1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                             E X P _ A G G R                              --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2015, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;    use Atree;
27with Checks;   use Checks;
28with Debug;    use Debug;
29with Einfo;    use Einfo;
30with Elists;   use Elists;
31with Errout;   use Errout;
32with Expander; use Expander;
33with Exp_Util; use Exp_Util;
34with Exp_Ch3;  use Exp_Ch3;
35with Exp_Ch6;  use Exp_Ch6;
36with Exp_Ch7;  use Exp_Ch7;
37with Exp_Ch9;  use Exp_Ch9;
38with Exp_Disp; use Exp_Disp;
39with Exp_Tss;  use Exp_Tss;
40with Fname;    use Fname;
41with Freeze;   use Freeze;
42with Itypes;   use Itypes;
43with Lib;      use Lib;
44with Namet;    use Namet;
45with Nmake;    use Nmake;
46with Nlists;   use Nlists;
47with Opt;      use Opt;
48with Restrict; use Restrict;
49with Rident;   use Rident;
50with Rtsfind;  use Rtsfind;
51with Ttypes;   use Ttypes;
52with Sem;      use Sem;
53with Sem_Aggr; use Sem_Aggr;
54with Sem_Aux;  use Sem_Aux;
55with Sem_Ch3;  use Sem_Ch3;
56with Sem_Eval; use Sem_Eval;
57with Sem_Res;  use Sem_Res;
58with Sem_Util; use Sem_Util;
59with Sinfo;    use Sinfo;
60with Snames;   use Snames;
61with Stand;    use Stand;
62with Stringt;  use Stringt;
63with Targparm; use Targparm;
64with Tbuild;   use Tbuild;
65with Uintp;    use Uintp;
66
67package body Exp_Aggr is
68
69   type Case_Bounds is record
70     Choice_Lo   : Node_Id;
71     Choice_Hi   : Node_Id;
72     Choice_Node : Node_Id;
73   end record;
74
75   type Case_Table_Type is array (Nat range <>) of Case_Bounds;
76   --  Table type used by Check_Case_Choices procedure
77
78   procedure Collect_Initialization_Statements
79     (Obj        : Entity_Id;
80      N          : Node_Id;
81      Node_After : Node_Id);
82   --  If Obj is not frozen, collect actions inserted after N until, but not
83   --  including, Node_After, for initialization of Obj, and move them to an
84   --  expression with actions, which becomes the Initialization_Statements for
85   --  Obj.
86
87   function Has_Default_Init_Comps (N : Node_Id) return Boolean;
88   --  N is an aggregate (record or array). Checks the presence of default
89   --  initialization (<>) in any component (Ada 2005: AI-287).
90
91   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
92   --  Returns true if N is an aggregate used to initialize the components
93   --  of a statically allocated dispatch table.
94
95   function Must_Slide
96     (Obj_Type : Entity_Id;
97      Typ      : Entity_Id) return Boolean;
98   --  A static array aggregate in an object declaration can in most cases be
99   --  expanded in place. The one exception is when the aggregate is given
100   --  with component associations that specify different bounds from those of
101   --  the type definition in the object declaration. In this pathological
102   --  case the aggregate must slide, and we must introduce an intermediate
103   --  temporary to hold it.
104   --
105   --  The same holds in an assignment to one-dimensional array of arrays,
106   --  when a component may be given with bounds that differ from those of the
107   --  component type.
108
109   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
110   --  Sort the Case Table using the Lower Bound of each Choice as the key.
111   --  A simple insertion sort is used since the number of choices in a case
112   --  statement of variant part will usually be small and probably in near
113   --  sorted order.
114
115   ------------------------------------------------------
116   -- Local subprograms for Record Aggregate Expansion --
117   ------------------------------------------------------
118
119   function Build_Record_Aggr_Code
120     (N   : Node_Id;
121      Typ : Entity_Id;
122      Lhs : Node_Id) return List_Id;
123   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
124   --  aggregate. Target is an expression containing the location on which the
125   --  component by component assignments will take place. Returns the list of
126   --  assignments plus all other adjustments needed for tagged and controlled
127   --  types.
128
129   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
130   --  N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
131   --  aggregate (which can only be a record type, this procedure is only used
132   --  for record types). Transform the given aggregate into a sequence of
133   --  assignments performed component by component.
134
135   procedure Expand_Record_Aggregate
136     (N           : Node_Id;
137      Orig_Tag    : Node_Id := Empty;
138      Parent_Expr : Node_Id := Empty);
139   --  This is the top level procedure for record aggregate expansion.
140   --  Expansion for record aggregates needs expand aggregates for tagged
141   --  record types. Specifically Expand_Record_Aggregate adds the Tag
142   --  field in front of the Component_Association list that was created
143   --  during resolution by Resolve_Record_Aggregate.
144   --
145   --    N is the record aggregate node.
146   --    Orig_Tag is the value of the Tag that has to be provided for this
147   --      specific aggregate. It carries the tag corresponding to the type
148   --      of the outermost aggregate during the recursive expansion
149   --    Parent_Expr is the ancestor part of the original extension
150   --      aggregate
151
152   function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
153   --  Return true if one of the components is of a discriminated type with
154   --  defaults. An aggregate for a type with mutable components must be
155   --  expanded into individual assignments.
156
157   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
158   --  If the type of the aggregate is a type extension with renamed discrimi-
159   --  nants, we must initialize the hidden discriminants of the parent.
160   --  Otherwise, the target object must not be initialized. The discriminants
161   --  are initialized by calling the initialization procedure for the type.
162   --  This is incorrect if the initialization of other components has any
163   --  side effects. We restrict this call to the case where the parent type
164   --  has a variant part, because this is the only case where the hidden
165   --  discriminants are accessed, namely when calling discriminant checking
166   --  functions of the parent type, and when applying a stream attribute to
167   --  an object of the derived type.
168
169   -----------------------------------------------------
170   -- Local Subprograms for Array Aggregate Expansion --
171   -----------------------------------------------------
172
173   function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
174   --  Very large static aggregates present problems to the back-end, and are
175   --  transformed into assignments and loops. This function verifies that the
176   --  total number of components of an aggregate is acceptable for rewriting
177   --  into a purely positional static form. Aggr_Size_OK must be called before
178   --  calling Flatten.
179   --
180   --  This function also detects and warns about one-component aggregates that
181   --  appear in a non-static context. Even if the component value is static,
182   --  such an aggregate must be expanded into an assignment.
183
184   function Backend_Processing_Possible (N : Node_Id) return Boolean;
185   --  This function checks if array aggregate N can be processed directly
186   --  by the backend. If this is the case, True is returned.
187
188   function Build_Array_Aggr_Code
189     (N           : Node_Id;
190      Ctype       : Entity_Id;
191      Index       : Node_Id;
192      Into        : Node_Id;
193      Scalar_Comp : Boolean;
194      Indexes     : List_Id := No_List) return List_Id;
195   --  This recursive routine returns a list of statements containing the
196   --  loops and assignments that are needed for the expansion of the array
197   --  aggregate N.
198   --
199   --    N is the (sub-)aggregate node to be expanded into code. This node has
200   --    been fully analyzed, and its Etype is properly set.
201   --
202   --    Index is the index node corresponding to the array sub-aggregate N
203   --
204   --    Into is the target expression into which we are copying the aggregate.
205   --    Note that this node may not have been analyzed yet, and so the Etype
206   --    field may not be set.
207   --
208   --    Scalar_Comp is True if the component type of the aggregate is scalar
209   --
210   --    Indexes is the current list of expressions used to index the object we
211   --    are writing into.
212
213   procedure Convert_Array_Aggr_In_Allocator
214     (Decl   : Node_Id;
215      Aggr   : Node_Id;
216      Target : Node_Id);
217   --  If the aggregate appears within an allocator and can be expanded in
218   --  place, this routine generates the individual assignments to components
219   --  of the designated object. This is an optimization over the general
220   --  case, where a temporary is first created on the stack and then used to
221   --  construct the allocated object on the heap.
222
223   procedure Convert_To_Positional
224     (N                    : Node_Id;
225      Max_Others_Replicate : Nat     := 5;
226      Handle_Bit_Packed    : Boolean := False);
227   --  If possible, convert named notation to positional notation. This
228   --  conversion is possible only in some static cases. If the conversion is
229   --  possible, then N is rewritten with the analyzed converted aggregate.
230   --  The parameter Max_Others_Replicate controls the maximum number of
231   --  values corresponding to an others choice that will be converted to
232   --  positional notation (the default of 5 is the normal limit, and reflects
233   --  the fact that normally the loop is better than a lot of separate
234   --  assignments). Note that this limit gets overridden in any case if
235   --  either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
236   --  set. The parameter Handle_Bit_Packed is usually set False (since we do
237   --  not expect the back end to handle bit packed arrays, so the normal case
238   --  of conversion is pointless), but in the special case of a call from
239   --  Packed_Array_Aggregate_Handled, we set this parameter to True, since
240   --  these are cases we handle in there.
241
242   --  It would seem useful to have a higher default for Max_Others_Replicate,
243   --  but aggregates in the compiler make this impossible: the compiler
244   --  bootstrap fails if Max_Others_Replicate is greater than 25. This
245   --  is unexpected ???
246
247   procedure Expand_Array_Aggregate (N : Node_Id);
248   --  This is the top-level routine to perform array aggregate expansion.
249   --  N is the N_Aggregate node to be expanded.
250
251   function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
252   --  For two-dimensional packed aggregates with constant bounds and constant
253   --  components, it is preferable to pack the inner aggregates because the
254   --  whole matrix can then be presented to the back-end as a one-dimensional
255   --  list of literals. This is much more efficient than expanding into single
256   --  component assignments. This function determines if the type Typ is for
257   --  an array that is suitable for this optimization: it returns True if Typ
258   --  is a two dimensional bit packed array with component size 1, 2, or 4.
259
260   function Late_Expansion
261     (N      : Node_Id;
262      Typ    : Entity_Id;
263      Target : Node_Id) return List_Id;
264   --  This routine implements top-down expansion of nested aggregates. In
265   --  doing so, it avoids the generation of temporaries at each level. N is
266   --  a nested record or array aggregate with the Expansion_Delayed flag.
267   --  Typ is the expected type of the aggregate. Target is a (duplicatable)
268   --  expression that will hold the result of the aggregate expansion.
269
270   function Make_OK_Assignment_Statement
271     (Sloc       : Source_Ptr;
272      Name       : Node_Id;
273      Expression : Node_Id) return Node_Id;
274   --  This is like Make_Assignment_Statement, except that Assignment_OK
275   --  is set in the left operand. All assignments built by this unit use
276   --  this routine. This is needed to deal with assignments to initialized
277   --  constants that are done in place.
278
279   function Number_Of_Choices (N : Node_Id) return Nat;
280   --  Returns the number of discrete choices (not including the others choice
281   --  if present) contained in (sub-)aggregate N.
282
283   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
284   --  Given an array aggregate, this function handles the case of a packed
285   --  array aggregate with all constant values, where the aggregate can be
286   --  evaluated at compile time. If this is possible, then N is rewritten
287   --  to be its proper compile time value with all the components properly
288   --  assembled. The expression is analyzed and resolved and True is returned.
289   --  If this transformation is not possible, N is unchanged and False is
290   --  returned.
291
292   function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
293   --  If the type of the aggregate is a two-dimensional bit_packed array
294   --  it may be transformed into an array of bytes with constant values,
295   --  and presented to the back-end as a static value. The function returns
296   --  false if this transformation cannot be performed. THis is similar to,
297   --  and reuses part of the machinery in Packed_Array_Aggregate_Handled.
298
299   ------------------
300   -- Aggr_Size_OK --
301   ------------------
302
303   function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
304      Lo   : Node_Id;
305      Hi   : Node_Id;
306      Indx : Node_Id;
307      Siz  : Int;
308      Lov  : Uint;
309      Hiv  : Uint;
310
311      Max_Aggr_Size : Nat;
312      --  Determines the maximum size of an array aggregate produced by
313      --  converting named to positional notation (e.g. from others clauses).
314      --  This avoids running away with attempts to convert huge aggregates,
315      --  which hit memory limits in the backend.
316
317      function Component_Count (T : Entity_Id) return Int;
318      --  The limit is applied to the total number of components that the
319      --  aggregate will have, which is the number of static expressions
320      --  that will appear in the flattened array. This requires a recursive
321      --  computation of the number of scalar components of the structure.
322
323      ---------------------
324      -- Component_Count --
325      ---------------------
326
327      function Component_Count (T : Entity_Id) return Int is
328         Res  : Int := 0;
329         Comp : Entity_Id;
330
331      begin
332         if Is_Scalar_Type (T) then
333            return 1;
334
335         elsif Is_Record_Type (T) then
336            Comp := First_Component (T);
337            while Present (Comp) loop
338               Res := Res + Component_Count (Etype (Comp));
339               Next_Component (Comp);
340            end loop;
341
342            return Res;
343
344         elsif Is_Array_Type (T) then
345            declare
346               Lo : constant Node_Id :=
347                 Type_Low_Bound (Etype (First_Index (T)));
348               Hi : constant Node_Id :=
349                 Type_High_Bound (Etype (First_Index (T)));
350
351               Siz : constant Int := Component_Count (Component_Type (T));
352
353            begin
354               if not Compile_Time_Known_Value (Lo)
355                 or else not Compile_Time_Known_Value (Hi)
356               then
357                  return 0;
358               else
359                  return
360                    Siz * UI_To_Int (Expr_Value (Hi) - Expr_Value (Lo) + 1);
361               end if;
362            end;
363
364         else
365            --  Can only be a null for an access type
366
367            return 1;
368         end if;
369      end Component_Count;
370
371   --  Start of processing for Aggr_Size_OK
372
373   begin
374      --  The normal aggregate limit is 50000, but we increase this limit to
375      --  2**24 (about 16 million) if Restrictions (No_Elaboration_Code) or
376      --  Restrictions (No_Implicit_Loops) is specified, since in either case
377      --  we are at risk of declaring the program illegal because of this
378      --  limit. We also increase the limit when Static_Elaboration_Desired,
379      --  given that this means that objects are intended to be placed in data
380      --  memory.
381
382      --  We also increase the limit if the aggregate is for a packed two-
383      --  dimensional array, because if components are static it is much more
384      --  efficient to construct a one-dimensional equivalent array with static
385      --  components.
386
387      --  Conversely, we decrease the maximum size if none of the above
388      --  requirements apply, and if the aggregate has a single component
389      --  association, which will be more efficient if implemented with a loop.
390
391      --  Finally, we use a small limit in CodePeer mode where we favor loops
392      --  instead of thousands of single assignments (from large aggregates).
393
394      Max_Aggr_Size := 50000;
395
396      if CodePeer_Mode then
397         Max_Aggr_Size := 100;
398
399      elsif Restriction_Active (No_Elaboration_Code)
400        or else Restriction_Active (No_Implicit_Loops)
401        or else Is_Two_Dim_Packed_Array (Typ)
402        or else (Ekind (Current_Scope) = E_Package
403                   and then Static_Elaboration_Desired (Current_Scope))
404      then
405         Max_Aggr_Size := 2 ** 24;
406
407      elsif No (Expressions (N))
408        and then No (Next (First (Component_Associations (N))))
409      then
410         Max_Aggr_Size := 5000;
411      end if;
412
413      Siz  := Component_Count (Component_Type (Typ));
414
415      Indx := First_Index (Typ);
416      while Present (Indx) loop
417         Lo  := Type_Low_Bound (Etype (Indx));
418         Hi  := Type_High_Bound (Etype (Indx));
419
420         --  Bounds need to be known at compile time
421
422         if not Compile_Time_Known_Value (Lo)
423           or else not Compile_Time_Known_Value (Hi)
424         then
425            return False;
426         end if;
427
428         Lov := Expr_Value (Lo);
429         Hiv := Expr_Value (Hi);
430
431         --  A flat array is always safe
432
433         if Hiv < Lov then
434            return True;
435         end if;
436
437         --  One-component aggregates are suspicious, and if the context type
438         --  is an object declaration with non-static bounds it will trip gcc;
439         --  such an aggregate must be expanded into a single assignment.
440
441         if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
442            declare
443               Index_Type : constant Entity_Id :=
444                 Etype
445                   (First_Index (Etype (Defining_Identifier (Parent (N)))));
446               Indx       : Node_Id;
447
448            begin
449               if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
450                 or else not Compile_Time_Known_Value
451                               (Type_High_Bound (Index_Type))
452               then
453                  if Present (Component_Associations (N)) then
454                     Indx :=
455                       First (Choices (First (Component_Associations (N))));
456
457                     if Is_Entity_Name (Indx)
458                       and then not Is_Type (Entity (Indx))
459                     then
460                        Error_Msg_N
461                          ("single component aggregate in "
462                           &  "non-static context??", Indx);
463                        Error_Msg_N ("\maybe subtype name was meant??", Indx);
464                     end if;
465                  end if;
466
467                  return False;
468               end if;
469            end;
470         end if;
471
472         declare
473            Rng : constant Uint := Hiv - Lov + 1;
474
475         begin
476            --  Check if size is too large
477
478            if not UI_Is_In_Int_Range (Rng) then
479               return False;
480            end if;
481
482            Siz := Siz * UI_To_Int (Rng);
483         end;
484
485         if Siz <= 0
486           or else Siz > Max_Aggr_Size
487         then
488            return False;
489         end if;
490
491         --  Bounds must be in integer range, for later array construction
492
493         if not UI_Is_In_Int_Range (Lov)
494             or else
495            not UI_Is_In_Int_Range (Hiv)
496         then
497            return False;
498         end if;
499
500         Next_Index (Indx);
501      end loop;
502
503      return True;
504   end Aggr_Size_OK;
505
506   ---------------------------------
507   -- Backend_Processing_Possible --
508   ---------------------------------
509
510   --  Backend processing by Gigi/gcc is possible only if all the following
511   --  conditions are met:
512
513   --    1. N is fully positional
514
515   --    2. N is not a bit-packed array aggregate;
516
517   --    3. The size of N's array type must be known at compile time. Note
518   --       that this implies that the component size is also known
519
520   --    4. The array type of N does not follow the Fortran layout convention
521   --       or if it does it must be 1 dimensional.
