1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2   Copyright (C) 1987-2015 Free Software Foundation, Inc.
3   Contributed by Michael Tiemann (tiemann@cygnus.com).
4   64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5   at Cygnus Support.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 3, or (at your option)
12any later version.
13
14GCC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING3.  If not see
21<http://www.gnu.org/licenses/>.  */
22
23#include "config/vxworks-dummy.h"
24
25/* Note that some other tm.h files include this one and then override
26   whatever definitions are necessary.  */
27
28#define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29
30/* Specify this in a cover file to provide bi-architecture (32/64) support.  */
31/* #define SPARC_BI_ARCH */
32
33/* Macro used later in this file to determine default architecture.  */
34#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
35
36/* TARGET_ARCH{32,64} are the main macros to decide which of the two
37   architectures to compile for.  We allow targets to choose compile time or
38   runtime selection.  */
39#ifdef IN_LIBGCC2
40#if defined(__sparcv9) || defined(__arch64__)
41#define TARGET_ARCH32 0
42#else
43#define TARGET_ARCH32 1
44#endif /* sparc64 */
45#else
46#ifdef SPARC_BI_ARCH
47#define TARGET_ARCH32 (! TARGET_64BIT)
48#else
49#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50#endif /* SPARC_BI_ARCH */
51#endif /* IN_LIBGCC2 */
52#define TARGET_ARCH64 (! TARGET_ARCH32)
53
54/* Code model selection in 64-bit environment.
55
56   The machine mode used for addresses is 32-bit wide:
57
58   TARGET_CM_32:     32-bit address space.
59                     It is the code model used when generating 32-bit code.
60
61   The machine mode used for addresses is 64-bit wide:
62
63   TARGET_CM_MEDLOW: 32-bit address space.
64                     The executable must be in the low 32 bits of memory.
65                     This avoids generating %uhi and %ulo terms.  Programs
66                     can be statically or dynamically linked.
67
68   TARGET_CM_MEDMID: 44-bit address space.
69                     The executable must be in the low 44 bits of memory,
70                     and the %[hml]44 terms are used.  The text and data
71                     segments have a maximum size of 2GB (31-bit span).
72                     The maximum offset from any instruction to the label
73                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
74
75   TARGET_CM_MEDANY: 64-bit address space.
76                     The text and data segments have a maximum size of 2GB
77                     (31-bit span) and may be located anywhere in memory.
78                     The maximum offset from any instruction to the label
79                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
80
81   TARGET_CM_EMBMEDANY: 64-bit address space.
82                     The text and data segments have a maximum size of 2GB
83                     (31-bit span) and may be located anywhere in memory.
84                     The global register %g4 contains the start address of
85                     the data segment.  Programs are statically linked and
86                     PIC is not supported.
87
88   Different code models are not supported in 32-bit environment.  */
89
90enum cmodel {
91  CM_32,
92  CM_MEDLOW,
93  CM_MEDMID,
94  CM_MEDANY,
95  CM_EMBMEDANY
96};
97
98/* One of CM_FOO.  */
99extern enum cmodel sparc_cmodel;
100
101/* V9 code model selection.  */
102#define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
103#define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
104#define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
105#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
106
107#define SPARC_DEFAULT_CMODEL CM_32
108
109/* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
110   which requires the following macro to be true if enabled.  Prior to V9,
111   there are no instructions to even talk about memory synchronization.
112   Note that the UltraSPARC III processors don't implement RMO, unlike the
113   UltraSPARC II processors.  Niagara, Niagara-2, and Niagara-3 do not
114   implement RMO either.
115
116   Default to false; for example, Solaris never enables RMO, only ever uses
117   total memory ordering (TMO).  */
118#define SPARC_RELAXED_ORDERING false
119
120/* Do not use the .note.GNU-stack convention by default.  */
121#define NEED_INDICATE_EXEC_STACK 0
122
123/* This is call-clobbered in the normal ABI, but is reserved in the
124   home grown (aka upward compatible) embedded ABI.  */
125#define EMBMEDANY_BASE_REG "%g4"
126
127/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
128   and specified by the user via --with-cpu=foo.
129   This specifies the cpu implementation, not the architecture size.  */
130/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
131   capable cpu's.  */
132#define TARGET_CPU_sparc	0
133#define TARGET_CPU_v7		0	/* alias */
134#define TARGET_CPU_cypress	0       /* alias */
135#define TARGET_CPU_v8		1	/* generic v8 implementation */
136#define TARGET_CPU_supersparc	2
137#define TARGET_CPU_hypersparc	3
138#define TARGET_CPU_leon		4
139#define TARGET_CPU_leon3	5
140#define TARGET_CPU_leon3v7	6
141#define TARGET_CPU_sparclite	7
142#define TARGET_CPU_f930		7       /* alias */
143#define TARGET_CPU_f934		7       /* alias */
144#define TARGET_CPU_sparclite86x	8
145#define TARGET_CPU_sparclet	9
146#define TARGET_CPU_tsc701	9       /* alias */
147#define TARGET_CPU_v9		10	/* generic v9 implementation */
148#define TARGET_CPU_sparcv9	10	/* alias */
149#define TARGET_CPU_sparc64	10	/* alias */
150#define TARGET_CPU_ultrasparc	11
151#define TARGET_CPU_ultrasparc3	12
152#define TARGET_CPU_niagara	13
153#define TARGET_CPU_niagara2	14
154#define TARGET_CPU_niagara3	15
155#define TARGET_CPU_niagara4	16
156
157#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
158 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
159 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
160 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
161 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
162 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
163 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
164
165#define CPP_CPU32_DEFAULT_SPEC ""
166#define ASM_CPU32_DEFAULT_SPEC ""
167
168#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
169/* ??? What does Sun's CC pass?  */
170#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171/* ??? It's not clear how other assemblers will handle this, so by default
172   use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
173   is handled in sol2.h.  */
174#define ASM_CPU64_DEFAULT_SPEC "-Av9"
175#endif
176#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
177#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
178#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
179#endif
180#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
181#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
182#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
183#endif
184#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
185#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
186#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
187#endif
188#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
189#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
190#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
191#endif
192#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
193#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
194#define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
195#endif
196#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
197#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
198#define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
199#endif
200
201#else
202
203#define CPP_CPU64_DEFAULT_SPEC ""
204#define ASM_CPU64_DEFAULT_SPEC ""
205
206#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
207 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
208#define CPP_CPU32_DEFAULT_SPEC ""
209#define ASM_CPU32_DEFAULT_SPEC ""
210#endif
211
212#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
213#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
214#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
215#endif
216
217#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
218#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
219#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
220#endif
221
222#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
223#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
224#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
225#endif
226
227#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
228#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
229#define ASM_CPU32_DEFAULT_SPEC ""
230#endif
231
232#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
233#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
234#define ASM_CPU32_DEFAULT_SPEC ""
235#endif
236
237#if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
238 || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
239#define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
240#define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
241#endif
242
243#if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
244#define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
245#define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
246#endif
247
248#endif
249
250#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
251 #error Unrecognized value in TARGET_CPU_DEFAULT.
