nr_regions++;
1353		}
1354
1355	      num_bbs = 1;
1356
1357	      for (j = i - 1; j >= 0; j--)
1358		{
1359		  int succn = order[j];
1360
1361		  if (max_hdr[succn] == bbn)
1362		    /* This cycle iterates over all basic blocks, that
1363		       are supposed to be in the region with head BBN,
1364		       and wraps them into that region (or in single
1365		       block region).  */
1366		    {
1367		      gcc_assert (degree[succn] == 0);
1368
1369		      degree[succn] = -1;
1370		      rgn_bb_table[idx] = succn;
1371		      BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1372		      CONTAINING_RGN (succn) = nr_regions;
1373
1374		      if (large)
1375			/* Wrap SUCCN into single block region.  */
1376			{
1377			  RGN_BLOCKS (nr_regions) = idx;
1378			  RGN_NR_BLOCKS (nr_regions) = 1;
1379			  RGN_DONT_CALC_DEPS (nr_regions) = 0;
1380			  RGN_HAS_REAL_EBB (nr_regions) = 0;
1381			  nr_regions++;
1382			}
1383
1384		      idx++;
1385
1386		      FOR_EACH_EDGE (e, ei,
1387				     BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
1388			if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1389			  degree[e->dest->index]--;
1390		    }
1391		}
1392
1393	      if (!large)
1394		{
1395		  RGN_NR_BLOCKS (nr_regions) = num_bbs;
1396		  nr_regions++;
1397		}
1398	    }
1399	}
1400
1401      if (sched_verbose >= 6)
1402	{
1403	  int *s2, s2_sz;
1404
1405          /* Get the new statistics and print the comparison with the
1406             one before calling this function.  */
1407	  s2_sz = gather_region_statistics (&s2);
1408	  print_region_statistics (s1, s1_sz, s2, s2_sz);
1409	  free (s1);
1410	  free (s2);
1411	}
1412    }
1413
1414  free (order);
1415  free (max_hdr);
1416
1417  *idxp = idx;
1418}
1419
1420/* Functions for regions scheduling information.  */
1421
1422/* Compute dominators, probability, and potential-split-edges of bb.
1423   Assume that these values were already computed for bb's predecessors.  */
1424
1425static void
1426compute_dom_prob_ps (int bb)
1427{
1428  edge_iterator in_ei;
1429  edge in_edge;
1430
1431  /* We shouldn't have any real ebbs yet.  */
1432  gcc_assert (ebb_head [bb] == bb + current_blocks);
1433
1434  if (IS_RGN_ENTRY (bb))
1435    {
1436      bitmap_set_bit (dom[bb], 0);
1437      prob[bb] = REG_BR_PROB_BASE;
1438      return;
1439    }
1440
1441  prob[bb] = 0;
1442
1443  /* Initialize dom[bb] to '111..1'.  */
1444  bitmap_ones (dom[bb]);
1445
1446  FOR_EACH_EDGE (in_edge, in_ei,
1447		 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
1448    {
1449      int pred_bb;
1450      edge out_edge;
1451      edge_iterator out_ei;
1452
1453      if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1454	continue;
1455
1456      pred_bb = BLOCK_TO_BB (in_edge->src->index);
1457      bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1458      bitmap_ior (ancestor_edges[bb],
1459		      ancestor_edges[bb], ancestor_edges[pred_bb]);
1460
1461      bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1462
1463      bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1464
1465      FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1466	bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1467
1468      prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
1469      // The rounding divide in combine_probabilities can result in an extra
1470      // probability increment propagating along 50-50 edges. Eventually when
1471      // the edges re-merge, the accumulated probability can go slightly above
1472      // REG_BR_PROB_BASE.
1473      if (prob[bb] > REG_BR_PROB_BASE)
1474        prob[bb] = REG_BR_PROB_BASE;
1475    }
1476
1477  bitmap_set_bit (dom[bb], bb);
1478  bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1479
1480  if (sched_verbose >= 2)
1481    fprintf (sched_dump, ";;  bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1482	     (100 * prob[bb]) / REG_BR_PROB_BASE);
1483}
1484
1485/* Functions for target info.  */
1486
1487/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1488   Note that bb_trg dominates bb_src.  */
1489
1490static void
1491split_edges (int bb_src, int bb_trg, edgelst *bl)
1492{
1493  sbitmap src = sbitmap_alloc (SBITMAP_SIZE (pot_split[bb_src]));
1494  bitmap_copy (src, pot_split[bb_src]);
1495
1496  bitmap_and_compl (src, src, pot_split[bb_trg]);
1497  extract_edgelst (src, bl);
1498  sbitmap_free (src);
1499}
1500
1501/* Find the valid candidate-source-blocks for the target block TRG, compute
1502   their probability, and check if they are speculative or not.
1503   For speculative sources, compute their update-blocks and split-blocks.  */
1504
1505static void
1506compute_trg_info (int trg)
1507{
1508  candidate *sp;
1509  edgelst el = { NULL, 0 };
1510  int i, j, k, update_idx;
1511  basic_block block;
1512  sbitmap visited;
1513  edge_iterator ei;
1514  edge e;
1515
1516  candidate_table = XNEWVEC (candidate, current_nr_blocks);
1517
1518  bblst_last = 0;
1519  /* bblst_table holds split blocks and update blocks for each block after
1520     the current one in the region.  split blocks and update blocks are
1521     the TO blocks of region edges, so there can be at most rgn_nr_edges
1522     of them.  */
1523  bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1524  bblst_table = XNEWVEC (basic_block, bblst_size);
1525
1526  edgelst_last = 0;
1527  edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1528
1529  /* Define some of the fields for the target bb as well.  */
1530  sp = candidate_table + trg;
1531  sp->is_valid = 1;
1532  sp->is_speculative = 0;
1533  sp->src_prob = REG_BR_PROB_BASE;
1534
1535  visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1536
1537  for (i = trg + 1; i < current_nr_blocks; i++)
1538    {
1539      sp = candidate_table + i;
1540
1541      sp->is_valid = IS_DOMINATED (i, trg);
1542      if (sp->is_valid)
1543	{
1544	  int tf = prob[trg], cf = prob[i];
1545
1546	  /* In CFGs with low probability edges TF can possibly be zero.  */
1547	  sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1548	  sp->is_valid = (sp->src_prob >= min_spec_prob);
1549	}
1550
1551      if (sp->is_valid)
1552	{
1553	  split_edges (i, trg, &el);
1554	  sp->is_speculative = (el.nr_members) ? 1 : 0;
1555	  if (sp->is_speculative && !flag_schedule_speculative)
1556	    sp->is_valid = 0;
1557	}
1558
1559      if (sp->is_valid)
1560	{
1561	  /* Compute split blocks and store them in bblst_table.
1562	     The TO block of every split edge is a split block.  */
1563	  sp->split_bbs.first_member = &bblst_table[bblst_last];
1564	  sp->split_bbs.nr_members = el.nr_members;
1565	  for (j = 0; j < el.nr_members; bblst_last++, j++)
1566	    bblst_table[bblst_last] = el.first_member[j]->dest;
1567	  sp->update_bbs.first_member = &bblst_table[bblst_last];
1568
1569	  /* Compute update blocks and store them in bblst_table.
1570	     For every split edge, look at the FROM block, and check
1571	     all out edges.  For each out edge that is not a split edge,
1572	     add the TO block to the update block list.  This list can end
1573	     up with a lot of duplicates.  We need to weed them out to avoid
1574	     overrunning the end of the bblst_table.  */
1575
1576	  update_idx = 0;
1577	  bitmap_clear (visited);
1578	  for (j = 0; j < el.nr_members; j++)
1579	    {
1580	      block = el.first_member[j]->src;
1581	      FOR_EACH_EDGE (e, ei, block->succs)
1582		{
1583		  if (!bitmap_bit_p (visited, e->dest->index))
1584		    {
1585		      for (k = 0; k < el.nr_members; k++)
1586			if (e == el.first_member[k])
1587			  break;
1588
1589		      if (k >= el.nr_members)
1590			{
1591			  bblst_table[bblst_last++] = e->dest;
1592			  bitmap_set_bit (visited, e->dest->index);
1593			  update_idx++;
1594			}
1595		    }
1596		}
1597	    }
1598	  sp->update_bbs.nr_members = update_idx;
1599
1600	  /* Make sure we didn't overrun the end of bblst_table.  */
1601	  gcc_assert (bblst_last <= bblst_size);
1602	}
1603      else
1604	{
1605	  sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1606
1607	  sp->is_speculative = 0;
1608	  sp->src_prob = 0;
1609	}
1610    }
1611
1612  sbitmap_free (visited);
1613}
1614
1615/* Free the computed target info.  */
1616static void
1617free_trg_info (void)
1618{
1619  free (candidate_table);
1620  free (bblst_table);
1621  free (edgelst_table);
1622}
1623
1624/* Print candidates info, for debugging purposes.  Callable from debugger.  */
1625
1626DEBUG_FUNCTION void
1627debug_candidate (int i)
1628{
1629  if (!candidate_table[i].is_valid)
1630    return;
1631
1632  if (candidate_table[i].is_speculative)
1633    {
1634      int j;
1635      fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1636
1637      fprintf (sched_dump, "split path: ");
1638      for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1639	{
1640	  int b = candidate_table[i].split_bbs.first_member[j]->index;
1641
1642	  fprintf (sched_dump, " %d ", b);
1643	}
1644      fprintf (sched_dump, "\n");
1645
1646      fprintf (sched_dump, "update path: ");
1647      for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1648	{
1649	  int b = candidate_table[i].update_bbs.first_member[j]->index;
1650
1651	  fprintf (sched_dump, " %d ", b);
1652	}
1653      fprintf (sched_dump, "\n");
1654    }
1655  else
1656    {
1657      fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1658    }
1659}
1660
1661/* Print candidates info, for debugging purposes.  Callable from debugger.  */
1662
1663DEBUG_FUNCTION void
1664debug_candidates (int trg)
1665{
1666  int i;
1667
1668  fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1669	   BB_TO_BLOCK (trg), trg);
1670  for (i = trg + 1; i < current_nr_blocks; i++)
1671    debug_candidate (i);
1672}
1673
1674/* Functions for speculative scheduling.  */
1675
1676static bitmap_head not_in_df;
1677
1678/* Return 0 if x is a set of a register alive in the beginning of one
1679   of the split-blocks of src, otherwise return 1.  */
1680
1681static int
1682check_live_1 (int src, rtx x)
1683{
1684  int i;
1685  int regno;
1686  rtx reg = SET_DEST (x);
1687
1688  if (reg == 0)
1689    return 1;
1690
1691  while (GET_CODE (reg) == SUBREG
1692	 || GET_CODE (reg) == ZERO_EXTRACT
1693	 || GET_CODE (reg) == STRICT_LOW_PART)
1694    reg = XEXP (reg, 0);
1695
1696  if (GET_CODE (reg) == PARALLEL)
1697    {
1698      int i;
1699
1700      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1701	if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1702	  if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1703	    return 1;
1704
1705      return 0;
1706    }
1707
1708  if (!REG_P (reg))
1709    return 1;
1710
1711  regno = REGNO (reg);
1712
1713  if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1714    {
1715      /* Global registers are assumed live.  */
1716      return 0;
1717    }
1718  else
1719    {
1720      if (regno < FIRST_PSEUDO_REGISTER)
1721	{
1722	  /* Check for hard registers.  */
1723	  int j = hard_regno_nregs[regno][GET_MODE (reg)];
1724	  while (--j >= 0)
1725	    {
1726	      for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1727		{
1728		  basic_block b = candidate_table[src].split_bbs.first_member[i];
1729		  int t = bitmap_bit_p (&not_in_df, b->index);
1730
1731		  /* We can have split blocks, that were recently generated.