522
523   --    5. The array component type may not be tagged (which could necessitate
524   --       reassignment of proper tags).
525
526   --    6. The array component type must not have unaligned bit components
527
528   --    7. None of the components of the aggregate may be bit unaligned
529   --       components.
530
531   --    8. There cannot be delayed components, since we do not know enough
532   --       at this stage to know if back end processing is possible.
533
534   --    9. There cannot be any discriminated record components, since the
535   --       back end cannot handle this complex case.
536
537   --   10. No controlled actions need to be generated for components
538
539   --   11. For a VM back end, the array should have no aliased components
540
541   function Backend_Processing_Possible (N : Node_Id) return Boolean is
542      Typ : constant Entity_Id := Etype (N);
543      --  Typ is the correct constrained array subtype of the aggregate
544
545      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
546      --  This routine checks components of aggregate N, enforcing checks
547      --  1, 7, 8, and 9. In the multi-dimensional case, these checks are
548      --  performed on subaggregates. The Index value is the current index
549      --  being checked in the multi-dimensional case.
550
551      ---------------------
552      -- Component_Check --
553      ---------------------
554
555      function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
556         Expr : Node_Id;
557
558      begin
559         --  Checks 1: (no component associations)
560
561         if Present (Component_Associations (N)) then
562            return False;
563         end if;
564
565         --  Checks on components
566
567         --  Recurse to check subaggregates, which may appear in qualified
568         --  expressions. If delayed, the front-end will have to expand.
569         --  If the component is a discriminated record, treat as non-static,
570         --  as the back-end cannot handle this properly.
571
572         Expr := First (Expressions (N));
573         while Present (Expr) loop
574
575            --  Checks 8: (no delayed components)
576
577            if Is_Delayed_Aggregate (Expr) then
578               return False;
579            end if;
580
581            --  Checks 9: (no discriminated records)
582
583            if Present (Etype (Expr))
584              and then Is_Record_Type (Etype (Expr))
585              and then Has_Discriminants (Etype (Expr))
586            then
587               return False;
588            end if;
589
590            --  Checks 7. Component must not be bit aligned component
591
592            if Possible_Bit_Aligned_Component (Expr) then
593               return False;
594            end if;
595
596            --  Recursion to following indexes for multiple dimension case
597
598            if Present (Next_Index (Index))
599              and then not Component_Check (Expr, Next_Index (Index))
600            then
601               return False;
602            end if;
603
604            --  All checks for that component finished, on to next
605
606            Next (Expr);
607         end loop;
608
609         return True;
610      end Component_Check;
611
612   --  Start of processing for Backend_Processing_Possible
613
614   begin
615      --  Checks 2 (array not bit packed) and 10 (no controlled actions)
616
617      if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
618         return False;
619      end if;
620
621      --  If component is limited, aggregate must be expanded because each
622      --  component assignment must be built in place.
623
624      if Is_Limited_View (Component_Type (Typ)) then
625         return False;
626      end if;
627
628      --  Checks 4 (array must not be multi-dimensional Fortran case)
629
630      if Convention (Typ) = Convention_Fortran
631        and then Number_Dimensions (Typ) > 1
632      then
633         return False;
634      end if;
635
636      --  Checks 3 (size of array must be known at compile time)
637
638      if not Size_Known_At_Compile_Time (Typ) then
639         return False;
640      end if;
641
642      --  Checks on components
643
644      if not Component_Check (N, First_Index (Typ)) then
645         return False;
646      end if;
647
648      --  Checks 5 (if the component type is tagged, then we may need to do
649      --  tag adjustments. Perhaps this should be refined to check for any
650      --  component associations that actually need tag adjustment, similar
651      --  to the test in Component_Not_OK_For_Backend for record aggregates
652      --  with tagged components, but not clear whether it's worthwhile ???;
653      --  in the case of the JVM, object tags are handled implicitly)
654
655      if Is_Tagged_Type (Component_Type (Typ))
656        and then Tagged_Type_Expansion
657      then
658         return False;
659      end if;
660
661      --  Checks 6 (component type must not have bit aligned components)
662
663      if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
664         return False;
665      end if;
666
667      --  Checks 11: Array aggregates with aliased components are currently
668      --  not well supported by the VM backend; disable temporarily this
669      --  backend processing until it is definitely supported.
670
671      if VM_Target /= No_VM
672        and then Has_Aliased_Components (Base_Type (Typ))
673      then
674         return False;
675      end if;
676
677      --  Backend processing is possible
678
679      Set_Size_Known_At_Compile_Time (Etype (N), True);
680      return True;
681   end Backend_Processing_Possible;
682
683   ---------------------------
684   -- Build_Array_Aggr_Code --
685   ---------------------------
686
687   --  The code that we generate from a one dimensional aggregate is
688
689   --  1. If the sub-aggregate contains discrete choices we
690
691   --     (a) Sort the discrete choices
692
693   --     (b) Otherwise for each discrete choice that specifies a range we
694   --         emit a loop. If a range specifies a maximum of three values, or
695   --         we are dealing with an expression we emit a sequence of
696   --         assignments instead of a loop.
697
698   --     (c) Generate the remaining loops to cover the others choice if any
699
700   --  2. If the aggregate contains positional elements we
701
702   --     (a) translate the positional elements in a series of assignments
703
704   --     (b) Generate a final loop to cover the others choice if any.
705   --         Note that this final loop has to be a while loop since the case
706
707   --             L : Integer := Integer'Last;
708   --             H : Integer := Integer'Last;
709   --             A : array (L .. H) := (1, others =>0);
710
711   --         cannot be handled by a for loop. Thus for the following
712
713   --             array (L .. H) := (.. positional elements.., others =>E);
714
715   --         we always generate something like:
716
717   --             J : Index_Type := Index_Of_Last_Positional_Element;
718   --             while J < H loop
719   --                J := Index_Base'Succ (J)
720   --                Tmp (J) := E;
721   --             end loop;
722
723   function Build_Array_Aggr_Code
724     (N           : Node_Id;
725      Ctype       : Entity_Id;
726      Index       : Node_Id;
727      Into        : Node_Id;
728      Scalar_Comp : Boolean;
729      Indexes     : List_Id := No_List) return List_Id
730   is
731      Loc          : constant Source_Ptr := Sloc (N);
732      Index_Base   : constant Entity_Id  := Base_Type (Etype (Index));
733      Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
734      Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
735
736      function Add (Val : Int; To : Node_Id) return Node_Id;
737      --  Returns an expression where Val is added to expression To, unless
738      --  To+Val is provably out of To's base type range. To must be an
739      --  already analyzed expression.
740
741      function Empty_Range (L, H : Node_Id) return Boolean;
742      --  Returns True if the range defined by L .. H is certainly empty
743
744      function Equal (L, H : Node_Id) return Boolean;
745      --  Returns True if L = H for sure
746
747      function Index_Base_Name return Node_Id;
748      --  Returns a new reference to the index type name
749
750      function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
751      --  Ind must be a side-effect free expression. If the input aggregate
752      --  N to Build_Loop contains no sub-aggregates, then this function
753      --  returns the assignment statement:
754      --
755      --     Into (Indexes, Ind) := Expr;
756      --
757      --  Otherwise we call Build_Code recursively
758      --
759      --  Ada 2005 (AI-287): In case of default initialized component, Expr
760      --  is empty and we generate a call to the corresponding IP subprogram.
761
762      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
763      --  Nodes L and H must be side-effect free expressions.
764      --  If the input aggregate N to Build_Loop contains no sub-aggregates,
765      --  This routine returns the for loop statement
766      --
767      --     for J in Index_Base'(L) .. Index_Base'(H) loop
768      --        Into (Indexes, J) := Expr;
769      --     end loop;
770      --
771      --  Otherwise we call Build_Code recursively.
772      --  As an optimization if the loop covers 3 or less scalar elements we
773      --  generate a sequence of assignments.
774
775      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
776      --  Nodes L and H must be side-effect free expressions.
777      --  If the input aggregate N to Build_Loop contains no sub-aggregates,
778      --  This routine returns the while loop statement
779      --
780      --     J : Index_Base := L;
781      --     while J < H loop
782      --        J := Index_Base'Succ (J);
783      --        Into (Indexes, J) := Expr;
784      --     end loop;
785      --
786      --  Otherwise we call Build_Code recursively
787
788      function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id;
789      --  For an association with a box, use value given by aspect
790     --   Default_Component_Value of array type if specified, else use
791     --   value given by aspect Default_Value for component type itself
792     --   if specified, else return Empty.
793
794      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
795      function Local_Expr_Value               (E : Node_Id) return Uint;
796      --  These two Local routines are used to replace the corresponding ones
797      --  in sem_eval because while processing the bounds of an aggregate with
798      --  discrete choices whose index type is an enumeration, we build static
799      --  expressions not recognized by Compile_Time_Known_Value as such since
800      --  they have not yet been analyzed and resolved. All the expressions in
801      --  question are things like Index_Base_Name'Val (Const) which we can
802      --  easily recognize as being constant.
803
804      ---------
805      -- Add --
806      ---------
807
808      function Add (Val : Int; To : Node_Id) return Node_Id is
809         Expr_Pos : Node_Id;
810         Expr     : Node_Id;
811         To_Pos   : Node_Id;
812         U_To     : Uint;
813         U_Val    : constant Uint := UI_From_Int (Val);
814
815      begin
816         --  Note: do not try to optimize the case of Val = 0, because
817         --  we need to build a new node with the proper Sloc value anyway.
818
819         --  First test if we can do constant folding
820
821         if Local_Compile_Time_Known_Value (To) then
822            U_To := Local_Expr_Value (To) + Val;
823
824            --  Determine if our constant is outside the range of the index.
825            --  If so return an Empty node. This empty node will be caught
826            --  by Empty_Range below.
827
828            if Compile_Time_Known_Value (Index_Base_L)
829              and then U_To < Expr_Value (Index_Base_L)
830            then
831               return Empty;
832
833            elsif Compile_Time_Known_Value (Index_Base_H)
834              and then U_To > Expr_Value (Index_Base_H)
835            then
836               return Empty;
837            end if;
838
839            Expr_Pos := Make_Integer_Literal (Loc, U_To);
840            Set_Is_Static_Expression (Expr_Pos);
841
842            if not Is_Enumeration_Type (Index_Base) then
843               Expr := Expr_Pos;
844
845            --  If we are dealing with enumeration return
846            --     Index_Base'Val (Expr_Pos)
847
848            else
849               Expr :=
850                 Make_Attribute_Reference
851                   (Loc,
852                    Prefix         => Index_Base_Name,
853                    Attribute_Name => Name_Val,
854                    Expressions    => New_List (Expr_Pos));
855            end if;
856
857            return Expr;
858         end if;
859
860         --  If we are here no constant folding possible
861
862         if not Is_Enumeration_Type (Index_Base) then
863            Expr :=
864              Make_Op_Add (Loc,
865                Left_Opnd  => Duplicate_Subexpr (To),
866                Right_Opnd => Make_Integer_Literal (Loc, U_Val));
867
868         --  If we are dealing with enumeration return
869         --    Index_Base'Val (Index_Base'Pos (To) + Val)
870
871         else
872            To_Pos :=
873              Make_Attribute_Reference
874                (Loc,
875                 Prefix         => Index_Base_Name,
876                 Attribute_Name => Name_Pos,
877                 Expressions    => New_List (Duplicate_Subexpr (To)));
878
879            Expr_Pos :=
880              Make_Op_Add (Loc,
881                Left_Opnd  => To_Pos,
882                Right_Opnd => Make_Integer_Literal (Loc, U_Val));
883
884            Expr :=
885              Make_Attribute_Reference
886                (Loc,
887                 Prefix         => Index_Base_Name,
888                 Attribute_Name => Name_Val,
889                 Expressions    => New_List (Expr_Pos));
890         end if;
891
892         return Expr;
893      end Add;
894
895      -----------------
896      -- Empty_Range --
897      -----------------
898
899      function Empty_Range (L, H : Node_Id) return Boolean is
900         Is_Empty : Boolean := False;
901         Low      : Node_Id;
902         High     : Node_Id;
903
904      begin
905         --  First check if L or H were already detected as overflowing the
906         --  index base range type by function Add above. If this is so Add
907         --  returns the empty node.
908
909         if No (L) or else No (H) then
910            return True;
911         end if;
912
913         for J in 1 .. 3 loop
914            case J is
915
916               --  L > H    range is empty
917
918               when 1 =>
919                  Low  := L;
920                  High := H;
921
922               --  B_L > H  range must be empty
923
924               when 2 =>
925                  Low  := Index_Base_L;
926                  High := H;
927
928               --  L > B_H  range must be empty
929
930               when 3 =>
931                  Low  := L;
932                  High := Index_Base_H;
933            end case;
934
935            if Local_Compile_Time_Known_Value (Low)
936                 and then
937               Local_Compile_Time_Known_Value (High)
938            then
939               Is_Empty :=
940                 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
941            end if;
942
943            exit when Is_Empty;
944         end loop;
945
946         return Is_Empty;
947      end Empty_Range;
948
949      -----------
950      -- Equal --
951      -----------
952
953      function Equal (L, H : Node_Id) return Boolean is
954      begin
955         if L = H then
956            return True;
957
958         elsif Local_Compile_Time_Known_Value (L)
959                 and then
960               Local_Compile_Time_Known_Value (H)
961         then
962            return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
963         end if;
964
965         return False;
966      end Equal;
967
968      ----------------
969      -- Gen_Assign --
970      ----------------
971
972      function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
973         L : constant List_Id := New_List;
974         A : Node_Id;
975
976         New_Indexes  : List_Id;
977         Indexed_Comp : Node_Id;
978         Expr_Q       : Node_Id;
979         Comp_Type    : Entity_Id := Empty;
980
981         function Add_Loop_Actions (Lis : List_Id) return List_Id;
982         --  Collect insert_actions generated in the construction of a
983         --  loop, and prepend them to the sequence of assignments to
984         --  complete the eventual body of the loop.
985
986         ----------------------
987         -- Add_Loop_Actions --
988         ----------------------
989
990         function Add_Loop_Actions (Lis : List_Id) return List_Id is
991            Res : List_Id;
992
993         begin
994            --  Ada 2005 (AI-287): Do nothing else in case of default
995            --  initialized component.
996
997            if No (Expr) then
998               return Lis;
999
1000            elsif Nkind (Parent (Expr)) = N_Component_Association
1001              and then Present (Loop_Actions (Parent (Expr)))
1002            then
1003               Append_List (Lis, Loop_Actions (Parent (Expr)));
1004               Res := Loop_Actions (Parent (Expr));
1005               Set_Loop_Actions (Parent (Expr), No_List);
1006               return Res;
1007
1008            else
1009               return Lis;
1010            end if;
1011         end Add_Loop_Actions;
1012
1013      --  Start of processing for Gen_Assign
1014
1015      begin
1016         if No (Indexes) then
1017            New_Indexes := New_List;
1018         else
1019            New_Indexes := New_Copy_List_Tree (Indexes);
1020         end if;
1021
1022         Append_To (New_Indexes, Ind);
1023
1024         if Present (Next_Index (Index)) then
1025            return
1026              Add_Loop_Actions (
1027                Build_Array_Aggr_Code
1028                  (N           => Expr,
1029                   Ctype       => Ctype,
1030                   Index       => Next_Index (Index),
1031                   Into        => Into,
1032                   Scalar_Comp => Scalar_Comp,
1033                   Indexes     => New_Indexes));
1034         end if;
1035
1036         --  If we get here then we are at a bottom-level (sub-)aggregate
1037
1038         Indexed_Comp :=
1039           Checks_Off
1040             (Make_Indexed_Component (Loc,
1041                Prefix      => New_Copy_Tree (Into),
1042                Expressions => New_Indexes));
1043
1044         Set_Assignment_OK (Indexed_Comp);
1045
1046         --  Ada 2005 (AI-287): In case of default initialized component, Expr
1047         --  is not present (and therefore we also initialize Expr_Q to empty).
1048
1049         if No (Expr) then
1050            Expr_Q := Empty;
1051         elsif Nkind (Expr) = N_Qualified_Expression then
1052            Expr_Q := Expression (Expr);
1053         else
1054            Expr_Q := Expr;
1055         end if;
1056
1057         if Present (Etype (N)) and then Etype (N) /= Any_Composite then
1058            Comp_Type := Component_Type (Etype (N));
1059            pragma Assert (Comp_Type = Ctype); --  AI-287
1060
1061         elsif Present (Next (First (New_Indexes))) then
1062
1063            --  Ada 2005 (AI-287): Do nothing in case of default initialized
1064            --  component because we have received the component type in
1065            --  the formal parameter Ctype.
