1/* Definitions of x86 tunable features.
2   Copyright (C) 2013-2015 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 3, or (at your option)
9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License and
17a copy of the GCC Runtime Library Exception along with this program;
18see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
19<http://www.gnu.org/licenses/>.  */
20
21/* Tuning for a given CPU XXXX consists of:
22    - adding new CPU into:
23	- adding PROCESSOR_XXX to processor_type (in i386.h)
24	- possibly adding XXX into CPU attribute in i386.md
25	- adding XXX to processor_alias_table (in i386.c)
26    - introducing ix86_XXX_cost in i386.c
27	- Stringop generation table can be build based on test_stringop
28	- script (once rest of tuning is complete)
29    - designing a scheduler model in
30	- XXXX.md file
31	- Updating ix86_issue_rate and ix86_adjust_cost in i386.md
32	- possibly updating ia32_multipass_dfa_lookahead, ix86_sched_reorder
33	  and ix86_sched_init_global if those tricks are needed.
34    - Tunning the flags bellow. Those are split into sections and each
35      section is very roughly ordered by importance.  */
36
37/*****************************************************************************/
38/* Scheduling flags. 					                     */
39/*****************************************************************************/
40
41/* X86_TUNE_SCHEDULE: Enable scheduling.  */
42DEF_TUNE (X86_TUNE_SCHEDULE, "schedule",
43          m_PENT | m_PPRO | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL 
44	  | m_KNL | m_K6_GEODE | m_AMD_MULTIPLE | m_GENERIC)
45
46/* X86_TUNE_PARTIAL_REG_DEPENDENCY: Enable more register renaming
47   on modern chips.  Preffer stores affecting whole integer register
48   over partial stores.  For example preffer MOVZBL or MOVQ to load 8bit
49   value over movb.  */
50DEF_TUNE (X86_TUNE_PARTIAL_REG_DEPENDENCY, "partial_reg_dependency",
51          m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
52	  | m_KNL | m_AMD_MULTIPLE | m_GENERIC)
53
54/* X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY: This knob promotes all store
55   destinations to be 128bit to allow register renaming on 128bit SSE units,
56   but usually results in one extra microop on 64bit SSE units.
57   Experimental results shows that disabling this option on P4 brings over 20%
58   SPECfp regression, while enabling it on K8 brings roughly 2.4% regression
59   that can be partly masked by careful scheduling of moves.  */
60DEF_TUNE (X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY, "sse_partial_reg_dependency",
61          m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_AMDFAM10
62	  | m_BDVER | m_GENERIC)
63
64/* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies
65   are resolved on SSE register parts instead of whole registers, so we may
66   maintain just lower part of scalar values in proper format leaving the
67   upper part undefined.  */
68DEF_TUNE (X86_TUNE_SSE_SPLIT_REGS, "sse_split_regs", m_ATHLON_K8)
69
70/* X86_TUNE_PARTIAL_FLAG_REG_STALL: this flag disables use of of flags
71   set by instructions affecting just some flags (in particular shifts).
72   This is because Core2 resolves dependencies on whole flags register
73   and such sequences introduce false dependency on previous instruction
74   setting full flags.
75
76   The flags does not affect generation of INC and DEC that is controlled
77   by X86_TUNE_USE_INCDEC.
78
79   This flag may be dropped from generic once core2-corei5 machines are
80   rare enough.  */
81DEF_TUNE (X86_TUNE_PARTIAL_FLAG_REG_STALL, "partial_flag_reg_stall",
82          m_CORE2 | m_GENERIC)
83
84/* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid
85   partial dependencies.  */
86DEF_TUNE (X86_TUNE_MOVX, "movx",
87          m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
88	  | m_KNL | m_INTEL | m_GEODE | m_AMD_MULTIPLE  | m_GENERIC)
89
90/* X86_TUNE_MEMORY_MISMATCH_STALL: Avoid partial stores that are followed by
91   full sized loads.  */
92DEF_TUNE (X86_TUNE_MEMORY_MISMATCH_STALL, "memory_mismatch_stall",
93          m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
94	  | m_KNL | m_AMD_MULTIPLE | m_GENERIC)
95
96/* X86_TUNE_FUSE_CMP_AND_BRANCH_32: Fuse compare with a subsequent
97   conditional jump instruction for 32 bit TARGET.