1732		     Such blocks are always outside current region.  */
1733		  gcc_assert (!t || (CONTAINING_RGN (b->index)
1734				     != CONTAINING_RGN (BB_TO_BLOCK (src))));
1735
1736		  if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1737		    return 0;
1738		}
1739	    }
1740	}
1741      else
1742	{
1743	  /* Check for pseudo registers.  */
1744	  for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1745	    {
1746	      basic_block b = candidate_table[src].split_bbs.first_member[i];
1747	      int t = bitmap_bit_p (&not_in_df, b->index);
1748
1749	      gcc_assert (!t || (CONTAINING_RGN (b->index)
1750				 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1751
1752	      if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1753		return 0;
1754	    }
1755	}
1756    }
1757
1758  return 1;
1759}
1760
1761/* If x is a set of a register R, mark that R is alive in the beginning
1762   of every update-block of src.  */
1763
1764static void
1765update_live_1 (int src, rtx x)
1766{
1767  int i;
1768  int regno;
1769  rtx reg = SET_DEST (x);
1770
1771  if (reg == 0)
1772    return;
1773
1774  while (GET_CODE (reg) == SUBREG
1775	 || GET_CODE (reg) == ZERO_EXTRACT
1776	 || GET_CODE (reg) == STRICT_LOW_PART)
1777    reg = XEXP (reg, 0);
1778
1779  if (GET_CODE (reg) == PARALLEL)
1780    {
1781      int i;
1782
1783      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1784	if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1785	  update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1786
1787      return;
1788    }
1789
1790  if (!REG_P (reg))
1791    return;
1792
1793  /* Global registers are always live, so the code below does not apply
1794     to them.  */
1795
1796  regno = REGNO (reg);
1797
1798  if (! HARD_REGISTER_NUM_P (regno)
1799      || !global_regs[regno])
1800    {
1801      for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1802	{
1803	  basic_block b = candidate_table[src].update_bbs.first_member[i];
1804
1805	  if (HARD_REGISTER_NUM_P (regno))
1806	    bitmap_set_range (df_get_live_in (b), regno,
1807			      hard_regno_nregs[regno][GET_MODE (reg)]);
1808	  else
1809	    bitmap_set_bit (df_get_live_in (b), regno);
1810	}
1811    }
1812}
1813
1814/* Return 1 if insn can be speculatively moved from block src to trg,
1815   otherwise return 0.  Called before first insertion of insn to
1816   ready-list or before the scheduling.  */
1817
1818static int
1819check_live (rtx_insn *insn, int src)
1820{
1821  /* Find the registers set by instruction.  */
1822  if (GET_CODE (PATTERN (insn)) == SET
1823      || GET_CODE (PATTERN (insn)) == CLOBBER)
1824    return check_live_1 (src, PATTERN (insn));
1825  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1826    {
1827      int j;
1828      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1829	if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1830	     || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1831	    && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1832	  return 0;
1833
1834      return 1;
1835    }
1836
1837  return 1;
1838}
1839
1840/* Update the live registers info after insn was moved speculatively from
1841   block src to trg.  */
1842
1843static void
1844update_live (rtx insn, int src)
1845{
1846  /* Find the registers set by instruction.  */
1847  if (GET_CODE (PATTERN (insn)) == SET
1848      || GET_CODE (PATTERN (insn)) == CLOBBER)
1849    update_live_1 (src, PATTERN (insn));
1850  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1851    {
1852      int j;
1853      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1854	if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1855	    || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1856	  update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1857    }
1858}
1859
1860/* Nonzero if block bb_to is equal to, or reachable from block bb_from.  */
1861#define IS_REACHABLE(bb_from, bb_to)					\
1862  (bb_from == bb_to							\
1863   || IS_RGN_ENTRY (bb_from)						\
1864   || (bitmap_bit_p (ancestor_edges[bb_to],					\
1865	 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1866							    BB_TO_BLOCK (bb_from)))))))
1867
1868/* Turns on the fed_by_spec_load flag for insns fed by load_insn.  */
1869
1870static void
1871set_spec_fed (rtx load_insn)
1872{
1873  sd_iterator_def sd_it;
1874  dep_t dep;
1875
1876  FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1877    if (DEP_TYPE (dep) == REG_DEP_TRUE)
1878      FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1879}
1880
1881/* On the path from the insn to load_insn_bb, find a conditional
1882branch depending on insn, that guards the speculative load.  */
1883
1884static int
1885find_conditional_protection (rtx insn, int load_insn_bb)
1886{
1887  sd_iterator_def sd_it;
1888  dep_t dep;
1889
1890  /* Iterate through DEF-USE forward dependences.  */
1891  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1892    {
1893      rtx_insn *next = DEP_CON (dep);
1894
1895      if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1896	   CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1897	  && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1898	  && load_insn_bb != INSN_BB (next)
1899	  && DEP_TYPE (dep) == REG_DEP_TRUE
1900	  && (JUMP_P (next)
1901	      || find_conditional_protection (next, load_insn_bb)))
1902	return 1;
1903    }
1904  return 0;
1905}				/* find_conditional_protection */
1906
1907/* Returns 1 if the same insn1 that participates in the computation
1908   of load_insn's address is feeding a conditional branch that is
1909   guarding on load_insn. This is true if we find two DEF-USE
1910   chains:
1911   insn1 -> ... -> conditional-branch
1912   insn1 -> ... -> load_insn,
1913   and if a flow path exists:
1914   insn1 -> ... -> conditional-branch -> ... -> load_insn,
1915   and if insn1 is on the path
1916   region-entry -> ... -> bb_trg -> ... load_insn.
1917
1918   Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1919   Locate the branch by following INSN_FORW_DEPS from insn1.  */
1920
1921static int
1922is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1923{
1924  sd_iterator_def sd_it;
1925  dep_t dep;
1926
1927  FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1928    {
1929      rtx_insn *insn1 = DEP_PRO (dep);
1930
1931      /* Must be a DEF-USE dependence upon non-branch.  */
1932      if (DEP_TYPE (dep) != REG_DEP_TRUE
1933	  || JUMP_P (insn1))
1934	continue;
1935
1936      /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn.  */
1937      if (INSN_BB (insn1) == bb_src
1938	  || (CONTAINING_RGN (BLOCK_NUM (insn1))
1939	      != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1940	  || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1941	      && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1942	continue;
1943
1944      /* Now search for the conditional-branch.  */
1945      if (find_conditional_protection (insn1, bb_src))
1946	return 1;
1947
1948      /* Recursive step: search another insn1, "above" current insn1.  */
1949      return is_conditionally_protected (insn1, bb_src, bb_trg);
1950    }
1951
1952  /* The chain does not exist.  */
1953  return 0;
1954}				/* is_conditionally_protected */
1955
1956/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1957   load_insn can move speculatively from bb_src to bb_trg.  All the
1958   following must hold:
1959
1960   (1) both loads have 1 base register (PFREE_CANDIDATEs).
1961   (2) load_insn and load1 have a def-use dependence upon
1962   the same insn 'insn1'.
