1/* Definitions of target machine for GNU compiler, for ARM.
2   Copyright (C) 1991-2015 Free Software Foundation, Inc.
3   Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4   and Martin Simmons (@harleqn.co.uk).
5   More major hacks by Richard Earnshaw (rearnsha@arm.com)
6   Minor hacks by Nick Clifton (nickc@cygnus.com)
7
8   This file is part of GCC.
9
10   GCC is free software; you can redistribute it and/or modify it
11   under the terms of the GNU General Public License as published
12   by the Free Software Foundation; either version 3, or (at your
13   option) any later version.
14
15   GCC is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18   License for more details.
19
20   Under Section 7 of GPL version 3, you are granted additional
21   permissions described in the GCC Runtime Library Exception, version
22   3.1, as published by the Free Software Foundation.
23
24   You should have received a copy of the GNU General Public License and
25   a copy of the GCC Runtime Library Exception along with this program;
26   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27   <http://www.gnu.org/licenses/>.  */
28
29#ifndef GCC_ARM_H
30#define GCC_ARM_H
31
32/* We can't use machine_mode inside a generator file because it
33   hasn't been created yet; we shouldn't be using any code that
34   needs the real definition though, so this ought to be safe.  */
35#ifdef GENERATOR_FILE
36#define MACHMODE int
37#else
38#include "insn-modes.h"
39#define MACHMODE machine_mode
40#endif
41
42#include "config/vxworks-dummy.h"
43
44/* The architecture define.  */
45extern char arm_arch_name[];
46
47/* Target CPU builtins.  */
48#define TARGET_CPU_CPP_BUILTINS()			\
49  do							\
50    {							\
51	if (TARGET_DSP_MULTIPLY)			\
52	   builtin_define ("__ARM_FEATURE_DSP");	\
53        if (TARGET_ARM_QBIT)				\
54           builtin_define ("__ARM_FEATURE_QBIT");	\
55        if (TARGET_ARM_SAT)				\
56           builtin_define ("__ARM_FEATURE_SAT");	\
57        if (TARGET_CRYPTO)				\
58	   builtin_define ("__ARM_FEATURE_CRYPTO");	\
59	if (unaligned_access)				\
60	  builtin_define ("__ARM_FEATURE_UNALIGNED");	\
61	if (TARGET_CRC32)				\
62	  builtin_define ("__ARM_FEATURE_CRC32");	\
63	if (TARGET_32BIT)				\
64	  builtin_define ("__ARM_32BIT_STATE");		\
65	if (TARGET_ARM_FEATURE_LDREX)				\
66	  builtin_define_with_int_value (			\
67	    "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX);	\
68	if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB)		\
69	     || TARGET_ARM_ARCH_ISA_THUMB >=2)			\
70	  builtin_define ("__ARM_FEATURE_CLZ");			\
71	if (TARGET_INT_SIMD)					\
72	  builtin_define ("__ARM_FEATURE_SIMD32");		\
73								\
74	builtin_define_with_int_value (				\
75	  "__ARM_SIZEOF_MINIMAL_ENUM",				\
76	  flag_short_enums ? 1 : 4);				\
77	builtin_define_type_sizeof ("__ARM_SIZEOF_WCHAR_T",	\
78				    wchar_type_node);		\
79	if (TARGET_ARM_ARCH_PROFILE)				\
80	  builtin_define_with_int_value (			\
81	    "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE);	\
82								\
83	/* Define __arm__ even when in thumb mode, for	\
84	   consistency with armcc.  */			\
85	builtin_define ("__arm__");			\
86	if (TARGET_ARM_ARCH)				\
87	  builtin_define_with_int_value (		\
88	    "__ARM_ARCH", TARGET_ARM_ARCH);		\
89	if (arm_arch_notm)				\
90	  builtin_define ("__ARM_ARCH_ISA_ARM");	\
91	builtin_define ("__APCS_32__");			\
92	if (TARGET_THUMB)				\
93	  builtin_define ("__thumb__");			\
94	if (TARGET_THUMB2)				\
95	  builtin_define ("__thumb2__");		\
96	if (TARGET_ARM_ARCH_ISA_THUMB)			\
97	  builtin_define_with_int_value (		\
98	    "__ARM_ARCH_ISA_THUMB",			\
99	    TARGET_ARM_ARCH_ISA_THUMB);			\
100							\
101	if (TARGET_BIG_END)				\
102	  {						\
103	    builtin_define ("__ARMEB__");		\
104	    builtin_define ("__ARM_BIG_ENDIAN");	\
105	    if (TARGET_THUMB)				\
106	      builtin_define ("__THUMBEB__");		\
107	  }						\
108        else						\
109	  {						\
110	    builtin_define ("__ARMEL__");		\
111	    if (TARGET_THUMB)				\
112	      builtin_define ("__THUMBEL__");		\
113	  }						\
114							\
115	if (TARGET_SOFT_FLOAT)				\
116	  builtin_define ("__SOFTFP__");		\
117							\
118	if (TARGET_VFP)					\
119	  builtin_define ("__VFP_FP__");		\
120							\
121	if (TARGET_ARM_FP)				\
122	  builtin_define_with_int_value (		\
123	    "__ARM_FP", TARGET_ARM_FP);			\
124	if (arm_fp16_format == ARM_FP16_FORMAT_IEEE)		\
125	  builtin_define ("__ARM_FP16_FORMAT_IEEE");		\
126	if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)	\
127	  builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE");	\
128        if (TARGET_FMA)					\
129          builtin_define ("__ARM_FEATURE_FMA");		\
130							\
131	if (TARGET_NEON)				\
132	  {						\
133	    builtin_define ("__ARM_NEON__");		\
134	    builtin_define ("__ARM_NEON");		\
135	  }						\
136	if (TARGET_NEON_FP)				\
137	  builtin_define_with_int_value (		\
138	    "__ARM_NEON_FP", TARGET_NEON_FP);		\
139							\
140	/* Add a define for interworking.		\
141	   Needed when building libgcc.a.  */		\
142	if (arm_cpp_interwork)				\
143	  builtin_define ("__THUMB_INTERWORK__");	\
144							\
145	builtin_assert ("cpu=arm");			\
146	builtin_assert ("machine=arm");			\
147							\
148	builtin_define (arm_arch_name);			\
149	if (arm_arch_xscale)				\
150	  builtin_define ("__XSCALE__");		\
151	if (arm_arch_iwmmxt)				\
152          {						\
153	    builtin_define ("__IWMMXT__");		\
154	    builtin_define ("__ARM_WMMX");		\
155	  }						\
156	if (arm_arch_iwmmxt2)				\
157	  builtin_define ("__IWMMXT2__");		\
158	if (TARGET_AAPCS_BASED)				\
159	  {						\
160	    if (arm_pcs_default == ARM_PCS_AAPCS_VFP)	\
161	      builtin_define ("__ARM_PCS_VFP");		\
162	    else if (arm_pcs_default == ARM_PCS_AAPCS)	\
163	      builtin_define ("__ARM_PCS");		\
164	    builtin_define ("__ARM_EABI__");		\
165	  }						\
166	if (TARGET_IDIV)				\
167         {						\
168            builtin_define ("__ARM_ARCH_EXT_IDIV__");	\
169            builtin_define ("__ARM_FEATURE_IDIV");	\
170         }						\
171	if (inline_asm_unified)				\
172	  builtin_define ("__ARM_ASM_SYNTAX_UNIFIED__");\
173    } while (0)
174
175#include "config/arm/arm-opts.h"
176
177enum target_cpus
178{
179#define ARM_CORE(NAME, INTERNAL_IDENT, IDENT, ARCH, FLAGS, COSTS) \
180  TARGET_CPU_##INTERNAL_IDENT,
181#include "arm-cores.def"
182#undef ARM_CORE
183  TARGET_CPU_generic
184};
185
186/* The processor for which instructions should be scheduled.  */
187extern enum processor_type arm_tune;
188
189typedef enum arm_cond_code
190{
191  ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
192  ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
193}
194arm_cc;
195
196extern arm_cc arm_current_cc;
197
198#define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
199
200/* The maximum number of instructions that is beneficial to
201   conditionally execute. */
202#undef MAX_CONDITIONAL_EXECUTE
203#define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
204
205extern int arm_target_label;
206extern int arm_ccfsm_state;
207extern GTY(()) rtx arm_target_insn;
208/* The label of the current constant pool.  */
209extern rtx pool_vector_label;
210/* Set to 1 when a return insn is output, this means that the epilogue
211   is not needed.  */
212extern int return_used_this_function;
213/* Callback to output language specific object attributes.  */
214extern void (*arm_lang_output_object_attributes_hook)(void);
215
216/* Just in case configure has failed to define anything.  */
217#ifndef TARGET_CPU_DEFAULT
218#define TARGET_CPU_DEFAULT TARGET_CPU_generic
219#endif
220
221
222#undef  CPP_SPEC
223#define CPP_SPEC "%(subtarget_cpp_spec)					\
224%{mfloat-abi=soft:%{mfloat-abi=hard:					\
225	%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
226%{mbig-endian:%{mlittle-endian:						\
227	%e-mbig-endian and -mlittle-endian may not be used together}}"
228
229#ifndef CC1_SPEC
230#define CC1_SPEC ""
231#endif
232
233/* This macro defines names of additional specifications to put in the specs
234   that can be used in various specifications like CC1_SPEC.  Its definition
235   is an initializer with a subgrouping for each command option.
236
237   Each subgrouping contains a string constant, that defines the
238   specification name, and a string constant that used by the GCC driver
239   program.