1066
1067            --  ??? Some assert pragmas have been added to check if this new
1068            --  formal can be used to replace this code in all cases.
1069
1070            if Present (Expr) then
1071
1072               --  This is a multidimensional array. Recover the component type
1073               --  from the outermost aggregate, because subaggregates do not
1074               --  have an assigned type.
1075
1076               declare
1077                  P : Node_Id;
1078
1079               begin
1080                  P := Parent (Expr);
1081                  while Present (P) loop
1082                     if Nkind (P) = N_Aggregate
1083                       and then Present (Etype (P))
1084                     then
1085                        Comp_Type := Component_Type (Etype (P));
1086                        exit;
1087
1088                     else
1089                        P := Parent (P);
1090                     end if;
1091                  end loop;
1092
1093                  pragma Assert (Comp_Type = Ctype); --  AI-287
1094               end;
1095            end if;
1096         end if;
1097
1098         --  Ada 2005 (AI-287): We only analyze the expression in case of non-
1099         --  default initialized components (otherwise Expr_Q is not present).
1100
1101         if Present (Expr_Q)
1102           and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
1103         then
1104            --  At this stage the Expression may not have been analyzed yet
1105            --  because the array aggregate code has not been updated to use
1106            --  the Expansion_Delayed flag and avoid analysis altogether to
1107            --  solve the same problem (see Resolve_Aggr_Expr). So let us do
1108            --  the analysis of non-array aggregates now in order to get the
1109            --  value of Expansion_Delayed flag for the inner aggregate ???
1110
1111            if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
1112               Analyze_And_Resolve (Expr_Q, Comp_Type);
1113            end if;
1114
1115            if Is_Delayed_Aggregate (Expr_Q) then
1116
1117               --  This is either a subaggregate of a multidimensional array,
1118               --  or a component of an array type whose component type is
1119               --  also an array. In the latter case, the expression may have
1120               --  component associations that provide different bounds from
1121               --  those of the component type, and sliding must occur. Instead
1122               --  of decomposing the current aggregate assignment, force the
1123               --  re-analysis of the assignment, so that a temporary will be
1124               --  generated in the usual fashion, and sliding will take place.
1125
1126               if Nkind (Parent (N)) = N_Assignment_Statement
1127                 and then Is_Array_Type (Comp_Type)
1128                 and then Present (Component_Associations (Expr_Q))
1129                 and then Must_Slide (Comp_Type, Etype (Expr_Q))
1130               then
1131                  Set_Expansion_Delayed (Expr_Q, False);
1132                  Set_Analyzed (Expr_Q, False);
1133
1134               else
1135                  return
1136                    Add_Loop_Actions (
1137                      Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
1138               end if;
1139            end if;
1140         end if;
1141
1142         --  Ada 2005 (AI-287): In case of default initialized component, call
1143         --  the initialization subprogram associated with the component type.
1144         --  If the component type is an access type, add an explicit null
1145         --  assignment, because for the back-end there is an initialization
1146         --  present for the whole aggregate, and no default initialization
1147         --  will take place.
1148
1149         --  In addition, if the component type is controlled, we must call
1150         --  its Initialize procedure explicitly, because there is no explicit
1151         --  object creation that will invoke it otherwise.
1152
1153         if No (Expr) then
1154            if Present (Base_Init_Proc (Base_Type (Ctype)))
1155              or else Has_Task (Base_Type (Ctype))
1156            then
1157               Append_List_To (L,
1158                 Build_Initialization_Call (Loc,
1159                   Id_Ref            => Indexed_Comp,
1160                   Typ               => Ctype,
1161                   With_Default_Init => True));
1162
1163            elsif Is_Access_Type (Ctype) then
1164               Append_To (L,
1165                  Make_Assignment_Statement (Loc,
1166                    Name       => Indexed_Comp,
1167                    Expression => Make_Null (Loc)));
1168            end if;
1169
1170            if Needs_Finalization (Ctype) then
1171               Append_To (L,
1172                 Make_Init_Call
1173                   (Obj_Ref => New_Copy_Tree (Indexed_Comp),
1174                    Typ     => Ctype));
1175            end if;
1176
1177         else
1178            A :=
1179              Make_OK_Assignment_Statement (Loc,
1180                Name       => Indexed_Comp,
1181                Expression => New_Copy_Tree (Expr));
1182
1183            --  The target of the assignment may not have been initialized,
1184            --  so it is not possible to call Finalize as expected in normal
1185            --  controlled assignments. We must also avoid using the primitive
1186            --  _assign (which depends on a valid target, and may for example
1187            --  perform discriminant checks on it).
1188
1189            --  Both Finalize and usage of _assign are disabled by setting
1190            --  No_Ctrl_Actions on the assignment. The rest of the controlled
1191            --  actions are done manually with the proper finalization list
1192            --  coming from the context.
1193
1194            Set_No_Ctrl_Actions (A);
1195
1196            --  If this is an aggregate for an array of arrays, each
1197            --  sub-aggregate will be expanded as well, and even with
1198            --  No_Ctrl_Actions the assignments of inner components will
1199            --  require attachment in their assignments to temporaries. These
1200            --  temporaries must be finalized for each subaggregate, to prevent
1201            --  multiple attachments of the same temporary location to same
1202            --  finalization chain (and consequently circular lists). To ensure
1203            --  that finalization takes place for each subaggregate we wrap the
1204            --  assignment in a block.
1205
1206            if Present (Comp_Type)
1207              and then Needs_Finalization (Comp_Type)
1208              and then Is_Array_Type (Comp_Type)
1209              and then Present (Expr)
1210            then
1211               A :=
1212                 Make_Block_Statement (Loc,
1213                   Handled_Statement_Sequence =>
1214                     Make_Handled_Sequence_Of_Statements (Loc,
1215                       Statements => New_List (A)));
1216            end if;
1217
1218            Append_To (L, A);
1219
1220            --  Adjust the tag if tagged (because of possible view
1221            --  conversions), unless compiling for a VM where tags
1222            --  are implicit.
1223
1224            if Present (Comp_Type)
1225              and then Is_Tagged_Type (Comp_Type)
1226              and then Tagged_Type_Expansion
1227            then
1228               declare
1229                  Full_Typ : constant Entity_Id := Underlying_Type (Comp_Type);
1230
1231               begin
1232                  A :=
1233                    Make_OK_Assignment_Statement (Loc,
1234                      Name       =>
1235                        Make_Selected_Component (Loc,
1236                          Prefix        =>  New_Copy_Tree (Indexed_Comp),
1237                          Selector_Name =>
1238                            New_Occurrence_Of
1239                              (First_Tag_Component (Full_Typ), Loc)),
1240
1241                      Expression =>
1242                        Unchecked_Convert_To (RTE (RE_Tag),
1243                          New_Occurrence_Of
1244                            (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1245                             Loc)));
1246
1247                  Append_To (L, A);
1248               end;
1249            end if;
1250
1251            --  Adjust and attach the component to the proper final list, which
1252            --  can be the controller of the outer record object or the final
1253            --  list associated with the scope.
1254
1255            --  If the component is itself an array of controlled types, whose
1256            --  value is given by a sub-aggregate, then the attach calls have
1257            --  been generated when individual subcomponent are assigned, and
1258            --  must not be done again to prevent malformed finalization chains
1259            --  (see comments above, concerning the creation of a block to hold
1260            --  inner finalization actions).
1261
1262            if Present (Comp_Type)
1263              and then Needs_Finalization (Comp_Type)
1264              and then not Is_Limited_Type (Comp_Type)
1265              and then not
1266                (Is_Array_Type (Comp_Type)
1267                  and then Is_Controlled (Component_Type (Comp_Type))
1268                  and then Nkind (Expr) = N_Aggregate)
1269            then
1270               Append_To (L,
1271                 Make_Adjust_Call
1272                   (Obj_Ref => New_Copy_Tree (Indexed_Comp),
1273                    Typ     => Comp_Type));
1274            end if;
1275         end if;
1276
1277         return Add_Loop_Actions (L);
1278      end Gen_Assign;
1279
1280      --------------
1281      -- Gen_Loop --
1282      --------------
1283
1284      function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
1285         L_J : Node_Id;
1286
1287         L_L : Node_Id;
1288         --  Index_Base'(L)
1289
1290         L_H : Node_Id;
1291         --  Index_Base'(H)
1292
1293         L_Range : Node_Id;
1294         --  Index_Base'(L) .. Index_Base'(H)
1295
1296         L_Iteration_Scheme : Node_Id;
1297         --  L_J in Index_Base'(L) .. Index_Base'(H)
1298
1299         L_Body : List_Id;
1300         --  The statements to execute in the loop
1301
1302         S : constant List_Id := New_List;
1303         --  List of statements
1304
1305         Tcopy : Node_Id;
1306         --  Copy of expression tree, used for checking purposes
1307
1308      begin
1309         --  If loop bounds define an empty range return the null statement
1310
1311         if Empty_Range (L, H) then
1312            Append_To (S, Make_Null_Statement (Loc));
1313
1314            --  Ada 2005 (AI-287): Nothing else need to be done in case of
1315            --  default initialized component.
1316
1317            if No (Expr) then
1318               null;
1319
1320            else
1321               --  The expression must be type-checked even though no component
1322               --  of the aggregate will have this value. This is done only for
1323               --  actual components of the array, not for subaggregates. Do
1324               --  the check on a copy, because the expression may be shared
1325               --  among several choices, some of which might be non-null.
1326
1327               if Present (Etype (N))
1328                 and then Is_Array_Type (Etype (N))
1329                 and then No (Next_Index (Index))
1330               then
1331                  Expander_Mode_Save_And_Set (False);
1332                  Tcopy := New_Copy_Tree (Expr);
1333                  Set_Parent (Tcopy, N);
1334                  Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1335                  Expander_Mode_Restore;
1336               end if;
1337            end if;
1338
1339            return S;
1340
1341         --  If loop bounds are the same then generate an assignment
1342
1343         elsif Equal (L, H) then
1344            return Gen_Assign (New_Copy_Tree (L), Expr);
1345
1346         --  If H - L <= 2 then generate a sequence of assignments when we are
1347         --  processing the bottom most aggregate and it contains scalar
1348         --  components.
1349
1350         elsif No (Next_Index (Index))
1351           and then Scalar_Comp
1352           and then Local_Compile_Time_Known_Value (L)
1353           and then Local_Compile_Time_Known_Value (H)
1354           and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
1355         then
1356
1357            Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1358            Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1359
1360            if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1361               Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1362            end if;
1363
1364            return S;
1365         end if;
1366
1367         --  Otherwise construct the loop, starting with the loop index L_J
1368
1369         L_J := Make_Temporary (Loc, 'J', L);
1370
1371         --  Construct "L .. H" in Index_Base. We use a qualified expression
1372         --  for the bound to convert to the index base, but we don't need
1373         --  to do that if we already have the base type at hand.
1374
1375         if Etype (L) = Index_Base then
1376            L_L := L;
1377         else
1378            L_L :=
1379              Make_Qualified_Expression (Loc,
1380                Subtype_Mark => Index_Base_Name,
1381                Expression   => L);
1382         end if;
1383
1384         if Etype (H) = Index_Base then
1385            L_H := H;
1386         else
1387            L_H :=
1388              Make_Qualified_Expression (Loc,
1389                Subtype_Mark => Index_Base_Name,
1390                Expression   => H);
1391         end if;
1392
1393         L_Range :=
1394           Make_Range (Loc,
1395             Low_Bound => L_L,
1396             High_Bound => L_H);
1397
1398         --  Construct "for L_J in Index_Base range L .. H"
1399
1400         L_Iteration_Scheme :=
1401           Make_Iteration_Scheme
1402             (Loc,
1403              Loop_Parameter_Specification =>
1404                Make_Loop_Parameter_Specification
1405                  (Loc,
1406                   Defining_Identifier         => L_J,
1407                   Discrete_Subtype_Definition => L_Range));
1408
1409         --  Construct the statements to execute in the loop body
1410
1411         L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);
1412
1413         --  Construct the final loop
1414
1415         Append_To (S,
1416           Make_Implicit_Loop_Statement
1417             (Node             => N,
1418              Identifier       => Empty,
1419              Iteration_Scheme => L_Iteration_Scheme,
1420              Statements       => L_Body));
1421
1422         --  A small optimization: if the aggregate is initialized with a box
1423         --  and the component type has no initialization procedure, remove the
1424         --  useless empty loop.
1425
1426         if Nkind (First (S)) = N_Loop_Statement
1427           and then Is_Empty_List (Statements (First (S)))
1428         then
1429            return New_List (Make_Null_Statement (Loc));
1430         else
1431            return S;
1432         end if;
1433      end Gen_Loop;
1434
1435      ---------------
1436      -- Gen_While --
1437      ---------------
1438
1439      --  The code built is
1440
1441      --     W_J : Index_Base := L;
1442      --     while W_J < H loop
1443      --        W_J := Index_Base'Succ (W);
1444      --        L_Body;
1445      --     end loop;
1446
1447      function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
1448         W_J : Node_Id;
1449
1450         W_Decl : Node_Id;
1451         --  W_J : Base_Type := L;
1452
1453         W_Iteration_Scheme : Node_Id;
1454         --  while W_J < H
1455
1456         W_Index_Succ : Node_Id;
1457         --  Index_Base'Succ (J)
1458
1459         W_Increment : Node_Id;
1460         --  W_J := Index_Base'Succ (W)
1461
1462         W_Body : constant List_Id := New_List;
1463         --  The statements to execute in the loop
1464
1465         S : constant List_Id := New_List;
1466         --  list of statement
1467
1468      begin
1469         --  If loop bounds define an empty range or are equal return null
1470
1471         if Empty_Range (L, H) or else Equal (L, H) then
1472            Append_To (S, Make_Null_Statement (Loc));
1473            return S;
1474         end if;
1475
1476         --  Build the decl of W_J
1477
1478         W_J    := Make_Temporary (Loc, 'J', L);
1479         W_Decl :=
1480           Make_Object_Declaration
1481             (Loc,
1482              Defining_Identifier => W_J,
1483              Object_Definition   => Index_Base_Name,
1484              Expression          => L);
1485
1486         --  Theoretically we should do a New_Copy_Tree (L) here, but we know
1487         --  that in this particular case L is a fresh Expr generated by
1488         --  Add which we are the only ones to use.
1489
1490         Append_To (S, W_Decl);
1491
1492         --  Construct " while W_J < H"
1493
1494         W_Iteration_Scheme :=
1495           Make_Iteration_Scheme
1496             (Loc,
1497              Condition => Make_Op_Lt
1498                             (Loc,
1499                              Left_Opnd  => New_Occurrence_Of (W_J, Loc),
1500                              Right_Opnd => New_Copy_Tree (H)));
1501
1502         --  Construct the statements to execute in the loop body
1503
1504         W_Index_Succ :=
1505           Make_Attribute_Reference
1506             (Loc,
1507              Prefix         => Index_Base_Name,
1508              Attribute_Name => Name_Succ,
1509              Expressions    => New_List (New_Occurrence_Of (W_J, Loc)));
1510
1511         W_Increment  :=
1512           Make_OK_Assignment_Statement
1513             (Loc,
1514              Name       => New_Occurrence_Of (W_J, Loc),
1515              Expression => W_Index_Succ);
1516
1517         Append_To (W_Body, W_Increment);
1518         Append_List_To (W_Body,
1519           Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));
1520
1521         --  Construct the final loop
1522
1523         Append_To (S,
1524           Make_Implicit_Loop_Statement
1525             (Node             => N,
1526              Identifier       => Empty,
1527              Iteration_Scheme => W_Iteration_Scheme,
1528              Statements       => W_Body));
1529
1530         return S;
1531      end Gen_While;
1532
1533      --------------------
1534      -- Get_Assoc_Expr --
1535      --------------------
1536
1537      function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is
1538         Typ : constant Entity_Id := Base_Type (Etype (N));
1539
1540      begin
1541         if Box_Present (Assoc) then
1542            if Is_Scalar_Type (Ctype) then
1543               if Present (Default_Aspect_Component_Value (Typ)) then
1544                  return Default_Aspect_Component_Value (Typ);
1545               elsif Present (Default_Aspect_Value (Ctype)) then
1546                  return Default_Aspect_Value (Ctype);
1547               else
1548                  return Empty;
1549               end if;
1550
1551            else
1552               return Empty;
1553            end if;
1554
1555         else
1556            return Expression (Assoc);
1557         end if;
1558      end Get_Assoc_Expr;
1559
1560      ---------------------
1561      -- Index_Base_Name --
1562      ---------------------
1563
1564      function Index_Base_Name return Node_Id is
1565      begin
1566         return New_Occurrence_Of (Index_Base, Sloc (N));
1567      end Index_Base_Name;
1568
1569      ------------------------------------
1570      -- Local_Compile_Time_Known_Value --
1571      ------------------------------------
1572
1573      function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1574      begin
1575         return Compile_Time_Known_Value (E)
1576           or else
1577             (Nkind (E) = N_Attribute_Reference
1578               and then Attribute_Name (E) = Name_Val
1579               and then Compile_Time_Known_Value (First (Expressions (E))));
1580      end Local_Compile_Time_Known_Value;
1581
1582      ----------------------
1583      -- Local_Expr_Value --
1584      ----------------------
1585
1586      function Local_Expr_Value (E : Node_Id) return Uint is
1587      begin
1588         if Compile_Time_Known_Value (E) then
1589            return Expr_Value (E);
1590         else
1591            return Expr_Value (First (Expressions (E)));
1592         end if;
1593      end Local_Expr_Value;
1594
1595      --  Build_Array_Aggr_Code Variables
1596
1597      Assoc  : Node_Id;
1598      Choice : Node_Id;
1599      Expr   : Node_Id;
1600      Typ    : Entity_Id;
1601
1602      Others_Assoc        : Node_Id := Empty;
1603
1604      Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
1605      Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
1606      --  The aggregate bounds of this specific sub-aggregate. Note that if
1607      --  the code generated by Build_Array_Aggr_Code is executed then these
1608      --  bounds are OK. Otherwise a Constraint_Error would have been raised.