1963   (3) either load2 is in bb_trg, or:
1964   - there's only one split-block, and
1965   - load1 is on the escape path, and
1966
1967   From all these we can conclude that the two loads access memory
1968   addresses that differ at most by a constant, and hence if moving
1969   load_insn would cause an exception, it would have been caused by
1970   load2 anyhow.  */
1971
1972static int
1973is_pfree (rtx load_insn, int bb_src, int bb_trg)
1974{
1975  sd_iterator_def back_sd_it;
1976  dep_t back_dep;
1977  candidate *candp = candidate_table + bb_src;
1978
1979  if (candp->split_bbs.nr_members != 1)
1980    /* Must have exactly one escape block.  */
1981    return 0;
1982
1983  FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1984    {
1985      rtx_insn *insn1 = DEP_PRO (back_dep);
1986
1987      if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1988	/* Found a DEF-USE dependence (insn1, load_insn).  */
1989	{
1990	  sd_iterator_def fore_sd_it;
1991	  dep_t fore_dep;
1992
1993	  FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1994	    {
1995	      rtx_insn *insn2 = DEP_CON (fore_dep);
1996
1997	      if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1998		{
1999		  /* Found a DEF-USE dependence (insn1, insn2).  */
2000		  if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
2001		    /* insn2 not guaranteed to be a 1 base reg load.  */
2002		    continue;
2003
2004		  if (INSN_BB (insn2) == bb_trg)
2005		    /* insn2 is the similar load, in the target block.  */
2006		    return 1;
2007
2008		  if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
2009		    /* insn2 is a similar load, in a split-block.  */
2010		    return 1;
2011		}
2012	    }
2013	}
2014    }
2015
2016  /* Couldn't find a similar load.  */
2017  return 0;
2018}				/* is_pfree */
2019
2020/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2021   a load moved speculatively, or if load_insn is protected by
2022   a compare on load_insn's address).  */
2023
2024static int
2025is_prisky (rtx load_insn, int bb_src, int bb_trg)
2026{
2027  if (FED_BY_SPEC_LOAD (load_insn))
2028    return 1;
2029
2030  if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2031    /* Dependence may 'hide' out of the region.  */
2032    return 1;
2033
2034  if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2035    return 1;
2036
2037  return 0;
2038}
2039
2040/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2041   Return 1 if insn is exception-free (and the motion is valid)
2042   and 0 otherwise.  */
2043
2044static int
2045is_exception_free (rtx insn, int bb_src, int bb_trg)
2046{
2047  int insn_class = haifa_classify_insn (insn);
2048
2049  /* Handle non-load insns.  */
2050  switch (insn_class)
2051    {
2052    case TRAP_FREE:
2053      return 1;
2054    case TRAP_RISKY:
2055      return 0;
2056    default:;
2057    }
2058
2059  /* Handle loads.  */
2060  if (!flag_schedule_speculative_load)
2061    return 0;
2062  IS_LOAD_INSN (insn) = 1;
2063  switch (insn_class)
2064    {
2065    case IFREE:
2066      return (1);
2067    case IRISKY:
2068      return 0;
2069    case PFREE_CANDIDATE:
2070      if (is_pfree (insn, bb_src, bb_trg))
2071	return 1;
2072      /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate.  */
2073    case PRISKY_CANDIDATE:
2074      if (!flag_schedule_speculative_load_dangerous
2075	  || is_prisky (insn, bb_src, bb_trg))
2076	return 0;
2077      break;
2078    default:;
2079    }
2080
2081  return flag_schedule_speculative_load_dangerous;
2082}
2083
2084/* The number of insns from the current block scheduled so far.  */
2085static int sched_target_n_insns;
2086/* The number of insns from the current block to be scheduled in total.  */
2087static int target_n_insns;
2088/* The number of insns from the entire region scheduled so far.  */
2089static int sched_n_insns;
2090
2091/* Implementations of the sched_info functions for region scheduling.  */
2092static void init_ready_list (void);
2093static int can_schedule_ready_p (rtx_insn *);
2094static void begin_schedule_ready (rtx_insn *);
2095static ds_t new_ready (rtx_insn *, ds_t);
2096static int schedule_more_p (void);
2097static const char *rgn_print_insn (const rtx_insn *, int);
2098static int rgn_rank (rtx_insn *, rtx_insn *);
2099static void compute_jump_reg_dependencies (rtx, regset);
2100
2101/* Functions for speculative scheduling.  */
2102static void rgn_add_remove_insn (rtx_insn *, int);
2103static void rgn_add_block (basic_block, basic_block);
2104static void rgn_fix_recovery_cfg (int, int, int);
2105static basic_block advance_target_bb (basic_block, rtx_insn *);
2106
2107/* Return nonzero if there are more insns that should be scheduled.  */
2108
2109static int
2110schedule_more_p (void)
2111{
2112  return sched_target_n_insns < target_n_insns;
2113}
2114
2115/* Add all insns that are initially ready to the ready list READY.  Called
2116   once before scheduling a set of insns.  */
2117
2118static void
2119init_ready_list (void)
2120{
2121  rtx_insn *prev_head = current_sched_info->prev_head;
2122  rtx_insn *next_tail = current_sched_info->next_tail;
2123  int bb_src;
2124  rtx_insn *insn;
2125
2126  target_n_insns = 0;
2127  sched_target_n_insns = 0;
2128  sched_n_insns = 0;
2129
2130  /* Print debugging information.  */
2131  if (sched_verbose >= 5)
2132    debug_rgn_dependencies (target_bb);
2133
2134  /* Prepare current target block info.  */
2135  if (current_nr_blocks > 1)
2136    compute_trg_info (target_bb);
2137
2138  /* Initialize ready list with all 'ready' insns in target block.
2139     Count number of insns in the target block being scheduled.  */
2140  for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2141    {
2142      gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2143      TODO_SPEC (insn) = HARD_DEP;
2144      try_ready (insn);
2145      target_n_insns++;
2146
2147      gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2148    }
2149
2150  /* Add to ready list all 'ready' insns in valid source blocks.
2151     For speculative insns, check-live, exception-free, and
2152     issue-delay.  */
2153  for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2154    if (IS_VALID (bb_src))
2155      {
2156	rtx_insn *src_head;
2157	rtx_insn *src_next_tail;
2158	rtx_insn *tail, *head;
2159
2160	get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2161			   &head, &tail);
2162	src_next_tail = NEXT_INSN (tail);
2163	src_head = head;
2164
2165	for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2166	  if (INSN_P (insn))
2167	    {
2168	      gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2169	      TODO_SPEC (insn) = HARD_DEP;
2170	      try_ready (insn);
2171	    }
2172      }
2173}
2174
2175/* Called after taking INSN from the ready list.  Returns nonzero if this
2176   insn can be scheduled, nonzero if we should silently discard it.  */
2177
2178static int
2179can_schedule_ready_p (rtx_insn *insn)
2180{
2181  /* An interblock motion?  */
2182  if (INSN_BB (insn) != target_bb
2183      && IS_SPECULATIVE_INSN (insn)
2184      && !check_live (insn, INSN_BB (insn)))
2185    return 0;
2186  else
2187    return 1;
2188}
2189
2190/* Updates counter and other information.  Split from can_schedule_ready_p ()
2191   because when we schedule insn speculatively then insn passed to
2192   can_schedule_ready_p () differs from the one passed to
2193   begin_schedule_ready ().  */
2194static void
2195begin_schedule_ready (rtx_insn *insn)
2196{
2197  /* An interblock motion?  */
2198  if (INSN_BB (insn) != target_bb)
2199    {
2200      if (IS_SPECULATIVE_INSN (insn))
2201	{
2202	  gcc_assert (check_live (insn, INSN_BB (insn)));
2203
2204	  update_live (insn, INSN_BB (insn));
2205
2206	  /* For speculative load, mark insns fed by it.  */
2207	  if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2208	    set_spec_fed (insn);
2209
2210	  nr_spec++;
2211	}
2212      nr_inter++;
2213    }
2214  else
2215    {
2216      /* In block motion.  */
2217      sched_target_n_insns++;
2218    }
2219  sched_n_insns++;
2220}
2221
2222/* Called after INSN has all its hard dependencies resolved and the speculation
2223   of type TS is enough to overcome them all.
2224   Return nonzero if it should be moved to the ready list or the queue, or zero
2225   if we should silently discard it.  */
2226static ds_t
2227new_ready (rtx_insn *next, ds_t ts)
2228{
2229  if (INSN_BB (next) != target_bb)
2230    {
2231      int not_ex_free = 0;
2232
2233      /* For speculative insns, before inserting to ready/queue,
2234	 check live, exception-free, and issue-delay.  */
2235      if (!IS_VALID (INSN_BB (next))
2236	  || CANT_MOVE (next)
2237	  || (IS_SPECULATIVE_INSN (next)
2238	      && ((recog_memoized (next) >= 0
2239		   && min_insn_conflict_delay (curr_state, next, next)
2240                   > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2241                  || IS_SPECULATION_CHECK_P (next)
2242		  || !check_live (next, INSN_BB (next))
2243		  || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2244							target_bb)))))
2245	{
2246	  if (not_ex_free
2247	      /* We are here because is_exception_free () == false.