252#endif
253
254#ifdef SPARC_BI_ARCH
255
256#define CPP_CPU_DEFAULT_SPEC \
257(DEFAULT_ARCH32_P ? "\
258%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
259%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
260" : "\
261%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
262%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
263")
264#define ASM_CPU_DEFAULT_SPEC \
265(DEFAULT_ARCH32_P ? "\
266%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
267%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
268" : "\
269%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
270%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
271")
272
273#else /* !SPARC_BI_ARCH */
274
275#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
276#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
277
278#endif /* !SPARC_BI_ARCH */
279
280/* Define macros to distinguish architectures.  */
281
282/* Common CPP definitions used by CPP_SPEC amongst the various targets
283   for handling -mcpu=xxx switches.  */
284#define CPP_CPU_SPEC "\
285%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
286%{mcpu=sparclite:-D__sparclite__} \
287%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
288%{mcpu=sparclite86x:-D__sparclite86x__} \
289%{mcpu=v8:-D__sparc_v8__} \
290%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
291%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
292%{mcpu=leon:-D__leon__ -D__sparc_v8__} \
293%{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
294%{mcpu=leon3v7:-D__leon__} \
295%{mcpu=v9:-D__sparc_v9__} \
296%{mcpu=ultrasparc:-D__sparc_v9__} \
297%{mcpu=ultrasparc3:-D__sparc_v9__} \
298%{mcpu=niagara:-D__sparc_v9__} \
299%{mcpu=niagara2:-D__sparc_v9__} \
300%{mcpu=niagara3:-D__sparc_v9__} \
301%{mcpu=niagara4:-D__sparc_v9__} \
302%{!mcpu*:%(cpp_cpu_default)} \
303"
304#define CPP_ARCH32_SPEC ""
305#define CPP_ARCH64_SPEC "-D__arch64__"
306
307#define CPP_ARCH_DEFAULT_SPEC \
308(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
309
310#define CPP_ARCH_SPEC "\
311%{m32:%(cpp_arch32)} \
312%{m64:%(cpp_arch64)} \
313%{!m32:%{!m64:%(cpp_arch_default)}} \
314"
315
316/* Macros to distinguish the endianness, window model and FP support.  */
317#define CPP_OTHER_SPEC "\
318%{mflat:-D_FLAT} \
319%{msoft-float:-D_SOFT_FLOAT} \
320"
321
322/* Macros to distinguish the particular subtarget.  */
323#define CPP_SUBTARGET_SPEC ""
324
325#define CPP_SPEC \
326  "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
327
328/* This used to translate -dalign to -malign, but that is no good
329   because it can't turn off the usual meaning of making debugging dumps.  */
330
331#define CC1_SPEC ""
332
333/* Override in target specific files.  */
334#define ASM_CPU_SPEC "\
335%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
336%{mcpu=sparclite:-Asparclite} \
337%{mcpu=sparclite86x:-Asparclite} \
338%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
339%{mcpu=v8:-Av8} \
340%{mcpu=supersparc:-Av8} \
341%{mcpu=hypersparc:-Av8} \
342%{mcpu=leon:" AS_LEON_FLAG "} \
343%{mcpu=leon3:" AS_LEON_FLAG "} \
344%{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
345%{mv8plus:-Av8plus} \
346%{mcpu=v9:-Av9} \
347%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
348%{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
349%{mcpu=niagara:%{!mv8plus:-Av9b}} \
350%{mcpu=niagara2:%{!mv8plus:-Av9b}} \
351%{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
352%{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
353%{!mcpu*:%(asm_cpu_default)} \
354"
355
356/* Word size selection, among other things.
357   This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
358
359#define ASM_ARCH32_SPEC "-32"
360#ifdef HAVE_AS_REGISTER_PSEUDO_OP
361#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
362#else
363#define ASM_ARCH64_SPEC "-64"
364#endif
365#define ASM_ARCH_DEFAULT_SPEC \
366(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
367
368#define ASM_ARCH_SPEC "\
369%{m32:%(asm_arch32)} \
370%{m64:%(asm_arch64)} \
371%{!m32:%{!m64:%(asm_arch_default)}} \
372"
373
374#ifdef HAVE_AS_RELAX_OPTION
375#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
376#else
377#define ASM_RELAX_SPEC ""
378#endif
379
380/* Special flags to the Sun-4 assembler when using pipe for input.  */
381
382#define ASM_SPEC "\
383%{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
384%(asm_cpu) %(asm_relax)"
385
386/* This macro defines names of additional specifications to put in the specs
387   that can be used in various specifications like CC1_SPEC.  Its definition
388   is an initializer with a subgrouping for each command option.
389
390   Each subgrouping contains a string constant, that defines the
391   specification name, and a string constant that used by the GCC driver
392   program.
393
394   Do not define this macro if it does not need to do anything.  */
395
396#define EXTRA_SPECS \
397  { "cpp_cpu",		CPP_CPU_SPEC },		\
398  { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
399  { "cpp_arch32",	CPP_ARCH32_SPEC },	\
400  { "cpp_arch64",	CPP_ARCH64_SPEC },	\
401  { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
402  { "cpp_arch",		CPP_ARCH_SPEC },	\
403  { "cpp_other",	CPP_OTHER_SPEC },	\
404  { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
405  { "asm_cpu",		ASM_CPU_SPEC },		\
406  { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
407  { "asm_arch32",	ASM_ARCH32_SPEC },	\
408  { "asm_arch64",	ASM_ARCH64_SPEC },	\
409  { "asm_relax",	ASM_RELAX_SPEC },	\
410  { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
411  { "asm_arch",		ASM_ARCH_SPEC },	\
412  SUBTARGET_EXTRA_SPECS
413
414#define SUBTARGET_EXTRA_SPECS
415
416/* Because libgcc can generate references back to libc (via .umul etc.) we have
417   to list libc again after the second libgcc.  */
418#define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
419
420
421#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
422#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
423
424/* ??? This should be 32 bits for v9 but what can we do?  */
425#define WCHAR_TYPE "short unsigned int"
426#define WCHAR_TYPE_SIZE 16
427
428/* Mask of all CPU selection flags.  */
429#define MASK_ISA					\
430  (MASK_SPARCLITE + MASK_SPARCLET			\
431   + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
432
433/* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y.  */
434#define TARGET_HARD_MUL				\
435  (TARGET_SPARCLITE || TARGET_SPARCLET		\
436   || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
437
438/* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
439   to get high 32 bits.  False in 64-bit or V8+ because multiply stores
440   a 64-bit result in a register.  */
441#define TARGET_HARD_MUL32 \
442  (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
443
444/* MASK_APP_REGS must always be the default because that's what
445   FIXED_REGISTERS is set to and -ffixed- is processed before
446   TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
447   -mno-app-regs).  */
448#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
449
450/* Recast the cpu class to be the cpu attribute.
451   Every file includes us, but not every file includes insn-attr.h.  */
452#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
453
454/* Support for a compile-time default CPU, et cetera.  The rules are:
455   --with-cpu is ignored if -mcpu is specified.
456   --with-tune is ignored if -mtune is specified.