1609
1610      Aggr_Low  : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1611      Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
1612      --  After Duplicate_Subexpr these are side-effect free
1613
1614      Low        : Node_Id;
1615      High       : Node_Id;
1616
1617      Nb_Choices : Nat := 0;
1618      Table      : Case_Table_Type (1 .. Number_Of_Choices (N));
1619      --  Used to sort all the different choice values
1620
1621      Nb_Elements : Int;
1622      --  Number of elements in the positional aggregate
1623
1624      New_Code : constant List_Id := New_List;
1625
1626   --  Start of processing for Build_Array_Aggr_Code
1627
1628   begin
1629      --  First before we start, a special case. if we have a bit packed
1630      --  array represented as a modular type, then clear the value to
1631      --  zero first, to ensure that unused bits are properly cleared.
1632
1633      Typ := Etype (N);
1634
1635      if Present (Typ)
1636        and then Is_Bit_Packed_Array (Typ)
1637        and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
1638      then
1639         Append_To (New_Code,
1640           Make_Assignment_Statement (Loc,
1641             Name       => New_Copy_Tree (Into),
1642             Expression =>
1643               Unchecked_Convert_To (Typ,
1644                 Make_Integer_Literal (Loc, Uint_0))));
1645      end if;
1646
1647      --  If the component type contains tasks, we need to build a Master
1648      --  entity in the current scope, because it will be needed if build-
1649      --  in-place functions are called in the expanded code.
1650
1651      if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
1652         Build_Master_Entity (Defining_Identifier (Parent (N)));
1653      end if;
1654
1655      --  STEP 1: Process component associations
1656
1657      --  For those associations that may generate a loop, initialize
1658      --  Loop_Actions to collect inserted actions that may be crated.
1659
1660      --  Skip this if no component associations
1661
1662      if No (Expressions (N)) then
1663
1664         --  STEP 1 (a): Sort the discrete choices
1665
1666         Assoc := First (Component_Associations (N));
1667         while Present (Assoc) loop
1668            Choice := First (Choices (Assoc));
1669            while Present (Choice) loop
1670               if Nkind (Choice) = N_Others_Choice then
1671                  Set_Loop_Actions (Assoc, New_List);
1672                  Others_Assoc := Assoc;
1673                  exit;
1674               end if;
1675
1676               Get_Index_Bounds (Choice, Low, High);
1677
1678               if Low /= High then
1679                  Set_Loop_Actions (Assoc, New_List);
1680               end if;
1681
1682               Nb_Choices := Nb_Choices + 1;
1683
1684               Table (Nb_Choices) :=
1685                  (Choice_Lo   => Low,
1686                   Choice_Hi   => High,
1687                   Choice_Node => Get_Assoc_Expr (Assoc));
1688
1689               Next (Choice);
1690            end loop;
1691
1692            Next (Assoc);
1693         end loop;
1694
1695         --  If there is more than one set of choices these must be static
1696         --  and we can therefore sort them. Remember that Nb_Choices does not
1697         --  account for an others choice.
1698
1699         if Nb_Choices > 1 then
1700            Sort_Case_Table (Table);
1701         end if;
1702
1703         --  STEP 1 (b):  take care of the whole set of discrete choices
1704
1705         for J in 1 .. Nb_Choices loop
1706            Low  := Table (J).Choice_Lo;
1707            High := Table (J).Choice_Hi;
1708            Expr := Table (J).Choice_Node;
1709            Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
1710         end loop;
1711
1712         --  STEP 1 (c): generate the remaining loops to cover others choice
1713         --  We don't need to generate loops over empty gaps, but if there is
1714         --  a single empty range we must analyze the expression for semantics
1715
1716         if Present (Others_Assoc) then
1717            declare
1718               First : Boolean := True;
1719
1720            begin
1721               for J in 0 .. Nb_Choices loop
1722                  if J = 0 then
1723                     Low := Aggr_Low;
1724                  else
1725                     Low := Add (1, To => Table (J).Choice_Hi);
1726                  end if;
1727
1728                  if J = Nb_Choices then
1729                     High := Aggr_High;
1730                  else
1731                     High := Add (-1, To => Table (J + 1).Choice_Lo);
1732                  end if;
1733
1734                  --  If this is an expansion within an init proc, make
1735                  --  sure that discriminant references are replaced by
1736                  --  the corresponding discriminal.
1737
1738                  if Inside_Init_Proc then
1739                     if Is_Entity_Name (Low)
1740                       and then Ekind (Entity (Low)) = E_Discriminant
1741                     then
1742                        Set_Entity (Low, Discriminal (Entity (Low)));
1743                     end if;
1744
1745                     if Is_Entity_Name (High)
1746                       and then Ekind (Entity (High)) = E_Discriminant
1747                     then
1748                        Set_Entity (High, Discriminal (Entity (High)));
1749                     end if;
1750                  end if;
1751
1752                  if First
1753                    or else not Empty_Range (Low, High)
1754                  then
1755                     First := False;
1756                     Append_List
1757                       (Gen_Loop (Low, High,
1758                          Get_Assoc_Expr (Others_Assoc)), To => New_Code);
1759                  end if;
1760               end loop;
1761            end;
1762         end if;
1763
1764      --  STEP 2: Process positional components
1765
1766      else
1767         --  STEP 2 (a): Generate the assignments for each positional element
1768         --  Note that here we have to use Aggr_L rather than Aggr_Low because
1769         --  Aggr_L is analyzed and Add wants an analyzed expression.
1770
1771         Expr        := First (Expressions (N));
1772         Nb_Elements := -1;
1773         while Present (Expr) loop
1774            Nb_Elements := Nb_Elements + 1;
1775            Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
1776                         To => New_Code);
1777            Next (Expr);
1778         end loop;
1779
1780         --  STEP 2 (b): Generate final loop if an others choice is present
1781         --  Here Nb_Elements gives the offset of the last positional element.
1782
1783         if Present (Component_Associations (N)) then
1784            Assoc := Last (Component_Associations (N));
1785
1786            --  Ada 2005 (AI-287)
1787
1788            Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
1789                                    Aggr_High,
1790                                    Get_Assoc_Expr (Assoc)), --  AI-287
1791                         To => New_Code);
1792         end if;
1793      end if;
1794
1795      return New_Code;
1796   end Build_Array_Aggr_Code;
1797
1798   ----------------------------
1799   -- Build_Record_Aggr_Code --
1800   ----------------------------
1801
1802   function Build_Record_Aggr_Code
1803     (N   : Node_Id;
1804      Typ : Entity_Id;
1805      Lhs : Node_Id) return List_Id
1806   is
1807      Loc     : constant Source_Ptr := Sloc (N);
1808      L       : constant List_Id    := New_List;
1809      N_Typ   : constant Entity_Id  := Etype (N);
1810
1811      Comp      : Node_Id;
1812      Instr     : Node_Id;
1813      Ref       : Node_Id;
1814      Target    : Entity_Id;
1815      Comp_Type : Entity_Id;
1816      Selector  : Entity_Id;
1817      Comp_Expr : Node_Id;
1818      Expr_Q    : Node_Id;
1819
1820      --  If this is an internal aggregate, the External_Final_List is an
1821      --  expression for the controller record of the enclosing type.
1822
1823      --  If the current aggregate has several controlled components, this
1824      --  expression will appear in several calls to attach to the finali-
1825      --  zation list, and it must not be shared.
1826
1827      Ancestor_Is_Expression   : Boolean := False;
1828      Ancestor_Is_Subtype_Mark : Boolean := False;
1829
1830      Init_Typ : Entity_Id := Empty;
1831
1832      Finalization_Done : Boolean := False;
1833      --  True if Generate_Finalization_Actions has already been called; calls
1834      --  after the first do nothing.
1835
1836      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
1837      --  Returns the value that the given discriminant of an ancestor type
1838      --  should receive (in the absence of a conflict with the value provided
1839      --  by an ancestor part of an extension aggregate).
1840
1841      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
1842      --  Check that each of the discriminant values defined by the ancestor
1843      --  part of an extension aggregate match the corresponding values
1844      --  provided by either an association of the aggregate or by the
1845      --  constraint imposed by a parent type (RM95-4.3.2(8)).
1846
1847      function Compatible_Int_Bounds
1848        (Agg_Bounds : Node_Id;
1849         Typ_Bounds : Node_Id) return Boolean;
1850      --  Return true if Agg_Bounds are equal or within Typ_Bounds. It is
1851      --  assumed that both bounds are integer ranges.
1852
1853      procedure Generate_Finalization_Actions;
1854      --  Deal with the various controlled type data structure initializations
1855      --  (but only if it hasn't been done already).
1856
1857      function Get_Constraint_Association (T : Entity_Id) return Node_Id;
1858      --  Returns the first discriminant association in the constraint
1859      --  associated with T, if any, otherwise returns Empty.
1860
1861      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
1862      --  If Typ is derived, and constrains discriminants of the parent type,
1863      --  these discriminants are not components of the aggregate, and must be
1864      --  initialized. The assignments are appended to List. The same is done
1865      --  if Typ derives fron an already constrained subtype of a discriminated
1866      --  parent type.
1867
1868      function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
1869      --  If the ancestor part is an unconstrained type and further ancestors
1870      --  do not provide discriminants for it, check aggregate components for
1871      --  values of the discriminants.
1872
1873      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
1874      --  Check whether Bounds is a range node and its lower and higher bounds
1875      --  are integers literals.
1876
1877      ---------------------------------
1878      -- Ancestor_Discriminant_Value --
1879      ---------------------------------
1880
1881      function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
1882         Assoc        : Node_Id;
1883         Assoc_Elmt   : Elmt_Id;
1884         Aggr_Comp    : Entity_Id;
1885         Corresp_Disc : Entity_Id;
1886         Current_Typ  : Entity_Id := Base_Type (Typ);
1887         Parent_Typ   : Entity_Id;
1888         Parent_Disc  : Entity_Id;
1889         Save_Assoc   : Node_Id := Empty;
1890
1891      begin
1892         --  First check any discriminant associations to see if any of them
1893         --  provide a value for the discriminant.
1894
1895         if Present (Discriminant_Specifications (Parent (Current_Typ))) then
1896            Assoc := First (Component_Associations (N));
1897            while Present (Assoc) loop
1898               Aggr_Comp := Entity (First (Choices (Assoc)));
1899
1900               if Ekind (Aggr_Comp) = E_Discriminant then
1901                  Save_Assoc := Expression (Assoc);
1902
1903                  Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
1904                  while Present (Corresp_Disc) loop
1905
1906                     --  If found a corresponding discriminant then return the
1907                     --  value given in the aggregate. (Note: this is not
1908                     --  correct in the presence of side effects. ???)
1909
1910                     if Disc = Corresp_Disc then
1911                        return Duplicate_Subexpr (Expression (Assoc));
1912                     end if;
1913
1914                     Corresp_Disc :=
1915                       Corresponding_Discriminant (Corresp_Disc);
1916                  end loop;
1917               end if;
1918
1919               Next (Assoc);
1920            end loop;
1921         end if;
1922
1923         --  No match found in aggregate, so chain up parent types to find
1924         --  a constraint that defines the value of the discriminant.
1925
1926         Parent_Typ := Etype (Current_Typ);
1927         while Current_Typ /= Parent_Typ loop
1928            if Has_Discriminants (Parent_Typ)
1929              and then not Has_Unknown_Discriminants (Parent_Typ)
1930            then
1931               Parent_Disc := First_Discriminant (Parent_Typ);
1932
1933               --  We either get the association from the subtype indication
1934               --  of the type definition itself, or from the discriminant
1935               --  constraint associated with the type entity (which is
1936               --  preferable, but it's not always present ???)
1937
1938               if Is_Empty_Elmt_List (
1939                 Discriminant_Constraint (Current_Typ))
1940               then
1941                  Assoc := Get_Constraint_Association (Current_Typ);
1942                  Assoc_Elmt := No_Elmt;
1943               else
1944                  Assoc_Elmt :=
1945                    First_Elmt (Discriminant_Constraint (Current_Typ));
1946                  Assoc := Node (Assoc_Elmt);
1947               end if;
1948
1949               --  Traverse the discriminants of the parent type looking
1950               --  for one that corresponds.
1951
1952               while Present (Parent_Disc) and then Present (Assoc) loop
1953                  Corresp_Disc := Parent_Disc;
1954                  while Present (Corresp_Disc)
1955                    and then Disc /= Corresp_Disc
1956                  loop
1957                     Corresp_Disc :=
1958                       Corresponding_Discriminant (Corresp_Disc);
1959                  end loop;
1960
1961                  if Disc = Corresp_Disc then
1962                     if Nkind (Assoc) = N_Discriminant_Association then
1963                        Assoc := Expression (Assoc);
1964                     end if;
1965
1966                     --  If the located association directly denotes
1967                     --  a discriminant, then use the value of a saved
1968                     --  association of the aggregate. This is an approach
1969                     --  used to handle certain cases involving multiple
1970                     --  discriminants mapped to a single discriminant of
1971                     --  a descendant. It's not clear how to locate the
1972                     --  appropriate discriminant value for such cases. ???
1973
1974                     if Is_Entity_Name (Assoc)
1975                       and then Ekind (Entity (Assoc)) = E_Discriminant
1976                     then
1977                        Assoc := Save_Assoc;
1978                     end if;
1979
1980                     return Duplicate_Subexpr (Assoc);
1981                  end if;
1982
1983                  Next_Discriminant (Parent_Disc);
1984
1985                  if No (Assoc_Elmt) then
1986                     Next (Assoc);
1987                  else
1988                     Next_Elmt (Assoc_Elmt);
1989                     if Present (Assoc_Elmt) then
1990                        Assoc := Node (Assoc_Elmt);
1991                     else
1992                        Assoc := Empty;
1993                     end if;
1994                  end if;
1995               end loop;
1996            end if;
1997
1998            Current_Typ := Parent_Typ;
1999            Parent_Typ := Etype (Current_Typ);
2000         end loop;
2001
2002         --  In some cases there's no ancestor value to locate (such as
2003         --  when an ancestor part given by an expression defines the
2004         --  discriminant value).
2005
2006         return Empty;
2007      end Ancestor_Discriminant_Value;
2008
2009      ----------------------------------
2010      -- Check_Ancestor_Discriminants --
2011      ----------------------------------
2012
2013      procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
2014         Discr      : Entity_Id;
2015         Disc_Value : Node_Id;
2016         Cond       : Node_Id;
2017
2018      begin
2019         Discr := First_Discriminant (Base_Type (Anc_Typ));
2020         while Present (Discr) loop
2021            Disc_Value := Ancestor_Discriminant_Value (Discr);
2022
2023            if Present (Disc_Value) then
2024               Cond := Make_Op_Ne (Loc,
2025                 Left_Opnd =>
2026                   Make_Selected_Component (Loc,
2027                     Prefix        => New_Copy_Tree (Target),
2028                     Selector_Name => New_Occurrence_Of (Discr, Loc)),
2029                 Right_Opnd => Disc_Value);
2030
2031               Append_To (L,
2032                 Make_Raise_Constraint_Error (Loc,
2033                   Condition => Cond,
2034                   Reason    => CE_Discriminant_Check_Failed));
2035            end if;
2036
2037            Next_Discriminant (Discr);
2038         end loop;
2039      end Check_Ancestor_Discriminants;
2040
2041      ---------------------------
2042      -- Compatible_Int_Bounds --
2043      ---------------------------
2044
2045      function Compatible_Int_Bounds
2046        (Agg_Bounds : Node_Id;
2047         Typ_Bounds : Node_Id) return Boolean
2048      is
2049         Agg_Lo : constant Uint := Intval (Low_Bound  (Agg_Bounds));
2050         Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2051         Typ_Lo : constant Uint := Intval (Low_Bound  (Typ_Bounds));
2052         Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2053      begin
2054         return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2055      end Compatible_Int_Bounds;
2056
2057      --------------------------------
2058      -- Get_Constraint_Association --
2059      --------------------------------
2060
2061      function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2062         Indic : Node_Id;
2063         Typ   : Entity_Id;
2064
2065      begin
2066         Typ := T;
2067
2068         --  Handle private types in instances
2069
2070         if In_Instance
2071           and then Is_Private_Type (Typ)
2072           and then Present (Full_View (Typ))
2073         then
2074            Typ := Full_View (Typ);
2075         end if;
2076
2077         Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2078
2079         --  ??? Also need to cover case of a type mark denoting a subtype
2080         --  with constraint.