240
241   Do not define this macro if it does not need to do anything.  */
242#define EXTRA_SPECS						\
243  { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
244  { "asm_cpu_spec",		ASM_CPU_SPEC },			\
245  SUBTARGET_EXTRA_SPECS
246
247#ifndef SUBTARGET_EXTRA_SPECS
248#define SUBTARGET_EXTRA_SPECS
249#endif
250
251#ifndef SUBTARGET_CPP_SPEC
252#define SUBTARGET_CPP_SPEC      ""
253#endif
254
255/* Run-time Target Specification.  */
256#define TARGET_SOFT_FLOAT		(arm_float_abi == ARM_FLOAT_ABI_SOFT)
257/* Use hardware floating point instructions. */
258#define TARGET_HARD_FLOAT		(arm_float_abi != ARM_FLOAT_ABI_SOFT)
259/* Use hardware floating point calling convention.  */
260#define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
261#define TARGET_VFP		(arm_fpu_desc->model == ARM_FP_MODEL_VFP)
262#define TARGET_IWMMXT			(arm_arch_iwmmxt)
263#define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
264#define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT)
265#define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT)
266#define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
267#define TARGET_ARM                      (! TARGET_THUMB)
268#define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
269#define TARGET_BACKTRACE	        (leaf_function_p () \
270				         ? TARGET_TPCS_LEAF_FRAME \
271				         : TARGET_TPCS_FRAME)
272#define TARGET_AAPCS_BASED \
273    (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
274
275#define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
276#define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
277#define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
278
279/* Only 16-bit thumb code.  */
280#define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
281/* Arm or Thumb-2 32-bit code.  */
282#define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
283/* 32-bit Thumb-2 code.  */
284#define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
285/* Thumb-1 only.  */
286#define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
287
288#define TARGET_LDRD			(arm_arch5e && ARM_DOUBLEWORD_ALIGN \
289                                         && !TARGET_THUMB1)
290
291#define TARGET_CRC32			(arm_arch_crc)
292
293/* The following two macros concern the ability to execute coprocessor
294   instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
295   only ever tested when we know we are generating for VFP hardware; we need
296   to be more careful with TARGET_NEON as noted below.  */
297
298/* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
299#define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
300
301/* FPU supports VFPv3 instructions.  */
302#define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
303
304/* FPU supports FPv5 instructions.  */
305#define TARGET_VFP5 (TARGET_VFP && arm_fpu_desc->rev >= 5)
306
307/* FPU only supports VFP single-precision instructions.  */
308#define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
309
310/* FPU supports VFP double-precision instructions.  */
311#define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
312
313/* FPU supports half-precision floating-point with NEON element load/store.  */
314#define TARGET_NEON_FP16 \
315  (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
316
317/* FPU supports VFP half-precision floating-point.  */
318#define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
319
320/* FPU supports fused-multiply-add operations.  */
321#define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
322
323/* FPU is ARMv8 compatible.  */
324#define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
325
326/* FPU supports Crypto extensions.  */
327#define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto)
328
329/* FPU supports Neon instructions.  The setting of this macro gets
330   revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
331   and TARGET_HARD_FLOAT to ensure that NEON instructions are
332   available.  */
333#define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
334		     && TARGET_VFP && arm_fpu_desc->neon)
335
336/* Q-bit is present.  */
337#define TARGET_ARM_QBIT \
338  (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
339/* Saturation operation, e.g. SSAT.  */
340#define TARGET_ARM_SAT \
341  (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
342/* "DSP" multiply instructions, eg. SMULxy.  */
343#define TARGET_DSP_MULTIPLY \
344  (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
345/* Integer SIMD instructions, and extend-accumulate instructions.  */
346#define TARGET_INT_SIMD \
347  (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
348
349/* Should MOVW/MOVT be used in preference to a constant pool.  */
350#define TARGET_USE_MOVT \
351  (arm_arch_thumb2 \
352   && (arm_disable_literal_pool \
353       || (!optimize_size && !current_tune->prefer_constant_pool)))
354
355/* We could use unified syntax for arm mode, but for now we just use it
356   for thumb mode.  */
357#define TARGET_UNIFIED_ASM (TARGET_THUMB)
358
359/* Nonzero if this chip provides the DMB instruction.  */
360#define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
361
362/* Nonzero if this chip implements a memory barrier via CP15.  */
363#define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
364				 && ! TARGET_THUMB1)
365
366/* Nonzero if this chip implements a memory barrier instruction.  */
367#define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
368
369/* Nonzero if this chip supports ldrex and strex */
370#define TARGET_HAVE_LDREX	((arm_arch6 && TARGET_ARM) || arm_arch7)
371
372/* Nonzero if this chip supports LPAE.  */
373#define TARGET_HAVE_LPAE						\
374  (arm_arch7 && ((insn_flags & FL_FOR_ARCH7VE) == FL_FOR_ARCH7VE))
375
376/* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
377#define TARGET_HAVE_LDREXBH	((arm_arch6k && TARGET_ARM) || arm_arch7)
378
379/* Nonzero if this chip supports ldrexd and strexd.  */
380#define TARGET_HAVE_LDREXD	(((arm_arch6k && TARGET_ARM) || arm_arch7) \
381				 && arm_arch_notm)
382
383/* Nonzero if this chip supports load-acquire and store-release.  */
384#define TARGET_HAVE_LDACQ	(TARGET_ARM_ARCH >= 8)
385
386/* Nonzero if integer division instructions supported.  */
387#define TARGET_IDIV		((TARGET_ARM && arm_arch_arm_hwdiv) \
388				 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
389
390/* Nonzero if disallow volatile memory access in IT block.  */
391#define TARGET_NO_VOLATILE_CE		(arm_arch_no_volatile_ce)
392
393/* Should NEON be used for 64-bits bitops.  */
394#define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
395
396/* True iff the full BPABI is being used.  If TARGET_BPABI is true,
397   then TARGET_AAPCS_BASED must be true -- but the converse does not
398   hold.  TARGET_BPABI implies the use of the BPABI runtime library,
399   etc., in addition to just the AAPCS calling conventions.  */
400#ifndef TARGET_BPABI
401#define TARGET_BPABI false
402#endif
403
404/* Support for a compile-time default CPU, et cetera.  The rules are:
405   --with-arch is ignored if -march or -mcpu are specified.
406   --with-cpu is ignored if -march or -mcpu are specified, and is overridden
407    by --with-arch.
408   --with-tune is ignored if -mtune or -mcpu are specified (but not affected
409     by -march).
410   --with-float is ignored if -mfloat-abi is specified.
411   --with-fpu is ignored if -mfpu is specified.
412   --with-abi is ignored if -mabi is specified.
413   --with-tls is ignored if -mtls-dialect is specified. */
414#define OPTION_DEFAULT_SPECS \
415  {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
416  {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
417  {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
418  {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
419  {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
420  {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
421  {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
422  {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
423
424/* Which floating point model to use.  */
425enum arm_fp_model
426{
427  ARM_FP_MODEL_UNKNOWN,
428  /* VFP floating point model.  */
429  ARM_FP_MODEL_VFP
430};
431
432enum vfp_reg_type
433{
434  VFP_NONE = 0,
435  VFP_REG_D16,
436  VFP_REG_D32,
437  VFP_REG_SINGLE
438};
439
440extern const struct arm_fpu_desc
441{
442  const char *name;
443  enum arm_fp_model model;
444  int rev;
445  enum vfp_reg_type regs;
446  int neon;
447  int fp16;
448  int crypto;
449} *arm_fpu_desc;
450
451/* Which floating point hardware to schedule for.  */
452extern int arm_fpu_attr;
453
454#ifndef TARGET_DEFAULT_FLOAT_ABI
455#define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
456#endif
457
458#ifndef ARM_DEFAULT_ABI
459#define ARM_DEFAULT_ABI ARM_ABI_APCS
460#endif
461
462/* Map each of the micro-architecture variants to their corresponding
463   major architecture revision.  */
464
465enum base_architecture
466{
467  BASE_ARCH_0 = 0,
468  BASE_ARCH_2 = 2,
469  BASE_ARCH_3 = 3,
470  BASE_ARCH_3M = 3,
471  BASE_ARCH_4 = 4,
472  BASE_ARCH_4T = 4,
473  BASE_ARCH_5 = 5,
474  BASE_ARCH_5E = 5,
475  BASE_ARCH_5T = 5,
476  BASE_ARCH_5TE = 5,
477  BASE_ARCH_5TEJ = 5,
478  BASE_ARCH_6 = 6,
479  BASE_ARCH_6J = 6,
480  BASE_ARCH_6ZK = 6,
481  BASE_ARCH_6K = 6,
482  BASE_ARCH_6T2 = 6,
483  BASE_ARCH_6M = 6,
484  BASE_ARCH_6Z = 6,
485  BASE_ARCH_7 = 7,
486  BASE_ARCH_7A = 7,
487  BASE_ARCH_7R = 7,
488  BASE_ARCH_7M = 7,
489  BASE_ARCH_7EM = 7,
490  BASE_ARCH_8A = 8
491};
492
493/* The major revision number of the ARM Architecture implemented by the target.  */
494extern enum base_architecture arm_base_arch;
495
496/* Nonzero if this chip supports the ARM Architecture 3M extensions.  */
497extern int arm_arch3m;
498
499/* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
500extern int arm_arch4;
501
502/* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
503extern int arm_arch4t;
504
505/* Nonzero if this chip supports the ARM Architecture 5 extensions.  */
506extern int arm_arch5;
507
508/* Nonzero if this chip supports the ARM Architecture 5E extensions.  */
509extern int arm_arch5e;
510
511/* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
512extern int arm_arch6;
513
514/* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
515extern int arm_arch6k;
516
517/* Nonzero if instructions present in ARMv6-M can be used.  */
518extern int arm_arch6m;
519
520/* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
521extern int arm_arch7;
522
523/* Nonzero if instructions not present in the 'M' profile can be used.  */
524extern int arm_arch_notm;
525
526/* Nonzero if instructions present in ARMv7E-M can be used.  */
527extern int arm_arch7em;
528
529/* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
530extern int arm_arch8;
531
532/* Nonzero if this chip can benefit from load scheduling.  */
533extern int arm_ld_sched;
534
535/* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2.  */
536extern int thumb_code;
537
538/* Nonzero if generating Thumb-1 code.  */
539extern int thumb1_code;
540
541/* Nonzero if this chip is a StrongARM.  */
542extern int arm_tune_strongarm;
543
544/* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
545extern int arm_arch_iwmmxt;
546
547/* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
548extern int arm_arch_iwmmxt2;
549
550/* Nonzero if this chip is an XScale.  */
551extern int arm_arch_xscale;
552
553/* Nonzero if tuning for XScale.  */
554extern int arm_tune_xscale;
555
556/* Nonzero if tuning for stores via the write buffer.  */
557extern int arm_tune_wbuf;
558
559/* Nonzero if tuning for Cortex-A9.  */
560extern int arm_tune_cortex_a9;
561
562/* Nonzero if we should define __THUMB_INTERWORK__ in the
563   preprocessor.