2248		 But we possibly can handle that with control speculation.  */
2249	      && sched_deps_info->generate_spec_deps
2250	      && spec_info->mask & BEGIN_CONTROL)
2251	    {
2252	      ds_t new_ds;
2253
2254	      /* Add control speculation to NEXT's dependency type.  */
2255	      new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2256
2257	      /* Check if NEXT can be speculated with new dependency type.  */
2258	      if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2259		/* Here we got new control-speculative instruction.  */
2260		ts = new_ds;
2261	      else
2262		/* NEXT isn't ready yet.  */
2263		ts = DEP_POSTPONED;
2264	    }
2265	  else
2266	    /* NEXT isn't ready yet.  */
2267            ts = DEP_POSTPONED;
2268	}
2269    }
2270
2271  return ts;
2272}
2273
2274/* Return a string that contains the insn uid and optionally anything else
2275   necessary to identify this insn in an output.  It's valid to use a
2276   static buffer for this.  The ALIGNED parameter should cause the string
2277   to be formatted so that multiple output lines will line up nicely.  */
2278
2279static const char *
2280rgn_print_insn (const rtx_insn *insn, int aligned)
2281{
2282  static char tmp[80];
2283
2284  if (aligned)
2285    sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2286  else
2287    {
2288      if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2289	sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2290      else
2291	sprintf (tmp, "%d", INSN_UID (insn));
2292    }
2293  return tmp;
2294}
2295
2296/* Compare priority of two insns.  Return a positive number if the second
2297   insn is to be preferred for scheduling, and a negative one if the first
2298   is to be preferred.  Zero if they are equally good.  */
2299
2300static int
2301rgn_rank (rtx_insn *insn1, rtx_insn *insn2)
2302{
2303  /* Some comparison make sense in interblock scheduling only.  */
2304  if (INSN_BB (insn1) != INSN_BB (insn2))
2305    {
2306      int spec_val, prob_val;
2307
2308      /* Prefer an inblock motion on an interblock motion.  */
2309      if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2310	return 1;
2311      if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2312	return -1;
2313
2314      /* Prefer a useful motion on a speculative one.  */
2315      spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2316      if (spec_val)
2317	return spec_val;
2318
2319      /* Prefer a more probable (speculative) insn.  */
2320      prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2321      if (prob_val)
2322	return prob_val;
2323    }
2324  return 0;
2325}
2326
2327/* NEXT is an instruction that depends on INSN (a backward dependence);
2328   return nonzero if we should include this dependence in priority
2329   calculations.  */
2330
2331int
2332contributes_to_priority (rtx_insn *next, rtx_insn *insn)
2333{
2334  /* NEXT and INSN reside in one ebb.  */
2335  return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2336}
2337
2338/* INSN is a JUMP_INSN.  Store the set of registers that must be
2339   considered as used by this jump in USED.  */
2340
2341static void
2342compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2343			       regset used ATTRIBUTE_UNUSED)
2344{
2345  /* Nothing to do here, since we postprocess jumps in
2346     add_branch_dependences.  */
2347}
2348
2349/* This variable holds common_sched_info hooks and data relevant to
2350   the interblock scheduler.  */
2351static struct common_sched_info_def rgn_common_sched_info;
2352
2353
2354/* This holds data for the dependence analysis relevant to
2355   the interblock scheduler.  */
2356static struct sched_deps_info_def rgn_sched_deps_info;
2357
2358/* This holds constant data used for initializing the above structure
2359   for the Haifa scheduler.  */
2360static const struct sched_deps_info_def rgn_const_sched_deps_info =
2361  {
2362    compute_jump_reg_dependencies,
2363    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2364    0, 0, 0
2365  };
2366
2367/* Same as above, but for the selective scheduler.  */
2368static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2369  {
2370    compute_jump_reg_dependencies,
2371    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2372    0, 0, 0
2373  };
2374
2375/* Return true if scheduling INSN will trigger finish of scheduling
2376   current block.  */
2377static bool
2378rgn_insn_finishes_block_p (rtx_insn *insn)
2379{
2380  if (INSN_BB (insn) == target_bb
2381      && sched_target_n_insns + 1 == target_n_insns)
2382    /* INSN is the last not-scheduled instruction in the current block.  */
2383    return true;
2384
2385  return false;
2386}
2387
2388/* Used in schedule_insns to initialize current_sched_info for scheduling
2389   regions (or single basic blocks).  */
2390
2391static const struct haifa_sched_info rgn_const_sched_info =
2392{
2393  init_ready_list,
2394  can_schedule_ready_p,
2395  schedule_more_p,
2396  new_ready,
2397  rgn_rank,
2398  rgn_print_insn,
2399  contributes_to_priority,
2400  rgn_insn_finishes_block_p,
2401
2402  NULL, NULL,
2403  NULL, NULL,
2404  0, 0,
2405
2406  rgn_add_remove_insn,
2407  begin_schedule_ready,
2408  NULL,
2409  advance_target_bb,
2410  NULL, NULL,
2411  SCHED_RGN
2412};
2413
2414/* This variable holds the data and hooks needed to the Haifa scheduler backend
2415   for the interblock scheduler frontend.  */
2416static struct haifa_sched_info rgn_sched_info;
2417
2418/* Returns maximum priority that an insn was assigned to.  */
2419
2420int
2421get_rgn_sched_max_insns_priority (void)
2422{
2423  return rgn_sched_info.sched_max_insns_priority;
2424}
2425
2426/* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register.  */
2427
2428static bool
2429sets_likely_spilled (rtx pat)
2430{
2431  bool ret = false;
2432  note_stores (pat, sets_likely_spilled_1, &ret);
2433  return ret;
2434}
2435
2436static void
2437sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2438{
2439  bool *ret = (bool *) data;
2440
2441  if (GET_CODE (pat) == SET
2442      && REG_P (x)
2443      && HARD_REGISTER_P (x)
2444      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2445    *ret = true;
2446}
2447
2448/* A bitmap to note insns that participate in any dependency.  Used in
2449   add_branch_dependences.  */
2450static sbitmap insn_referenced;
2451
2452/* Add dependences so that branches are scheduled to run last in their
2453   block.  */
2454static void
2455add_branch_dependences (rtx_insn *head, rtx_insn *tail)
2456{
2457  rtx_insn *insn, *last;
2458
2459  /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2460     that can throw exceptions, force them to remain in order at the end of
2461     the block by adding dependencies and giving the last a high priority.
2462     There may be notes present, and prev_head may also be a note.
2463
2464     Branches must obviously remain at the end.  Calls should remain at the
2465     end since moving them results in worse register allocation.  Uses remain
2466     at the end to ensure proper register allocation.
2467
2468     cc0 setters remain at the end because they can't be moved away from
2469     their cc0 user.
2470
2471     Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2472
2473     COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2474
2475     Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2476     values) are not moved before reload because we can wind up with register
2477     allocation failures.  */
2478
2479  while (tail != head && DEBUG_INSN_P (tail))
2480    tail = PREV_INSN (tail);
2481
2482  insn = tail;
2483  last = 0;
2484  while (CALL_P (insn)
2485	 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2486	 || (NONJUMP_INSN_P (insn)
2487	     && (GET_CODE (PATTERN (insn)) == USE
2488		 || GET_CODE (PATTERN (insn)) == CLOBBER
2489		 || can_throw_internal (insn)
2490#ifdef HAVE_cc0
2491		 || sets_cc0_p (PATTERN (insn))
2492#endif
2493		 || (!reload_completed
2494		     && sets_likely_spilled (PATTERN (insn)))))
2495	 || NOTE_P (insn)
2496	 || (last != 0 && SCHED_GROUP_P (last)))
2497    {
2498      if (!NOTE_P (insn))
2499	{
2500	  if (last != 0
2501	      && sd_find_dep_between (insn, last, false) == NULL)
2502	    {
2503	      if (! sched_insns_conditions_mutex_p (last, insn))
2504		add_dependence (last, insn, REG_DEP_ANTI);
2505	      bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2506	    }
2507
2508	  CANT_MOVE (insn) = 1;
2509
2510	  last = insn;
2511	}
2512
2513      /* Don't overrun the bounds of the basic block.  */
2514      if (insn == head)
2515	break;
2516
2517      do
2518	insn = PREV_INSN (insn);
2519      while (insn != head && DEBUG_INSN_P (insn));
2520    }
2521
2522  /* Make sure these insns are scheduled last in their block.  */
2523  insn = last;
2524  if (insn != 0)
2525    while (insn != head)
2526      {
2527	insn = prev_nonnote_insn (insn);
2528
2529	if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2530	    || DEBUG_INSN_P (insn))
2531	  continue;
2532
2533	if (! sched_insns_conditions_mutex_p (last, insn))
2534	  add_dependence (last, insn, REG_DEP_ANTI);
2535      }
2536
2537  if (!targetm.have_conditional_execution ())
2538    return;
2539
2540  /* Finally, if the block ends in a jump, and we are doing intra-block
2541     scheduling, make sure that the branch depends on any COND_EXEC insns
2542     inside the block to avoid moving the COND_EXECs past the branch insn.
2543
2544     We only have to do this after reload, because (1) before reload there
2545     are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2546     scheduler after reload.
2547
2548     FIXME: We could in some cases move COND_EXEC insns past the branch if
2549     this scheduler would be a little smarter.  Consider this code:
2550
2551		T = [addr]
2552	C  ?	addr += 4
2553	!C ?	X += 12
2554	C  ?	T += 1
2555	C  ?	jump foo
2556
2557     On a target with a one cycle stall on a memory access the optimal
2558     sequence would be:
2559
2560		T = [addr]
2561	C  ?	addr += 4
2562	C  ?	T += 1
2563	C  ?	jump foo
2564	!C ?	X += 12
2565
2566     We don't want to put the 'X += 12' before the branch because it just
2567     wastes a cycle of execution time when the branch is taken.