2081
2082         if Nkind (Indic) = N_Subtype_Indication
2083           and then Present (Constraint (Indic))
2084         then
2085            return First (Constraints (Constraint (Indic)));
2086         end if;
2087
2088         return Empty;
2089      end Get_Constraint_Association;
2090
2091      -------------------------------------
2092      -- Get_Explicit_Discriminant_Value --
2093      -------------------------------------
2094
2095      function Get_Explicit_Discriminant_Value
2096        (D : Entity_Id) return Node_Id
2097      is
2098         Assoc  : Node_Id;
2099         Choice : Node_Id;
2100         Val    : Node_Id;
2101
2102      begin
2103         --  The aggregate has been normalized and all associations have a
2104         --  single choice.
2105
2106         Assoc := First (Component_Associations (N));
2107         while Present (Assoc) loop
2108            Choice := First (Choices (Assoc));
2109
2110            if Chars (Choice) = Chars (D) then
2111               Val := Expression (Assoc);
2112               Remove (Assoc);
2113               return Val;
2114            end if;
2115
2116            Next (Assoc);
2117         end loop;
2118
2119         return Empty;
2120      end Get_Explicit_Discriminant_Value;
2121
2122      -------------------------------
2123      -- Init_Hidden_Discriminants --
2124      -------------------------------
2125
2126      procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
2127         Btype        : Entity_Id;
2128         Parent_Type  : Entity_Id;
2129         Disc         : Entity_Id;
2130         Discr_Val    : Elmt_Id;
2131         In_Aggr_Type : Boolean;
2132
2133      begin
2134         --  The constraints on the hidden discriminants, if present, are kept
2135         --  in the Stored_Constraint list of the type itself, or in that of
2136         --  the base type. If not in the constraints of the aggregate itself,
2137         --  we examine ancestors to find discriminants that are not renamed
2138         --  by other discriminants but constrained explicitly.
2139
2140         In_Aggr_Type := True;
2141
2142         Btype := Base_Type (Typ);
2143         while Is_Derived_Type (Btype)
2144           and then
2145             (Present (Stored_Constraint (Btype))
2146               or else
2147                 (In_Aggr_Type and then Present (Stored_Constraint (Typ))))
2148         loop
2149            Parent_Type := Etype (Btype);
2150
2151            if not Has_Discriminants (Parent_Type) then
2152               return;
2153            end if;
2154
2155            Disc := First_Discriminant (Parent_Type);
2156
2157            --  We know that one of the stored-constraint lists is present
2158
2159            if Present (Stored_Constraint (Btype)) then
2160               Discr_Val := First_Elmt (Stored_Constraint (Btype));
2161
2162            --  For private extension, stored constraint may be on full view
2163
2164            elsif Is_Private_Type (Btype)
2165              and then Present (Full_View (Btype))
2166              and then Present (Stored_Constraint (Full_View (Btype)))
2167            then
2168               Discr_Val := First_Elmt (Stored_Constraint (Full_View (Btype)));
2169
2170            else
2171               Discr_Val := First_Elmt (Stored_Constraint (Typ));
2172            end if;
2173
2174            while Present (Discr_Val) and then Present (Disc) loop
2175
2176               --  Only those discriminants of the parent that are not
2177               --  renamed by discriminants of the derived type need to
2178               --  be added explicitly.
2179
2180               if not Is_Entity_Name (Node (Discr_Val))
2181                 or else Ekind (Entity (Node (Discr_Val))) /= E_Discriminant
2182               then
2183                  Comp_Expr :=
2184                    Make_Selected_Component (Loc,
2185                      Prefix        => New_Copy_Tree (Target),
2186                      Selector_Name => New_Occurrence_Of (Disc, Loc));
2187
2188                  Instr :=
2189                    Make_OK_Assignment_Statement (Loc,
2190                      Name       => Comp_Expr,
2191                      Expression => New_Copy_Tree (Node (Discr_Val)));
2192
2193                  Set_No_Ctrl_Actions (Instr);
2194                  Append_To (List, Instr);
2195               end if;
2196
2197               Next_Discriminant (Disc);
2198               Next_Elmt (Discr_Val);
2199            end loop;
2200
2201            In_Aggr_Type := False;
2202            Btype := Base_Type (Parent_Type);
2203         end loop;
2204      end Init_Hidden_Discriminants;
2205
2206      -------------------------
2207      -- Is_Int_Range_Bounds --
2208      -------------------------
2209
2210      function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2211      begin
2212         return Nkind (Bounds) = N_Range
2213           and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
2214           and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2215      end Is_Int_Range_Bounds;
2216
2217      -----------------------------------
2218      -- Generate_Finalization_Actions --
2219      -----------------------------------
2220
2221      procedure Generate_Finalization_Actions is
2222      begin
2223         --  Do the work only the first time this is called
2224
2225         if Finalization_Done then
2226            return;
2227         end if;
2228
2229         Finalization_Done := True;
2230
2231         --  Determine the external finalization list. It is either the
2232         --  finalization list of the outer-scope or the one coming from an
2233         --  outer aggregate. When the target is not a temporary, the proper
2234         --  scope is the scope of the target rather than the potentially
2235         --  transient current scope.
2236
2237         if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
2238            Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2239            Set_Assignment_OK (Ref);
2240
2241            Append_To (L,
2242              Make_Procedure_Call_Statement (Loc,
2243                Name                   =>
2244                  New_Occurrence_Of
2245                    (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2246                Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2247         end if;
2248      end Generate_Finalization_Actions;
2249
2250      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2251      --  If default expression of a component mentions a discriminant of the
2252      --  type, it must be rewritten as the discriminant of the target object.
2253
2254      function Replace_Type (Expr : Node_Id) return Traverse_Result;
2255      --  If the aggregate contains a self-reference, traverse each expression
2256      --  to replace a possible self-reference with a reference to the proper
2257      --  component of the target of the assignment.
2258
2259      --------------------------
2260      -- Rewrite_Discriminant --
2261      --------------------------
2262
2263      function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2264      begin
2265         if Is_Entity_Name (Expr)
2266           and then Present (Entity (Expr))
2267           and then Ekind (Entity (Expr)) = E_In_Parameter
2268           and then Present (Discriminal_Link (Entity (Expr)))
2269           and then Scope (Discriminal_Link (Entity (Expr))) =
2270                                                       Base_Type (Etype (N))
2271         then
2272            Rewrite (Expr,
2273              Make_Selected_Component (Loc,
2274                Prefix        => New_Copy_Tree (Lhs),
2275                Selector_Name => Make_Identifier (Loc, Chars (Expr))));
2276         end if;
2277
2278         return OK;
2279      end Rewrite_Discriminant;
2280
2281      ------------------
2282      -- Replace_Type --
2283      ------------------
2284
2285      function Replace_Type (Expr : Node_Id) return Traverse_Result is
2286      begin
2287         --  Note regarding the Root_Type test below: Aggregate components for
2288         --  self-referential types include attribute references to the current
2289         --  instance, of the form: Typ'access, etc.. These references are
2290         --  rewritten as references to the target of the aggregate: the
2291         --  left-hand side of an assignment, the entity in a declaration,
2292         --  or a temporary. Without this test, we would improperly extended
2293         --  this rewriting to attribute references whose prefix was not the
2294         --  type of the aggregate.
2295
2296         if Nkind (Expr) = N_Attribute_Reference
2297           and then Is_Entity_Name (Prefix (Expr))
2298           and then Is_Type (Entity (Prefix (Expr)))
2299           and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
2300         then
2301            if Is_Entity_Name (Lhs) then
2302               Rewrite (Prefix (Expr),
2303                 New_Occurrence_Of (Entity (Lhs), Loc));
2304
2305            elsif Nkind (Lhs) = N_Selected_Component then
2306               Rewrite (Expr,
2307                 Make_Attribute_Reference (Loc,
2308                   Attribute_Name => Name_Unrestricted_Access,
2309                   Prefix         => New_Copy_Tree (Lhs)));
2310               Set_Analyzed (Parent (Expr), False);
2311
2312            else
2313               Rewrite (Expr,
2314                 Make_Attribute_Reference (Loc,
2315                   Attribute_Name => Name_Unrestricted_Access,
2316                   Prefix         => New_Copy_Tree (Lhs)));
2317               Set_Analyzed (Parent (Expr), False);
2318            end if;
2319         end if;
2320
2321         return OK;
2322      end Replace_Type;
2323
2324      procedure Replace_Self_Reference is
2325        new Traverse_Proc (Replace_Type);
2326
2327      procedure Replace_Discriminants is
2328        new Traverse_Proc (Rewrite_Discriminant);
2329
2330   --  Start of processing for Build_Record_Aggr_Code
2331
2332   begin
2333      if Has_Self_Reference (N) then
2334         Replace_Self_Reference (N);
2335      end if;
2336
2337      --  If the target of the aggregate is class-wide, we must convert it
2338      --  to the actual type of the aggregate, so that the proper components
2339      --  are visible. We know already that the types are compatible.
2340
2341      if Present (Etype (Lhs))
2342        and then Is_Class_Wide_Type (Etype (Lhs))
2343      then
2344         Target := Unchecked_Convert_To (Typ, Lhs);
2345      else
2346         Target := Lhs;
2347      end if;
2348
2349      --  Deal with the ancestor part of extension aggregates or with the
2350      --  discriminants of the root type.
2351
2352      if Nkind (N) = N_Extension_Aggregate then
2353         declare
2354            Ancestor : constant Node_Id := Ancestor_Part (N);
2355            Assign   : List_Id;
2356
2357         begin
2358            --  If the ancestor part is a subtype mark "T", we generate
2359
2360            --     init-proc (T (tmp));  if T is constrained and
2361            --     init-proc (S (tmp));  where S applies an appropriate
2362            --                           constraint if T is unconstrained
2363
2364            if Is_Entity_Name (Ancestor)
2365              and then Is_Type (Entity (Ancestor))
2366            then
2367               Ancestor_Is_Subtype_Mark := True;
2368
2369               if Is_Constrained (Entity (Ancestor)) then
2370                  Init_Typ := Entity (Ancestor);
2371
2372               --  For an ancestor part given by an unconstrained type mark,
2373               --  create a subtype constrained by appropriate corresponding
2374               --  discriminant values coming from either associations of the
2375               --  aggregate or a constraint on a parent type. The subtype will
2376               --  be used to generate the correct default value for the
2377               --  ancestor part.
2378
2379               elsif Has_Discriminants (Entity (Ancestor)) then
2380                  declare
2381                     Anc_Typ    : constant Entity_Id := Entity (Ancestor);
2382                     Anc_Constr : constant List_Id   := New_List;
2383                     Discrim    : Entity_Id;
2384                     Disc_Value : Node_Id;
2385                     New_Indic  : Node_Id;
2386                     Subt_Decl  : Node_Id;
2387
2388                  begin
2389                     Discrim := First_Discriminant (Anc_Typ);
2390                     while Present (Discrim) loop
2391                        Disc_Value := Ancestor_Discriminant_Value (Discrim);
2392
2393                        --  If no usable discriminant in ancestors, check
2394                        --  whether aggregate has an explicit value for it.
2395
2396                        if No (Disc_Value) then
2397                           Disc_Value :=
2398                             Get_Explicit_Discriminant_Value (Discrim);
2399                        end if;
2400
2401                        Append_To (Anc_Constr, Disc_Value);
2402                        Next_Discriminant (Discrim);
2403                     end loop;
2404
2405                     New_Indic :=
2406                       Make_Subtype_Indication (Loc,
2407                         Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2408                         Constraint   =>
2409                           Make_Index_Or_Discriminant_Constraint (Loc,
2410                             Constraints => Anc_Constr));
2411
2412                     Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2413
2414                     Subt_Decl :=
2415                       Make_Subtype_Declaration (Loc,
2416                         Defining_Identifier => Init_Typ,
2417                         Subtype_Indication  => New_Indic);
2418
2419                     --  Itypes must be analyzed with checks off Declaration
2420                     --  must have a parent for proper handling of subsidiary
2421                     --  actions.
2422
2423                     Set_Parent (Subt_Decl, N);
2424                     Analyze (Subt_Decl, Suppress => All_Checks);
2425                  end;
2426               end if;
2427
2428               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2429               Set_Assignment_OK (Ref);
2430
2431               if not Is_Interface (Init_Typ) then
2432                  Append_List_To (L,
2433                    Build_Initialization_Call (Loc,
2434                      Id_Ref            => Ref,
2435                      Typ               => Init_Typ,
2436                      In_Init_Proc      => Within_Init_Proc,
2437                      With_Default_Init => Has_Default_Init_Comps (N)
2438                                             or else
2439                                           Has_Task (Base_Type (Init_Typ))));
2440
2441                  if Is_Constrained (Entity (Ancestor))
2442                    and then Has_Discriminants (Entity (Ancestor))
2443                  then
2444                     Check_Ancestor_Discriminants (Entity (Ancestor));
2445                  end if;
2446               end if;
2447
2448            --  Handle calls to C++ constructors
2449
2450            elsif Is_CPP_Constructor_Call (Ancestor) then
2451               Init_Typ := Etype (Ancestor);
2452               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2453               Set_Assignment_OK (Ref);
2454
2455               Append_List_To (L,
2456                 Build_Initialization_Call (Loc,
2457                   Id_Ref            => Ref,
2458                   Typ               => Init_Typ,
2459                   In_Init_Proc      => Within_Init_Proc,
2460                   With_Default_Init => Has_Default_Init_Comps (N),
2461                   Constructor_Ref   => Ancestor));
2462
2463            --  Ada 2005 (AI-287): If the ancestor part is an aggregate of
2464            --  limited type, a recursive call expands the ancestor. Note that
2465            --  in the limited case, the ancestor part must be either a
2466            --  function call (possibly qualified, or wrapped in an unchecked
2467            --  conversion) or aggregate (definitely qualified).
2468
2469            --  The ancestor part can also be a function call (that may be
2470            --  transformed into an explicit dereference) or a qualification
2471            --  of one such.
2472
2473            elsif Is_Limited_Type (Etype (Ancestor))
2474              and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
2475                                                       N_Extension_Aggregate)
2476            then
2477               Ancestor_Is_Expression := True;
2478
2479               --  Set up  finalization data for enclosing record, because
2480               --  controlled subcomponents of the ancestor part will be
2481               --  attached to it.
2482
2483               Generate_Finalization_Actions;
2484
2485               Append_List_To (L,
2486                  Build_Record_Aggr_Code
2487                    (N   => Unqualify (Ancestor),
2488                     Typ => Etype (Unqualify (Ancestor)),
2489                     Lhs => Target));
2490
2491            --  If the ancestor part is an expression "E", we generate
2492
2493            --     T (tmp) := E;
2494
2495            --  In Ada 2005, this includes the case of a (possibly qualified)
2496            --  limited function call. The assignment will turn into a
2497            --  build-in-place function call (for further details, see
2498            --  Make_Build_In_Place_Call_In_Assignment).
2499
2500            else
2501               Ancestor_Is_Expression := True;
2502               Init_Typ := Etype (Ancestor);
2503
2504               --  If the ancestor part is an aggregate, force its full
2505               --  expansion, which was delayed.
2506
2507               if Nkind_In (Unqualify (Ancestor), N_Aggregate,
2508                                               N_Extension_Aggregate)
2509               then
2510                  Set_Analyzed (Ancestor, False);
2511                  Set_Analyzed (Expression (Ancestor), False);
2512               end if;
2513
2514               Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2515               Set_Assignment_OK (Ref);
2516
2517               --  Make the assignment without usual controlled actions, since
2518               --  we only want to Adjust afterwards, but not to Finalize
2519               --  beforehand. Add manual Adjust when necessary.
2520
2521               Assign := New_List (
2522                 Make_OK_Assignment_Statement (Loc,
2523                   Name       => Ref,
2524                   Expression => Ancestor));
2525               Set_No_Ctrl_Actions (First (Assign));
2526
2527               --  Assign the tag now to make sure that the dispatching call in
2528               --  the subsequent deep_adjust works properly (unless VM_Target,
2529               --  where tags are implicit).
2530
2531               if Tagged_Type_Expansion then
2532                  Instr :=
2533                    Make_OK_Assignment_Statement (Loc,
2534                      Name =>
2535                        Make_Selected_Component (Loc,
2536                          Prefix => New_Copy_Tree (Target),
2537                          Selector_Name =>
2538                            New_Occurrence_Of
2539                              (First_Tag_Component (Base_Type (Typ)), Loc)),
2540
2541                      Expression =>
2542                        Unchecked_Convert_To (RTE (RE_Tag),
2543                          New_Occurrence_Of
2544                            (Node (First_Elmt
2545                               (Access_Disp_Table (Base_Type (Typ)))),
2546                             Loc)));
2547
2548                  Set_Assignment_OK (Name (Instr));
2549                  Append_To (Assign, Instr);
2550
2551                  --  Ada 2005 (AI-251): If tagged type has progenitors we must
2552                  --  also initialize tags of the secondary dispatch tables.