564   XXX This is a bit of a hack, it's intended to help work around
565   problems in GLD which doesn't understand that armv5t code is
566   interworking clean.  */
567extern int arm_cpp_interwork;
568
569/* Nonzero if chip supports Thumb 2.  */
570extern int arm_arch_thumb2;
571
572/* Nonzero if chip supports integer division instruction in ARM mode.  */
573extern int arm_arch_arm_hwdiv;
574
575/* Nonzero if chip supports integer division instruction in Thumb mode.  */
576extern int arm_arch_thumb_hwdiv;
577
578/* Nonzero if chip disallows volatile memory access in IT block.  */
579extern int arm_arch_no_volatile_ce;
580
581/* Nonzero if we should use Neon to handle 64-bits operations rather
582   than core registers.  */
583extern int prefer_neon_for_64bits;
584
585/* Nonzero if we shouldn't use literal pools.  */
586#ifndef USED_FOR_TARGET
587extern bool arm_disable_literal_pool;
588#endif
589
590/* Nonzero if chip supports the ARMv8 CRC instructions.  */
591extern int arm_arch_crc;
592
593#ifndef TARGET_DEFAULT
594#define TARGET_DEFAULT  (MASK_APCS_FRAME)
595#endif
596
597/* Nonzero if PIC code requires explicit qualifiers to generate
598   PLT and GOT relocs rather than the assembler doing so implicitly.
599   Subtargets can override these if required.  */
600#ifndef NEED_GOT_RELOC
601#define NEED_GOT_RELOC	0
602#endif
603#ifndef NEED_PLT_RELOC
604#define NEED_PLT_RELOC	0
605#endif
606
607#ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
608#define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
609#endif
610
611/* Nonzero if we need to refer to the GOT with a PC-relative
612   offset.  In other words, generate
613
614   .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
615
616   rather than
617
618   .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
619
620   The default is true, which matches NetBSD.  Subtargets can
621   override this if required.  */
622#ifndef GOT_PCREL
623#define GOT_PCREL   1
624#endif
625
626/* Target machine storage Layout.  */
627
628
629/* Define this macro if it is advisable to hold scalars in registers
630   in a wider mode than that declared by the program.  In such cases,
631   the value is constrained to be within the bounds of the declared
632   type, but kept valid in the wider mode.  The signedness of the
633   extension may differ from that of the type.  */
634
635#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
636  if (GET_MODE_CLASS (MODE) == MODE_INT		\
637      && GET_MODE_SIZE (MODE) < 4)      	\
638    {						\
639      (MODE) = SImode;				\
640    }
641
642/* Define this if most significant bit is lowest numbered
643   in instructions that operate on numbered bit-fields.  */
644#define BITS_BIG_ENDIAN  0
645
646/* Define this if most significant byte of a word is the lowest numbered.
647   Most ARM processors are run in little endian mode, so that is the default.
648   If you want to have it run-time selectable, change the definition in a
649   cover file to be TARGET_BIG_ENDIAN.  */
650#define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
651
652/* Define this if most significant word of a multiword number is the lowest
653   numbered.  */
654#define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN)
655
656#define UNITS_PER_WORD	4
657
658/* True if natural alignment is used for doubleword types.  */
659#define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
660
661#define DOUBLEWORD_ALIGNMENT 64
662
663#define PARM_BOUNDARY  	32
664
665#define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
666
667#define PREFERRED_STACK_BOUNDARY \
668    (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
669
670#define FUNCTION_BOUNDARY  ((TARGET_THUMB && optimize_size) ? 16 : 32)
671
672/* The lowest bit is used to indicate Thumb-mode functions, so the
673   vbit must go into the delta field of pointers to member
674   functions.  */
675#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
676
677#define EMPTY_FIELD_BOUNDARY  32
678
679#define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
680
681#define MALLOC_ABI_ALIGNMENT  BIGGEST_ALIGNMENT
682
683/* XXX Blah -- this macro is used directly by libobjc.  Since it
684   supports no vector modes, cut out the complexity and fall back
685   on BIGGEST_FIELD_ALIGNMENT.  */
686#ifdef IN_TARGET_LIBS
687#define BIGGEST_FIELD_ALIGNMENT 64
688#endif
689
690/* Make strings word-aligned so strcpy from constants will be faster.  */
691#define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
692
693#define CONSTANT_ALIGNMENT(EXP, ALIGN)				\
694   ((TREE_CODE (EXP) == STRING_CST				\
695     && !optimize_size						\
696     && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR)	\
697    ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
698
699/* Align definitions of arrays, unions and structures so that
700   initializations and copies can be made more efficient.  This is not
701   ABI-changing, so it only affects places where we can see the
702   definition. Increasing the alignment tends to introduce padding,
703   so don't do this when optimizing for size/conserving stack space. */
704#define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
705  (((COND) && ((ALIGN) < BITS_PER_WORD)					\
706    && (TREE_CODE (EXP) == ARRAY_TYPE					\
707	|| TREE_CODE (EXP) == UNION_TYPE				\
708	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
709
710/* Align global data. */
711#define DATA_ALIGNMENT(EXP, ALIGN)			\
712  ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
713
714/* Similarly, make sure that objects on the stack are sensibly aligned.  */
715#define LOCAL_ALIGNMENT(EXP, ALIGN)				\
716  ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
717
718/* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
719   value set in previous versions of this toolchain was 8, which produces more
720   compact structures.  The command line option -mstructure_size_boundary=<n>
721   can be used to change this value.  For compatibility with the ARM SDK
722   however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
723   0020D) page 2-20 says "Structures are aligned on word boundaries".
724   The AAPCS specifies a value of 8.  */
725#define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
726
727/* This is the value used to initialize arm_structure_size_boundary.  If a
728   particular arm target wants to change the default value it should change
729   the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
730   for an example of this.  */
731#ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
732#define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
733#endif
734
735/* Nonzero if move instructions will actually fail to work
736   when given unaligned data.  */
737#define STRICT_ALIGNMENT 1
738
739/* wchar_t is unsigned under the AAPCS.  */
740#ifndef WCHAR_TYPE
741#define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
742
743#define WCHAR_TYPE_SIZE BITS_PER_WORD
744#endif
745
746/* Sized for fixed-point types.  */
747
748#define SHORT_FRACT_TYPE_SIZE 8
749#define FRACT_TYPE_SIZE 16
750#define LONG_FRACT_TYPE_SIZE 32
751#define LONG_LONG_FRACT_TYPE_SIZE 64
752
753#define SHORT_ACCUM_TYPE_SIZE 16
754#define ACCUM_TYPE_SIZE 32
755#define LONG_ACCUM_TYPE_SIZE 64
756#define LONG_LONG_ACCUM_TYPE_SIZE 64
757
758#define MAX_FIXED_MODE_SIZE 64
759
760#ifndef SIZE_TYPE
761#define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
762#endif
763
764#ifndef PTRDIFF_TYPE
765#define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
766#endif
767
768/* AAPCS requires that structure alignment is affected by bitfields.  */
769#ifndef PCC_BITFIELD_TYPE_MATTERS
770#define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
771#endif
772
773/* The maximum size of the sync library functions supported.  */
774#ifndef MAX_SYNC_LIBFUNC_SIZE
775#define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
776#endif
777
778
779/* Standard register usage.  */
780
781/* Register allocation in ARM Procedure Call Standard
782   (S - saved over call).
783
784	r0	   *	argument word/integer result
785	r1-r3		argument word
786
787	r4-r8	     S	register variable
788	r9	     S	(rfp) register variable (real frame pointer)
789
790	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
791	r11 	   F S	(fp) argument pointer
792	r12		(ip) temp workspace
793	r13  	   F S	(sp) lower end of current stack frame
794	r14		(lr) link address/workspace
795	r15	   F	(pc) program counter
796
797	cc		This is NOT a real register, but is used internally
798	                to represent things that use or set the condition
799			codes.
800	sfp             This isn't either.  It is used during rtl generation
801	                since the offset between the frame pointer and the
802			auto's isn't known until after register allocation.
803	afp		Nor this, we only need this because of non-local
804	                goto.  Without it fp appears to be used and the
805			elimination code won't get rid of sfp.  It tracks
806			fp exactly at all times.
807
808   *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
809
810/*	s0-s15		VFP scratch (aka d0-d7).
811	s16-s31	      S	VFP variable (aka d8-d15).
812	vfpcc		Not a real register.  Represents the VFP condition
813			code flags.  */
814
815/* The stack backtrace structure is as follows:
816  fp points to here:  |  save code pointer  |      [fp]
817                      |  return link value  |      [fp, #-4]
818                      |  return sp value    |      [fp, #-8]
819                      |  return fp value    |      [fp, #-12]
820                     [|  saved r10 value    |]
821                     [|  saved r9 value     |]
822                     [|  saved r8 value     |]
823                     [|  saved r7 value     |]
824                     [|  saved r6 value     |]
825                     [|  saved r5 value     |]
826                     [|  saved r4 value     |]
827                     [|  saved r3 value     |]
828                     [|  saved r2 value     |]
829                     [|  saved r1 value     |]
830                     [|  saved r0 value     |]
831  r0-r3 are not normally saved in a C function.  */
832
833/* 1 for registers that have pervasive standard uses
834   and are not available for the register allocator.  */
835#define FIXED_REGISTERS 	\
836{				\
837  /* Core regs.  */		\
838  0,0,0,0,0,0,0,0,		\
839  0,0,0,0,0,1,0,1,		\
840  /* VFP regs.  */		\
841  1,1,1,1,1,1,1,1,		\
842  1,1,1,1,1,1,1,1,		\
843  1,1,1,1,1,1,1,1,		\
844  1,1,1,1,1,1,1,1,		\
845  1,1,1,1,1,1,1,1,		\
846  1,1,1,1,1,1,1,1,		\
847  1,1,1,1,1,1,1,1,		\
848  1,1,1,1,1,1,1,1,		\
849  /* IWMMXT regs.  */		\
850  1,1,1,1,1,1,1,1,		\
851  1,1,1,1,1,1,1,1,		\
852  1,1,1,1,			\
853  /* Specials.  */		\
854  1,1,1,1			\
855}
856
857/* 1 for registers not available across function calls.
858   These must include the FIXED_REGISTERS and also any
859   registers that can be used without being saved.
860   The latter must include the registers where values are returned
861   and the register where structure-value addresses are passed.
862   Aside from that, you can include as many other registers as you like.
863   The CC is not preserved over function calls on the ARM 6, so it is
864   easier to assume this for all.  SFP is preserved, since FP is.  */
865#define CALL_USED_REGISTERS	\
866{				\
867  /* Core regs.  */		\
868  1,1,1,1,0,0,0,0,		\
869  0,0,0,0,1,1,1,1,		\
870  /* VFP Regs.  */		\
871  1,1,1,1,1,1,1,1,		\
872  1,1,1,1,1,1,1,1,		\
873  1,1,1,1,1,1,1,1,		\
874  1,1,1,1,1,1,1,1,		\
875  1,1,1,1,1,1,1,1,		\
876  1,1,1,1,1,1,1,1,		\
877  1,1,1,1,1,1,1,1,		\
878  1,1,1,1,1,1,1,1,		\
879  /* IWMMXT regs.  */		\
880  1,1,1,1,1,1,1,1,		\
881  1,1,1,1,1,1,1,1,		\
882  1,1,1,1,			\
883  /* Specials.  */		\
884  1,1,1,1			\
885}
886
887#ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
888#define SUBTARGET_CONDITIONAL_REGISTER_USAGE
889#endif
890
891/* These are a couple of extensions to the formats accepted
892   by asm_fprintf:
893     %@ prints out ASM_COMMENT_START
894     %r prints out REGISTER_PREFIX reg_names[arg]  */
895#define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
896  case '@':						\
897    fputs (ASM_COMMENT_START, FILE);			\
898    break;						\
899							\
900  case 'r':						\
901    fputs (REGISTER_PREFIX, FILE);			\
902    fputs (reg_names [va_arg (ARGS, int)], FILE);	\
903    break;
904
905/* Round X up to the nearest word.  */
906#define ROUND_UP_WORD(X) (((X) + 3) & ~3)
907
908/* Convert fron bytes to ints.  */
909#define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
910
911/* The number of (integer) registers required to hold a quantity of type MODE.