2568
2569     Note that in the example "!C" will always be true.  That is another
2570     possible improvement for handling COND_EXECs in this scheduler: it
2571     could remove always-true predicates.  */
2572
2573  if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2574    return;
2575
2576  insn = tail;
2577  while (insn != head)
2578    {
2579      insn = PREV_INSN (insn);
2580
2581      /* Note that we want to add this dependency even when
2582	 sched_insns_conditions_mutex_p returns true.  The whole point
2583	 is that we _want_ this dependency, even if these insns really
2584	 are independent.  */
2585      if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2586	add_dependence (tail, insn, REG_DEP_ANTI);
2587    }
2588}
2589
2590/* Data structures for the computation of data dependences in a regions.  We
2591   keep one `deps' structure for every basic block.  Before analyzing the
2592   data dependences for a bb, its variables are initialized as a function of
2593   the variables of its predecessors.  When the analysis for a bb completes,
2594   we save the contents to the corresponding bb_deps[bb] variable.  */
2595
2596static struct deps_desc *bb_deps;
2597
2598static void
2599concat_insn_mem_list (rtx_insn_list *copy_insns,
2600		      rtx_expr_list *copy_mems,
2601		      rtx_insn_list **old_insns_p,
2602		      rtx_expr_list **old_mems_p)
2603{
2604  rtx_insn_list *new_insns = *old_insns_p;
2605  rtx_expr_list *new_mems = *old_mems_p;
2606
2607  while (copy_insns)
2608    {
2609      new_insns = alloc_INSN_LIST (copy_insns->insn (), new_insns);
2610      new_mems = alloc_EXPR_LIST (VOIDmode, copy_mems->element (), new_mems);
2611      copy_insns = copy_insns->next ();
2612      copy_mems = copy_mems->next ();
2613    }
2614
2615  *old_insns_p = new_insns;
2616  *old_mems_p = new_mems;
2617}
2618
2619/* Join PRED_DEPS to the SUCC_DEPS.  */
2620void
2621deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2622{
2623  unsigned reg;
2624  reg_set_iterator rsi;
2625
2626  /* The reg_last lists are inherited by successor.  */
2627  EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2628    {
2629      struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2630      struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2631
2632      succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2633      succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2634      succ_rl->implicit_sets
2635	= concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2636      succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2637                                            succ_rl->clobbers);
2638      succ_rl->uses_length += pred_rl->uses_length;
2639      succ_rl->clobbers_length += pred_rl->clobbers_length;
2640    }
2641  IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2642
2643  /* Mem read/write lists are inherited by successor.  */
2644  concat_insn_mem_list (pred_deps->pending_read_insns,
2645                        pred_deps->pending_read_mems,
2646                        &succ_deps->pending_read_insns,
2647                        &succ_deps->pending_read_mems);
2648  concat_insn_mem_list (pred_deps->pending_write_insns,
2649                        pred_deps->pending_write_mems,
2650                        &succ_deps->pending_write_insns,
2651                        &succ_deps->pending_write_mems);
2652
2653  succ_deps->pending_jump_insns
2654    = concat_INSN_LIST (pred_deps->pending_jump_insns,
2655                        succ_deps->pending_jump_insns);
2656  succ_deps->last_pending_memory_flush
2657    = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2658                        succ_deps->last_pending_memory_flush);
2659
2660  succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2661  succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2662  succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2663
2664  /* last_function_call is inherited by successor.  */
2665  succ_deps->last_function_call
2666    = concat_INSN_LIST (pred_deps->last_function_call,
2667                        succ_deps->last_function_call);
2668
2669  /* last_function_call_may_noreturn is inherited by successor.  */
2670  succ_deps->last_function_call_may_noreturn
2671    = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2672                        succ_deps->last_function_call_may_noreturn);
2673
2674  /* sched_before_next_call is inherited by successor.  */
2675  succ_deps->sched_before_next_call
2676    = concat_INSN_LIST (pred_deps->sched_before_next_call,
2677                        succ_deps->sched_before_next_call);
2678}
2679
2680/* After computing the dependencies for block BB, propagate the dependencies
2681   found in TMP_DEPS to the successors of the block.  */
2682static void
2683propagate_deps (int bb, struct deps_desc *pred_deps)
2684{
2685  basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
2686  edge_iterator ei;
2687  edge e;
2688
2689  /* bb's structures are inherited by its successors.  */
2690  FOR_EACH_EDGE (e, ei, block->succs)
2691    {
2692      /* Only bbs "below" bb, in the same region, are interesting.  */
2693      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2694	  || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2695	  || BLOCK_TO_BB (e->dest->index) <= bb)
2696	continue;
2697
2698      deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2699    }
2700
2701  /* These lists should point to the right place, for correct
2702     freeing later.  */
2703  bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2704  bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2705  bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2706  bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2707  bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2708
2709  /* Can't allow these to be freed twice.  */
2710  pred_deps->pending_read_insns = 0;
2711  pred_deps->pending_read_mems = 0;
2712  pred_deps->pending_write_insns = 0;
2713  pred_deps->pending_write_mems = 0;
2714  pred_deps->pending_jump_insns = 0;
2715}
2716
2717/* Compute dependences inside bb.  In a multiple blocks region:
2718   (1) a bb is analyzed after its predecessors, and (2) the lists in
2719   effect at the end of bb (after analyzing for bb) are inherited by
2720   bb's successors.
2721
2722   Specifically for reg-reg data dependences, the block insns are
2723   scanned by sched_analyze () top-to-bottom.  Three lists are
2724   maintained by sched_analyze (): reg_last[].sets for register DEFs,
2725   reg_last[].implicit_sets for implicit hard register DEFs, and
2726   reg_last[].uses for register USEs.
2727
2728   When analysis is completed for bb, we update for its successors:
2729   ;  - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2730   ;  - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2731   ;  - USES[succ] = Union (USES [succ], DEFS [bb])
2732
2733   The mechanism for computing mem-mem data dependence is very
2734   similar, and the result is interblock dependences in the region.  */
2735
2736static void
2737compute_block_dependences (int bb)
2738{
2739  rtx_insn *head, *tail;
2740  struct deps_desc tmp_deps;
2741
2742  tmp_deps = bb_deps[bb];
2743
2744  /* Do the analysis for this block.  */
2745  gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2746  get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2747
2748  sched_analyze (&tmp_deps, head, tail);
2749
2750  /* Selective scheduling handles control dependencies by itself.  */
2751  if (!sel_sched_p ())
2752    add_branch_dependences (head, tail);
2753
2754  if (current_nr_blocks > 1)
2755    propagate_deps (bb, &tmp_deps);
2756
2757  /* Free up the INSN_LISTs.  */
2758  free_deps (&tmp_deps);
2759
2760  if (targetm.sched.dependencies_evaluation_hook)
2761    targetm.sched.dependencies_evaluation_hook (head, tail);
2762}
2763
2764/* Free dependencies of instructions inside BB.  */
2765static void
2766free_block_dependencies (int bb)
2767{
2768  rtx_insn *head;
2769  rtx_insn *tail;
2770
2771  get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2772
2773  if (no_real_insns_p (head, tail))
2774    return;
2775
2776  sched_free_deps (head, tail, true);
2777}
2778
2779/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2780   them to the unused_*_list variables, so that they can be reused.  */
2781
2782static void
2783free_pending_lists (void)
2784{
2785  int bb;
2786
2787  for (bb = 0; bb < current_nr_blocks; bb++)
2788    {
2789      free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2790      free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2791      free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2792      free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2793      free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2794    }
2795}
2796
2797/* Print dependences for debugging starting from FROM_BB.
2798   Callable from debugger.  */
2799/* Print dependences for debugging starting from FROM_BB.
2800   Callable from debugger.  */
2801DEBUG_FUNCTION void
2802debug_rgn_dependencies (int from_bb)
2803{
2804  int bb;
2805
2806  fprintf (sched_dump,
2807	   ";;   --------------- forward dependences: ------------ \n");
2808
2809  for (bb = from_bb; bb < current_nr_blocks; bb++)
2810    {
2811      rtx_insn *head, *tail;
2812
2813      get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2814      fprintf (sched_dump, "\n;;   --- Region Dependences --- b %d bb %d \n",
2815	       BB_TO_BLOCK (bb), bb);
2816
2817      debug_dependencies (head, tail);
2818    }
2819}
2820
2821/* Print dependencies information for instructions between HEAD and TAIL.
2822   ??? This function would probably fit best in haifa-sched.c.  */
2823void debug_dependencies (rtx_insn *head, rtx_insn *tail)
2824{
2825  rtx_insn *insn;
2826  rtx_insn *next_tail = NEXT_INSN (tail);
2827
2828  fprintf (sched_dump, ";;   %7s%6s%6s%6s%6s%6s%14s\n",
2829	   "insn", "code", "bb", "dep", "prio", "cost",
2830	   "reservation");
2831  fprintf (sched_dump, ";;   %7s%6s%6s%6s%6s%6s%14s\n",
2832	   "----", "----", "--", "---", "----", "----",
2833	   "-----------");
2834
2835  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2836    {
2837      if (! INSN_P (insn))
2838	{
2839	  int n;
2840	  fprintf (sched_dump, ";;   %6d ", INSN_UID (insn));
2841	  if (NOTE_P (insn))
2842	    {
2843	      n = NOTE_KIND (insn);
2844	      fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2845	    }
2846	  else
2847	    fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2848	  continue;
2849	}
2850
2851      fprintf (sched_dump,
2852	       ";;   %s%5d%6d%6d%6d%6d%6d   ",
2853	       (SCHED_GROUP_P (insn) ? "+" : " "),
2854	       INSN_UID (insn),
2855	       INSN_CODE (insn),
2856	       BLOCK_NUM (insn),
2857	       sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2858	       (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2859			       : INSN_PRIORITY (insn))
2860		: INSN_PRIORITY (insn)),
2861	       (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2862			       : insn_cost (insn))
2863		: insn_cost (insn)));
2864
2865      if (recog_memoized (insn) < 0)
2866	fprintf (sched_dump, "nothing");
2867      else
2868	print_reservation (sched_dump, insn);
2869
2870      fprintf (sched_dump, "\t: ");
2871      {
2872	sd_iterator_def sd_it;
2873	dep_t dep;
2874
2875	FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2876	  fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2877		   DEP_NONREG (dep) ? "n" : "",
2878		   DEP_MULTIPLE (dep) ? "m" : "");
2879      }
2880      fprintf (sched_dump, "\n");
2881    }
2882
2883  fprintf (sched_dump, "\n");
2884}
2885
2886/* Returns true if all the basic blocks of the current region have
2887   NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region.  */
2888bool
2889sched_is_disabled_for_current_region_p (void)
2890{
2891  int bb;
2892
2893  for (bb = 0; bb < current_nr_blocks; bb++)
2894    if (!(BASIC_BLOCK_FOR_FN (cfun,
2895			      BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2896      return false;
2897
2898  return true;
2899}
2900
2901/* Free all region dependencies saved in INSN_BACK_DEPS and
2902   INSN_RESOLVED_BACK_DEPS.  The Haifa scheduler does this on the fly
2903   when scheduling, so this function is supposed to be called from
2904   the selective scheduling only.  */
2905void
2906free_rgn_deps (void)
2907{
2908  int bb;
2909
2910  for (bb = 0; bb < current_nr_blocks; bb++)
2911    {
2912      rtx_insn *head, *tail;
2913
2914      gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2915      get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2916
2917      sched_free_deps (head, tail, false);
2918    }
2919}
2920
2921static int rgn_n_insns;
2922
2923/* Compute insn priority for a current region.  */
2924void
2925compute_priorities (void)
2926{
2927  int bb;
2928
2929  current_sched_info->sched_max_insns_priority = 0;
2930  for (bb = 0; bb < current_nr_blocks; bb++)
2931    {
2932      rtx_insn *head, *tail;
2933
2934      gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2935      get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2936
2937      if (no_real_insns_p (head, tail))
2938	continue;
2939
2940      rgn_n_insns += set_priorities (head, tail);
2941    }
2942  current_sched_info->sched_max_insns_priority++;
2943}
2944
2945/* (Re-)initialize the arrays of DFA states at the end of each basic block.