98   FIXME: revisit for generic.  */
99DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_32, "fuse_cmp_and_branch_32",
100          m_CORE_ALL | m_BDVER)
101
102/* X86_TUNE_FUSE_CMP_AND_BRANCH_64: Fuse compare with a subsequent
103   conditional jump instruction for TARGET_64BIT.
104   FIXME: revisit for generic.  */
105DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_64, "fuse_cmp_and_branch_64",
106          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL | m_BDVER)
107
108/* X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS: Fuse compare with a
109   subsequent conditional jump instruction when the condition jump
110   check sign flag (SF) or overflow flag (OF).  */
111DEF_TUNE (X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS, "fuse_cmp_and_branch_soflags",
112          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL | m_BDVER)
113
114/* X86_TUNE_FUSE_ALU_AND_BRANCH: Fuse alu with a subsequent conditional
115   jump instruction when the alu instruction produces the CCFLAG consumed by
116   the conditional jump instruction. */
117DEF_TUNE (X86_TUNE_FUSE_ALU_AND_BRANCH, "fuse_alu_and_branch",
118          m_SANDYBRIDGE | m_HASWELL)
119
120/* X86_TUNE_REASSOC_INT_TO_PARALLEL: Try to produce parallel computations
121   during reassociation of integer computation.  */
122DEF_TUNE (X86_TUNE_REASSOC_INT_TO_PARALLEL, "reassoc_int_to_parallel",
123          m_BONNELL)
124
125/* X86_TUNE_REASSOC_FP_TO_PARALLEL: Try to produce parallel computations
126   during reassociation of fp computation.  */
127DEF_TUNE (X86_TUNE_REASSOC_FP_TO_PARALLEL, "reassoc_fp_to_parallel",
128          m_BONNELL | m_SILVERMONT | m_HASWELL | m_KNL |m_INTEL | m_BDVER1
129	  | m_BDVER2 | m_GENERIC)
130
131/*****************************************************************************/
132/* Function prologue, epilogue and function calling sequences.               */
133/*****************************************************************************/
134
135/* X86_TUNE_ACCUMULATE_OUTGOING_ARGS: Allocate stack space for outgoing
136   arguments in prologue/epilogue instead of separately for each call
137   by push/pop instructions.
138   This increase code size by about 5% in 32bit mode, less so in 64bit mode
139   because parameters are passed in registers.  It is considerable
140   win for targets without stack engine that prevents multple push operations
141   to happen in parallel.
142
143   FIXME: the flags is incorrectly enabled for amdfam10, Bulldozer,
144   Bobcat and Generic.  This is because disabling it causes large
145   regression on mgrid due to IRA limitation leading to unecessary
146   use of the frame pointer in 32bit mode.  */
147DEF_TUNE (X86_TUNE_ACCUMULATE_OUTGOING_ARGS, "accumulate_outgoing_args",
148	  m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_KNL | m_INTEL
149	  | m_ATHLON_K8)
150
151/* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in prologues that are
152   considered on critical path.  */
153DEF_TUNE (X86_TUNE_PROLOGUE_USING_MOVE, "prologue_using_move",
154          m_PPRO | m_ATHLON_K8)
155
156/* X86_TUNE_PROLOGUE_USING_MOVE: Do not use push/pop in epilogues that are
157   considered on critical path.  */
158DEF_TUNE (X86_TUNE_EPILOGUE_USING_MOVE, "epilogue_using_move",
159          m_PPRO | m_ATHLON_K8)
160
161/* X86_TUNE_USE_LEAVE: Use "leave" instruction in epilogues where it fits.  */
162DEF_TUNE (X86_TUNE_USE_LEAVE, "use_leave",
163	  m_386 | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE | m_GENERIC)
164
165/* X86_TUNE_PUSH_MEMORY: Enable generation of "push mem" instructions.