912   Also used for VFP registers.  */
913#define ARM_NUM_REGS(MODE)				\
914  ARM_NUM_INTS (GET_MODE_SIZE (MODE))
915
916/* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
917#define ARM_NUM_REGS2(MODE, TYPE)                   \
918  ARM_NUM_INTS ((MODE) == BLKmode ? 		\
919  int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
920
921/* The number of (integer) argument register available.  */
922#define NUM_ARG_REGS		4
923
924/* And similarly for the VFP.  */
925#define NUM_VFP_ARG_REGS	16
926
927/* Return the register number of the N'th (integer) argument.  */
928#define ARG_REGISTER(N) 	(N - 1)
929
930/* Specify the registers used for certain standard purposes.
931   The values of these macros are register numbers.  */
932
933/* The number of the last argument register.  */
934#define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
935
936/* The numbers of the Thumb register ranges.  */
937#define FIRST_LO_REGNUM  	0
938#define LAST_LO_REGNUM  	7
939#define FIRST_HI_REGNUM		8
940#define LAST_HI_REGNUM		11
941
942/* Overridden by config/arm/bpabi.h.  */
943#ifndef ARM_UNWIND_INFO
944#define ARM_UNWIND_INFO  0
945#endif
946
947/* Use r0 and r1 to pass exception handling information.  */
948#define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
949
950/* The register that holds the return address in exception handlers.  */
951#define ARM_EH_STACKADJ_REGNUM	2
952#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
953
954#ifndef ARM_TARGET2_DWARF_FORMAT
955#define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
956#endif
957
958/* ttype entries (the only interesting data references used)
959   use TARGET2 relocations.  */
960#define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
961  (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
962			       : DW_EH_PE_absptr)
963
964/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
965   as an invisible last argument (possible since varargs don't exist in
966   Pascal), so the following is not true.  */
967#define STATIC_CHAIN_REGNUM	12
968
969/* Define this to be where the real frame pointer is if it is not possible to
970   work out the offset between the frame pointer and the automatic variables
971   until after register allocation has taken place.  FRAME_POINTER_REGNUM
972   should point to a special register that we will make sure is eliminated.
973
974   For the Thumb we have another problem.  The TPCS defines the frame pointer
975   as r11, and GCC believes that it is always possible to use the frame pointer
976   as base register for addressing purposes.  (See comments in
977   find_reloads_address()).  But - the Thumb does not allow high registers,
978   including r11, to be used as base address registers.  Hence our problem.
979
980   The solution used here, and in the old thumb port is to use r7 instead of
981   r11 as the hard frame pointer and to have special code to generate
982   backtrace structures on the stack (if required to do so via a command line
983   option) using r11.  This is the only 'user visible' use of r11 as a frame
984   pointer.  */
985#define ARM_HARD_FRAME_POINTER_REGNUM	11
986#define THUMB_HARD_FRAME_POINTER_REGNUM	 7
987
988#define HARD_FRAME_POINTER_REGNUM		\
989  (TARGET_ARM					\
990   ? ARM_HARD_FRAME_POINTER_REGNUM		\
991   : THUMB_HARD_FRAME_POINTER_REGNUM)
992
993#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
994#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
995
996#define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
997
998/* Register to use for pushing function arguments.  */
999#define STACK_POINTER_REGNUM	SP_REGNUM
1000
1001#define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
1002#define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
1003
1004/* Need to sync with WCGR in iwmmxt.md.  */
1005#define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
1006#define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
1007
1008#define IS_IWMMXT_REGNUM(REGNUM) \
1009  (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
1010#define IS_IWMMXT_GR_REGNUM(REGNUM) \
1011  (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1012
1013/* Base register for access to local variables of the function.  */
1014#define FRAME_POINTER_REGNUM	102
1015
1016/* Base register for access to arguments of the function.  */
1017#define ARG_POINTER_REGNUM	103
1018
1019#define FIRST_VFP_REGNUM	16
1020#define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
1021#define LAST_VFP_REGNUM	\
1022  (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1023
1024#define IS_VFP_REGNUM(REGNUM) \
1025  (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1026
1027/* VFP registers are split into two types: those defined by VFP versions < 3
1028   have D registers overlaid on consecutive pairs of S registers. VFP version 3
1029   defines 16 new D registers (d16-d31) which, for simplicity and correctness
1030   in various parts of the backend, we implement as "fake" single-precision
1031   registers (which would be S32-S63, but cannot be used in that way).  The
1032   following macros define these ranges of registers.  */
1033#define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
1034#define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
1035#define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
1036
1037#define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1038  ((REGNUM) <= LAST_LO_VFP_REGNUM)
1039
1040/* DFmode values are only valid in even register pairs.  */
1041#define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1042  ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1043
1044/* Neon Quad values must start at a multiple of four registers.  */
1045#define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1046  ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1047
1048/* Neon structures of vectors must be in even register pairs and there
1049   must be enough registers available.  Because of various patterns
1050   requiring quad registers, we require them to start at a multiple of
1051   four.  */
1052#define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1053  ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1054   && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1055
1056/* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP.  */
1057/* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1058/* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
1059#define FIRST_PSEUDO_REGISTER   104
1060
1061#define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1062
1063/* Value should be nonzero if functions must have frame pointers.
1064   Zero means the frame pointer need not be set up (and parms may be accessed
1065   via the stack pointer) in functions that seem suitable.
1066   If we have to have a frame pointer we might as well make use of it.
1067   APCS says that the frame pointer does not need to be pushed in leaf
1068   functions, or simple tail call functions.  */
1069
1070#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1071#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1072#endif
1073
1074/* Return number of consecutive hard regs needed starting at reg REGNO
1075   to hold something of mode MODE.
1076   This is ordinarily the length in words of a value of mode MODE
1077   but can be less for certain modes in special long registers.
1078
1079   On the ARM core regs are UNITS_PER_WORD bits wide.  */
1080#define HARD_REGNO_NREGS(REGNO, MODE)  	\
1081  ((TARGET_32BIT			\
1082    && REGNO > PC_REGNUM		\
1083    && REGNO != FRAME_POINTER_REGNUM	\
1084    && REGNO != ARG_POINTER_REGNUM)	\
1085    && !IS_VFP_REGNUM (REGNO)		\
1086   ? 1 : ARM_NUM_REGS (MODE))
1087
1088/* Return true if REGNO is suitable for holding a quantity of type MODE.  */
1089#define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1090  arm_hard_regno_mode_ok ((REGNO), (MODE))
1091
1092#define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1093
1094#define VALID_IWMMXT_REG_MODE(MODE) \
1095 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1096
1097/* Modes valid for Neon D registers.  */
1098#define VALID_NEON_DREG_MODE(MODE) \
1099  ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1100   || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1101
1102/* Modes valid for Neon Q registers.  */
1103#define VALID_NEON_QREG_MODE(MODE) \
1104  ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1105   || (MODE) == V4SFmode || (MODE) == V2DImode)
1106
1107/* Structure modes valid for Neon registers.  */
1108#define VALID_NEON_STRUCT_MODE(MODE) \
1109  ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1110   || (MODE) == CImode || (MODE) == XImode)
1111
1112/* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1113extern int arm_regs_in_sequence[];
1114
1115/* The order in which register should be allocated.  It is good to use ip
1116   since no saving is required (though calls clobber it) and it never contains
1117   function parameters.  It is quite good to use lr since other calls may
1118   clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1119   least likely to contain a function parameter; in addition results are
1120   returned in r0.
1121   For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1122   then D8-D15.  The reason for doing this is to attempt to reduce register
1123   pressure when both single- and double-precision registers are used in a
1124   function.  */
1125
1126#define VREG(X)  (FIRST_VFP_REGNUM + (X))
1127#define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1128#define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1129
1130#define REG_ALLOC_ORDER				\
1131{						\
1132  /* General registers.  */			\
1133  3,  2,  1,  0,  12, 14,  4,  5,		\
1134  6,  7,  8,  9,  10, 11,			\
1135  /* High VFP registers.  */			\
1136  VREG(32), VREG(33), VREG(34), VREG(35),	\
1137  VREG(36), VREG(37), VREG(38), VREG(39),	\
1138  VREG(40), VREG(41), VREG(42), VREG(43),	\
1139  VREG(44), VREG(45), VREG(46), VREG(47),	\
1140  VREG(48), VREG(49), VREG(50), VREG(51),	\
1141  VREG(52), VREG(53), VREG(54), VREG(55),	\
1142  VREG(56), VREG(57), VREG(58), VREG(59),	\
1143  VREG(60), VREG(61), VREG(62), VREG(63),	\
1144  /* VFP argument registers.  */		\
1145  VREG(15), VREG(14), VREG(13), VREG(12),	\
1146  VREG(11), VREG(10), VREG(9),  VREG(8),	\
1147  VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1148  VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1149  /* VFP call-saved registers.  */		\
1150  VREG(16), VREG(17), VREG(18), VREG(19),	\
1151  VREG(20), VREG(21), VREG(22), VREG(23),	\
1152  VREG(24), VREG(25), VREG(26), VREG(27),	\
1153  VREG(28), VREG(29), VREG(30), VREG(31),	\
1154  /* IWMMX registers.  */			\
1155  WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1156  WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1157  WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1158  WREG(12), WREG(13), WREG(14), WREG(15),	\
1159  WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1160  /* Registers not for general use.  */		\
1161  CC_REGNUM, VFPCC_REGNUM,			\
1162  FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1163  SP_REGNUM, PC_REGNUM 				\
1164}
1165
1166/* Use different register alloc ordering for Thumb.  */
1167#define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1168
1169/* Tell IRA to use the order we define rather than messing it up with its
1170   own cost calculations.  */
1171#define HONOR_REG_ALLOC_ORDER 1
1172
1173/* Interrupt functions can only use registers that have already been
1174   saved by the prologue, even if they would normally be
1175   call-clobbered.  */
1176#define HARD_REGNO_RENAME_OK(SRC, DST)					\
1177	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1178	 df_regs_ever_live_p (DST))
1179
1180/* Register and constant classes.  */
1181
1182/* Register classes.  */
1183enum reg_class
1184{
1185  NO_REGS,
1186  LO_REGS,
1187  STACK_REG,
1188  BASE_REGS,
1189  HI_REGS,
1190  CALLER_SAVE_REGS,
1191  GENERAL_REGS,
1192  CORE_REGS,
1193  VFP_D0_D7_REGS,
1194  VFP_LO_REGS,
1195  VFP_HI_REGS,
1196  VFP_REGS,
1197  IWMMXT_REGS,
1198  IWMMXT_GR_REGS,
1199  CC_REG,
1200  VFPCC_REG,
1201  SFP_REG,
1202  AFP_REG,
1203  ALL_REGS,
1204  LIM_REG_CLASSES
1205};
1206
1207#define N_REG_CLASSES  (int) LIM_REG_CLASSES
1208
1209/* Give names of register classes as strings for dump file.  */
1210#define REG_CLASS_NAMES  \
1211{			\
1212  "NO_REGS",		\
1213  "LO_REGS",		\
1214  "STACK_REG",		\
1215  "BASE_REGS",		\
1216  "HI_REGS",		\
1217  "CALLER_SAVE_REGS",	\
1218  "GENERAL_REGS",	\
1219  "CORE_REGS",		\
1220  "VFP_D0_D7_REGS",	\
1221  "VFP_LO_REGS",	\
1222  "VFP_HI_REGS",	\
1223  "VFP_REGS",		\
1224  "IWMMXT_REGS",	\
1225  "IWMMXT_GR_REGS",	\
1226  "CC_REG",		\
1227  "VFPCC_REG",		\
1228  "SFP_REG",		\
1229  "AFP_REG",		\
1230  "ALL_REGS"		\
1231}
1232
1233/* Define which registers fit in which classes.