2946
2947   SAVED_LAST_BASIC_BLOCK is the previous length of the arrays.  It must be
2948   zero for the first call to this function, to allocate the arrays for the
2949   first time.
2950
2951   This function is called once during initialization of the scheduler, and
2952   called again to resize the arrays if new basic blocks have been created,
2953   for example for speculation recovery code.  */
2954
2955static void
2956realloc_bb_state_array (int saved_last_basic_block)
2957{
2958  char *old_bb_state_array = bb_state_array;
2959  size_t lbb = (size_t) last_basic_block_for_fn (cfun);
2960  size_t slbb = (size_t) saved_last_basic_block;
2961
2962  /* Nothing to do if nothing changed since the last time this was called.  */
2963  if (saved_last_basic_block == last_basic_block_for_fn (cfun))
2964    return;
2965
2966  /* The selective scheduler doesn't use the state arrays.  */
2967  if (sel_sched_p ())
2968    {
2969      gcc_assert (bb_state_array == NULL && bb_state == NULL);
2970      return;
2971    }
2972
2973  gcc_checking_assert (saved_last_basic_block == 0
2974		       || (bb_state_array != NULL && bb_state != NULL));
2975
2976  bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
2977  bb_state = XRESIZEVEC (state_t, bb_state, lbb);
2978
2979  /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2980     Otherwise only fixup the newly allocated ones.  For the state
2981     array itself, only initialize the new entries.  */
2982  bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
2983  for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
2984    bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
2985  for (size_t i = slbb; i < lbb; i++)
2986    state_reset (bb_state[i]);
2987}
2988
2989/* Free the arrays of DFA states at the end of each basic block.  */
2990
2991static void
2992free_bb_state_array (void)
2993{
2994  free (bb_state_array);
2995  free (bb_state);
2996  bb_state_array = NULL;
2997  bb_state = NULL;
2998}
2999
3000/* Schedule a region.  A region is either an inner loop, a loop-free
3001   subroutine, or a single basic block.  Each bb in the region is
3002   scheduled after its flow predecessors.  */
3003
3004static void
3005schedule_region (int rgn)
3006{
3007  int bb;
3008  int sched_rgn_n_insns = 0;
3009
3010  rgn_n_insns = 0;
3011
3012  /* Do not support register pressure sensitive scheduling for the new regions
3013     as we don't update the liveness info for them.  */
3014  if (sched_pressure != SCHED_PRESSURE_NONE
3015      && rgn >= nr_regions_initial)
3016    {
3017      free_global_sched_pressure_data ();
3018      sched_pressure = SCHED_PRESSURE_NONE;
3019    }
3020
3021  rgn_setup_region (rgn);
3022
3023  /* Don't schedule region that is marked by
3024     NOTE_DISABLE_SCHED_OF_BLOCK.  */
3025  if (sched_is_disabled_for_current_region_p ())
3026    return;
3027
3028  sched_rgn_compute_dependencies (rgn);
3029
3030  sched_rgn_local_init (rgn);
3031
3032  /* Set priorities.  */
3033  compute_priorities ();
3034
3035  sched_extend_ready_list (rgn_n_insns);
3036
3037  if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3038    {
3039      sched_init_region_reg_pressure_info ();
3040      for (bb = 0; bb < current_nr_blocks; bb++)
3041	{
3042	  basic_block first_bb, last_bb;
3043	  rtx_insn *head, *tail;
3044
3045	  first_bb = EBB_FIRST_BB (bb);
3046	  last_bb = EBB_LAST_BB (bb);
3047
3048	  get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3049
3050	  if (no_real_insns_p (head, tail))
3051	    {
3052	      gcc_assert (first_bb == last_bb);
3053	      continue;
3054	    }
3055	  sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3056	}
3057    }
3058
3059  /* Now we can schedule all blocks.  */
3060  for (bb = 0; bb < current_nr_blocks; bb++)
3061    {
3062      basic_block first_bb, last_bb, curr_bb;
3063      rtx_insn *head, *tail;
3064
3065      first_bb = EBB_FIRST_BB (bb);
3066      last_bb = EBB_LAST_BB (bb);
3067
3068      get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3069
3070      if (no_real_insns_p (head, tail))
3071	{
3072	  gcc_assert (first_bb == last_bb);
3073	  continue;
3074	}
3075
3076      current_sched_info->prev_head = PREV_INSN (head);
3077      current_sched_info->next_tail = NEXT_INSN (tail);
3078
3079      remove_notes (head, tail);
3080
3081      unlink_bb_notes (first_bb, last_bb);
3082
3083      target_bb = bb;
3084
3085      gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3086      current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3087
3088      curr_bb = first_bb;
3089      if (dbg_cnt (sched_block))
3090        {
3091	  edge f;
3092	  int saved_last_basic_block = last_basic_block_for_fn (cfun);
3093
3094	  schedule_block (&curr_bb, bb_state[first_bb->index]);
3095	  gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3096	  sched_rgn_n_insns += sched_n_insns;
3097	  realloc_bb_state_array (saved_last_basic_block);
3098	  f = find_fallthru_edge (last_bb->succs);
3099	  if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3100	      PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3101	    {
3102	      memcpy (bb_state[f->dest->index], curr_state,
3103		      dfa_state_size);
3104	      if (sched_verbose >= 5)
3105		fprintf (sched_dump, "saving state for edge %d->%d\n",
3106			 f->src->index, f->dest->index);
3107	    }
3108        }
3109      else
3110        {
3111          sched_rgn_n_insns += rgn_n_insns;
3112        }
3113
3114      /* Clean up.  */
3115      if (current_nr_blocks > 1)
3116	free_trg_info ();
3117    }
3118
3119  /* Sanity check: verify that all region insns were scheduled.  */
3120  gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3121
3122  sched_finish_ready_list ();
3123
3124  /* Done with this region.  */
3125  sched_rgn_local_finish ();
3126
3127  /* Free dependencies.  */
3128  for (bb = 0; bb < current_nr_blocks; ++bb)
3129    free_block_dependencies (bb);
3130
3131  gcc_assert (haifa_recovery_bb_ever_added_p
3132	      || deps_pools_are_empty_p ());
3133}
3134
3135/* Initialize data structures for region scheduling.  */
3136
3137void
3138sched_rgn_init (bool single_blocks_p)
3139{
3140  min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3141		    / 100);
3142
3143  nr_inter = 0;
3144  nr_spec = 0;
3145
3146  extend_regions ();
3147
3148  CONTAINING_RGN (ENTRY_BLOCK) = -1;
3149  CONTAINING_RGN (EXIT_BLOCK) = -1;
3150
3151  realloc_bb_state_array (0);
3152
3153  /* Compute regions for scheduling.  */
3154  if (single_blocks_p
3155      || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
3156      || !flag_schedule_interblock
3157      || is_cfg_nonregular ())
3158    {
3159      find_single_block_region (sel_sched_p ());
3160    }
3161  else
3162    {
3163      /* Compute the dominators and post dominators.  */
3164      if (!sel_sched_p ())
3165	calculate_dominance_info (CDI_DOMINATORS);
3166
3167      /* Find regions.  */
3168      find_rgns ();
3169
3170      if (sched_verbose >= 3)
3171	debug_regions ();
3172
3173      /* For now.  This will move as more and more of haifa is converted
3174	 to using the cfg code.  */
3175      if (!sel_sched_p ())
3176	free_dominance_info (CDI_DOMINATORS);
3177    }
3178
3179  gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks_for_fn (cfun));
3180
3181  RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3182			     RGN_NR_BLOCKS (nr_regions - 1));
3183  nr_regions_initial = nr_regions;
3184}
3185
3186/* Free data structures for region scheduling.  */
3187void
3188sched_rgn_finish (void)
3189{
3190  free_bb_state_array ();
3191
3192  /* Reposition the prologue and epilogue notes in case we moved the
3193     prologue/epilogue insns.  */
3194  if (reload_completed)
3195    reposition_prologue_and_epilogue_notes ();
3196
3197  if (sched_verbose)
3198    {
3199      if (reload_completed == 0
3200	  && flag_schedule_interblock)
3201	{
3202	  fprintf (sched_dump,
3203		   "\n;; Procedure interblock/speculative motions == %d/%d \n",
3204		   nr_inter, nr_spec);
3205	}
3206      else
3207	gcc_assert (nr_inter <= 0);
3208      fprintf (sched_dump, "\n\n");
3209    }
3210
3211  nr_regions = 0;
3212
3213  free (rgn_table);
3214  rgn_table = NULL;
3215
3216  free (rgn_bb_table);
3217  rgn_bb_table = NULL;
3218
3219  free (block_to_bb);
3220  block_to_bb = NULL;
3221
3222  free (containing_rgn);
3223  containing_rgn = NULL;
3224
3225  free (ebb_head);
3226  ebb_head = NULL;
3227}
3228
3229/* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3230   point to the region RGN.  */
3231void
3232rgn_setup_region (int rgn)
3233{
3234  int bb;
3235
3236  /* Set variables for the current region.  */
3237  current_nr_blocks = RGN_NR_BLOCKS (rgn);
3238  current_blocks = RGN_BLOCKS (rgn);
3239
3240  /* EBB_HEAD is a region-scope structure.  But we realloc it for
3241     each region to save time/memory/something else.