457   --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
458     are specified.  */
459#define OPTION_DEFAULT_SPECS \
460  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
461  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
462  {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
463
464/* target machine storage layout */
465
466/* Define this if most significant bit is lowest numbered
467   in instructions that operate on numbered bit-fields.  */
468#define BITS_BIG_ENDIAN 1
469
470/* Define this if most significant byte of a word is the lowest numbered.  */
471#define BYTES_BIG_ENDIAN 1
472
473/* Define this if most significant word of a multiword number is the lowest
474   numbered.  */
475#define WORDS_BIG_ENDIAN 1
476
477#define MAX_BITS_PER_WORD	64
478
479/* Width of a word, in units (bytes).  */
480#define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
481#ifdef IN_LIBGCC2
482#define MIN_UNITS_PER_WORD	UNITS_PER_WORD
483#else
484#define MIN_UNITS_PER_WORD	4
485#endif
486
487/* Now define the sizes of the C data types.  */
488#define SHORT_TYPE_SIZE		16
489#define INT_TYPE_SIZE		32
490#define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
491#define LONG_LONG_TYPE_SIZE	64
492#define FLOAT_TYPE_SIZE		32
493#define DOUBLE_TYPE_SIZE	64
494
495/* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
496   SPARC ABI says that it is 128-bit wide.  */
497/* #define LONG_DOUBLE_TYPE_SIZE	128 */
498
499/* The widest floating-point format really supported by the hardware.  */
500#define WIDEST_HARDWARE_FP_SIZE 64
501
502/* Width in bits of a pointer.  This is the size of ptr_mode.  */
503#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
504
505/* This is the machine mode used for addresses.  */
506#define Pmode (TARGET_ARCH64 ? DImode : SImode)
507
508/* If we have to extend pointers (only when TARGET_ARCH64 and not
509   TARGET_PTR64), we want to do it unsigned.   This macro does nothing
510   if ptr_mode and Pmode are the same.  */
511#define POINTERS_EXTEND_UNSIGNED 1
512
513/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
514#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
515
516/* Boundary (in *bits*) on which stack pointer should be aligned.  */
517/* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
518   then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
519#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
520/* Temporary hack until the FIXME above is fixed.  */
521#define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
522
523/* ALIGN FRAMES on double word boundaries */
524#define SPARC_STACK_ALIGN(LOC) \
525  (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
526
527/* Allocation boundary (in *bits*) for the code of a function.  */
528#define FUNCTION_BOUNDARY 32
529
530/* Alignment of field after `int : 0' in a structure.  */
531#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
532
533/* Every structure's size must be a multiple of this.  */
534#define STRUCTURE_SIZE_BOUNDARY 8
535
536/* A bit-field declared as `int' forces `int' alignment for the struct.  */
537#define PCC_BITFIELD_TYPE_MATTERS 1
538
539/* No data type wants to be aligned rounder than this.  */
540#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
541
542/* The best alignment to use in cases where we have a choice.  */
543#define FASTEST_ALIGNMENT 64
544
545/* Define this macro as an expression for the alignment of a structure
546   (given by STRUCT as a tree node) if the alignment computed in the
547   usual way is COMPUTED and the alignment explicitly specified was
548   SPECIFIED.
549
550   The default is to use SPECIFIED if it is larger; otherwise, use
551   the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
552#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
553 (TARGET_FASTER_STRUCTS ?				\
554  ((TREE_CODE (STRUCT) == RECORD_TYPE			\
555    || TREE_CODE (STRUCT) == UNION_TYPE                 \
556    || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
557   && TYPE_FIELDS (STRUCT) != 0                         \
558     ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
559     : MAX ((COMPUTED), (SPECIFIED)))			\
560   :  MAX ((COMPUTED), (SPECIFIED)))
561
562/* An integer expression for the size in bits of the largest integer machine
563   mode that should actually be used.  We allow pairs of registers.  */
564#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
565
566/* We need 2 words, so we can save the stack pointer and the return register
567   of the function containing a non-local goto target.  */
568#define STACK_SAVEAREA_MODE(LEVEL) \
569  ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
570
571/* Make strings word-aligned so strcpy from constants will be faster.  */
572#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
573  ((TREE_CODE (EXP) == STRING_CST	\
574    && (ALIGN) < FASTEST_ALIGNMENT)	\
575   ? FASTEST_ALIGNMENT : (ALIGN))
576
577/* Make arrays of chars word-aligned for the same reasons.  */
578#define DATA_ALIGNMENT(TYPE, ALIGN)		\
579  (TREE_CODE (TYPE) == ARRAY_TYPE		\
580   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
581   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
582
583/* Make local arrays of chars word-aligned for the same reasons.  */
584#define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
585
586/* Set this nonzero if move instructions will actually fail to work
587   when given unaligned data.  */
588#define STRICT_ALIGNMENT 1
589
590/* Things that must be doubleword aligned cannot go in the text section,
591   because the linker fails to align the text section enough!
592   Put them in the data section.  This macro is only used in this file.  */
593#define MAX_TEXT_ALIGN 32
594
595/* Standard register usage.  */
596
597/* Number of actual hardware registers.
598   The hardware registers are assigned numbers for the compiler
599   from 0 to just below FIRST_PSEUDO_REGISTER.
600   All registers that the compiler knows about must be given numbers,
601   even those that are not normally considered general registers.
602
603   SPARC has 32 integer registers and 32 floating point registers.
604   64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
605   accessible.  We still account for them to simplify register computations
606   (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
607   32+32+32+4 == 100.
608   Register 100 is used as the integer condition code register.
609   Register 101 is used as the soft frame pointer register.  */
610
611#define FIRST_PSEUDO_REGISTER 103
612
613#define SPARC_FIRST_INT_REG     0
614#define SPARC_LAST_INT_REG     31
615#define SPARC_FIRST_FP_REG     32
616/* Additional V9 fp regs.  */
617#define SPARC_FIRST_V9_FP_REG  64
618#define SPARC_LAST_V9_FP_REG   95
619/* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
620#define SPARC_FIRST_V9_FCC_REG 96
621#define SPARC_LAST_V9_FCC_REG  99
622/* V8 fcc reg.  */
623#define SPARC_FCC_REG 96
624/* Integer CC reg.  We don't distinguish %icc from %xcc.  */
625#define SPARC_ICC_REG 100
626#define SPARC_GSR_REG 102
627
628/* Nonzero if REGNO is an fp reg.  */
629#define SPARC_FP_REG_P(REGNO) \
630((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
631
632/* Nonzero if REGNO is an int reg.  */
633#define SPARC_INT_REG_P(REGNO) \
634(((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
635
636/* Argument passing regs.  */
637#define SPARC_OUTGOING_INT_ARG_FIRST 8
638#define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
639#define SPARC_FP_ARG_FIRST           32
640
641/* 1 for registers that have pervasive standard uses
642   and are not available for the register allocator.
643
644   On non-v9 systems:
645   g1 is free to use as temporary.
646   g2-g4 are reserved for applications.  Gcc normally uses them as
647   temporaries, but this can be disabled via the -mno-app-regs option.
648   g5 through g7 are reserved for the operating system.
649
650   On v9 systems:
651   g1,g5 are free to use as temporaries, and are free to use between calls
652   if the call is to an external function via the PLT.
653   g4 is free to use as a temporary in the non-embedded case.
654   g4 is reserved in the embedded case.
655   g2-g3 are reserved for applications.  Gcc normally uses them as
656   temporaries, but this can be disabled via the -mno-app-regs option.
657   g6-g7 are reserved for the operating system (or application in
658   embedded case).
659   ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
660   currently be a fixed register until this pattern is rewritten.
661   Register 1 is also used when restoring call-preserved registers in large
662   stack frames.
663
664   Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
665   TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
666*/
667
668#define FIXED_REGISTERS  \
669 {1, 0, 2, 2, 2, 2, 1, 1,	\
670  0, 0, 0, 0, 0, 0, 1, 0,	\
671  0, 0, 0, 0, 0, 0, 0, 0,	\
672  0, 0, 0, 0, 0, 0, 0, 1,	\
673				\
674  0, 0, 0, 0, 0, 0, 0, 0,	\
675  0, 0, 0, 0, 0, 0, 0, 0,	\
676  0, 0, 0, 0, 0, 0, 0, 0,	\
677  0, 0, 0, 0, 0, 0, 0, 0,	\
678				\
679  0, 0, 0, 0, 0, 0, 0, 0,	\
680  0, 0, 0, 0, 0, 0, 0, 0,	\
681  0, 0, 0, 0, 0, 0, 0, 0,	\
682  0, 0, 0, 0, 0, 0, 0, 0,	\
683				\
684  0, 0, 0, 0, 0, 1, 1}
685
686/* 1 for registers not available across function calls.