2553
2554                  if Has_Interfaces (Base_Type (Typ)) then
2555                     Init_Secondary_Tags
2556                       (Typ        => Base_Type (Typ),
2557                        Target     => Target,
2558                        Stmts_List => Assign);
2559                  end if;
2560               end if;
2561
2562               --  Call Adjust manually
2563
2564               if Needs_Finalization (Etype (Ancestor))
2565                 and then not Is_Limited_Type (Etype (Ancestor))
2566               then
2567                  Append_To (Assign,
2568                    Make_Adjust_Call
2569                      (Obj_Ref => New_Copy_Tree (Ref),
2570                       Typ     => Etype (Ancestor)));
2571               end if;
2572
2573               Append_To (L,
2574                 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
2575
2576               if Has_Discriminants (Init_Typ) then
2577                  Check_Ancestor_Discriminants (Init_Typ);
2578               end if;
2579            end if;
2580         end;
2581
2582         --  Generate assignments of hidden discriminants. If the base type is
2583         --  an unchecked union, the discriminants are unknown to the back-end
2584         --  and absent from a value of the type, so assignments for them are
2585         --  not emitted.
2586
2587         if Has_Discriminants (Typ)
2588           and then not Is_Unchecked_Union (Base_Type (Typ))
2589         then
2590            Init_Hidden_Discriminants (Typ, L);
2591         end if;
2592
2593      --  Normal case (not an extension aggregate)
2594
2595      else
2596         --  Generate the discriminant expressions, component by component.
2597         --  If the base type is an unchecked union, the discriminants are
2598         --  unknown to the back-end and absent from a value of the type, so
2599         --  assignments for them are not emitted.
2600
2601         if Has_Discriminants (Typ)
2602           and then not Is_Unchecked_Union (Base_Type (Typ))
2603         then
2604            Init_Hidden_Discriminants (Typ, L);
2605
2606            --  Generate discriminant init values for the visible discriminants
2607
2608            declare
2609               Discriminant : Entity_Id;
2610               Discriminant_Value : Node_Id;
2611
2612            begin
2613               Discriminant := First_Stored_Discriminant (Typ);
2614               while Present (Discriminant) loop
2615                  Comp_Expr :=
2616                    Make_Selected_Component (Loc,
2617                      Prefix        => New_Copy_Tree (Target),
2618                      Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2619
2620                  Discriminant_Value :=
2621                    Get_Discriminant_Value (
2622                      Discriminant,
2623                      N_Typ,
2624                      Discriminant_Constraint (N_Typ));
2625
2626                  Instr :=
2627                    Make_OK_Assignment_Statement (Loc,
2628                      Name       => Comp_Expr,
2629                      Expression => New_Copy_Tree (Discriminant_Value));
2630
2631                  Set_No_Ctrl_Actions (Instr);
2632                  Append_To (L, Instr);
2633
2634                  Next_Stored_Discriminant (Discriminant);
2635               end loop;
2636            end;
2637         end if;
2638      end if;
2639
2640      --  For CPP types we generate an implicit call to the C++ default
2641      --  constructor to ensure the proper initialization of the _Tag
2642      --  component.
2643
2644      if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
2645         Invoke_Constructor : declare
2646            CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
2647
2648            procedure Invoke_IC_Proc (T : Entity_Id);
2649            --  Recursive routine used to climb to parents. Required because
2650            --  parents must be initialized before descendants to ensure
2651            --  propagation of inherited C++ slots.
2652
2653            --------------------
2654            -- Invoke_IC_Proc --
2655            --------------------
2656
2657            procedure Invoke_IC_Proc (T : Entity_Id) is
2658            begin
2659               --  Avoid generating extra calls. Initialization required
2660               --  only for types defined from the level of derivation of
2661               --  type of the constructor and the type of the aggregate.
2662
2663               if T = CPP_Parent then
2664                  return;
2665               end if;
2666
2667               Invoke_IC_Proc (Etype (T));
2668
2669               --  Generate call to the IC routine
2670
2671               if Present (CPP_Init_Proc (T)) then
2672                  Append_To (L,
2673                    Make_Procedure_Call_Statement (Loc,
2674                      New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
2675               end if;
2676            end Invoke_IC_Proc;
2677
2678         --  Start of processing for Invoke_Constructor
2679
2680         begin
2681            --  Implicit invocation of the C++ constructor
2682
2683            if Nkind (N) = N_Aggregate then
2684               Append_To (L,
2685                 Make_Procedure_Call_Statement (Loc,
2686                   Name                   =>
2687                     New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
2688                   Parameter_Associations => New_List (
2689                     Unchecked_Convert_To (CPP_Parent,
2690                       New_Copy_Tree (Lhs)))));
2691            end if;
2692
2693            Invoke_IC_Proc (Typ);
2694         end Invoke_Constructor;
2695      end if;
2696
2697      --  Generate the assignments, component by component
2698
2699      --    tmp.comp1 := Expr1_From_Aggr;
2700      --    tmp.comp2 := Expr2_From_Aggr;
2701      --    ....
2702
2703      Comp := First (Component_Associations (N));
2704      while Present (Comp) loop
2705         Selector := Entity (First (Choices (Comp)));
2706
2707         --  C++ constructors
2708
2709         if Is_CPP_Constructor_Call (Expression (Comp)) then
2710            Append_List_To (L,
2711              Build_Initialization_Call (Loc,
2712                Id_Ref            =>
2713                  Make_Selected_Component (Loc,
2714                    Prefix        => New_Copy_Tree (Target),
2715                    Selector_Name => New_Occurrence_Of (Selector, Loc)),
2716                Typ               => Etype (Selector),
2717                Enclos_Type       => Typ,
2718                With_Default_Init => True,
2719                Constructor_Ref   => Expression (Comp)));
2720
2721         --  Ada 2005 (AI-287): For each default-initialized component generate
2722         --  a call to the corresponding IP subprogram if available.
2723
2724         elsif Box_Present (Comp)
2725           and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
2726         then
2727            if Ekind (Selector) /= E_Discriminant then
2728               Generate_Finalization_Actions;
2729            end if;
2730
2731            --  Ada 2005 (AI-287): If the component type has tasks then
2732            --  generate the activation chain and master entities (except
2733            --  in case of an allocator because in that case these entities
2734            --  are generated by Build_Task_Allocate_Block_With_Init_Stmts).
2735
2736            declare
2737               Ctype            : constant Entity_Id := Etype (Selector);
2738               Inside_Allocator : Boolean            := False;
2739               P                : Node_Id            := Parent (N);
2740
2741            begin
2742               if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
2743                  while Present (P) loop
2744                     if Nkind (P) = N_Allocator then
2745                        Inside_Allocator := True;
2746                        exit;
2747                     end if;
2748
2749                     P := Parent (P);
2750                  end loop;
2751
2752                  if not Inside_Init_Proc and not Inside_Allocator then
2753                     Build_Activation_Chain_Entity (N);
2754                  end if;
2755               end if;
2756            end;
2757
2758            Append_List_To (L,
2759              Build_Initialization_Call (Loc,
2760                Id_Ref            => Make_Selected_Component (Loc,
2761                                       Prefix        => New_Copy_Tree (Target),
2762                                       Selector_Name =>
2763                                         New_Occurrence_Of (Selector, Loc)),
2764                Typ               => Etype (Selector),
2765                Enclos_Type       => Typ,
2766                With_Default_Init => True));
2767
2768         --  Prepare for component assignment
2769
2770         elsif Ekind (Selector) /= E_Discriminant
2771           or else Nkind (N) = N_Extension_Aggregate
2772         then
2773            --  All the discriminants have now been assigned
2774
2775            --  This is now a good moment to initialize and attach all the
2776            --  controllers. Their position may depend on the discriminants.
2777
2778            if Ekind (Selector) /= E_Discriminant then
2779               Generate_Finalization_Actions;
2780            end if;
2781
2782            Comp_Type := Underlying_Type (Etype (Selector));
2783            Comp_Expr :=
2784              Make_Selected_Component (Loc,
2785                Prefix        => New_Copy_Tree (Target),
2786                Selector_Name => New_Occurrence_Of (Selector, Loc));
2787
2788            if Nkind (Expression (Comp)) = N_Qualified_Expression then
2789               Expr_Q := Expression (Expression (Comp));
2790            else
2791               Expr_Q := Expression (Comp);
2792            end if;
2793
2794            --  Now either create the assignment or generate the code for the
2795            --  inner aggregate top-down.
2796
2797            if Is_Delayed_Aggregate (Expr_Q) then
2798
2799               --  We have the following case of aggregate nesting inside
2800               --  an object declaration:
2801
2802               --    type Arr_Typ is array (Integer range <>) of ...;
2803
2804               --    type Rec_Typ (...) is record
2805               --       Obj_Arr_Typ : Arr_Typ (A .. B);
2806               --    end record;
2807
2808               --    Obj_Rec_Typ : Rec_Typ := (...,
2809               --      Obj_Arr_Typ => (X => (...), Y => (...)));
2810
2811               --  The length of the ranges of the aggregate and Obj_Add_Typ
2812               --  are equal (B - A = Y - X), but they do not coincide (X /=
2813               --  A and B /= Y). This case requires array sliding which is
2814               --  performed in the following manner:
2815
2816               --    subtype Arr_Sub is Arr_Typ (X .. Y);
2817               --    Temp : Arr_Sub;
2818               --    Temp (X) := (...);
2819               --    ...
2820               --    Temp (Y) := (...);
2821               --    Obj_Rec_Typ.Obj_Arr_Typ := Temp;
2822
2823               if Ekind (Comp_Type) = E_Array_Subtype
2824                 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
2825                 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
2826                 and then not
2827                   Compatible_Int_Bounds
2828                     (Agg_Bounds => Aggregate_Bounds (Expr_Q),
2829                      Typ_Bounds => First_Index (Comp_Type))
2830               then
2831                  --  Create the array subtype with bounds equal to those of
2832                  --  the corresponding aggregate.
2833
2834                  declare
2835                     SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
2836
2837                     SubD : constant Node_Id :=
2838                       Make_Subtype_Declaration (Loc,
2839                         Defining_Identifier => SubE,
2840                         Subtype_Indication  =>
2841                           Make_Subtype_Indication (Loc,
2842                             Subtype_Mark =>
2843                               New_Occurrence_Of (Etype (Comp_Type), Loc),
2844                             Constraint =>
2845                               Make_Index_Or_Discriminant_Constraint
2846                                 (Loc,
2847                                  Constraints => New_List (
2848                                    New_Copy_Tree
2849                                      (Aggregate_Bounds (Expr_Q))))));
2850
2851                     --  Create a temporary array of the above subtype which
2852                     --  will be used to capture the aggregate assignments.
2853
2854                     TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
2855
2856                     TmpD : constant Node_Id :=
2857                       Make_Object_Declaration (Loc,
2858                         Defining_Identifier => TmpE,
2859                         Object_Definition   => New_Occurrence_Of (SubE, Loc));
2860
2861                  begin
2862                     Set_No_Initialization (TmpD);
2863                     Append_To (L, SubD);
2864                     Append_To (L, TmpD);
2865
2866                     --  Expand aggregate into assignments to the temp array
2867
2868                     Append_List_To (L,
2869                       Late_Expansion (Expr_Q, Comp_Type,
2870                         New_Occurrence_Of (TmpE, Loc)));
2871
2872                     --  Slide
2873
2874                     Append_To (L,
2875                       Make_Assignment_Statement (Loc,
2876                         Name       => New_Copy_Tree (Comp_Expr),
2877                         Expression => New_Occurrence_Of (TmpE, Loc)));
2878                  end;
2879
2880               --  Normal case (sliding not required)
2881
2882               else
2883                  Append_List_To (L,
2884                    Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
2885               end if;
2886
2887            --  Expr_Q is not delayed aggregate
2888
2889            else
2890               if Has_Discriminants (Typ) then
2891                  Replace_Discriminants (Expr_Q);
2892
2893                  --  If the component is an array type that depends on
2894                  --  discriminants, and the expression is a single Others
2895                  --  clause, create an explicit subtype for it because the
2896                  --  backend has troubles recovering the actual bounds.
2897
2898                  if Nkind (Expr_Q) = N_Aggregate
2899                    and then Is_Array_Type (Comp_Type)
2900                    and then Present (Component_Associations (Expr_Q))
2901                  then
2902                     declare
2903                        Assoc : constant Node_Id :=
2904                                  First (Component_Associations (Expr_Q));
2905                        Decl  : Node_Id;
2906
2907                     begin
2908                        if Nkind (First (Choices (Assoc))) = N_Others_Choice
2909                        then
2910                           Decl :=
2911                             Build_Actual_Subtype_Of_Component
2912                               (Comp_Type, Comp_Expr);
2913
2914                           --  If the component type does not in fact depend on
2915                           --  discriminants, the subtype declaration is empty.
2916
2917                           if Present (Decl) then
2918                              Append_To (L, Decl);
2919                              Set_Etype (Comp_Expr, Defining_Entity (Decl));
2920                           end if;
2921                        end if;
2922                     end;
2923                  end if;
2924               end if;
2925
2926               Instr :=
2927                 Make_OK_Assignment_Statement (Loc,
2928                   Name       => Comp_Expr,
2929                   Expression => Expr_Q);
2930
2931               Set_No_Ctrl_Actions (Instr);
2932               Append_To (L, Instr);
2933
2934               --  Adjust the tag if tagged (because of possible view
2935               --  conversions), unless compiling for a VM where tags are
2936               --  implicit.
2937
2938               --    tmp.comp._tag := comp_typ'tag;
2939
2940               if Is_Tagged_Type (Comp_Type)
2941                 and then Tagged_Type_Expansion
2942               then
2943                  Instr :=
2944                    Make_OK_Assignment_Statement (Loc,
2945                      Name =>
2946                        Make_Selected_Component (Loc,
2947                          Prefix =>  New_Copy_Tree (Comp_Expr),
2948                          Selector_Name =>
2949                            New_Occurrence_Of
2950                              (First_Tag_Component (Comp_Type), Loc)),
2951
2952                      Expression =>
2953                        Unchecked_Convert_To (RTE (RE_Tag),
2954                          New_Occurrence_Of
2955                            (Node (First_Elmt (Access_Disp_Table (Comp_Type))),
2956                             Loc)));
2957
2958                  Append_To (L, Instr);
2959               end if;
2960
2961               --  Generate:
2962               --    Adjust (tmp.comp);
2963
2964               if Needs_Finalization (Comp_Type)
2965                 and then not Is_Limited_Type (Comp_Type)
2966               then
2967                  Append_To (L,
2968                    Make_Adjust_Call
2969                      (Obj_Ref => New_Copy_Tree (Comp_Expr),
2970                       Typ     => Comp_Type));
2971               end if;
2972            end if;
2973
2974         --  comment would be good here ???
2975
2976         elsif Ekind (Selector) = E_Discriminant
2977           and then Nkind (N) /= N_Extension_Aggregate
2978           and then Nkind (Parent (N)) = N_Component_Association
2979           and then Is_Constrained (Typ)
2980         then
2981            --  We must check that the discriminant value imposed by the
2982            --  context is the same as the value given in the subaggregate,
2983            --  because after the expansion into assignments there is no
2984            --  record on which to perform a regular discriminant check.
2985
2986            declare
2987               D_Val : Elmt_Id;
2988               Disc  : Entity_Id;
2989
2990            begin
2991               D_Val := First_Elmt (Discriminant_Constraint (Typ));
2992               Disc  := First_Discriminant (Typ);
2993               while Chars (Disc) /= Chars (Selector) loop
2994                  Next_Discriminant (Disc);
2995                  Next_Elmt (D_Val);
2996               end loop;
2997
2998               pragma Assert (Present (D_Val));
2999
3000               --  This check cannot performed for components that are
3001               --  constrained by a current instance, because this is not a
3002               --  value that can be compared with the actual constraint.
3003
3004               if Nkind (Node (D_Val)) /= N_Attribute_Reference
3005                 or else not Is_Entity_Name (Prefix (Node (D_Val)))
3006                 or else not Is_Type (Entity (Prefix (Node (D_Val))))
3007               then
3008                  Append_To (L,
3009                  Make_Raise_Constraint_Error (Loc,
3010                    Condition =>
3011                      Make_Op_Ne (Loc,
3012                        Left_Opnd  => New_Copy_Tree (Node (D_Val)),
3013                        Right_Opnd => Expression (Comp)),
3014                    Reason    => CE_Discriminant_Check_Failed));
3015
3016               else
3017                  --  Find self-reference in previous discriminant assignment,
3018                  --  and replace with proper expression.
3019
3020                  declare
3021                     Ass : Node_Id;
3022
3023                  begin
3024                     Ass := First (L);
3025                     while Present (Ass) loop
3026                        if Nkind (Ass) = N_Assignment_Statement
3027                          and then Nkind (Name (Ass)) = N_Selected_Component
3028                          and then Chars (Selector_Name (Name (Ass))) =
3029                                                                 Chars (Disc)
3030                        then
3031                           Set_Expression
3032                             (Ass, New_Copy_Tree (Expression (Comp)));
3033                           exit;
3034                        end if;
3035                        Next (Ass);
3036                     end loop;
3037                  end;
3038               end if;
3039            end;
3040         end if;
3041
3042         Next (Comp);
3043      end loop;
3044
3045      --  If the type is tagged, the tag needs to be initialized (unless we
3046      --  are in VM-mode where tags are implicit). It is done late in the
3047      --  initialization process because in some cases, we call the init
3048      --  proc of an ancestor which will not leave out the right tag.