3242     See comments in add_block1, for what reasons we allocate +1 element.  */
3243  ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3244  for (bb = 0; bb <= current_nr_blocks; bb++)
3245    ebb_head[bb] = current_blocks + bb;
3246}
3247
3248/* Compute instruction dependencies in region RGN.  */
3249void
3250sched_rgn_compute_dependencies (int rgn)
3251{
3252  if (!RGN_DONT_CALC_DEPS (rgn))
3253    {
3254      int bb;
3255
3256      if (sel_sched_p ())
3257	sched_emulate_haifa_p = 1;
3258
3259      init_deps_global ();
3260
3261      /* Initializations for region data dependence analysis.  */
3262      bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3263      for (bb = 0; bb < current_nr_blocks; bb++)
3264	init_deps (bb_deps + bb, false);
3265
3266      /* Initialize bitmap used in add_branch_dependences.  */
3267      insn_referenced = sbitmap_alloc (sched_max_luid);
3268      bitmap_clear (insn_referenced);
3269
3270      /* Compute backward dependencies.  */
3271      for (bb = 0; bb < current_nr_blocks; bb++)
3272	compute_block_dependences (bb);
3273
3274      sbitmap_free (insn_referenced);
3275      free_pending_lists ();
3276      finish_deps_global ();
3277      free (bb_deps);
3278
3279      /* We don't want to recalculate this twice.  */
3280      RGN_DONT_CALC_DEPS (rgn) = 1;
3281
3282      if (sel_sched_p ())
3283	sched_emulate_haifa_p = 0;
3284    }
3285  else
3286    /* (This is a recovery block.  It is always a single block region.)
3287       OR (We use selective scheduling.)  */
3288    gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3289}
3290
3291/* Init region data structures.  Returns true if this region should
3292   not be scheduled.  */
3293void
3294sched_rgn_local_init (int rgn)
3295{
3296  int bb;
3297
3298  /* Compute interblock info: probabilities, split-edges, dominators, etc.  */
3299  if (current_nr_blocks > 1)
3300    {
3301      basic_block block;
3302      edge e;
3303      edge_iterator ei;
3304
3305      prob = XNEWVEC (int, current_nr_blocks);
3306
3307      dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3308      bitmap_vector_clear (dom, current_nr_blocks);
3309
3310      /* Use ->aux to implement EDGE_TO_BIT mapping.  */
3311      rgn_nr_edges = 0;
3312      FOR_EACH_BB_FN (block, cfun)
3313	{
3314	  if (CONTAINING_RGN (block->index) != rgn)
3315	    continue;
3316	  FOR_EACH_EDGE (e, ei, block->succs)
3317	    SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3318	}
3319
3320      rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3321      rgn_nr_edges = 0;
3322      FOR_EACH_BB_FN (block, cfun)
3323	{
3324	  if (CONTAINING_RGN (block->index) != rgn)
3325	    continue;
3326	  FOR_EACH_EDGE (e, ei, block->succs)
3327	    rgn_edges[rgn_nr_edges++] = e;
3328	}
3329
3330      /* Split edges.  */
3331      pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3332      bitmap_vector_clear (pot_split, current_nr_blocks);
3333      ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3334      bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3335
3336      /* Compute probabilities, dominators, split_edges.  */
3337      for (bb = 0; bb < current_nr_blocks; bb++)
3338	compute_dom_prob_ps (bb);
3339
3340      /* Cleanup ->aux used for EDGE_TO_BIT mapping.  */
3341      /* We don't need them anymore.  But we want to avoid duplication of
3342	 aux fields in the newly created edges.  */
3343      FOR_EACH_BB_FN (block, cfun)
3344	{
3345	  if (CONTAINING_RGN (block->index) != rgn)
3346	    continue;
3347	  FOR_EACH_EDGE (e, ei, block->succs)
3348	    e->aux = NULL;
3349        }
3350    }
3351}
3352
3353/* Free data computed for the finished region.  */
3354void
3355sched_rgn_local_free (void)
3356{
3357  free (prob);
3358  sbitmap_vector_free (dom);
3359  sbitmap_vector_free (pot_split);
3360  sbitmap_vector_free (ancestor_edges);
3361  free (rgn_edges);
3362}
3363
3364/* Free data computed for the finished region.  */
3365void
3366sched_rgn_local_finish (void)
3367{
3368  if (current_nr_blocks > 1 && !sel_sched_p ())
3369    {
3370      sched_rgn_local_free ();
3371    }
3372}
3373
3374/* Setup scheduler infos.  */
3375void
3376rgn_setup_common_sched_info (void)
3377{
3378  memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3379	  sizeof (rgn_common_sched_info));
3380
3381  rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3382  rgn_common_sched_info.add_block = rgn_add_block;
3383  rgn_common_sched_info.estimate_number_of_insns
3384    = rgn_estimate_number_of_insns;
3385  rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3386
3387  common_sched_info = &rgn_common_sched_info;
3388}
3389
3390/* Setup all *_sched_info structures (for the Haifa frontend
3391   and for the dependence analysis) in the interblock scheduler.  */
3392void
3393rgn_setup_sched_infos (void)
3394{
3395  if (!sel_sched_p ())
3396    memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3397	    sizeof (rgn_sched_deps_info));
3398  else
3399    memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3400	    sizeof (rgn_sched_deps_info));
3401
3402  sched_deps_info = &rgn_sched_deps_info;
3403
3404  memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3405  current_sched_info = &rgn_sched_info;
3406}
3407
3408/* The one entry point in this file.  */
3409void
3410schedule_insns (void)
3411{
3412  int rgn;
3413
3414  /* Taking care of this degenerate case makes the rest of
3415     this code simpler.  */
3416  if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3417    return;
3418
3419  rgn_setup_common_sched_info ();
3420  rgn_setup_sched_infos ();
3421
3422  haifa_sched_init ();
3423  sched_rgn_init (reload_completed);
3424
3425  bitmap_initialize (&not_in_df, 0);
3426  bitmap_clear (&not_in_df);
3427
3428  /* Schedule every region in the subroutine.  */
3429  for (rgn = 0; rgn < nr_regions; rgn++)
3430    if (dbg_cnt (sched_region))
3431      schedule_region (rgn);
3432
3433  /* Clean up.  */
3434  sched_rgn_finish ();
3435  bitmap_clear (&not_in_df);
3436
3437  haifa_sched_finish ();
3438}
3439
3440/* INSN has been added to/removed from current region.  */
3441static void
3442rgn_add_remove_insn (rtx_insn *insn, int remove_p)
3443{
3444  if (!remove_p)
3445    rgn_n_insns++;
3446  else
3447    rgn_n_insns--;
3448
3449  if (INSN_BB (insn) == target_bb)
3450    {
3451      if (!remove_p)
3452	target_n_insns++;
3453      else
3454	target_n_insns--;
3455    }
3456}
3457
3458/* Extend internal data structures.  */
3459void
3460extend_regions (void)
3461{
3462  rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
3463  rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3464			     n_basic_blocks_for_fn (cfun));
3465  block_to_bb = XRESIZEVEC (int, block_to_bb,
3466			    last_basic_block_for_fn (cfun));
3467  containing_rgn = XRESIZEVEC (int, containing_rgn,
3468			       last_basic_block_for_fn (cfun));
3469}
3470
3471void
3472rgn_make_new_region_out_of_new_block (basic_block bb)
3473{
3474  int i;
3475
3476  i = RGN_BLOCKS (nr_regions);
3477  /* I - first free position in rgn_bb_table.  */
3478
3479  rgn_bb_table[i] = bb->index;
3480  RGN_NR_BLOCKS (nr_regions) = 1;
3481  RGN_HAS_REAL_EBB (nr_regions) = 0;
3482  RGN_DONT_CALC_DEPS (nr_regions) = 0;
3483  CONTAINING_RGN (bb->index) = nr_regions;
3484  BLOCK_TO_BB (bb->index) = 0;
3485
3486  nr_regions++;
3487
3488  RGN_BLOCKS (nr_regions) = i + 1;
3489}
3490
3491/* BB was added to ebb after AFTER.  */
3492static void
3493rgn_add_block (basic_block bb, basic_block after)
3494{
3495  extend_regions ();
3496  bitmap_set_bit (&not_in_df, bb->index);
3497
3498  if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
3499    {
3500      rgn_make_new_region_out_of_new_block (bb);
3501      RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3502					     == EXIT_BLOCK_PTR_FOR_FN (cfun));
3503    }
3504  else
3505    {
3506      int i, pos;
3507
3508      /* We need to fix rgn_table, block_to_bb, containing_rgn
3509	 and ebb_head.  */
3510
3511      BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3512
3513      /* We extend ebb_head to one more position to
3514	 easily find the last position of the last ebb in
3515	 the current region.  Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3516	 is _always_ valid for access.  */
3517
3518      i = BLOCK_TO_BB (after->index) + 1;
3519      pos = ebb_head[i] - 1;
3520      /* Now POS is the index of the last block in the region.  */
3521
3522      /* Find index of basic block AFTER.  */
3523      for (; rgn_bb_table[pos] != after->index; pos--)
3524	;
3525
3526      pos++;
3527      gcc_assert (pos > ebb_head[i - 1]);
3528
3529      /* i - ebb right after "AFTER".  */
3530      /* ebb_head[i] - VALID.  */
3531
3532      /* Source position: ebb_head[i]
3533	 Destination position: ebb_head[i] + 1
3534	 Last position:
3535	   RGN_BLOCKS (nr_regions) - 1
3536	 Number of elements to copy: (last_position) - (source_position) + 1
3537       */
3538
3539      memmove (rgn_bb_table + pos + 1,
3540	       rgn_bb_table + pos,
3541	       ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3542	       * sizeof (*rgn_bb_table));
3543
3544      rgn_bb_table[pos] = bb->index;
3545
3546      for (; i <= current_nr_blocks; i++)
3547	ebb_head [i]++;
3548
3549      i = CONTAINING_RGN (after->index);
3550      CONTAINING_RGN (bb->index) = i;
3551
3552      RGN_HAS_REAL_EBB (i) = 1;
3553
3554      for (++i; i <= nr_regions; i++)
3555	RGN_BLOCKS (i)++;
3556    }
3557}
3558
3559/* Fix internal data after interblock movement of jump instruction.