166   Some chips, like 486 and Pentium works faster with separate load
167   and push instructions.  */
168DEF_TUNE (X86_TUNE_PUSH_MEMORY, "push_memory",
169          m_386 | m_P4_NOCONA | m_CORE_ALL | m_K6_GEODE | m_AMD_MULTIPLE
170          | m_GENERIC)
171
172/* X86_TUNE_SINGLE_PUSH: Enable if single push insn is preferred
173   over esp subtraction.  */
174DEF_TUNE (X86_TUNE_SINGLE_PUSH, "single_push", m_386 | m_486 | m_PENT
175          | m_K6_GEODE)
176
177/* X86_TUNE_DOUBLE_PUSH. Enable if double push insn is preferred
178   over esp subtraction.  */
179DEF_TUNE (X86_TUNE_DOUBLE_PUSH, "double_push", m_PENT | m_K6_GEODE)
180
181/* X86_TUNE_SINGLE_POP: Enable if single pop insn is preferred
182   over esp addition.  */
183DEF_TUNE (X86_TUNE_SINGLE_POP, "single_pop", m_386 | m_486 | m_PENT | m_PPRO)
184
185/* X86_TUNE_DOUBLE_POP: Enable if double pop insn is preferred
186   over esp addition.  */
187DEF_TUNE (X86_TUNE_DOUBLE_POP, "double_pop", m_PENT)
188
189/*****************************************************************************/
190/* Branch predictor tuning  		                                     */
191/*****************************************************************************/
192
193/* X86_TUNE_PAD_SHORT_FUNCTION: Make every function to be at least 4
194   instructions long.  */
195DEF_TUNE (X86_TUNE_PAD_SHORT_FUNCTION, "pad_short_function", m_BONNELL)
196
197/* X86_TUNE_PAD_RETURNS: Place NOP before every RET that is a destination
198   of conditional jump or directly preceded by other jump instruction.
199   This is important for AND K8-AMDFAM10 because the branch prediction
200   architecture expect at most one jump per 2 byte window.  Failing to
201   pad returns leads to misaligned return stack.  */
202DEF_TUNE (X86_TUNE_PAD_RETURNS, "pad_returns",
203          m_ATHLON_K8 | m_AMDFAM10 | m_GENERIC)
204
205/* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more
206   than 4 branch instructions in the 16 byte window.  */
207DEF_TUNE (X86_TUNE_FOUR_JUMP_LIMIT, "four_jump_limit",
208          m_PPRO | m_P4_NOCONA | m_BONNELL | m_SILVERMONT | m_KNL |m_INTEL |
209	  m_ATHLON_K8 | m_AMDFAM10)
210
211/*****************************************************************************/
212/* Integer instruction selection tuning                                      */
213/*****************************************************************************/
214
215/* X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL: Enable software prefetching
216   at -O3.  For the moment, the prefetching seems badly tuned for Intel
217   chips.  */
218DEF_TUNE (X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL, "software_prefetching_beneficial",
219          m_K6_GEODE | m_AMD_MULTIPLE)
220
221/* X86_TUNE_LCP_STALL: Avoid an expensive length-changing prefix stall
222   on 16-bit immediate moves into memory on Core2 and Corei7.  */
223DEF_TUNE (X86_TUNE_LCP_STALL, "lcp_stall", m_CORE_ALL | m_GENERIC)
224
225/* X86_TUNE_READ_MODIFY: Enable use of read-modify instructions such
226   as "add mem, reg".  */
227DEF_TUNE (X86_TUNE_READ_MODIFY, "read_modify", ~(m_PENT | m_PPRO))
228
229/* X86_TUNE_USE_INCDEC: Enable use of inc/dec instructions.   */
230DEF_TUNE (X86_TUNE_USE_INCDEC, "use_incdec",
231          ~(m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_INTEL