1234   This is an initializer for a vector of HARD_REG_SET
1235   of length N_REG_CLASSES.  */
1236#define REG_CLASS_CONTENTS						\
1237{									\
1238  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1239  { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1240  { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1241  { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1242  { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1243  { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1244  { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1245  { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1246  { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1247  { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1248  { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1249  { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1250  { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1251  { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1252  { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1253  { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1254  { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1255  { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1256  { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F }  /* ALL_REGS */	\
1257}
1258
1259/* Any of the VFP register classes.  */
1260#define IS_VFP_CLASS(X) \
1261  ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1262   || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1263
1264/* The same information, inverted:
1265   Return the class number of the smallest class containing
1266   reg number REGNO.  This could be a conditional expression
1267   or could index an array.  */
1268#define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1269
1270/* In VFPv1, VFP registers could only be accessed in the mode they
1271   were set, so subregs would be invalid there.  However, we don't
1272   support VFPv1 at the moment, and the restriction was lifted in
1273   VFPv2.
1274   In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1275   VFP registers in little-endian order.  We can't describe that accurately to
1276   GCC, so avoid taking subregs of such values.
1277   The only exception is going from a 128-bit to a 64-bit type.  In that case
1278   the data layout happens to be consistent for big-endian, so we explicitly allow
1279   that case.  */
1280#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
1281  (TARGET_VFP && TARGET_BIG_END					\
1282   && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8)	\
1283   && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD			\
1284       || GET_MODE_SIZE (TO) > UNITS_PER_WORD)			\
1285   && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1286
1287/* The class value for index registers, and the one for base regs.  */
1288#define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1289#define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1290
1291/* For the Thumb the high registers cannot be used as base registers
1292   when addressing quantities in QI or HI mode; if we don't know the
1293   mode, then we must be conservative.  */
1294#define MODE_BASE_REG_CLASS(MODE)				\
1295  (TARGET_32BIT ? CORE_REGS					\
1296   : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS			\
1297   : LO_REGS)
1298
1299/* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1300   instead of BASE_REGS.  */
1301#define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1302
1303/* When this hook returns true for MODE, the compiler allows
1304   registers explicitly used in the rtl to be used as spill registers
1305   but prevents the compiler from extending the lifetime of these
1306   registers.  */
1307#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1308  arm_small_register_classes_for_mode_p
1309
1310/* Must leave BASE_REGS reloads alone */
1311#define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1312  (lra_in_progress ? NO_REGS						\
1313   : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS			\
1314      ? ((true_regnum (X) == -1 ? LO_REGS				\
1315         : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1316         : NO_REGS)) 							\
1317      : NO_REGS))
1318
1319#define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1320  (lra_in_progress ? NO_REGS						\
1321   : (CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1322      ? ((true_regnum (X) == -1 ? LO_REGS				\
1323         : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS	\
1324         : NO_REGS)) 							\
1325      : NO_REGS)
1326
1327/* Return the register class of a scratch register needed to copy IN into
1328   or out of a register in CLASS in MODE.  If it can be done directly,
1329   NO_REGS is returned.  */
1330#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1331  /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1332  ((TARGET_VFP && TARGET_HARD_FLOAT				\
1333    && IS_VFP_CLASS (CLASS))					\
1334   ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1335   : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1336   ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1337   : TARGET_32BIT						\
1338   ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1339    ? GENERAL_REGS : NO_REGS)					\
1340   : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1341
1342/* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1343#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1344  /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1345  ((TARGET_VFP && TARGET_HARD_FLOAT				\
1346    && IS_VFP_CLASS (CLASS))					\
1347    ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1348    (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1349    coproc_secondary_reload_class (MODE, X, TRUE) :		\
1350   (TARGET_32BIT ?						\
1351    (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1352     && CONSTANT_P (X))						\
1353    ? GENERAL_REGS :						\
1354    (((MODE) == HImode && ! arm_arch4				\
1355      && (MEM_P (X)					\
1356	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1357	      && true_regnum (X) == -1)))			\
1358     ? GENERAL_REGS : NO_REGS)					\
1359    : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1360
1361/* Try a machine-dependent way of reloading an illegitimate address
1362   operand.  If we find one, push the reload and jump to WIN.  This
1363   macro is used in only one place: `find_reloads_address' in reload.c.
1364
1365   For the ARM, we wish to handle large displacements off a base
1366   register by splitting the addend across a MOV and the mem insn.
1367   This can cut the number of reloads needed.  */
1368#define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN)	   \
1369  do									   \
1370    {									   \
1371      if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND))	   \
1372	goto WIN;							   \
1373    }									   \
1374  while (0)
1375
1376/* XXX If an HImode FP+large_offset address is converted to an HImode
1377   SP+large_offset address, then reload won't know how to fix it.  It sees
1378   only that SP isn't valid for HImode, and so reloads the SP into an index
1379   register, but the resulting address is still invalid because the offset
1380   is too big.  We fix it here instead by reloading the entire address.  */
1381/* We could probably achieve better results by defining PROMOTE_MODE to help
1382   cope with the variances between the Thumb's signed and unsigned byte and
1383   halfword load instructions.  */
1384/* ??? This should be safe for thumb2, but we may be able to do better.  */
1385#define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN)     \
1386do {									      \
1387  rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1388  if (new_x)								      \
1389    {									      \
1390      X = new_x;							      \
1391      goto WIN;								      \
1392    }									      \
1393} while (0)
1394
1395#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)   \
1396  if (TARGET_ARM)							   \
1397    ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1398  else									   \
1399    THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1400
1401/* Return the maximum number of consecutive registers
1402   needed to represent mode MODE in a register of class CLASS.
1403   ARM regs are UNITS_PER_WORD bits.
1404   FIXME: Is this true for iWMMX?  */
1405#define CLASS_MAX_NREGS(CLASS, MODE)  \
1406  (ARM_NUM_REGS (MODE))
1407
1408/* If defined, gives a class of registers that cannot be used as the
1409   operand of a SUBREG that changes the mode of the object illegally.  */
1410
1411/* Stack layout; function entry, exit and calling.  */
1412
1413/* Define this if pushing a word on the stack
1414   makes the stack pointer a smaller address.  */
1415#define STACK_GROWS_DOWNWARD  1
1416
1417/* Define this to nonzero if the nominal address of the stack frame
1418   is at the high-address end of the local variables;
1419   that is, each additional local variable allocated
1420   goes at a more negative offset in the frame.  */
1421#define FRAME_GROWS_DOWNWARD 1
1422
1423/* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1424   When present, it is one word in size, and sits at the top of the frame,
1425   between the soft frame pointer and either r7 or r11.
1426
1427   We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1428   and only then if some outgoing arguments are passed on the stack.  It would
1429   be tempting to also check whether the stack arguments are passed by indirect
1430   calls, but there seems to be no reason in principle why a post-reload pass
1431   couldn't convert a direct call into an indirect one.  */
1432#define CALLER_INTERWORKING_SLOT_SIZE			\
1433  (TARGET_CALLER_INTERWORKING				\
1434   && crtl->outgoing_args_size != 0		\
1435   ? UNITS_PER_WORD : 0)
1436
1437/* Offset within stack frame to start allocating local variables at.
1438   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1439   first local allocated.  Otherwise, it is the offset to the BEGINNING
1440   of the first local allocated.  */
1441#define STARTING_FRAME_OFFSET  0
1442
1443/* If we generate an insn to push BYTES bytes,
1444   this says how many the stack pointer really advances by.  */
1445/* The push insns do not do this rounding implicitly.
1446   So don't define this.  */
1447/* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1448
1449/* Define this if the maximum size of all the outgoing args is to be
1450   accumulated and pushed during the prologue.  The amount can be
1451   found in the variable crtl->outgoing_args_size.  */
1452#define ACCUMULATE_OUTGOING_ARGS 1
1453
1454/* Offset of first parameter from the argument pointer register value.  */
1455#define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1456
1457/* Amount of memory needed for an untyped call to save all possible return
1458   registers.  */
1459#define APPLY_RESULT_SIZE arm_apply_result_size()
1460
1461/* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1462   values must be in memory.  On the ARM, they need only do so if larger
1463   than a word, or if they contain elements offset from zero in the struct.  */
1464#define DEFAULT_PCC_STRUCT_RETURN 0
1465
1466/* These bits describe the different types of function supported
1467   by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1468   normal function and an interworked function, for example.  Knowing the
1469   type of a function is important for determining its prologue and
1470   epilogue sequences.
1471   Note value 7 is currently unassigned.  Also note that the interrupt
1472   function types all have bit 2 set, so that they can be tested for easily.
1473   Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1474   machine_function structure is initialized (to zero) func_type will
1475   default to unknown.  This will force the first use of arm_current_func_type
1476   to call arm_compute_func_type.  */
1477#define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1478#define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1479#define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1480#define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1481#define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1482#define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1483
1484#define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1485
1486/* In addition functions can have several type modifiers,
1487   outlined by these bit masks:  */
1488#define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1489#define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1490#define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1491#define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1492#define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1493
1494/* Some macros to test these flags.  */
1495#define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1496#define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1497#define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1498#define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1499#define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1500#define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1501
1502
1503/* Structure used to hold the function stack frame layout.  Offsets are
1504   relative to the stack pointer on function entry.  Positive offsets are
1505   in the direction of stack growth.