687   These must include the FIXED_REGISTERS and also any
688   registers that can be used without being saved.
689   The latter must include the registers where values are returned
690   and the register where structure-value addresses are passed.
691   Aside from that, you can include as many other registers as you like.  */
692
693#define CALL_USED_REGISTERS  \
694 {1, 1, 1, 1, 1, 1, 1, 1,	\
695  1, 1, 1, 1, 1, 1, 1, 1,	\
696  0, 0, 0, 0, 0, 0, 0, 0,	\
697  0, 0, 0, 0, 0, 0, 0, 1,	\
698				\
699  1, 1, 1, 1, 1, 1, 1, 1,	\
700  1, 1, 1, 1, 1, 1, 1, 1,	\
701  1, 1, 1, 1, 1, 1, 1, 1,	\
702  1, 1, 1, 1, 1, 1, 1, 1,	\
703				\
704  1, 1, 1, 1, 1, 1, 1, 1,	\
705  1, 1, 1, 1, 1, 1, 1, 1,	\
706  1, 1, 1, 1, 1, 1, 1, 1,	\
707  1, 1, 1, 1, 1, 1, 1, 1,	\
708				\
709  1, 1, 1, 1, 1, 1, 1}
710
711/* Return number of consecutive hard regs needed starting at reg REGNO
712   to hold something of mode MODE.
713   This is ordinarily the length in words of a value of mode MODE
714   but can be less for certain modes in special long registers.
715
716   On SPARC, ordinary registers hold 32 bits worth;
717   this means both integer and floating point registers.
718   On v9, integer regs hold 64 bits worth; floating point regs hold
719   32 bits worth (this includes the new fp regs as even the odd ones are
720   included in the hard register count).  */
721
722#define HARD_REGNO_NREGS(REGNO, MODE) \
723  ((REGNO) == SPARC_GSR_REG ? 1 :					\
724   (TARGET_ARCH64							\
725    ? (SPARC_INT_REG_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM			\
726       ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD	\
727       : (GET_MODE_SIZE (MODE) + 3) / 4)				\
728    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
729
730/* Due to the ARCH64 discrepancy above we must override this next
731   macro too.  */
732#define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
733
734/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
735   See sparc.c for how we initialize this.  */
736extern const int *hard_regno_mode_classes;
737extern int sparc_mode_class[];
738
739/* ??? Because of the funny way we pass parameters we should allow certain
740   ??? types of float/complex values to be in integer registers during
741   ??? RTL generation.  This only matters on arch32.  */
742#define HARD_REGNO_MODE_OK(REGNO, MODE) \
743  ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
744
745/* Value is 1 if it is OK to rename a hard register FROM to another hard
746   register TO.  We cannot rename %g1 as it may be used before the save
747   register window instruction in the prologue.  */
748#define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
749
750#define MODES_TIEABLE_P(MODE1, MODE2) sparc_modes_tieable_p (MODE1, MODE2)
751
752/* Specify the registers used for certain standard purposes.
753   The values of these macros are register numbers.  */
754
755/* Register to use for pushing function arguments.  */
756#define STACK_POINTER_REGNUM 14
757
758/* The stack bias (amount by which the hardware register is offset by).  */
759#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
760
761/* Actual top-of-stack address is 92/176 greater than the contents of the
762   stack pointer register for !v9/v9.  That is:
763   - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
764     address, and 6*4 bytes for the 6 register parameters.
765   - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
766     parameter regs.  */
767#define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
768
769/* Base register for access to local variables of the function.  */
770#define HARD_FRAME_POINTER_REGNUM 30
771
772/* The soft frame pointer does not have the stack bias applied.  */
773#define FRAME_POINTER_REGNUM 101
774
775/* Given the stack bias, the stack pointer isn't actually aligned.  */
776#define INIT_EXPANDERS							 \
777  do {									 \
778    if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS)	 \
779      {									 \
780	REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;	 \
781	REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
782      }									 \
783  } while (0)
784
785/* Base register for access to arguments of the function.  */
786#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
787
788/* Register in which static-chain is passed to a function.  This must
789   not be a register used by the prologue.  */
790#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
791
792/* Register which holds the global offset table, if any.  */
793
794#define GLOBAL_OFFSET_TABLE_REGNUM 23
795
796/* Register which holds offset table for position-independent
797   data references.  */
798
799#define PIC_OFFSET_TABLE_REGNUM \
800  (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
801
802/* Pick a default value we can notice from override_options:
803   !v9: Default is on.
804   v9: Default is off.
805   Originally it was -1, but later on the container of options changed to
806   unsigned byte, so we decided to pick 127 as default value, which does
807   reflect an undefined default value in case of 0/1.  */
808
809#define DEFAULT_PCC_STRUCT_RETURN 127
810
811/* Functions which return large structures get the address
812   to place the wanted value at offset 64 from the frame.
813   Must reserve 64 bytes for the in and local registers.
814   v9: Functions which return large structures get the address to place the
815   wanted value from an invisible first argument.  */
816#define STRUCT_VALUE_OFFSET 64
817
818/* Define the classes of registers for register constraints in the
819   machine description.  Also define ranges of constants.
820
821   One of the classes must always be named ALL_REGS and include all hard regs.
822   If there is more than one class, another class must be named NO_REGS
823   and contain no registers.
824
825   The name GENERAL_REGS must be the name of a class (or an alias for
826   another name such as ALL_REGS).  This is the class of registers
827   that is allowed by "g" or "r" in a register constraint.
828   Also, registers outside this class are allocated only when
829   instructions express preferences for them.
830
831   The classes must be numbered in nondecreasing order; that is,
832   a larger-numbered class must never be contained completely
833   in a smaller-numbered class.
834
835   For any two classes, it is very desirable that there be another
836   class that represents their union.  */
837
838/* The SPARC has various kinds of registers: general, floating point,
839   and condition codes [well, it has others as well, but none that we
840   care directly about].
841
842   For v9 we must distinguish between the upper and lower floating point
843   registers because the upper ones can't hold SFmode values.
844   HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
845   satisfying a group need for a class will also satisfy a single need for
846   that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
847   regs.
848
849   It is important that one class contains all the general and all the standard
850   fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
851   because reg_class_record() will bias the selection in favor of fp regs,
852   because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
853   because FP_REGS > GENERAL_REGS.
854
855   It is also important that one class contain all the general and all
856   the fp regs.  Otherwise when spilling a DFmode reg, it may be from
857   EXTRA_FP_REGS but find_reloads() may use class
858   GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
859   because the compiler thinks it doesn't have a spill reg when in
860   fact it does.
861
862   v9 also has 4 floating point condition code registers.  Since we don't
863   have a class that is the union of FPCC_REGS with either of the others,
864   it is important that it appear first.  Otherwise the compiler will die
865   trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
866   constraints.
867
868   It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
869   may try to use it to hold an SImode value.  See register_operand.
870   ??? Should %fcc[0123] be handled similarly?
871*/
872
873enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
874		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
875		 ALL_REGS, LIM_REG_CLASSES };
876
877#define N_REG_CLASSES (int) LIM_REG_CLASSES
878
879/* Give names of register classes as strings for dump file.  */
880
881#define REG_CLASS_NAMES \
882  { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
883     "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
884     "ALL_REGS" }
885
886/* Define which registers fit in which classes.