232	   |  m_KNL | m_GENERIC))
233
234/* X86_TUNE_INTEGER_DFMODE_MOVES: Enable if integer moves are preferred
235   for DFmode copies */
236DEF_TUNE (X86_TUNE_INTEGER_DFMODE_MOVES, "integer_dfmode_moves",
237          ~(m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
238	    | m_KNL | m_INTEL | m_GEODE | m_AMD_MULTIPLE | m_GENERIC))
239
240/* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag
241   will impact LEA instruction selection. */
242DEF_TUNE (X86_TUNE_OPT_AGU, "opt_agu", m_BONNELL | m_SILVERMONT | m_KNL
243	  | m_INTEL)
244
245/* X86_TUNE_AVOID_LEA_FOR_ADDR: Avoid lea for address computation.  */
246DEF_TUNE (X86_TUNE_AVOID_LEA_FOR_ADDR, "avoid_lea_for_addr",
247	  m_BONNELL | m_SILVERMONT | m_KNL)
248
249/* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is
250   vector path on AMD machines.
251   FIXME: Do we need to enable this for core? */
252DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM32_MEM, "slow_imul_imm32_mem",
253          m_K8 | m_AMDFAM10)
254
255/* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD
256   machines.
257   FIXME: Do we need to enable this for core? */
258DEF_TUNE (X86_TUNE_SLOW_IMUL_IMM8, "slow_imul_imm8",
259          m_K8 | m_AMDFAM10)
260
261/* X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE: Try to avoid memory operands for
262   a conditional move.  */
263DEF_TUNE (X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE, "avoid_mem_opnd_for_cmove",
264	  m_BONNELL | m_SILVERMONT | m_KNL | m_INTEL)
265
266/* X86_TUNE_SINGLE_STRINGOP: Enable use of single string operations, such
267   as MOVS and STOS (without a REP prefix) to move/set sequences of bytes.  */
268DEF_TUNE (X86_TUNE_SINGLE_STRINGOP, "single_stringop", m_386 | m_P4_NOCONA)
269
270/* X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES: Enable generation of
271   compact prologues and epilogues by issuing a misaligned moves.  This
272   requires target to handle misaligned moves and partial memory stalls
273   reasonably well.
274   FIXME: This may actualy be a win on more targets than listed here.  */
275DEF_TUNE (X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES,
276	  "misaligned_move_string_pro_epilogues",
277	  m_386 | m_486 | m_CORE_ALL | m_AMD_MULTIPLE | m_GENERIC)
278
279/* X86_TUNE_USE_SAHF: Controls use of SAHF.  */
280DEF_TUNE (X86_TUNE_USE_SAHF, "use_sahf",
281          m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
282	  | m_KNL | m_INTEL | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_BDVER
283	  | m_BTVER | m_GENERIC)
284
285/* X86_TUNE_USE_CLTD: Controls use of CLTD and CTQO instructions.  */
286DEF_TUNE (X86_TUNE_USE_CLTD, "use_cltd",
287	  ~(m_PENT | m_BONNELL | m_SILVERMONT | m_KNL | m_INTEL  | m_K6))
288
289/* X86_TUNE_USE_BT: Enable use of BT (bit test) instructions.  */
290DEF_TUNE (X86_TUNE_USE_BT, "use_bt",
291          m_CORE_ALL | m_BONNELL | m_SILVERMONT | m_KNL | m_INTEL
292	  | m_AMD_MULTIPLE | m_GENERIC)
293
294/*****************************************************************************/
295/* 387 instruction selection tuning                                          */
296/*****************************************************************************/
297
298/* X86_TUNE_USE_HIMODE_FIOP: Enables use of x87 instructions with 16bit
299   integer operand.