1506   Only soft_frame is used in thumb mode.  */
1507
1508typedef struct GTY(()) arm_stack_offsets
1509{
1510  int saved_args;	/* ARG_POINTER_REGNUM.  */
1511  int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1512  int saved_regs;
1513  int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1514  int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1515  int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1516  unsigned int saved_regs_mask;
1517}
1518arm_stack_offsets;
1519
1520#if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1521/* A C structure for machine-specific, per-function data.
1522   This is added to the cfun structure.  */
1523typedef struct GTY(()) machine_function
1524{
1525  /* Additional stack adjustment in __builtin_eh_throw.  */
1526  rtx eh_epilogue_sp_ofs;
1527  /* Records if LR has to be saved for far jumps.  */
1528  int far_jump_used;
1529  /* Records if ARG_POINTER was ever live.  */
1530  int arg_pointer_live;
1531  /* Records if the save of LR has been eliminated.  */
1532  int lr_save_eliminated;
1533  /* The size of the stack frame.  Only valid after reload.  */
1534  arm_stack_offsets stack_offsets;
1535  /* Records the type of the current function.  */
1536  unsigned long func_type;
1537  /* Record if the function has a variable argument list.  */
1538  int uses_anonymous_args;
1539  /* Records if sibcalls are blocked because an argument
1540     register is needed to preserve stack alignment.  */
1541  int sibcall_blocked;
1542  /* The PIC register for this function.  This might be a pseudo.  */
1543  rtx pic_reg;
1544  /* Labels for per-function Thumb call-via stubs.  One per potential calling
1545     register.  We can never call via LR or PC.  We can call via SP if a
1546     trampoline happens to be on the top of the stack.  */
1547  rtx call_via[14];
1548  /* Set to 1 when a return insn is output, this means that the epilogue
1549     is not needed.  */
1550  int return_used_this_function;
1551  /* When outputting Thumb-1 code, record the last insn that provides
1552     information about condition codes, and the comparison operands.  */
1553  rtx thumb1_cc_insn;
1554  rtx thumb1_cc_op0;
1555  rtx thumb1_cc_op1;
1556  /* Also record the CC mode that is supported.  */
1557  machine_mode thumb1_cc_mode;
1558  /* Set to 1 after arm_reorg has started.  */
1559  int after_arm_reorg;
1560}
1561machine_function;
1562#endif
1563
1564/* As in the machine_function, a global set of call-via labels, for code
1565   that is in text_section.  */
1566extern GTY(()) rtx thumb_call_via_label[14];
1567
1568/* The number of potential ways of assigning to a co-processor.  */
1569#define ARM_NUM_COPROC_SLOTS 1
1570
1571/* Enumeration of procedure calling standard variants.  We don't really
1572   support all of these yet.  */
1573enum arm_pcs
1574{
1575  ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1576  ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1577  ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1578  /* This must be the last AAPCS variant.  */
1579  ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1580  ARM_PCS_ATPCS,	/* ATPCS.  */
1581  ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1582  ARM_PCS_UNKNOWN
1583};
1584
1585/* Default procedure calling standard of current compilation unit. */
1586extern enum arm_pcs arm_pcs_default;
1587
1588#if !defined (USED_FOR_TARGET)
1589/* A C type for declaring a variable that is used as the first argument of
1590   `FUNCTION_ARG' and other related values.  */
1591typedef struct
1592{
1593  /* This is the number of registers of arguments scanned so far.  */
1594  int nregs;
1595  /* This is the number of iWMMXt register arguments scanned so far.  */
1596  int iwmmxt_nregs;
1597  int named_count;
1598  int nargs;
1599  /* Which procedure call variant to use for this call.  */
1600  enum arm_pcs pcs_variant;
1601
1602  /* AAPCS related state tracking.  */
1603  int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1604  int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1605			       this argument, or -1 if using core
1606			       registers.  */
1607  int aapcs_ncrn;
1608  int aapcs_next_ncrn;
1609  rtx aapcs_reg;	    /* Register assigned to this argument.  */
1610  int aapcs_partial;	    /* How many bytes are passed in regs (if
1611			       split between core regs and stack.
1612			       Zero otherwise.  */
1613  int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1614  int can_split;	    /* Argument can be split between core regs
1615			       and the stack.  */
1616  /* Private data for tracking VFP register allocation */
1617  unsigned aapcs_vfp_regs_free;
1618  unsigned aapcs_vfp_reg_alloc;
1619  int aapcs_vfp_rcount;
1620  MACHMODE aapcs_vfp_rmode;
1621} CUMULATIVE_ARGS;
1622#endif
1623
1624#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1625  (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1626
1627#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1628  (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1629
1630/* For AAPCS, padding should never be below the argument. For other ABIs,
1631 * mimic the default.  */
1632#define PAD_VARARGS_DOWN \
1633  ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1634
1635/* Initialize a variable CUM of type CUMULATIVE_ARGS
1636   for a call to a function whose data type is FNTYPE.
1637   For a library call, FNTYPE is 0.
1638   On the ARM, the offset starts at 0.  */
1639#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1640  arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1641
1642/* 1 if N is a possible register number for function argument passing.
1643   On the ARM, r0-r3 are used to pass args.  */
1644#define FUNCTION_ARG_REGNO_P(REGNO)					\
1645   (IN_RANGE ((REGNO), 0, 3)						\
1646    || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT		\
1647	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1648    || (TARGET_IWMMXT_ABI						\
1649	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1650
1651
1652/* If your target environment doesn't prefix user functions with an
1653   underscore, you may wish to re-define this to prevent any conflicts.  */
1654#ifndef ARM_MCOUNT_NAME
1655#define ARM_MCOUNT_NAME "*mcount"
1656#endif
1657
1658/* Call the function profiler with a given profile label.  The Acorn
1659   compiler puts this BEFORE the prolog but gcc puts it afterwards.
1660   On the ARM the full profile code will look like:
1661	.data
1662	LP1
1663		.word	0
1664	.text
1665		mov	ip, lr
1666		bl	mcount
1667		.word	LP1
1668
1669   profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1670   will output the .text section.
1671
1672   The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1673   ``prof'' doesn't seem to mind about this!
1674
1675   Note - this version of the code is designed to work in both ARM and
1676   Thumb modes.  */
1677#ifndef ARM_FUNCTION_PROFILER
1678#define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1679{							\
1680  char temp[20];					\
1681  rtx sym;						\
1682							\
1683  asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1684	   IP_REGNUM, LR_REGNUM);			\
1685  assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1686  fputc ('\n', STREAM);					\
1687  ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1688  sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1689  assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1690}
1691#endif
1692
1693#ifdef THUMB_FUNCTION_PROFILER
1694#define FUNCTION_PROFILER(STREAM, LABELNO)		\
1695  if (TARGET_ARM)					\
1696    ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1697  else							\
1698    THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1699#else
1700#define FUNCTION_PROFILER(STREAM, LABELNO)		\
1701    ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1702#endif
1703
1704/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1705   the stack pointer does not matter.  The value is tested only in
1706   functions that have frame pointers.
1707   No definition is equivalent to always zero.
1708
1709   On the ARM, the function epilogue recovers the stack pointer from the
1710   frame.  */
1711#define EXIT_IGNORE_STACK 1
1712
1713#define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1714
1715/* Determine if the epilogue should be output as RTL.
1716   You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1717#define USE_RETURN_INSN(ISCOND)				\
1718  (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1719
1720/* Definitions for register eliminations.
1721
1722   This is an array of structures.  Each structure initializes one pair
1723   of eliminable registers.  The "from" register number is given first,
1724   followed by "to".  Eliminations of the same "from" register are listed
1725   in order of preference.
1726
1727   We have two registers that can be eliminated on the ARM.  First, the
1728   arg pointer register can often be eliminated in favor of the stack
1729   pointer register.  Secondly, the pseudo frame pointer register can always
1730   be eliminated; it is replaced with either the stack or the real frame
1731   pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1732   because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1733
1734#define ELIMINABLE_REGS						\
1735{{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1736 { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1737 { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1738 { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1739 { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1740 { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1741 { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1742
1743/* Define the offset between two registers, one to be eliminated, and the
1744   other its replacement, at the start of a routine.  */
1745#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1746  if (TARGET_ARM)							\
1747    (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1748  else									\
1749    (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1750
1751/* Special case handling of the location of arguments passed on the stack.  */
1752#define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1753
1754/* Initialize data used by insn expanders.  This is called from insn_emit,
1755   once for every function before code is generated.  */
1756#define INIT_EXPANDERS  arm_init_expanders ()
1757
1758/* Length in units of the trampoline for entering a nested function.  */
1759#define TRAMPOLINE_SIZE  (TARGET_32BIT ? 16 : 20)
1760
1761/* Alignment required for a trampoline in bits.  */
1762#define TRAMPOLINE_ALIGNMENT  32
1763
1764/* Addressing modes, and classification of registers for them.  */
1765#define HAVE_POST_INCREMENT   1
1766#define HAVE_PRE_INCREMENT    TARGET_32BIT
1767#define HAVE_POST_DECREMENT   TARGET_32BIT
1768#define HAVE_PRE_DECREMENT    TARGET_32BIT
1769#define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1770#define HAVE_POST_MODIFY_DISP TARGET_32BIT
1771#define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1772#define HAVE_POST_MODIFY_REG  TARGET_32BIT
1773
1774enum arm_auto_incmodes
1775  {
1776    ARM_POST_INC,
1777    ARM_PRE_INC,
1778    ARM_POST_DEC,
1779    ARM_PRE_DEC
1780  };
1781
1782#define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1783  (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1784#define USE_LOAD_POST_INCREMENT(mode) \
1785  ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1786#define USE_LOAD_PRE_INCREMENT(mode)  \
1787  ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1788#define USE_LOAD_POST_DECREMENT(mode) \
1789  ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1790#define USE_LOAD_PRE_DECREMENT(mode)  \
1791  ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1792
1793#define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1794#define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1795#define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1796#define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1797
1798/* Macros to check register numbers against specific register classes.  */
1799
1800/* These assume that REGNO is a hard or pseudo reg number.
1801   They give nonzero only if REGNO is a hard reg of the suitable class
1802   or a pseudo reg currently allocated to a suitable hard reg.
1803   Since they use reg_renumber, they are safe only once reg_renumber
1804   has been allocated, which happens in reginfo.c during register
1805   allocation.  */
1806#define TEST_REGNO(R, TEST, VALUE) \
1807  ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1808
1809/* Don't allow the pc to be used.  */
1810#define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1811  (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1812   || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1813   || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1814
1815#define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1816  (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1817   || (GET_MODE_SIZE (MODE) >= 4				\
1818       && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1819
1820#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1821  (TARGET_THUMB1					\
1822   ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1823   : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1824
1825/* Nonzero if X can be the base register in a reg+reg addressing mode.