3560   For parameter meaning please refer to
3561   sched-int.h: struct sched_info: fix_recovery_cfg.  */
3562static void
3563rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3564{
3565  int old_pos, new_pos, i;
3566
3567  BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3568
3569  for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3570       rgn_bb_table[old_pos] != check_bb_nexti;
3571       old_pos--)
3572    ;
3573  gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3574
3575  for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3576       rgn_bb_table[new_pos] != bbi;
3577       new_pos--)
3578    ;
3579  new_pos++;
3580  gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3581
3582  gcc_assert (new_pos < old_pos);
3583
3584  memmove (rgn_bb_table + new_pos + 1,
3585	   rgn_bb_table + new_pos,
3586	   (old_pos - new_pos) * sizeof (*rgn_bb_table));
3587
3588  rgn_bb_table[new_pos] = check_bb_nexti;
3589
3590  for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3591    ebb_head[i]++;
3592}
3593
3594/* Return next block in ebb chain.  For parameter meaning please refer to
3595   sched-int.h: struct sched_info: advance_target_bb.  */
3596static basic_block
3597advance_target_bb (basic_block bb, rtx_insn *insn)
3598{
3599  if (insn)
3600    return 0;
3601
3602  gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3603	      && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3604  return bb->next_bb;
3605}
3606
3607#endif
3608
3609/* Run instruction scheduler.  */
3610static unsigned int
3611rest_of_handle_live_range_shrinkage (void)
3612{
3613#ifdef INSN_SCHEDULING
3614  int saved;
3615
3616  initialize_live_range_shrinkage ();
3617  saved = flag_schedule_interblock;
3618  flag_schedule_interblock = false;
3619  schedule_insns ();
3620  flag_schedule_interblock = saved;
3621  finish_live_range_shrinkage ();
3622#endif
3623  return 0;
3624}
3625
3626/* Run instruction scheduler.  */
3627static unsigned int
3628rest_of_handle_sched (void)
3629{
3630#ifdef INSN_SCHEDULING
3631  if (flag_selective_scheduling
3632      && ! maybe_skip_selective_scheduling ())
3633    run_selective_scheduling ();
3634  else
3635    schedule_insns ();
3636#endif
3637  return 0;
3638}
3639
3640/* Run second scheduling pass after reload.  */
3641static unsigned int
3642rest_of_handle_sched2 (void)
3643{
3644#ifdef INSN_SCHEDULING
3645  if (flag_selective_scheduling2
3646      && ! maybe_skip_selective_scheduling ())
3647    run_selective_scheduling ();
3648  else
3649    {
3650      /* Do control and data sched analysis again,
3651	 and write some more of the results to dump file.  */
3652      if (flag_sched2_use_superblocks)
3653	schedule_ebbs ();
3654      else
3655	schedule_insns ();
3656    }
3657#endif
3658  return 0;
3659}
3660
3661static unsigned int
3662rest_of_handle_sched_fusion (void)
3663{
3664#ifdef INSN_SCHEDULING
3665  sched_fusion = true;
3666  schedule_insns ();
3667  sched_fusion = false;
3668#endif
3669  return 0;
3670}
3671
3672namespace {
3673
3674const pass_data pass_data_live_range_shrinkage =
3675{
3676  RTL_PASS, /* type */
3677  "lr_shrinkage", /* name */
3678  OPTGROUP_NONE, /* optinfo_flags */
3679  TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3680  0, /* properties_required */
3681  0, /* properties_provided */
3682  0, /* properties_destroyed */
3683  0, /* todo_flags_start */
3684  TODO_df_finish, /* todo_flags_finish */
3685};
3686
3687class pass_live_range_shrinkage : public rtl_opt_pass
3688{
3689public:
3690  pass_live_range_shrinkage(gcc::context *ctxt)
3691    : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3692  {}
3693
3694  /* opt_pass methods: */
3695  virtual bool gate (function *)
3696    {
3697#ifdef INSN_SCHEDULING
3698      return flag_live_range_shrinkage;
3699#else
3700      return 0;
3701#endif
3702    }
3703
3704  virtual unsigned int execute (function *)
3705    {
3706      return rest_of_handle_live_range_shrinkage ();
3707    }
3708
3709}; // class pass_live_range_shrinkage
3710
3711} // anon namespace
3712
3713rtl_opt_pass *
3714make_pass_live_range_shrinkage (gcc::context *ctxt)
3715{
3716  return new pass_live_range_shrinkage (ctxt);
3717}
3718
3719namespace {
3720
3721const pass_data pass_data_sched =
3722{
3723  RTL_PASS, /* type */
3724  "sched1", /* name */
3725  OPTGROUP_NONE, /* optinfo_flags */
3726  TV_SCHED, /* tv_id */
3727  0, /* properties_required */
3728  0, /* properties_provided */
3729  0, /* properties_destroyed */
3730  0, /* todo_flags_start */
3731  TODO_df_finish, /* todo_flags_finish */
3732};
3733
3734class pass_sched : public rtl_opt_pass
3735{
3736public:
3737  pass_sched (gcc::context *ctxt)
3738    : rtl_opt_pass (pass_data_sched, ctxt)
3739  {}
3740
3741  /* opt_pass methods: */
3742  virtual bool gate (function *);
3743  virtual unsigned int execute (function *) { return rest_of_handle_sched (); }
3744
3745}; // class pass_sched
3746
3747bool
3748pass_sched::gate (function *)
3749{
3750#ifdef INSN_SCHEDULING
3751  return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3752#else
3753  return 0;
3754#endif
3755}
3756
3757} // anon namespace
3758
3759rtl_opt_pass *
3760make_pass_sched (gcc::context *ctxt)
3761{
3762  return new pass_sched (ctxt);
3763}
3764
3765namespace {
3766
3767const pass_data pass_data_sched2 =
3768{
3769  RTL_PASS, /* type */
3770  "sched2", /* name */
3771  OPTGROUP_NONE, /* optinfo_flags */
3772  TV_SCHED2, /* tv_id */
3773  0, /* properties_required */
3774  0, /* properties_provided */
3775  0, /* properties_destroyed */
3776  0, /* todo_flags_start */
3777  TODO_df_finish, /* todo_flags_finish */
3778};
3779
3780class pass_sched2 : public rtl_opt_pass
3781{
3782public:
3783  pass_sched2 (gcc::context *ctxt)
3784    : rtl_opt_pass (pass_data_sched2, ctxt)
3785  {}
3786
3787  /* opt_pass methods: */
3788  virtual bool gate (function *);
3789  virtual unsigned int execute (function *)
3790    {
3791      return rest_of_handle_sched2 ();
3792    }
3793
3794}; // class pass_sched2
3795
3796bool
3797pass_sched2::gate (function *)
3798{
3799#ifdef INSN_SCHEDULING
3800  return optimize > 0 && flag_schedule_insns_after_reload
3801    && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3802#else
3803  return 0;
3804#endif
3805}
3806
3807} // anon namespace
3808
3809rtl_opt_pass *
3810make_pass_sched2 (gcc::context *ctxt)
3811{
3812  return new pass_sched2 (ctxt);
3813}
3814
3815namespace {
3816
3817const pass_data pass_data_sched_fusion =
3818{
3819  RTL_PASS, /* type */
3820  "sched_fusion", /* name */
3821  OPTGROUP_NONE, /* optinfo_flags */
3822  TV_SCHED_FUSION, /* tv_id */
3823  0, /* properties_required */
3824  0, /* properties_provided */
3825  0, /* properties_destroyed */
3826  0, /* todo_flags_start */
3827  TODO_df_finish, /* todo_flags_finish */
3828};
3829
3830class pass_sched_fusion : public rtl_opt_pass
3831{
3832public:
3833  pass_sched_fusion (gcc::context *ctxt)
3834    : rtl_opt_pass (pass_data_sched_fusion, ctxt)
3835  {}
3836
3837  /* opt_pass methods: */
3838  virtual bool gate (function *);
3839  virtual unsigned int execute (function *)
3840    {
3841      return rest_of_handle_sched_fusion ();
3842    }
3843
3844}; // class pass_sched2
3845
3846bool
3847pass_sched_fusion::gate (function *)
3848{
3849#ifdef INSN_SCHEDULING
3850  /* Scheduling fusion relies on peephole2 to do real fusion work,
3851     so only enable it if peephole2 is in effect.  */
3852  return (optimize > 0 && flag_peephole2
3853    && flag_schedule_fusion && targetm.sched.fusion_priority != NULL);
3854#else
3855  return 0;
3856#endif
3857}
3858
3859} // anon namespace
3860
3861rtl_opt_pass *
3862make_pass_sched_fusion (gcc::context *ctxt)
3863{
3864  return new pass_sched_fusion (ctxt);
3865}
3866