3049
3050      if Ancestor_Is_Expression then
3051         null;
3052
3053      --  For CPP types we generated a call to the C++ default constructor
3054      --  before the components have been initialized to ensure the proper
3055      --  initialization of the _Tag component (see above).
3056
3057      elsif Is_CPP_Class (Typ) then
3058         null;
3059
3060      elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
3061         Instr :=
3062           Make_OK_Assignment_Statement (Loc,
3063             Name =>
3064               Make_Selected_Component (Loc,
3065                 Prefix => New_Copy_Tree (Target),
3066                 Selector_Name =>
3067                   New_Occurrence_Of
3068                     (First_Tag_Component (Base_Type (Typ)), Loc)),
3069
3070             Expression =>
3071               Unchecked_Convert_To (RTE (RE_Tag),
3072                 New_Occurrence_Of
3073                   (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
3074                    Loc)));
3075
3076         Append_To (L, Instr);
3077
3078         --  Ada 2005 (AI-251): If the tagged type has been derived from an
3079         --  abstract interfaces we must also initialize the tags of the
3080         --  secondary dispatch tables.
3081
3082         if Has_Interfaces (Base_Type (Typ)) then
3083            Init_Secondary_Tags
3084              (Typ        => Base_Type (Typ),
3085               Target     => Target,
3086               Stmts_List => L);
3087         end if;
3088      end if;
3089
3090      --  If the controllers have not been initialized yet (by lack of non-
3091      --  discriminant components), let's do it now.
3092
3093      Generate_Finalization_Actions;
3094
3095      return L;
3096   end Build_Record_Aggr_Code;
3097
3098   ---------------------------------------
3099   -- Collect_Initialization_Statements --
3100   ---------------------------------------
3101
3102   procedure Collect_Initialization_Statements
3103     (Obj        : Entity_Id;
3104      N          : Node_Id;
3105      Node_After : Node_Id)
3106   is
3107      Loc          : constant Source_Ptr := Sloc (N);
3108      Init_Actions : constant List_Id    := New_List;
3109      Init_Node    : Node_Id;
3110      Comp_Stmt    : Node_Id;
3111
3112   begin
3113      --  Nothing to do if Obj is already frozen, as in this case we known we
3114      --  won't need to move the initialization statements about later on.
3115
3116      if Is_Frozen (Obj) then
3117         return;
3118      end if;
3119
3120      Init_Node := N;
3121      while Next (Init_Node) /= Node_After loop
3122         Append_To (Init_Actions, Remove_Next (Init_Node));
3123      end loop;
3124
3125      if not Is_Empty_List (Init_Actions) then
3126         Comp_Stmt := Make_Compound_Statement (Loc, Actions => Init_Actions);
3127         Insert_Action_After (Init_Node, Comp_Stmt);
3128         Set_Initialization_Statements (Obj, Comp_Stmt);
3129      end if;
3130   end Collect_Initialization_Statements;
3131
3132   -------------------------------
3133   -- Convert_Aggr_In_Allocator --
3134   -------------------------------
3135
3136   procedure Convert_Aggr_In_Allocator
3137     (Alloc :  Node_Id;
3138      Decl  :  Node_Id;
3139      Aggr  :  Node_Id)
3140   is
3141      Loc  : constant Source_Ptr := Sloc (Aggr);
3142      Typ  : constant Entity_Id  := Etype (Aggr);
3143      Temp : constant Entity_Id  := Defining_Identifier (Decl);
3144
3145      Occ  : constant Node_Id :=
3146        Unchecked_Convert_To (Typ,
3147          Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
3148
3149   begin
3150      if Is_Array_Type (Typ) then
3151         Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3152
3153      elsif Has_Default_Init_Comps (Aggr) then
3154         declare
3155            L          : constant List_Id := New_List;
3156            Init_Stmts : List_Id;
3157
3158         begin
3159            Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
3160
3161            if Has_Task (Typ) then
3162               Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
3163               Insert_Actions (Alloc, L);
3164            else
3165               Insert_Actions (Alloc, Init_Stmts);
3166            end if;
3167         end;
3168
3169      else
3170         Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
3171      end if;
3172   end Convert_Aggr_In_Allocator;
3173
3174   --------------------------------
3175   -- Convert_Aggr_In_Assignment --
3176   --------------------------------
3177
3178   procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3179      Aggr : Node_Id            := Expression (N);
3180      Typ  : constant Entity_Id := Etype (Aggr);
3181      Occ  : constant Node_Id   := New_Copy_Tree (Name (N));
3182
3183   begin
3184      if Nkind (Aggr) = N_Qualified_Expression then
3185         Aggr := Expression (Aggr);
3186      end if;
3187
3188      Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3189   end Convert_Aggr_In_Assignment;
3190
3191   ---------------------------------
3192   -- Convert_Aggr_In_Object_Decl --
3193   ---------------------------------
3194
3195   procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3196      Obj  : constant Entity_Id  := Defining_Identifier (N);
3197      Aggr : Node_Id             := Expression (N);
3198      Loc  : constant Source_Ptr := Sloc (Aggr);
3199      Typ  : constant Entity_Id  := Etype (Aggr);
3200      Occ  : constant Node_Id    := New_Occurrence_Of (Obj, Loc);
3201
3202      function Discriminants_Ok return Boolean;
3203      --  If the object type is constrained, the discriminants in the
3204      --  aggregate must be checked against the discriminants of the subtype.
3205      --  This cannot be done using Apply_Discriminant_Checks because after
3206      --  expansion there is no aggregate left to check.
3207
3208      ----------------------
3209      -- Discriminants_Ok --
3210      ----------------------
3211
3212      function Discriminants_Ok return Boolean is
3213         Cond  : Node_Id := Empty;
3214         Check : Node_Id;
3215         D     : Entity_Id;
3216         Disc1 : Elmt_Id;
3217         Disc2 : Elmt_Id;
3218         Val1  : Node_Id;
3219         Val2  : Node_Id;
3220
3221      begin
3222         D := First_Discriminant (Typ);
3223         Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3224         Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
3225         while Present (Disc1) and then Present (Disc2) loop
3226            Val1 := Node (Disc1);
3227            Val2 := Node (Disc2);
3228
3229            if not Is_OK_Static_Expression (Val1)
3230              or else not Is_OK_Static_Expression (Val2)
3231            then
3232               Check := Make_Op_Ne (Loc,
3233                 Left_Opnd  => Duplicate_Subexpr (Val1),
3234                 Right_Opnd => Duplicate_Subexpr (Val2));
3235
3236               if No (Cond) then
3237                  Cond := Check;
3238
3239               else
3240                  Cond := Make_Or_Else (Loc,
3241                    Left_Opnd => Cond,
3242                    Right_Opnd => Check);
3243               end if;
3244
3245            elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3246               Apply_Compile_Time_Constraint_Error (Aggr,
3247                 Msg    => "incorrect value for discriminant&??",
3248                 Reason => CE_Discriminant_Check_Failed,
3249                 Ent    => D);
3250               return False;
3251            end if;
3252
3253            Next_Discriminant (D);
3254            Next_Elmt (Disc1);
3255            Next_Elmt (Disc2);
3256         end loop;
3257
3258         --  If any discriminant constraint is non-static, emit a check
3259
3260         if Present (Cond) then
3261            Insert_Action (N,
3262              Make_Raise_Constraint_Error (Loc,
3263                Condition => Cond,
3264                Reason    => CE_Discriminant_Check_Failed));
3265         end if;
3266
3267         return True;
3268      end Discriminants_Ok;
3269
3270   --  Start of processing for Convert_Aggr_In_Object_Decl
3271
3272   begin
3273      Set_Assignment_OK (Occ);
3274
3275      if Nkind (Aggr) = N_Qualified_Expression then
3276         Aggr := Expression (Aggr);
3277      end if;
3278
3279      if Has_Discriminants (Typ)
3280        and then Typ /= Etype (Obj)
3281        and then Is_Constrained (Etype (Obj))
3282        and then not Discriminants_Ok
3283      then
3284         return;
3285      end if;
3286
3287      --  If the context is an extended return statement, it has its own
3288      --  finalization machinery (i.e. works like a transient scope) and
3289      --  we do not want to create an additional one, because objects on
3290      --  the finalization list of the return must be moved to the caller's
3291      --  finalization list to complete the return.
3292
3293      --  However, if the aggregate is limited, it is built in place, and the
3294      --  controlled components are not assigned to intermediate temporaries
3295      --  so there is no need for a transient scope in this case either.
3296
3297      if Requires_Transient_Scope (Typ)
3298        and then Ekind (Current_Scope) /= E_Return_Statement
3299        and then not Is_Limited_Type (Typ)
3300      then
3301         Establish_Transient_Scope
3302           (Aggr,
3303            Sec_Stack =>
3304              Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
3305      end if;
3306
3307      declare
3308         Node_After   : constant Node_Id := Next (N);
3309      begin
3310         Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
3311         Collect_Initialization_Statements (Obj, N, Node_After);
3312      end;
3313      Set_No_Initialization (N);
3314      Initialize_Discriminants (N, Typ);
3315   end Convert_Aggr_In_Object_Decl;
3316
3317   -------------------------------------
3318   -- Convert_Array_Aggr_In_Allocator --
3319   -------------------------------------
3320
3321   procedure Convert_Array_Aggr_In_Allocator
3322     (Decl   : Node_Id;
3323      Aggr   : Node_Id;
3324      Target : Node_Id)
3325   is
3326      Aggr_Code : List_Id;
3327      Typ       : constant Entity_Id := Etype (Aggr);
3328      Ctyp      : constant Entity_Id := Component_Type (Typ);
3329
3330   begin
3331      --  The target is an explicit dereference of the allocated object.
3332      --  Generate component assignments to it, as for an aggregate that
3333      --  appears on the right-hand side of an assignment statement.
3334
3335      Aggr_Code :=
3336        Build_Array_Aggr_Code (Aggr,
3337          Ctype       => Ctyp,
3338          Index       => First_Index (Typ),
3339          Into        => Target,
3340          Scalar_Comp => Is_Scalar_Type (Ctyp));
3341
3342      Insert_Actions_After (Decl, Aggr_Code);
3343   end Convert_Array_Aggr_In_Allocator;
3344
3345   ----------------------------
3346   -- Convert_To_Assignments --
3347   ----------------------------
3348
3349   procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
3350      Loc  : constant Source_Ptr := Sloc (N);
3351      T    : Entity_Id;
3352      Temp : Entity_Id;
3353
3354      Aggr_Code   : List_Id;
3355      Instr       : Node_Id;
3356      Target_Expr : Node_Id;
3357      Parent_Kind : Node_Kind;
3358      Unc_Decl    : Boolean := False;
3359      Parent_Node : Node_Id;
3360
3361   begin
3362      pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
3363      pragma Assert (Is_Record_Type (Typ));
3364
3365      Parent_Node := Parent (N);
3366      Parent_Kind := Nkind (Parent_Node);
3367
3368      if Parent_Kind = N_Qualified_Expression then
3369
3370         --  Check if we are in a unconstrained declaration because in this
3371         --  case the current delayed expansion mechanism doesn't work when
3372         --  the declared object size depend on the initializing expr.
3373
3374         begin
3375            Parent_Node := Parent (Parent_Node);
3376            Parent_Kind := Nkind (Parent_Node);
3377
3378            if Parent_Kind = N_Object_Declaration then
3379               Unc_Decl :=
3380                 not Is_Entity_Name (Object_Definition (Parent_Node))
3381                   or else Has_Discriminants
3382                             (Entity (Object_Definition (Parent_Node)))
3383                   or else Is_Class_Wide_Type
3384                             (Entity (Object_Definition (Parent_Node)));
3385            end if;
3386         end;
3387      end if;
3388
3389      --  Just set the Delay flag in the cases where the transformation will be
3390      --  done top down from above.
3391
3392      if False
3393
3394         --  Internal aggregate (transformed when expanding the parent)
3395
3396         or else Parent_Kind = N_Aggregate
3397         or else Parent_Kind = N_Extension_Aggregate
3398         or else Parent_Kind = N_Component_Association
3399
3400         --  Allocator (see Convert_Aggr_In_Allocator)
3401
3402         or else Parent_Kind = N_Allocator
3403
3404         --  Object declaration (see Convert_Aggr_In_Object_Decl)
3405
3406         or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
3407
3408         --  Safe assignment (see Convert_Aggr_Assignments). So far only the
3409         --  assignments in init procs are taken into account.
3410
3411         or else (Parent_Kind = N_Assignment_Statement
3412                   and then Inside_Init_Proc)
3413
3414         --  (Ada 2005) An inherently limited type in a return statement, which
3415         --  will be handled in a build-in-place fashion, and may be rewritten
3416         --  as an extended return and have its own finalization machinery.
3417         --  In the case of a simple return, the aggregate needs to be delayed
3418         --  until the scope for the return statement has been created, so
3419         --  that any finalization chain will be associated with that scope.
3420         --  For extended returns, we delay expansion to avoid the creation
3421         --  of an unwanted transient scope that could result in premature
3422         --  finalization of the return object (which is built in place
3423         --  within the caller's scope).
3424
3425         or else
3426           (Is_Limited_View (Typ)
3427             and then
3428               (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
3429                 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
3430      then
3431         Set_Expansion_Delayed (N);
3432         return;
3433      end if;
3434
3435      --  Otherwise, if a transient scope is required, create it now. If we
3436      --  are within an initialization procedure do not create such, because
3437      --  the target of the assignment must not be declared within a local
3438      --  block, and because cleanup will take place on return from the
3439      --  initialization procedure.
3440      --  Should the condition be more restrictive ???
3441
3442      if Requires_Transient_Scope (Typ) and then not Inside_Init_Proc then
3443         Establish_Transient_Scope (N, Sec_Stack => Needs_Finalization (Typ));
3444      end if;
3445
3446      --  If the aggregate is non-limited, create a temporary. If it is limited
3447      --  and context is an assignment, this is a subaggregate for an enclosing
3448      --  aggregate being expanded. It must be built in place, so use target of
3449      --  the current assignment.
3450
3451      if Is_Limited_Type (Typ)
3452        and then Nkind (Parent (N)) = N_Assignment_Statement
3453      then
3454         Target_Expr := New_Copy_Tree (Name (Parent (N)));
3455         Insert_Actions (Parent (N),
3456           Build_Record_Aggr_Code (N, Typ, Target_Expr));
3457         Rewrite (Parent (N), Make_Null_Statement (Loc));
3458
3459      else
3460         Temp := Make_Temporary (Loc, 'A', N);
3461
3462         --  If the type inherits unknown discriminants, use the view with
3463         --  known discriminants if available.
3464
3465         if Has_Unknown_Discriminants (Typ)
3466           and then Present (Underlying_Record_View (Typ))
3467         then
3468            T := Underlying_Record_View (Typ);
3469         else
3470            T := Typ;
3471         end if;
3472
3473         Instr :=
3474           Make_Object_Declaration (Loc,
3475             Defining_Identifier => Temp,
3476             Object_Definition   => New_Occurrence_Of (T, Loc));
3477
3478         Set_No_Initialization (Instr);
3479         Insert_Action (N, Instr);
3480         Initialize_Discriminants (Instr, T);
3481
3482         Target_Expr := New_Occurrence_Of (Temp, Loc);
3483         Aggr_Code   := Build_Record_Aggr_Code (N, T, Target_Expr);
3484
3485         --  Save the last assignment statement associated with the aggregate
3486         --  when building a controlled object. This reference is utilized by
3487         --  the finalization machinery when marking an object as successfully
3488         --  initialized.
3489
3490         if Needs_Finalization (T) then
3491            Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
3492         end if;
3493
3494         Insert_Actions (N, Aggr_Code);
3495         Rewrite (N, New_Occurrence_Of (Temp, Loc));
3496         Analyze_And_Resolve (N, T);
3497      end if;
3498   end Convert_To_Assignments;
3499
3500   ---------------------------
3501   -- Convert_To_Positional --
3502   ---------------------------
3503
3504   procedure Convert_To_Positional
3505     (N                    : Node_Id;
3506      Max_Others_Replicate : Nat     := 5;
3507      Handle_Bit_Packed    : Boolean := False)
3508   is
3509      Typ : constant Entity_Id := Etype (N);
3510
3511      Static_Components : Boolean := True;
3512
3513      procedure Check_Static_Components;
3514      --  Check whether all components of the aggregate are compile-time known
3515      --  values, and can be passed as is to the back-end without further
3516      --  expansion.
3517
3518      function Flatten
3519        (N   : Node_Id;
3520         Ix  : Node_Id;
3521         Ixb : Node_Id) return Boolean;
3522      --  Convert the aggregate into a purely positional form if possible. On
3523      --  entry the bounds of all dimensions are known to be static, and the
3524      --  total number of components is safe enough to expand.
3525
3526      function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
3527      --  Return True iff the array N is flat (which is not trivial in the case
3528      --  of multidimensional aggregates).
3529
3530      -----------------------------
3531      -- Check_Static_Components --
3532      -----------------------------
3533
3534      --  Could use some comments in this body ???