887   This is an initializer for a vector of HARD_REG_SET
888   of length N_REG_CLASSES.  */
889
890#define REG_CLASS_CONTENTS				\
891  {{0, 0, 0, 0},	/* NO_REGS */			\
892   {0, 0, 0, 0xf},	/* FPCC_REGS */			\
893   {0xffff, 0, 0, 0},	/* I64_REGS */			\
894   {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
895   {0, -1, 0, 0},	/* FP_REGS */			\
896   {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
897   {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
898   {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
899   {-1, -1, -1, 0x7f}}	/* ALL_REGS */
900
901/* The same information, inverted:
902   Return the class number of the smallest class containing
903   reg number REGNO.  This could be a conditional expression
904   or could index an array.  */
905
906extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
907
908#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
909
910/* Defines invalid mode changes.  Borrowed from the PA port.
911
912   SImode loads to floating-point registers are not zero-extended.
913   The definition for LOAD_EXTEND_OP specifies that integer loads
914   narrower than BITS_PER_WORD will be zero-extended.  As a result,
915   we inhibit changes from SImode unless they are to a mode that is
916   identical in size.
917
918   Likewise for SFmode, since word-mode paradoxical subregs are
919   problematic on big-endian architectures.  */
920
921#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
922  (TARGET_ARCH64						\
923   && GET_MODE_SIZE (FROM) == 4					\
924   && GET_MODE_SIZE (TO) != 4					\
925   ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
926
927/* This is the order in which to allocate registers normally.
928
929   We put %f0-%f7 last among the float registers, so as to make it more
930   likely that a pseudo-register which dies in the float return register
931   area will get allocated to the float return register, thus saving a move
932   instruction at the end of the function.
933
934   Similarly for integer return value registers.
935
936   We know in this case that we will not end up with a leaf function.
937
938   The register allocator is given the global and out registers first
939   because these registers are call clobbered and thus less useful to
940   global register allocation.
941
942   Next we list the local and in registers.  They are not call clobbered
943   and thus very useful for global register allocation.  We list the input
944   registers before the locals so that it is more likely the incoming
945   arguments received in those registers can just stay there and not be
946   reloaded.  */
947
948#define REG_ALLOC_ORDER \
949{ 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
950  13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
951  15,					/* %o7 */	\
952  16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
953  29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
954  40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
955  48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
956  56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
957  64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
958  72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
959  80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
960  88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
961  39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
962  96, 97, 98, 99,			/* %fcc0-3 */   \
963  100, 0, 14, 30, 101, 102 }		/* %icc, %g0, %o6, %i6, %sfp, %gsr */
964
965/* This is the order in which to allocate registers for
966   leaf functions.  If all registers can fit in the global and
967   output registers, then we have the possibility of having a leaf
968   function.
969
970   The macro actually mentioned the input registers first,
971   because they get renumbered into the output registers once
972   we know really do have a leaf function.
973
974   To be more precise, this register allocation order is used
975   when %o7 is found to not be clobbered right before register
976   allocation.  Normally, the reason %o7 would be clobbered is
977   due to a call which could not be transformed into a sibling
978   call.
979
980   As a consequence, it is possible to use the leaf register
981   allocation order and not end up with a leaf function.  We will
982   not get suboptimal register allocation in that case because by
983   definition of being potentially leaf, there were no function
984   calls.  Therefore, allocation order within the local register
985   window is not critical like it is when we do have function calls.  */
986
987#define REG_LEAF_ALLOC_ORDER \
988{ 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
989  29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
990  15,					/* %o7 */	\
991  13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
992  16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
993  40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
994  48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
995  56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
996  64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
997  72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
998  80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
999  88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
1000  39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
1001  96, 97, 98, 99,			/* %fcc0-3 */	\
1002  100, 0, 14, 30, 31, 101, 102 }	/* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1003
1004#define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1005
1006extern char sparc_leaf_regs[];
1007#define LEAF_REGISTERS sparc_leaf_regs
1008
1009extern char leaf_reg_remap[];
1010#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1011
1012/* The class value for index registers, and the one for base regs.  */
1013#define INDEX_REG_CLASS GENERAL_REGS
1014#define BASE_REG_CLASS GENERAL_REGS
1015
1016/* Local macro to handle the two v9 classes of FP regs.  */
1017#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1018
1019/* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants.  */
1020#define SPARC_SIMM5_P(X)  ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1021#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1022#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1023#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1024
1025/* 10- and 11-bit immediates are only used for a few specific insns.
1026   SMALL_INT is used throughout the port so we continue to use it.  */
1027#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1028
1029/* Predicate for constants that can be loaded with a sethi instruction.
1030   This is the general, 64-bit aware, bitwise version that ensures that
1031   only constants whose representation fits in the mask
1032
1033     0x00000000fffffc00
1034
1035   are accepted.  It will reject, for example, negative SImode constants
1036   on 64-bit hosts, so correct handling is to mask the value beforehand
1037   according to the mode of the instruction.  */
1038#define SPARC_SETHI_P(X) \
1039  (((unsigned HOST_WIDE_INT) (X) \
1040    & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1041
1042/* Version of the above predicate for SImode constants and below.  */
1043#define SPARC_SETHI32_P(X) \
1044  (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1045
1046/* On SPARC when not VIS3 it is not possible to directly move data
1047   between GENERAL_REGS and FP_REGS.  */
1048#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1049  ((FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) \
1050   && (! TARGET_VIS3 \
1051       || GET_MODE_SIZE (MODE) > 8 \
1052       || GET_MODE_SIZE (MODE) < 4))
1053
1054/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1055   because the movsi and movsf patterns don't handle r/f moves.
1056   For v8 we copy the default definition.  */
1057#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1058  (TARGET_ARCH64						\
1059   ? (GET_MODE_BITSIZE (MODE) < 32				\
1060      ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
1061      : MODE)							\
1062   : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD			\
1063      ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0)	\
1064      : MODE))
1065
1066/* Return the maximum number of consecutive registers
1067   needed to represent mode MODE in a register of class CLASS.  */
1068/* On SPARC, this is the size of MODE in words.  */
1069#define CLASS_MAX_NREGS(CLASS, MODE)	\
1070  (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1071   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1072
1073/* Stack layout; function entry, exit and calling.  */
1074
1075/* Define this if pushing a word on the stack
1076   makes the stack pointer a smaller address.  */
1077#define STACK_GROWS_DOWNWARD
1078
1079/* Define this to nonzero if the nominal address of the stack frame
1080   is at the high-address end of the local variables;
1081   that is, each additional local variable allocated
1082   goes at a more negative offset in the frame.  */
1083#define FRAME_GROWS_DOWNWARD 1
1084
1085/* Offset within stack frame to start allocating local variables at.
1086   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1087   first local allocated.  Otherwise, it is the offset to the BEGINNING
1088   of the first local allocated.  */
1089#define STARTING_FRAME_OFFSET 0
1090
1091/* Offset of first parameter from the argument pointer register value.
1092   !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1093   even if this function isn't going to use it.
1094   v9: This is 128 for the ins and locals.  */
1095#define FIRST_PARM_OFFSET(FNDECL) \
1096  (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1097
1098/* Offset from the argument pointer register value to the CFA.
1099   This is different from FIRST_PARM_OFFSET because the register window
1100   comes between the CFA and the arguments.  */
1101#define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1102
1103/* When a parameter is passed in a register, stack space is still
1104   allocated for it.
1105   !v9: All 6 possible integer registers have backing store allocated.
1106   v9: Only space for the arguments passed is allocated.  */
1107/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1108   meaning to the backend.  Further, we need to be able to detect if a
1109   varargs/unprototyped function is called, as they may want to spill more
1110   registers than we've provided space.  Ugly, ugly.  So for now we retain
1111   all 6 slots even for v9.  */
1112#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1113
1114/* Definitions for register elimination.  */
1115
1116#define ELIMINABLE_REGS \
1117  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1118   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1119
1120#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) 		\
1121  do								\
1122    {								\
1123      (OFFSET) = sparc_initial_elimination_offset ((TO));	\
1124    }								\
1125  while (0)
1126
1127/* Keep the stack pointer constant throughout the function.