1826   For Thumb, we can not use SP + reg, so reject SP.  */
1827#define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1828  REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1829
1830/* For ARM code, we don't care about the mode, but for Thumb, the index
1831   must be suitable for use in a QImode load.  */
1832#define REGNO_OK_FOR_INDEX_P(REGNO)	\
1833  (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1834   && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1835
1836/* Maximum number of registers that can appear in a valid memory address.
1837   Shifts in addresses can't be by a register.  */
1838#define MAX_REGS_PER_ADDRESS 2
1839
1840/* Recognize any constant value that is a valid address.  */
1841/* XXX We can address any constant, eventually...  */
1842/* ??? Should the TARGET_ARM here also apply to thumb2?  */
1843#define CONSTANT_ADDRESS_P(X)  			\
1844  (GET_CODE (X) == SYMBOL_REF 			\
1845   && (CONSTANT_POOL_ADDRESS_P (X)		\
1846       || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1847
1848/* True if SYMBOL + OFFSET constants must refer to something within
1849   SYMBOL's section.  */
1850#define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1851
1852/* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1853#ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1854#define TARGET_DEFAULT_WORD_RELOCATIONS 0
1855#endif
1856
1857#ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1858#define SUBTARGET_NAME_ENCODING_LENGTHS
1859#endif
1860
1861/* This is a C fragment for the inside of a switch statement.
1862   Each case label should return the number of characters to
1863   be stripped from the start of a function's name, if that
1864   name starts with the indicated character.  */
1865#define ARM_NAME_ENCODING_LENGTHS		\
1866  case '*':  return 1;				\
1867  SUBTARGET_NAME_ENCODING_LENGTHS
1868
1869/* This is how to output a reference to a user-level label named NAME.
1870   `assemble_name' uses this.  */
1871#undef  ASM_OUTPUT_LABELREF
1872#define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1873   arm_asm_output_labelref (FILE, NAME)
1874
1875/* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1876#define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1877  if (TARGET_THUMB2)			\
1878    thumb2_asm_output_opcode (STREAM);
1879
1880/* The EABI specifies that constructors should go in .init_array.
1881   Other targets use .ctors for compatibility.  */
1882#ifndef ARM_EABI_CTORS_SECTION_OP
1883#define ARM_EABI_CTORS_SECTION_OP \
1884  "\t.section\t.init_array,\"aw\",%init_array"
1885#endif
1886#ifndef ARM_EABI_DTORS_SECTION_OP
1887#define ARM_EABI_DTORS_SECTION_OP \
1888  "\t.section\t.fini_array,\"aw\",%fini_array"
1889#endif
1890#define ARM_CTORS_SECTION_OP \
1891  "\t.section\t.ctors,\"aw\",%progbits"
1892#define ARM_DTORS_SECTION_OP \
1893  "\t.section\t.dtors,\"aw\",%progbits"
1894
1895/* Define CTORS_SECTION_ASM_OP.  */
1896#undef CTORS_SECTION_ASM_OP
1897#undef DTORS_SECTION_ASM_OP
1898#ifndef IN_LIBGCC2
1899# define CTORS_SECTION_ASM_OP \
1900   (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1901# define DTORS_SECTION_ASM_OP \
1902   (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1903#else /* !defined (IN_LIBGCC2) */
1904/* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1905   so we cannot use the definition above.  */
1906# ifdef __ARM_EABI__
1907/* The .ctors section is not part of the EABI, so we do not define
1908   CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1909   from trying to use it.  We do define it when doing normal
1910   compilation, as .init_array can be used instead of .ctors.  */
1911/* There is no need to emit begin or end markers when using
1912   init_array; the dynamic linker will compute the size of the
1913   array itself based on special symbols created by the static
1914   linker.  However, we do need to arrange to set up
1915   exception-handling here.  */
1916#   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1917#   define CTOR_LIST_END /* empty */
1918#   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1919#   define DTOR_LIST_END /* empty */
1920# else /* !defined (__ARM_EABI__) */
1921#   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1922#   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1923# endif /* !defined (__ARM_EABI__) */
1924#endif /* !defined (IN_LIBCC2) */
1925
1926/* True if the operating system can merge entities with vague linkage
1927   (e.g., symbols in COMDAT group) during dynamic linking.  */
1928#ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1929#define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1930#endif
1931
1932#define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1933
1934/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1935   and check its validity for a certain class.
1936   We have two alternate definitions for each of them.
1937   The usual definition accepts all pseudo regs; the other rejects
1938   them unless they have been allocated suitable hard regs.
1939   The symbol REG_OK_STRICT causes the latter definition to be used.
1940   Thumb-2 has the same restrictions as arm.  */
1941#ifndef REG_OK_STRICT
1942
1943#define ARM_REG_OK_FOR_BASE_P(X)		\
1944  (REGNO (X) <= LAST_ARM_REGNUM			\
1945   || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1946   || REGNO (X) == FRAME_POINTER_REGNUM		\
1947   || REGNO (X) == ARG_POINTER_REGNUM)
1948
1949#define ARM_REG_OK_FOR_INDEX_P(X)		\
1950  ((REGNO (X) <= LAST_ARM_REGNUM		\
1951    && REGNO (X) != STACK_POINTER_REGNUM)	\
1952   || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1953   || REGNO (X) == FRAME_POINTER_REGNUM		\
1954   || REGNO (X) == ARG_POINTER_REGNUM)
1955
1956#define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1957  (REGNO (X) <= LAST_LO_REGNUM			\
1958   || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1959   || (GET_MODE_SIZE (MODE) >= 4		\
1960       && (REGNO (X) == STACK_POINTER_REGNUM	\
1961	   || (X) == hard_frame_pointer_rtx	\
1962	   || (X) == arg_pointer_rtx)))
1963
1964#define REG_STRICT_P 0
1965
1966#else /* REG_OK_STRICT */
1967
1968#define ARM_REG_OK_FOR_BASE_P(X) 		\
1969  ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1970
1971#define ARM_REG_OK_FOR_INDEX_P(X) 		\
1972  ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1973
1974#define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1975  THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1976
1977#define REG_STRICT_P 1
1978
1979#endif /* REG_OK_STRICT */
1980
1981/* Now define some helpers in terms of the above.  */
1982
1983#define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
1984  (TARGET_THUMB1				\
1985   ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
1986   : ARM_REG_OK_FOR_BASE_P (X))
1987
1988/* For 16-bit Thumb, a valid index register is anything that can be used in
1989   a byte load instruction.  */
1990#define THUMB1_REG_OK_FOR_INDEX_P(X) \
1991  THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1992
1993/* Nonzero if X is a hard reg that can be used as an index
1994   or if it is a pseudo reg.  On the Thumb, the stack pointer
1995   is not suitable.  */
1996#define REG_OK_FOR_INDEX_P(X)			\
1997  (TARGET_THUMB1				\
1998   ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
1999   : ARM_REG_OK_FOR_INDEX_P (X))
2000
2001/* Nonzero if X can be the base register in a reg+reg addressing mode.
2002   For Thumb, we can not use SP + reg, so reject SP.  */
2003#define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
2004  REG_OK_FOR_INDEX_P (X)
2005
2006#define ARM_BASE_REGISTER_RTX_P(X)  \
2007  (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
2008
2009#define ARM_INDEX_REGISTER_RTX_P(X)  \
2010  (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
2011
2012/* Specify the machine mode that this machine uses
2013   for the index in the tablejump instruction.  */
2014#define CASE_VECTOR_MODE Pmode
2015
2016#define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2				\
2017				 || (TARGET_THUMB1			\
2018				     && (optimize_size || flag_pic)))
2019
2020#define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
2021  (TARGET_THUMB1							\
2022   ? (min >= 0 && max < 512						\
2023      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
2024      : min >= -256 && max < 256					\
2025      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
2026      : min >= 0 && max < 8192						\
2027      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
2028      : min >= -4096 && max < 4096					\
2029      ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
2030      : SImode)								\
2031   : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
2032      : (max >= 0x200) ? HImode						\
2033      : QImode))
2034
2035/* signed 'char' is most compatible, but RISC OS wants it unsigned.