300   FIXME: Why this is disabled for modern chips?  */
301DEF_TUNE (X86_TUNE_USE_HIMODE_FIOP, "use_himode_fiop",
302          m_386 | m_486 | m_K6_GEODE)
303
304/* X86_TUNE_USE_SIMODE_FIOP: Enables use of x87 instructions with 32bit
305   integer operand.  */
306DEF_TUNE (X86_TUNE_USE_SIMODE_FIOP, "use_simode_fiop",
307          ~(m_PENT | m_PPRO | m_CORE_ALL | m_BONNELL | m_SILVERMONT
308	    | m_KNL | m_INTEL | m_AMD_MULTIPLE | m_GENERIC))
309
310/* X86_TUNE_USE_FFREEP: Use freep instruction instead of fstp.  */
311DEF_TUNE (X86_TUNE_USE_FFREEP, "use_ffreep", m_AMD_MULTIPLE)
312
313/* X86_TUNE_EXT_80387_CONSTANTS: Use fancy 80387 constants, such as PI.  */
314DEF_TUNE (X86_TUNE_EXT_80387_CONSTANTS, "ext_80387_constants",
315          m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BONNELL | m_SILVERMONT
316	  | m_KNL | m_INTEL | m_K6_GEODE | m_ATHLON_K8 | m_GENERIC)
317
318/*****************************************************************************/
319/* SSE instruction selection tuning                                          */
320/*****************************************************************************/
321
322/* X86_TUNE_VECTORIZE_DOUBLE: Enable double precision vector
323   instructions.  */
324DEF_TUNE (X86_TUNE_VECTORIZE_DOUBLE, "vectorize_double", ~m_BONNELL)
325
326/* X86_TUNE_GENERAL_REGS_SSE_SPILL: Try to spill general regs to SSE
327   regs instead of memory.  */
328DEF_TUNE (X86_TUNE_GENERAL_REGS_SSE_SPILL, "general_regs_sse_spill",
329          m_CORE_ALL)
330
331/* X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL: Use movups for misaligned loads instead
332   of a sequence loading registers by parts.  */
333DEF_TUNE (X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL, "sse_unaligned_load_optimal",
334          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL | m_AMDFAM10 | m_BDVER
335	  | m_BTVER | m_SILVERMONT | m_KNL | m_INTEL | m_GENERIC)
336
337/* X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL: Use movups for misaligned stores instead
338   of a sequence loading registers by parts.  */
339DEF_TUNE (X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL, "sse_unaligned_store_optimal",
340          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL | m_BDVER | m_SILVERMONT
341	  | m_KNL | m_INTEL | m_GENERIC)
342
343/* Use packed single precision instructions where posisble.  I.e. movups instead
344   of movupd.  */
345DEF_TUNE (X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL, "sse_packed_single_insn_optimal",
346          m_BDVER)
347
348/* X86_TUNE_SSE_TYPELESS_STORES: Always movaps/movups for 128bit stores.   */
349DEF_TUNE (X86_TUNE_SSE_TYPELESS_STORES, "sse_typeless_stores",
350	  m_AMD_MULTIPLE | m_CORE_ALL | m_GENERIC)
351
352/* X86_TUNE_SSE_LOAD0_BY_PXOR: Always use pxor to load0 as opposed to
353   xorps/xorpd and other variants.  */
354DEF_TUNE (X86_TUNE_SSE_LOAD0_BY_PXOR, "sse_load0_by_pxor",
355	  m_PPRO | m_P4_NOCONA | m_CORE_ALL | m_BDVER | m_BTVER | m_GENERIC)
356
357/* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from integer
358   to SSE registers.  If disabled, the moves will be done by storing
359   the value to memory and reloading.  */
360DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_TO_VEC, "inter_unit_moves_to_vec",
361          ~(m_AMD_MULTIPLE | m_GENERIC))
362
363/* X86_TUNE_INTER_UNIT_MOVES_TO_VEC: Enable moves in from SSE
364   to integer registers.  If disabled, the moves will be done by storing
365   the value to memory and reloading.  */
366DEF_TUNE (X86_TUNE_INTER_UNIT_MOVES_FROM_VEC, "inter_unit_moves_from_vec",
367          ~m_ATHLON_K8)
368
369/* X86_TUNE_INTER_UNIT_CONVERSIONS: Enable float<->integer conversions
370   to use both SSE and integer registers at a same time.