1128   This is both an optimization and a necessity: longjmp
1129   doesn't behave itself when the stack pointer moves within
1130   the function!  */
1131#define ACCUMULATE_OUTGOING_ARGS 1
1132
1133/* Define this macro if the target machine has "register windows".  This
1134   C expression returns the register number as seen by the called function
1135   corresponding to register number OUT as seen by the calling function.
1136   Return OUT if register number OUT is not an outbound register.  */
1137
1138#define INCOMING_REGNO(OUT) \
1139 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1140
1141/* Define this macro if the target machine has "register windows".  This
1142   C expression returns the register number as seen by the calling function
1143   corresponding to register number IN as seen by the called function.
1144   Return IN if register number IN is not an inbound register.  */
1145
1146#define OUTGOING_REGNO(IN) \
1147 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1148
1149/* Define this macro if the target machine has register windows.  This
1150   C expression returns true if the register is call-saved but is in the
1151   register window.  */
1152
1153#define LOCAL_REGNO(REGNO) \
1154  (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1155
1156/* Define the size of space to allocate for the return value of an
1157   untyped_call.  */
1158
1159#define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1160
1161/* 1 if N is a possible register number for function argument passing.
1162   On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1163
1164#define FUNCTION_ARG_REGNO_P(N) \
1165(TARGET_ARCH64 \
1166 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1167 : ((N) >= 8 && (N) <= 13))
1168
1169/* Define a data type for recording info about an argument list
1170   during the scan of that argument list.  This data type should
1171   hold all necessary information about the function itself
1172   and about the args processed so far, enough to enable macros
1173   such as FUNCTION_ARG to determine where the next arg should go.
1174
1175   On SPARC (!v9), this is a single integer, which is a number of words
1176   of arguments scanned so far (including the invisible argument,
1177   if any, which holds the structure-value-address).
1178   Thus 7 or more means all following args should go on the stack.
1179
1180   For v9, we also need to know whether a prototype is present.  */
1181
1182struct sparc_args {
1183  int words;       /* number of words passed so far */
1184  int prototype_p; /* nonzero if a prototype is present */
1185  int libcall_p;   /* nonzero if a library call */
1186};
1187#define CUMULATIVE_ARGS struct sparc_args
1188
1189/* Initialize a variable CUM of type CUMULATIVE_ARGS
1190   for a call to a function whose data type is FNTYPE.
1191   For a library call, FNTYPE is 0.  */
1192
1193#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1194init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1195
1196/* If defined, a C expression which determines whether, and in which direction,
1197   to pad out an argument with extra space.  The value should be of type
1198   `enum direction': either `upward' to pad above the argument,
1199   `downward' to pad below, or `none' to inhibit padding.  */
1200
1201#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1202function_arg_padding ((MODE), (TYPE))
1203
1204
1205/* Generate the special assembly code needed to tell the assembler whatever
1206   it might need to know about the return value of a function.
1207
1208   For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1209   information to the assembler relating to peephole optimization (done in
1210   the assembler).  */
1211
1212#define ASM_DECLARE_RESULT(FILE, RESULT) \
1213  fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1214
1215/* Output the special assembly code needed to tell the assembler some
1216   register is used as global register variable.
1217
1218   SPARC 64bit psABI declares registers %g2 and %g3 as application
1219   registers and %g6 and %g7 as OS registers.  Any object using them
1220   should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1221   and how they are used (scratch or some global variable).
1222   Linker will then refuse to link together objects which use those
1223   registers incompatibly.
1224
1225   Unless the registers are used for scratch, two different global
1226   registers cannot be declared to the same name, so in the unlikely
1227   case of a global register variable occupying more than one register
1228   we prefix the second and following registers with .gnu.part1. etc.  */
1229
1230extern GTY(()) char sparc_hard_reg_printed[8];
1231
1232#ifdef HAVE_AS_REGISTER_PSEUDO_OP
1233#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1234do {									\
1235  if (TARGET_ARCH64)							\
1236    {									\
1237      int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1238      int reg;								\
1239      for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1240	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1241	  {								\
1242	    if (reg == (REGNO))						\
1243	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1244	    else							\
1245	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1246		       reg, reg - (REGNO), (NAME));			\
1247	    sparc_hard_reg_printed[reg] = 1;				\
1248	  }								\
1249    }									\
1250} while (0)
1251#endif
1252
1253
1254/* Emit rtl for profiling.  */
1255#define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1256
1257/* All the work done in PROFILE_HOOK, but still required.  */
1258#define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1259
1260/* Set the name of the mcount function for the system.  */
1261#define MCOUNT_FUNCTION "*mcount"
1262
1263/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1264   the stack pointer does not matter.  The value is tested only in
1265   functions that have frame pointers.  */
1266#define EXIT_IGNORE_STACK 1
1267
1268/* Length in units of the trampoline for entering a nested function.  */
1269#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1270
1271/* Alignment required for trampolines, in bits.  */
1272#define TRAMPOLINE_ALIGNMENT 128
1273
1274/* Generate RTL to flush the register windows so as to make arbitrary frames
1275   available.  */
1276#define SETUP_FRAME_ADDRESSES()			\
1277  do {						\
1278    if (!TARGET_FLAT)				\
1279      emit_insn (gen_flush_register_windows ());\
1280  } while (0)
1281
1282/* Given an rtx for the address of a frame,
1283   return an rtx for the address of the word in the frame
1284   that holds the dynamic chain--the previous frame's address.  */
1285#define DYNAMIC_CHAIN_ADDRESS(frame)	\
1286  plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1287
1288/* Given an rtx for the frame pointer,
1289   return an rtx for the address of the frame.  */
1290#define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1291
1292/* The return address isn't on the stack, it is in a register, so we can't
1293   access it from the current frame pointer.  We can access it from the
1294   previous frame pointer though by reading a value from the register window
1295   save area.  */
1296#define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1297
1298/* This is the offset of the return address to the true next instruction to be
1299   executed for the current function.  */
1300#define RETURN_ADDR_OFFSET \
1301  (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1302
1303/* The current return address is in %i7.  The return address of anything
1304   farther back is in the register window save area at [%fp+60].  */
1305/* ??? This ignores the fact that the actual return address is +8 for normal
1306   returns, and +12 for structure returns.  */
1307#define RETURN_ADDR_REGNUM 31
1308#define RETURN_ADDR_RTX(count, frame)		\
1309  ((count == -1)				\
1310   ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)			\
1311   : gen_rtx_MEM (Pmode,			\
1312		  memory_address (Pmode, plus_constant (Pmode, frame, \
1313							15 * UNITS_PER_WORD \
1314							+ SPARC_STACK_BIAS))))
1315
1316/* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1317   +12, but always using +8 is close enough for frame unwind purposes.
1318   Actually, just using %o7 is close enough for unwinding, but %o7+8
1319   is something you can return to.  */
1320#define INCOMING_RETURN_ADDR_REGNUM 15
1321#define INCOMING_RETURN_ADDR_RTX \
1322  plus_constant (word_mode, \
1323		 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1324#define DWARF_FRAME_RETURN_COLUMN \
1325  DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1326
1327/* The offset from the incoming value of %sp to the top of the stack frame
1328   for the current function.  On sparc64, we have to account for the stack
1329   bias if present.  */
1330#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1331
1332/* Describe how we implement __builtin_eh_return.  */
1333#define EH_RETURN_REGNUM 1
1334#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1335#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1336
1337/* Define registers used by the epilogue and return instruction.  */
1338#define EPILOGUE_USES(REGNO)					\
1339  ((REGNO) == RETURN_ADDR_REGNUM				\
1340   || (TARGET_FLAT						\
1341       && epilogue_completed					\
1342       && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)		\
1343   || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1344
1345/* Select a format to encode pointers in exception handling data.  CODE
1346   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1347   true if the symbol may be affected by dynamic relocations.