2036   unsigned is probably best, but may break some code.  */
2037#ifndef DEFAULT_SIGNED_CHAR
2038#define DEFAULT_SIGNED_CHAR  0
2039#endif
2040
2041/* Max number of bytes we can move from memory to memory
2042   in one reasonably fast instruction.  */
2043#define MOVE_MAX 4
2044
2045#undef  MOVE_RATIO
2046#define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2047
2048/* Define if operations between registers always perform the operation
2049   on the full register even if a narrower mode is specified.  */
2050#define WORD_REGISTER_OPERATIONS
2051
2052/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2053   will either zero-extend or sign-extend.  The value of this macro should
2054   be the code that says which one of the two operations is implicitly
2055   done, UNKNOWN if none.  */
2056#define LOAD_EXTEND_OP(MODE)						\
2057  (TARGET_THUMB ? ZERO_EXTEND :						\
2058   ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2059    : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2060
2061/* Nonzero if access to memory by bytes is slow and undesirable.  */
2062#define SLOW_BYTE_ACCESS 0
2063
2064#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2065
2066/* Immediate shift counts are truncated by the output routines (or was it
2067   the assembler?).  Shift counts in a register are truncated by ARM.  Note
2068   that the native compiler puts too large (> 32) immediate shift counts
2069   into a register and shifts by the register, letting the ARM decide what
2070   to do instead of doing that itself.  */
2071/* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2072   code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2073   On the arm, Y in a register is used modulo 256 for the shift. Only for
2074   rotates is modulo 32 used.  */
2075/* #define SHIFT_COUNT_TRUNCATED 1 */
2076
2077/* All integers have the same format so truncation is easy.  */
2078#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC)  1
2079
2080/* Calling from registers is a massive pain.  */
2081#define NO_FUNCTION_CSE 1
2082
2083/* The machine modes of pointers and functions */
2084#define Pmode  SImode
2085#define FUNCTION_MODE  Pmode
2086
2087#define ARM_FRAME_RTX(X)					\
2088  (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2089   || (X) == arg_pointer_rtx)
2090
2091/* Try to generate sequences that don't involve branches, we can then use
2092   conditional instructions.  */
2093#define BRANCH_COST(speed_p, predictable_p) \
2094  (current_tune->branch_cost (speed_p, predictable_p))
2095
2096/* False if short circuit operation is preferred.  */
2097#define LOGICAL_OP_NON_SHORT_CIRCUIT				\
2098  ((optimize_size)						\
2099   ? (TARGET_THUMB ? false : true)				\
2100   : (current_tune->logical_op_non_short_circuit[TARGET_ARM]))
2101
2102
2103/* Position Independent Code.  */
2104/* We decide which register to use based on the compilation options and
2105   the assembler in use; this is more general than the APCS restriction of
2106   using sb (r9) all the time.  */
2107extern unsigned arm_pic_register;
2108
2109/* The register number of the register used to address a table of static
2110   data addresses in memory.  */
2111#define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2112
2113/* We can't directly access anything that contains a symbol,
2114   nor can we indirect via the constant pool.  One exception is
2115   UNSPEC_TLS, which is always PIC.  */
2116#define LEGITIMATE_PIC_OPERAND_P(X)					\
2117	(!(symbol_mentioned_p (X)					\
2118	   || label_mentioned_p (X)					\
2119	   || (GET_CODE (X) == SYMBOL_REF				\
2120	       && CONSTANT_POOL_ADDRESS_P (X)				\
2121	       && (symbol_mentioned_p (get_pool_constant (X))		\
2122		   || label_mentioned_p (get_pool_constant (X)))))	\
2123	 || tls_mentioned_p (X))
2124
2125/* We need to know when we are making a constant pool; this determines
2126   whether data needs to be in the GOT or can be referenced via a GOT
2127   offset.  */
2128extern int making_const_table;
2129
2130/* Handle pragmas for compatibility with Intel's compilers.  */
2131/* Also abuse this to register additional C specific EABI attributes.  */
2132#define REGISTER_TARGET_PRAGMAS() do {					\
2133  c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2134  c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2135  c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2136  arm_lang_object_attributes_init(); \
2137} while (0)
2138
2139/* Condition code information.  */
2140/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2141   return the mode to be used for the comparison.  */
2142
2143#define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2144
2145#define REVERSIBLE_CC_MODE(MODE) 1
2146
2147#define REVERSE_CONDITION(CODE,MODE) \
2148  (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2149   ? reverse_condition_maybe_unordered (code) \
2150   : reverse_condition (code))
2151
2152#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2153  ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2154#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2155  ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2156
2157#define CC_STATUS_INIT \
2158  do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2159
2160#undef ASM_APP_ON
2161#define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2162		    "\t.syntax divided\n")
2163
2164#undef  ASM_APP_OFF
2165#define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax divided\n" : \
2166		     "\t.thumb\n\t.syntax unified\n")
2167
2168/* Output a push or a pop instruction (only used when profiling).
2169   We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2170   that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2171   that r7 isn't used by the function profiler, so we can use it as a
2172   scratch reg.  WARNING: This isn't safe in the general case!  It may be
2173   sensitive to future changes in final.c:profile_function.  */
2174#define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2175  do							\
2176    {							\
2177      if (TARGET_ARM)					\
2178	asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n",	\
2179		     STACK_POINTER_REGNUM, REGNO);	\
2180      else if (TARGET_THUMB1				\
2181	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2182	{						\
2183	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2184	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2185	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2186	}						\
2187      else						\
2188	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2189    } while (0)
2190
2191
2192/* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2193#define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2194  do							\
2195    {							\
2196      if (TARGET_ARM)					\
2197	asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n",	\
2198		     STACK_POINTER_REGNUM, REGNO);	\
2199      else if (TARGET_THUMB1				\
2200	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2201	{						\
2202	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2203	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2204	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2205	}						\
2206      else						\
2207	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2208    } while (0)
2209
2210#define ADDR_VEC_ALIGN(JUMPTABLE)	\
2211  ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2212
2213/* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2214   default alignment from elfos.h.  */
2215#undef ASM_OUTPUT_BEFORE_CASE_LABEL
2216#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2217
2218#define LABEL_ALIGN_AFTER_BARRIER(LABEL)                \
2219   (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2220   ? 1 : 0)
2221
2222#define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2223  do							\
2224    {							\
2225      if (TARGET_THUMB) 				\
2226        {						\
2227          if (is_called_in_ARM_mode (DECL)		\
2228	      || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY	\
2229		  && cfun->is_thunk))	\
2230            fprintf (STREAM, "\t.code 32\n") ;		\
2231          else if (TARGET_THUMB1)			\
2232           fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ;	\
2233          else						\
2234           fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ;	\
2235        }						\
2236      if (TARGET_POKE_FUNCTION_NAME)			\
2237        arm_poke_function_name (STREAM, (const char *) NAME);	\
2238    }							\
2239  while (0)
2240
2241/* For aliases of functions we use .thumb_set instead.  */
2242#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2243  do						   		\
2244    {								\
2245      const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2246      const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2247								\
2248      if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2249	{							\
2250	  fprintf (FILE, "\t.thumb_set ");			\
2251	  assemble_name (FILE, LABEL1);			   	\
2252	  fprintf (FILE, ",");			   		\
2253	  assemble_name (FILE, LABEL2);		   		\
2254	  fprintf (FILE, "\n");					\
2255	}							\
2256      else							\
2257	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2258    }								\
2259  while (0)
2260
2261#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2262/* To support -falign-* switches we need to use .p2align so
2263   that alignment directives in code sections will be padded
2264   with no-op instructions, rather than zeroes.  */
2265#define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2266  if ((LOG) != 0)						\
2267    {								\
2268      if ((MAX_SKIP) == 0)					\
2269        fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2270      else							\
2271        fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2272                 (int) (LOG), (int) (MAX_SKIP));		\
2273    }
2274#endif
2275
2276/* Add two bytes to the length of conditionally executed Thumb-2
2277   instructions for the IT instruction.  */
2278#define ADJUST_INSN_LENGTH(insn, length) \
2279  if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2280    length += 2;
2281
2282/* Only perform branch elimination (by making instructions conditional) if
2283   we're optimizing.  For Thumb-2 check if any IT instructions need
2284   outputting.  */
2285#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2286  if (TARGET_ARM && optimize)				\
2287    arm_final_prescan_insn (INSN);			\
2288  else if (TARGET_THUMB2)				\
2289    thumb2_final_prescan_insn (INSN);			\
2290  else if (TARGET_THUMB1)				\
2291    thumb1_final_prescan_insn (INSN)
2292
2293#define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2294  (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2295   : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2296      ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2297       ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2298	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2299       : 0))))
2300
2301/* A C expression whose value is RTL representing the value of the return
2302   address for the frame COUNT steps up from the current frame.  */
2303
2304#define RETURN_ADDR_RTX(COUNT, FRAME) \
2305  arm_return_addr (COUNT, FRAME)
2306
2307/* Mask of the bits in the PC that contain the real return address
2308   when running in 26-bit mode.  */
2309#define RETURN_ADDR_MASK26 (0x03fffffc)
2310
2311/* Pick up the return address upon entry to a procedure. Used for
2312   dwarf2 unwind information.  This also enables the table driven
2313   mechanism.  */
2314#define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2315#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2316
2317/* Used to mask out junk bits from the return address, such as
2318   processor state, interrupt status, condition codes and the like.  */
2319#define MASK_RETURN_ADDR \
2320  /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2321     in 26 bit mode, the condition codes must be masked out of the	\
2322     return address.  This does not apply to ARM6 and later processors	\
2323     when running in 32 bit mode.  */					\
2324  ((arm_arch4 || TARGET_THUMB)						\
2325   ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2326   : arm_gen_return_addr_mask ())
2327
2328
2329/* Do not emit .note.GNU-stack by default.  */
2330#ifndef NEED_INDICATE_EXEC_STACK
2331#define NEED_INDICATE_EXEC_STACK	0
2332#endif
2333
2334#define TARGET_ARM_ARCH	\
2335  (arm_base_arch)	\
2336
2337#define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2338#define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2339
2340/* The highest Thumb instruction set version supported by the chip.  */
2341#define TARGET_ARM_ARCH_ISA_THUMB 		\
2342  (arm_arch_thumb2 ? 2				\
2343	           : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2344
2345/* Expands to an upper-case char of the target's architectural
2346   profile.  */
2347#define TARGET_ARM_ARCH_PROFILE				\
2348  (!arm_arch_notm					\
2349    ? 'M'						\
2350    : (arm_arch7					\
2351      ? (strlen (arm_arch_name) >=3			\
2352	? (arm_arch_name[strlen (arm_arch_name) - 3])	\
2353      	: 0)						\
2354      : 0))
2355
2356/* Bit-field indicating what size LDREX/STREX loads/stores are available.
2357   Bit 0 for bytes, up to bit 3 for double-words.  */
2358#define TARGET_ARM_FEATURE_LDREX				\
2359  ((TARGET_HAVE_LDREX ? 4 : 0)					\
2360   | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2361   | (TARGET_HAVE_LDREXD ? 8 : 0))
2362
2363/* Set as a bit mask indicating the available widths of hardware floating
2364   point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2365   32-bit support, bit 3 indicates 64-bit support.  */
2366#define TARGET_ARM_FP			\
2367  (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4		\
2368			: (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2369		      : 0)
2370
2371
2372/* Set as a bit mask indicating the available widths of floating point
2373   types for hardware NEON floating point.  This is the same as
2374   TARGET_ARM_FP without the 64-bit bit set.  */
2375#define TARGET_NEON_FP				 \
2376  (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2377	       : 0)
2378
2379/* The maximum number of parallel loads or stores we support in an ldm/stm
2380   instruction.  */
2381#define MAX_LDM_STM_OPS 4
2382
2383#define BIG_LITTLE_SPEC \
2384   " %{mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})}"
2385
2386extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2387#define BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2388  { "rewrite_mcpu", arm_rewrite_mcpu },
2389
2390#define ASM_CPU_SPEC \
2391   " %{mcpu=generic-*:-march=%*;"				\
2392   "   :%{march=*:-march=%*}}"					\
2393   BIG_LITTLE_SPEC
2394
2395/* -mcpu=native handling only makes sense with compiler running on
2396   an ARM chip.  */
2397#if defined(__arm__)
2398extern const char *host_detect_local_cpu (int argc, const char **argv);
2399# define EXTRA_SPEC_FUNCTIONS						\
2400  { "local_cpu_detect", host_detect_local_cpu },			\
2401  BIG_LITTLE_CPU_SPEC_FUNCTIONS
2402
2403# define MCPU_MTUNE_NATIVE_SPECS					\
2404   " %{march=native:%<march=native %:local_cpu_detect(arch)}"		\
2405   " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"		\
2406   " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2407#else
2408# define MCPU_MTUNE_NATIVE_SPECS ""
2409# define EXTRA_SPEC_FUNCTIONS BIG_LITTLE_CPU_SPEC_FUNCTIONS
2410#endif
2411
2412#define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2413#define TARGET_SUPPORTS_WIDE_INT 1
2414#endif /* ! GCC_ARM_H */
2415