371   FIXME: revisit importance of this for generic.  */
372DEF_TUNE (X86_TUNE_INTER_UNIT_CONVERSIONS, "inter_unit_conversions",
373          ~(m_AMDFAM10 | m_BDVER))
374
375/* X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS: Try to split memory operand for
376   fp converts to destination register.  */
377DEF_TUNE (X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS, "split_mem_opnd_for_fp_converts",
378          m_SILVERMONT | m_KNL | m_INTEL)
379
380/* X86_TUNE_USE_VECTOR_FP_CONVERTS: Prefer vector packed SSE conversion
381   from FP to FP.  This form of instructions avoids partial write to the
382   destination.  */
383DEF_TUNE (X86_TUNE_USE_VECTOR_FP_CONVERTS, "use_vector_fp_converts",
384          m_AMDFAM10)
385
386/* X86_TUNE_USE_VECTOR_CONVERTS: Prefer vector packed SSE conversion
387   from integer to FP. */
388DEF_TUNE (X86_TUNE_USE_VECTOR_CONVERTS, "use_vector_converts", m_AMDFAM10)
389
390/* X86_TUNE_SLOW_SHUFB: Indicates tunings with slow pshufb instruction.  */
391DEF_TUNE (X86_TUNE_SLOW_PSHUFB, "slow_pshufb",
392          m_BONNELL | m_SILVERMONT | m_KNL | m_INTEL)
393
394/* X86_TUNE_VECTOR_PARALLEL_EXECUTION: Indicates tunings with ability to
395   execute 2 or more vector instructions in parallel.  */
396DEF_TUNE (X86_TUNE_VECTOR_PARALLEL_EXECUTION, "vec_parallel",
397          m_NEHALEM | m_SANDYBRIDGE | m_HASWELL)
398
399/* X86_TUNE_AVOID_4BYTE_PREFIXES: Avoid instructions requiring 4+ bytes of prefixes.  */
400DEF_TUNE (X86_TUNE_AVOID_4BYTE_PREFIXES, "avoid_4byte_prefixes",
401          m_SILVERMONT | m_INTEL)
402
403/*****************************************************************************/
404/* AVX instruction selection tuning (some of SSE flags affects AVX, too)     */
405/*****************************************************************************/
406
407/* X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL: if false, unaligned loads are
408   split.  */
409DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL, "256_unaligned_load_optimal",
410          ~(m_NEHALEM | m_SANDYBRIDGE | m_GENERIC))
411
412/* X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL: if false, unaligned stores are
413   split.  */
414DEF_TUNE (X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL, "256_unaligned_store_optimal",
415          ~(m_NEHALEM | m_SANDYBRIDGE | m_BDVER | m_GENERIC))
416
417/* X86_TUNE_AVX128_OPTIMAL: Enable 128-bit AVX instruction generation for
418   the auto-vectorizer.  */
419DEF_TUNE (X86_TUNE_AVX128_OPTIMAL, "avx128_optimal", m_BDVER | m_BTVER2)
420
421/*****************************************************************************/
422/* Historical relics: tuning flags that helps a specific old CPU designs     */
423/*****************************************************************************/
424
425/* X86_TUNE_DOUBLE_WITH_ADD: Use add instead of sal to double value in
426   an integer register.  */
427DEF_TUNE (X86_TUNE_DOUBLE_WITH_ADD, "double_with_add", ~m_386)
428
429/* X86_TUNE_ALWAYS_FANCY_MATH_387: controls use of fancy 387 operations,
430   such as fsqrt, fprem, fsin, fcos, fsincos etc.