1348
1349   If assembler and linker properly support .uaword %r_disp32(foo),
1350   then use PC relative 32-bit relocations instead of absolute relocs
1351   for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1352   for binaries, to save memory.
1353
1354   binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1355   symbol %r_disp32() is against was not local, but .hidden.  In that
1356   case, we have to use DW_EH_PE_absptr for pic personality.  */
1357#ifdef HAVE_AS_SPARC_UA_PCREL
1358#ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1359#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1360  (flag_pic								\
1361   ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1362   : ((TARGET_ARCH64 && ! GLOBAL)					\
1363      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1364      : DW_EH_PE_absptr))
1365#else
1366#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1367  (flag_pic								\
1368   ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
1369   : ((TARGET_ARCH64 && ! GLOBAL)					\
1370      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1371      : DW_EH_PE_absptr))
1372#endif
1373
1374/* Emit a PC-relative relocation.  */
1375#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1376  do {							\
1377    fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1378    fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
1379    assemble_name (FILE, LABEL);			\
1380    fputc (')', FILE);					\
1381  } while (0)
1382#endif
1383
1384/* Addressing modes, and classification of registers for them.  */
1385
1386/* Macros to check register numbers against specific register classes.  */
1387
1388/* These assume that REGNO is a hard or pseudo reg number.
1389   They give nonzero only if REGNO is a hard reg of the suitable class
1390   or a pseudo reg currently allocated to a suitable hard reg.
1391   Since they use reg_renumber, they are safe only once reg_renumber
1392   has been allocated, which happens in reginfo.c during register
1393   allocation.  */
1394
1395#define REGNO_OK_FOR_INDEX_P(REGNO) \
1396(SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1397 || (REGNO) == FRAME_POINTER_REGNUM				  \
1398 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1399
1400#define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1401
1402#define REGNO_OK_FOR_FP_P(REGNO) \
1403  (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1404   || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1405
1406#define REGNO_OK_FOR_CCFP_P(REGNO) \
1407 (TARGET_V9 \
1408  && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1409      || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1410
1411/* Maximum number of registers that can appear in a valid memory address.  */
1412
1413#define MAX_REGS_PER_ADDRESS 2
1414
1415/* Recognize any constant value that is a valid address.
1416   When PIC, we do not accept an address that would require a scratch reg
1417   to load into a register.  */
1418
1419#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1420
1421/* Define this, so that when PIC, reload won't try to reload invalid
1422   addresses which require two reload registers.  */
1423
1424#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1425
1426/* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1427
1428#ifdef HAVE_AS_OFFSETABLE_LO10
1429#define USE_AS_OFFSETABLE_LO10 1
1430#else
1431#define USE_AS_OFFSETABLE_LO10 0
1432#endif
1433
1434/* Try a machine-dependent way of reloading an illegitimate address
1435   operand.  If we find one, push the reload and jump to WIN.  This
1436   macro is used in only one place: `find_reloads_address' in reload.c.  */
1437#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	   \
1438do {									   \
1439  int win;								   \
1440  (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),		   \
1441					 (int)(TYPE), (IND_LEVELS), &win); \
1442  if (win)								   \
1443    goto WIN;								   \
1444} while (0)
1445
1446/* Specify the machine mode that this machine uses
1447   for the index in the tablejump instruction.  */
1448/* If we ever implement any of the full models (such as CM_FULLANY),
1449   this has to be DImode in that case */
1450#ifdef HAVE_GAS_SUBSECTION_ORDERING
1451#define CASE_VECTOR_MODE \
1452(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1453#else
1454/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1455   we have to sign extend which slows things down.  */
1456#define CASE_VECTOR_MODE \
1457(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1458#endif
1459
1460/* Define this as 1 if `char' should by default be signed; else as 0.  */
1461#define DEFAULT_SIGNED_CHAR 1
1462
1463/* Max number of bytes we can move from memory to memory
1464   in one reasonably fast instruction.  */
1465#define MOVE_MAX 8
1466
1467/* If a memory-to-memory move would take MOVE_RATIO or more simple
1468   move-instruction pairs, we will do a movmem or libcall instead.  */
1469
1470#define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1471
1472/* Define if operations between registers always perform the operation
1473   on the full register even if a narrower mode is specified.  */
1474#define WORD_REGISTER_OPERATIONS
1475
1476/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1477   will either zero-extend or sign-extend.  The value of this macro should
1478   be the code that says which one of the two operations is implicitly
1479   done, UNKNOWN if none.  */
1480#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1481
1482/* Nonzero if access to memory by bytes is slow and undesirable.
1483   For RISC chips, it means that access to memory by bytes is no
1484   better than access by words when possible, so grab a whole word
1485   and maybe make use of that.  */
1486#define SLOW_BYTE_ACCESS 1
1487
1488/* Define this to be nonzero if shift instructions ignore all but the low-order
1489   few bits.  */
1490#define SHIFT_COUNT_TRUNCATED 1
1491
1492/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1493   is done just by pretending it is already truncated.  */
1494#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1495
1496/* For SImode, we make sure the top 32-bits of the register are clear and
1497   then we subtract 32 from the lzd instruction result.  */
1498#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1499  ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1500
1501/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1502   return the mode to be used for the comparison.  For floating-point,
1503   CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
1504   is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1505   processing is needed.  */
1506#define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1507
1508/* Return nonzero if MODE implies a floating point inequality can be
1509   reversed.  For SPARC this is always true because we have a full
1510   compliment of ordered and unordered comparisons, but until generic
1511   code knows how to reverse it correctly we keep the old definition.  */
1512#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1513
1514/* A function address in a call instruction for indexing purposes.  */
1515#define FUNCTION_MODE Pmode
1516
1517/* Define this if addresses of constant functions
1518   shouldn't be put through pseudo regs where they can be cse'd.
1519   Desirable on machines where ordinary constants are expensive
1520   but a CALL with constant address is cheap.  */
1521#define NO_FUNCTION_CSE
1522
1523/* The _Q_* comparison libcalls return booleans.  */
1524#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1525
1526/* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1527   that the inputs are fully consumed before the output memory is clobbered.  */
1528
1529#define TARGET_BUGGY_QP_LIB	0
1530
1531/* Assume by default that we do not have the Solaris-specific conversion
1532   routines nor 64-bit integer multiply and divide routines.  */
1533
1534#define SUN_CONVERSION_LIBFUNCS 	0
1535#define DITF_CONVERSION_LIBFUNCS	0
1536#define SUN_INTEGER_MULTIPLY_64 	0
1537
1538/* Provide the cost of a branch.  For pre-v9 processors we use
1539   a value of 3 to take into account the potential annulling of
1540   the delay slot (which ends up being a bubble in the pipeline slot)
1541   plus a cycle to take into consideration the instruction cache
1542   effects.
1543
1544   On v9 and later, which have branch prediction facilities, we set
1545   it to the depth of the pipeline as that is the cost of a
1546   mispredicted branch.
1547
1548   On Niagara, normal branches insert 3 bubbles into the pipe
1549   and annulled branches insert 4 bubbles.