431   Should be enabled for all targets that always has coprocesor.  */
432DEF_TUNE (X86_TUNE_ALWAYS_FANCY_MATH_387, "always_fancy_math_387",
433          ~(m_386 | m_486))
434
435/* X86_TUNE_UNROLL_STRLEN: Produce (quite lame) unrolled sequence for
436   inline strlen.  This affects only -minline-all-stringops mode. By
437   default we always dispatch to a library since our internal strlen
438   is bad.  */
439DEF_TUNE (X86_TUNE_UNROLL_STRLEN, "unroll_strlen", ~m_386)
440
441/* X86_TUNE_SHIFT1: Enables use of short encoding of "sal reg" instead of
442   longer "sal $1, reg".  */
443DEF_TUNE (X86_TUNE_SHIFT1, "shift1", ~m_486)
444
445/* X86_TUNE_ZERO_EXTEND_WITH_AND: Use AND instruction instead
446   of mozbl/movwl.  */
447DEF_TUNE (X86_TUNE_ZERO_EXTEND_WITH_AND, "zero_extend_with_and",  m_486 | m_PENT)
448
449/* X86_TUNE_PROMOTE_HIMODE_IMUL: Modern CPUs have same latency for HImode
450   and SImode multiply, but 386 and 486 do HImode multiply faster.  */
451DEF_TUNE (X86_TUNE_PROMOTE_HIMODE_IMUL, "promote_himode_imul",
452          ~(m_386 | m_486))
453
454/* X86_TUNE_FAST_PREFIX: Enable demoting some 32bit or 64bit arithmetic
455   into 16bit/8bit when resulting sequence is shorter.  For example
456   for "and $-65536, reg" to 16bit store of 0.  */
457DEF_TUNE (X86_TUNE_FAST_PREFIX, "fast_prefix", ~(m_386 | m_486 | m_PENT))
458
459/* X86_TUNE_READ_MODIFY_WRITE: Enable use of read modify write instructions
460   such as "add $1, mem".  */
461DEF_TUNE (X86_TUNE_READ_MODIFY_WRITE, "read_modify_write", ~m_PENT)
462
463/* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR
464   than a MOV.  */
465DEF_TUNE (X86_TUNE_MOVE_M1_VIA_OR, "move_m1_via_or", m_PENT)
466
467/* X86_TUNE_NOT_UNPAIRABLE: NOT is not pairable on Pentium, while XOR is,
468   but one byte longer.  */
469DEF_TUNE (X86_TUNE_NOT_UNPAIRABLE, "not_unpairable", m_PENT)
470
471/* X86_TUNE_PARTIAL_REG_STALL: Pentium pro, unlike later chips, handled
472   use of partial registers by renaming.  This improved performance of 16bit
473   code where upper halves of registers are not used.  It also leads to
474   an penalty whenever a 16bit store is followed by 32bit use.  This flag
475   disables production of such sequences in common cases.
476   See also X86_TUNE_HIMODE_MATH.
477
478   In current implementation the partial register stalls are not eliminated
479   very well - they can be introduced via subregs synthesized by combine
480   and can happen in caller/callee saving sequences.  */
481DEF_TUNE (X86_TUNE_PARTIAL_REG_STALL, "partial_reg_stall", m_PPRO)
482
483/* X86_TUNE_PROMOTE_QIMODE: When it is cheap, turn 8bit arithmetic to
484   corresponding 32bit arithmetic.  */
485DEF_TUNE (X86_TUNE_PROMOTE_QIMODE, "promote_qimode",
486	  ~m_PPRO)
487
488/* X86_TUNE_PROMOTE_HI_REGS: Same, but for 16bit artihmetic.  Again we avoid
489   partial register stalls on PentiumPro targets. */
490DEF_TUNE (X86_TUNE_PROMOTE_HI_REGS, "promote_hi_regs", m_PPRO)
491
492/* X86_TUNE_HIMODE_MATH: Enable use of 16bit arithmetic.