1550
1551   On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1552   a taken branch costs 6 cycles.  */
1553
1554#define BRANCH_COST(speed_p, predictable_p) \
1555	((sparc_cpu == PROCESSOR_V9 \
1556	  || sparc_cpu == PROCESSOR_ULTRASPARC) \
1557	 ? 7 \
1558         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1559            ? 9 \
1560	 : (sparc_cpu == PROCESSOR_NIAGARA \
1561	    ? 4 \
1562	 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1563	     || sparc_cpu == PROCESSOR_NIAGARA3) \
1564	    ? 5 \
1565	 : 3))))
1566
1567/* Control the assembler format that we output.  */
1568
1569/* A C string constant describing how to begin a comment in the target
1570   assembler language.  The compiler assumes that the comment will end at
1571   the end of the line.  */
1572
1573#define ASM_COMMENT_START "!"
1574
1575/* Output to assembler file text saying following lines
1576   may contain character constants, extra white space, comments, etc.  */
1577
1578#define ASM_APP_ON ""
1579
1580/* Output to assembler file text saying following lines
1581   no longer contain unusual constructs.  */
1582
1583#define ASM_APP_OFF ""
1584
1585/* How to refer to registers in assembler output.
1586   This sequence is indexed by compiler's hard-register-number (see above).  */
1587
1588#define REGISTER_NAMES \
1589{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
1590 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
1591 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
1592 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
1593 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
1594 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
1595 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
1596 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
1597 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
1598 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
1599 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
1600 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
1601 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1602
1603/* Define additional names for use in asm clobbers and asm declarations.  */
1604
1605#define ADDITIONAL_REGISTER_NAMES \
1606{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1607
1608/* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1609   can run past this up to a continuation point.  Once we used 1500, but
1610   a single entry in C++ can run more than 500 bytes, due to the length of
1611   mangled symbol names.  dbxout.c should really be fixed to do
1612   continuations when they are actually needed instead of trying to
1613   guess...  */
1614#define DBX_CONTIN_LENGTH 1000
1615
1616/* This is how to output a command to make the user-level label named NAME
1617   defined for reference from other files.  */
1618
1619/* Globalizing directive for a label.  */
1620#define GLOBAL_ASM_OP "\t.global "
1621
1622/* The prefix to add to user-visible assembler symbols.  */
1623
1624#define USER_LABEL_PREFIX "_"
1625
1626/* This is how to store into the string LABEL
1627   the symbol_ref name of an internal numbered label where
1628   PREFIX is the class of label and NUM is the number within the class.
1629   This is suitable for output with `assemble_name'.  */
1630
1631#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1632  sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1633
1634/* This is how we hook in and defer the case-vector until the end of
1635   the function.  */
1636#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1637  sparc_defer_case_vector ((LAB),(VEC), 0)
1638
1639#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1640  sparc_defer_case_vector ((LAB),(VEC), 1)
1641
1642/* This is how to output an element of a case-vector that is absolute.  */
1643
1644#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1645do {									\
1646  char label[30];							\
1647  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
1648  if (CASE_VECTOR_MODE == SImode)					\
1649    fprintf (FILE, "\t.word\t");					\
1650  else									\
1651    fprintf (FILE, "\t.xword\t");					\
1652  assemble_name (FILE, label);						\
1653  fputc ('\n', FILE);							\
1654} while (0)
1655
1656/* This is how to output an element of a case-vector that is relative.
1657   (SPARC uses such vectors only when generating PIC.)  */
1658
1659#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
1660do {									\
1661  char label[30];							\
1662  ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
1663  if (CASE_VECTOR_MODE == SImode)					\
1664    fprintf (FILE, "\t.word\t");					\
1665  else									\
1666    fprintf (FILE, "\t.xword\t");					\
1667  assemble_name (FILE, label);						\
1668  ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
1669  fputc ('-', FILE);							\
1670  assemble_name (FILE, label);						\
1671  fputc ('\n', FILE);							\
1672} while (0)
1673
1674/* This is what to output before and after case-vector (both
1675   relative and absolute).  If .subsection -1 works, we put case-vectors
1676   at the beginning of the current section.  */
1677
1678#ifdef HAVE_GAS_SUBSECTION_ORDERING
1679
1680#define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
1681  fprintf(FILE, "\t.subsection\t-1\n")
1682
1683#define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
1684  fprintf(FILE, "\t.previous\n")
1685
1686#endif
1687
1688/* This is how to output an assembler line
1689   that says to advance the location counter
1690   to a multiple of 2**LOG bytes.  */
1691
1692#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1693  if ((LOG) != 0)			\
1694    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1695
1696#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1697  fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1698
1699/* This says how to output an assembler line
1700   to define a global common symbol.  */
1701
1702#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1703( fputs ("\t.common ", (FILE)),		\
1704  assemble_name ((FILE), (NAME)),		\
1705  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1706
1707/* This says how to output an assembler line to define a local common
1708   symbol.  */
1709
1710#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1711( fputs ("\t.reserve ", (FILE)),					\
1712  assemble_name ((FILE), (NAME)),					\
1713  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
1714	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1715
1716/* A C statement (sans semicolon) to output to the stdio stream
1717   FILE the assembler definition of uninitialized global DECL named
1718   NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1719   Try to use asm_output_aligned_bss to implement this macro.  */
1720
1721#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
1722  do {								\
1723    ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
1724  } while (0)
1725
1726/* Output #ident as a .ident.  */
1727
1728#undef TARGET_ASM_OUTPUT_IDENT
1729#define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1730
1731/* Prettify the assembly.  */
1732
1733extern int sparc_indent_opcode;
1734
1735#define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1736  do {					\
1737    if (sparc_indent_opcode)		\
1738      {					\
1739	putc (' ', FILE);		\
1740	sparc_indent_opcode = 0;	\
1741      }					\
1742  } while (0)
1743
1744/* TLS support defaulting to original Sun flavor.  GNU extensions
1745   must be activated in separate configuration files.  */
1746#ifdef HAVE_AS_TLS
1747#define TARGET_TLS 1
1748#else
1749#define TARGET_TLS 0
1750#endif
1751
1752#define TARGET_SUN_TLS TARGET_TLS
1753#define TARGET_GNU_TLS 0
1754
1755#ifdef HAVE_AS_FMAF_HPC_VIS3
1756#define AS_NIAGARA3_FLAG "d"
1757#else
1758#define AS_NIAGARA3_FLAG "b"
1759#endif
1760
1761#ifdef HAVE_AS_SPARC4
1762#define AS_NIAGARA4_FLAG "-xarch=sparc4"
1763#else
1764#define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1765#endif
1766
1767#ifdef HAVE_AS_LEON
1768#define AS_LEON_FLAG "-Aleon"
1769#define AS_LEONV7_FLAG "-Aleon"
1770#else
1771#define AS_LEON_FLAG "-Av8"
1772#define AS_LEONV7_FLAG "-Av7"
1773#endif
1774
1775/* We use gcc _mcount for profiling.  */
1776#define NO_PROFILE_COUNTERS 0
1777
1778/* Debug support */
1779#define MASK_DEBUG_OPTIONS		0x01	/* debug option handling */
1780#define MASK_DEBUG_ALL			MASK_DEBUG_OPTIONS
1781
1782#define TARGET_DEBUG_OPTIONS		(sparc_debug & MASK_DEBUG_OPTIONS)
1783
1784/* By default, use the weakest memory model for the cpu.  */
1785#ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1786#define SUBTARGET_DEFAULT_MEMORY_MODEL	SMM_DEFAULT
1787#endif
1788
1789/* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1.  */
1790#define SPARC_LOW_FE_EXCEPT_VALUES 0
1791