493   On PPro this flag is meant to avoid partial register stalls.  */
494DEF_TUNE (X86_TUNE_HIMODE_MATH, "himode_math", ~m_PPRO)
495
496/* X86_TUNE_SPLIT_LONG_MOVES: Avoid instructions moving immediates
497   directly to memory.  */
498DEF_TUNE (X86_TUNE_SPLIT_LONG_MOVES, "split_long_moves", m_PPRO)
499
500/* X86_TUNE_USE_XCHGB: Use xchgb %rh,%rl instead of rolw/rorw $8,rx.  */
501DEF_TUNE (X86_TUNE_USE_XCHGB, "use_xchgb", m_PENT4)
502
503/* X86_TUNE_USE_MOV0: Use "mov $0, reg" instead of "xor reg, reg" to clear
504   integer register.  */
505DEF_TUNE (X86_TUNE_USE_MOV0, "use_mov0", m_K6)
506
507/* X86_TUNE_NOT_VECTORMODE: On AMD K6, NOT is vector decoded with memory
508   operand that cannot be represented using a modRM byte.  The XOR
509   replacement is long decoded, so this split helps here as well.  */
510DEF_TUNE (X86_TUNE_NOT_VECTORMODE, "not_vectormode", m_K6)
511
512/* X86_TUNE_AVOID_VECTOR_DECODE: Enable splitters that avoid vector decoded
513   forms of instructions on K8 targets.  */
514DEF_TUNE (X86_TUNE_AVOID_VECTOR_DECODE, "avoid_vector_decode",
515          m_K8)
516
517/* X86_TUNE_AVOID_FALSE_DEP_FOR_BMI: Avoid false dependency
518   for bit-manipulation instructions.  */
519DEF_TUNE (X86_TUNE_AVOID_FALSE_DEP_FOR_BMI, "avoid_false_dep_for_bmi",
520	  m_SANDYBRIDGE | m_HASWELL | m_GENERIC)
521
522/*****************************************************************************/
523/* This never worked well before.                                            */
524/*****************************************************************************/
525
526/* X86_TUNE_BRANCH_PREDICTION_HINTS: Branch hints were put in P4 based
527   on simulation result. But after P4 was made, no performance benefit
528   was observed with branch hints.  It also increases the code size.
529   As a result, icc never generates branch hints.  */
530DEF_TUNE (X86_TUNE_BRANCH_PREDICTION_HINTS, "branch_prediction_hints", 0)
531
532/* X86_TUNE_QIMODE_MATH: Enable use of 8bit arithmetic.  */
533DEF_TUNE (X86_TUNE_QIMODE_MATH, "qimode_math", ~0)
534
535/* X86_TUNE_PROMOTE_QI_REGS: This enables generic code that promotes all 8bit
536   arithmetic to 32bit via PROMOTE_MODE macro.  This code generation scheme
537   is usually used for RISC targets.  */
538DEF_TUNE (X86_TUNE_PROMOTE_QI_REGS, "promote_qi_regs", 0)
539
540/* X86_TUNE_ADJUST_UNROLL: This enables adjusting the unroll factor based
541   on hardware capabilities. Bdver3 hardware has a loop buffer which makes
542   unrolling small loop less important. For, such architectures we adjust
543   the unroll factor so that the unrolled loop fits the loop buffer.  */
544DEF_TUNE (X86_TUNE_ADJUST_UNROLL, "adjust_unroll_factor", m_BDVER3 | m_BDVER4)
545