3535
3536      procedure Check_Static_Components is
3537         Expr : Node_Id;
3538
3539      begin
3540         Static_Components := True;
3541
3542         if Nkind (N) = N_String_Literal then
3543            null;
3544
3545         elsif Present (Expressions (N)) then
3546            Expr := First (Expressions (N));
3547            while Present (Expr) loop
3548               if Nkind (Expr) /= N_Aggregate
3549                 or else not Compile_Time_Known_Aggregate (Expr)
3550                 or else Expansion_Delayed (Expr)
3551               then
3552                  Static_Components := False;
3553                  exit;
3554               end if;
3555
3556               Next (Expr);
3557            end loop;
3558         end if;
3559
3560         if Nkind (N) = N_Aggregate
3561           and then  Present (Component_Associations (N))
3562         then
3563            Expr := First (Component_Associations (N));
3564            while Present (Expr) loop
3565               if Nkind_In (Expression (Expr), N_Integer_Literal,
3566                                               N_Real_Literal)
3567               then
3568                  null;
3569
3570               elsif Is_Entity_Name (Expression (Expr))
3571                 and then Present (Entity (Expression (Expr)))
3572                 and then Ekind (Entity (Expression (Expr))) =
3573                                                       E_Enumeration_Literal
3574               then
3575                  null;
3576
3577               elsif Nkind (Expression (Expr)) /= N_Aggregate
3578                 or else not Compile_Time_Known_Aggregate (Expression (Expr))
3579                 or else Expansion_Delayed (Expression (Expr))
3580               then
3581                  Static_Components := False;
3582                  exit;
3583               end if;
3584
3585               Next (Expr);
3586            end loop;
3587         end if;
3588      end Check_Static_Components;
3589
3590      -------------
3591      -- Flatten --
3592      -------------
3593
3594      function Flatten
3595        (N   : Node_Id;
3596         Ix  : Node_Id;
3597         Ixb : Node_Id) return Boolean
3598      is
3599         Loc : constant Source_Ptr := Sloc (N);
3600         Blo : constant Node_Id    := Type_Low_Bound (Etype (Ixb));
3601         Lo  : constant Node_Id    := Type_Low_Bound (Etype (Ix));
3602         Hi  : constant Node_Id    := Type_High_Bound (Etype (Ix));
3603         Lov : Uint;
3604         Hiv : Uint;
3605
3606         Others_Present : Boolean := False;
3607
3608      begin
3609         if Nkind (Original_Node (N)) = N_String_Literal then
3610            return True;
3611         end if;
3612
3613         if not Compile_Time_Known_Value (Lo)
3614           or else not Compile_Time_Known_Value (Hi)
3615         then
3616            return False;
3617         end if;
3618
3619         Lov := Expr_Value (Lo);
3620         Hiv := Expr_Value (Hi);
3621
3622         --  Check if there is an others choice
3623
3624         if Present (Component_Associations (N)) then
3625            declare
3626               Assoc   : Node_Id;
3627               Choice  : Node_Id;
3628
3629            begin
3630               Assoc := First (Component_Associations (N));
3631               while Present (Assoc) loop
3632
3633                  --  If this is a box association, flattening is in general
3634                  --  not possible because at this point we cannot tell if the
3635                  --  default is static or even exists.
3636
3637                  if Box_Present (Assoc) then
3638                     return False;
3639                  end if;
3640
3641                  Choice := First (Choices (Assoc));
3642
3643                  while Present (Choice) loop
3644                     if Nkind (Choice) = N_Others_Choice then
3645                        Others_Present := True;
3646                     end if;
3647
3648                     Next (Choice);
3649                  end loop;
3650
3651                  Next (Assoc);
3652               end loop;
3653            end;
3654         end if;
3655
3656         --  If the low bound is not known at compile time and others is not
3657         --  present we can proceed since the bounds can be obtained from the
3658         --  aggregate.
3659
3660         --  Note: This case is required in VM platforms since their backends
3661         --  normalize array indexes in the range 0 .. N-1. Hence, if we do
3662         --  not flat an array whose bounds cannot be obtained from the type
3663         --  of the index the backend has no way to properly generate the code.
3664         --  See ACATS c460010 for an example.
3665
3666         if Hiv < Lov
3667           or else (not Compile_Time_Known_Value (Blo) and then Others_Present)
3668         then
3669            return False;
3670         end if;
3671
3672         --  Determine if set of alternatives is suitable for conversion and
3673         --  build an array containing the values in sequence.
3674
3675         declare
3676            Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
3677                     of Node_Id := (others => Empty);
3678            --  The values in the aggregate sorted appropriately
3679
3680            Vlist : List_Id;
3681            --  Same data as Vals in list form
3682
3683            Rep_Count : Nat;
3684            --  Used to validate Max_Others_Replicate limit
3685
3686            Elmt         : Node_Id;
3687            Num          : Int := UI_To_Int (Lov);
3688            Choice_Index : Int;
3689            Choice       : Node_Id;
3690            Lo, Hi       : Node_Id;
3691
3692         begin
3693            if Present (Expressions (N)) then
3694               Elmt := First (Expressions (N));
3695               while Present (Elmt) loop
3696                  if Nkind (Elmt) = N_Aggregate
3697                    and then Present (Next_Index (Ix))
3698                    and then
3699                      not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
3700                  then
3701                     return False;
3702                  end if;
3703
3704                  Vals (Num) := Relocate_Node (Elmt);
3705                  Num := Num + 1;
3706
3707                  Next (Elmt);
3708               end loop;
3709            end if;
3710
3711            if No (Component_Associations (N)) then
3712               return True;
3713            end if;
3714
3715            Elmt := First (Component_Associations (N));
3716
3717            if Nkind (Expression (Elmt)) = N_Aggregate then
3718               if Present (Next_Index (Ix))
3719                 and then
3720                   not Flatten
3721                         (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
3722               then
3723                  return False;
3724               end if;
3725            end if;
3726
3727            Component_Loop : while Present (Elmt) loop
3728               Choice := First (Choices (Elmt));
3729               Choice_Loop : while Present (Choice) loop
3730
3731                  --  If we have an others choice, fill in the missing elements
3732                  --  subject to the limit established by Max_Others_Replicate.
3733
3734                  if Nkind (Choice) = N_Others_Choice then
3735                     Rep_Count := 0;
3736
3737                     for J in Vals'Range loop
3738                        if No (Vals (J)) then
3739                           Vals (J) := New_Copy_Tree (Expression (Elmt));
3740                           Rep_Count := Rep_Count + 1;
3741
3742                           --  Check for maximum others replication. Note that
3743                           --  we skip this test if either of the restrictions
3744                           --  No_Elaboration_Code or No_Implicit_Loops is
3745                           --  active, if this is a preelaborable unit or
3746                           --  a predefined unit, or if the unit must be
3747                           --  placed in data memory. This also ensures that
3748                           --  predefined units get the same level of constant
3749                           --  folding in Ada 95 and Ada 2005, where their
3750                           --  categorization has changed.
3751
3752                           declare
3753                              P : constant Entity_Id :=
3754                                Cunit_Entity (Current_Sem_Unit);
3755
3756                           begin
3757                              --  Check if duplication OK and if so continue
3758                              --  processing.
3759
3760                              if Restriction_Active (No_Elaboration_Code)
3761                                or else Restriction_Active (No_Implicit_Loops)
3762                                or else
3763                                  (Ekind (Current_Scope) = E_Package
3764                                    and then Static_Elaboration_Desired
3765                                               (Current_Scope))
3766                                or else Is_Preelaborated (P)
3767                                or else (Ekind (P) = E_Package_Body
3768                                          and then
3769                                            Is_Preelaborated (Spec_Entity (P)))
3770                                or else
3771                                  Is_Predefined_File_Name
3772                                    (Unit_File_Name (Get_Source_Unit (P)))
3773                              then
3774                                 null;
3775
3776                              --  If duplication not OK, then we return False
3777                              --  if the replication count is too high
3778
3779                              elsif Rep_Count > Max_Others_Replicate then
3780                                 return False;
3781
3782                              --  Continue on if duplication not OK, but the
3783                              --  replication count is not excessive.
3784
3785                              else
3786                                 null;
3787                              end if;
3788                           end;
3789                        end if;
3790                     end loop;
3791
3792                     exit Component_Loop;
3793
3794                  --  Case of a subtype mark, identifier or expanded name
3795
3796                  elsif Is_Entity_Name (Choice)
3797                    and then Is_Type (Entity (Choice))
3798                  then
3799                     Lo := Type_Low_Bound  (Etype (Choice));
3800                     Hi := Type_High_Bound (Etype (Choice));
3801
3802                  --  Case of subtype indication
3803
3804                  elsif Nkind (Choice) = N_Subtype_Indication then
3805                     Lo := Low_Bound  (Range_Expression (Constraint (Choice)));
3806                     Hi := High_Bound (Range_Expression (Constraint (Choice)));
3807
3808                  --  Case of a range
3809
3810                  elsif Nkind (Choice) = N_Range then
3811                     Lo := Low_Bound (Choice);
3812                     Hi := High_Bound (Choice);
3813
3814                  --  Normal subexpression case
3815
3816                  else pragma Assert (Nkind (Choice) in N_Subexpr);
3817                     if not Compile_Time_Known_Value (Choice) then
3818                        return False;
3819
3820                     else
3821                        Choice_Index := UI_To_Int (Expr_Value (Choice));
3822
3823                        if Choice_Index in Vals'Range then
3824                           Vals (Choice_Index) :=
3825                             New_Copy_Tree (Expression (Elmt));
3826                           goto Continue;
3827
3828                        --  Choice is statically out-of-range, will be
3829                        --  rewritten to raise Constraint_Error.
3830
3831                        else
3832                           return False;
3833                        end if;
3834                     end if;
3835                  end if;
3836
3837                  --  Range cases merge with Lo,Hi set
3838
3839                  if not Compile_Time_Known_Value (Lo)
3840                       or else
3841                     not Compile_Time_Known_Value (Hi)
3842                  then
3843                     return False;
3844
3845                  else
3846                     for J in UI_To_Int (Expr_Value (Lo)) ..
3847                              UI_To_Int (Expr_Value (Hi))
3848                     loop
3849                        Vals (J) := New_Copy_Tree (Expression (Elmt));
3850                     end loop;
3851                  end if;
3852
3853               <<Continue>>
3854                  Next (Choice);
3855               end loop Choice_Loop;
3856
3857               Next (Elmt);
3858            end loop Component_Loop;
3859
3860            --  If we get here the conversion is possible
3861
3862            Vlist := New_List;
3863            for J in Vals'Range loop
3864               Append (Vals (J), Vlist);
3865            end loop;
3866
3867            Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
3868            Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
3869            return True;
3870         end;
3871      end Flatten;
3872
3873      -------------
3874      -- Is_Flat --
3875      -------------
3876
3877      function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
3878         Elmt : Node_Id;
3879
3880      begin
3881         if Dims = 0 then
3882            return True;
3883
3884         elsif Nkind (N) = N_Aggregate then
3885            if Present (Component_Associations (N)) then
3886               return False;
3887
3888            else
3889               Elmt := First (Expressions (N));
3890               while Present (Elmt) loop
3891                  if not Is_Flat (Elmt, Dims - 1) then
3892                     return False;
3893                  end if;
3894
3895                  Next (Elmt);
3896               end loop;
3897
3898               return True;
3899            end if;
3900         else
3901            return True;
3902         end if;
3903      end Is_Flat;
3904
3905   --  Start of processing for Convert_To_Positional
3906
3907   begin
3908      --  Ada 2005 (AI-287): Do not convert in case of default initialized
3909      --  components because in this case will need to call the corresponding
3910      --  IP procedure.
3911
3912      if Has_Default_Init_Comps (N) then
3913         return;
3914      end if;
3915
3916      if Is_Flat (N, Number_Dimensions (Typ)) then
3917         return;
3918      end if;
3919
3920      if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
3921         return;
3922      end if;
3923
3924      --  Do not convert to positional if controlled components are involved
3925      --  since these require special processing
3926
3927      if Has_Controlled_Component (Typ) then
3928         return;
3929      end if;
3930
3931      Check_Static_Components;
3932
3933      --  If the size is known, or all the components are static, try to
3934      --  build a fully positional aggregate.
3935
3936      --  The size of the type  may not be known for an aggregate with
3937      --  discriminated array components, but if the components are static
3938      --  it is still possible to verify statically that the length is
3939      --  compatible with the upper bound of the type, and therefore it is
3940      --  worth flattening such aggregates as well.
3941
3942      --  For now the back-end expands these aggregates into individual
3943      --  assignments to the target anyway, but it is conceivable that
3944      --  it will eventually be able to treat such aggregates statically???
3945
3946      if Aggr_Size_OK (N, Typ)
3947        and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
3948      then
3949         if Static_Components then
3950            Set_Compile_Time_Known_Aggregate (N);
3951            Set_Expansion_Delayed (N, False);
3952         end if;
3953
3954         Analyze_And_Resolve (N, Typ);
3955      end if;
3956
3957      --  Is Static_Eaboration_Desired has been specified, diagnose aggregates
3958      --  that will still require initialization code.
3959
3960      if (Ekind (Current_Scope) = E_Package
3961        and then Static_Elaboration_Desired (Current_Scope))
3962        and then Nkind (Parent (N)) = N_Object_Declaration
3963      then
3964         declare
3965            Expr : Node_Id;
3966
3967         begin
3968            if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
3969               Expr := First (Expressions (N));
3970               while Present (Expr) loop
3971                  if Nkind_In (Expr, N_Integer_Literal, N_Real_Literal)
3972                    or else
3973                      (Is_Entity_Name (Expr)
3974                        and then Ekind (Entity (Expr)) = E_Enumeration_Literal)
3975                  then
3976                     null;
3977
3978                  else
3979                     Error_Msg_N
3980                       ("non-static object  requires elaboration code??", N);
3981                     exit;
3982                  end if;
3983
3984                  Next (Expr);
3985               end loop;
3986
3987               if Present (Component_Associations (N)) then
3988                  Error_Msg_N ("object requires elaboration code??", N);
3989               end if;
3990            end if;
3991         end;
3992      end if;
3993   end Convert_To_Positional;
3994
3995   ----------------------------
3996   -- Expand_Array_Aggregate --
3997   ----------------------------
3998
3999   --  Array aggregate expansion proceeds as follows:
4000
4001   --  1. If requested we generate code to perform all the array aggregate
4002   --     bound checks, specifically
4003
4004   --         (a) Check that the index range defined by aggregate bounds is
4005   --             compatible with corresponding index subtype.
4006
4007   --         (b) If an others choice is present check that no aggregate
4008   --             index is outside the bounds of the index constraint.
4009
4010   --         (c) For multidimensional arrays make sure that all subaggregates
4011   --             corresponding to the same dimension have the same bounds.
4012
4013   --  2. Check for packed array aggregate which can be converted to a
4014   --     constant so that the aggregate disappears completely.
4015
4016   --  3. Check case of nested aggregate. Generally nested aggregates are
4017   --     handled during the processing of the parent aggregate.
4018
4019   --  4. Check if the aggregate can be statically processed. If this is the
4020   --     case pass it as is to Gigi. Note that a necessary condition for
4021   --     static processing is that the aggregate be fully positional.
4022
4023   --  5. If in place aggregate expansion is possible (i.e. no need to create
4024   --     a temporary) then mark the aggregate as such and return. Otherwise
4025   --     create a new temporary and generate the appropriate initialization
4026   --     code.
4027
4028   procedure Expand_Array_Aggregate (N : Node_Id) is
4029      Loc : constant Source_Ptr := Sloc (N);
4030
4031      Typ  : constant Entity_Id := Etype (N);
4032      Ctyp : constant Entity_Id := Component_Type (Typ);
4033      --  Typ is the correct constrained array subtype of the aggregate
4034      --  Ctyp is the corresponding component type.
4035
4036      Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
4037      --  Number of aggregate index dimensions
4038
4039      Aggr_Low  : array (1 .. Aggr_Dimension) of Node_Id;
4040      Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
4041      --  Low and High bounds of the constraint for each aggregate index
4042
4043      Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
4044      --  The type of each index
4045
4046      In_Place_Assign_OK_For_Declaration : Boolean := False;
4047      --  True if we are to generate an in place assignment for a declaration
4048
4049      Maybe_In_Place_OK : Boolean;
4050      --  If the type is neither controlled nor packed and the aggregate
4051      --  is the expression in an assignment, assignment in place may be
4052      --  possible, provided other conditions are met on the LHS.
4053
4054      Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
4055        (others => False);
4056      --  If Others_Present (J) is True, then there is an others choice
4057      --  in one of the sub-aggregates of N at dimension J.
4058
4059      function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean;
4060      --  Returns true if an aggregate assignment can be done by the back end
4061
4062      procedure Build_Constrained_Type (Positional : Boolean);
4063      --  If the subtype is not static or unconstrained, build a constrained
4064      --  type using the computable sizes of the aggregate and its sub-
4065      --  aggregates.
4066
4067      procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
4068      --  Checks that the bounds of Aggr_Bounds are within the bounds defined
4069      --  by Index_Bounds.
4070
4071      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
4072      --  Checks that in a multi-dimensional array aggregate all subaggregates
4073      --  corresponding to the same dimension have the same bounds.
4074      --  Sub_Aggr is an array sub-aggregate. Dim is the dimension
4075      --  corresponding to the sub-aggregate.
4076
4077      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
4078      --  Computes the values of array Others_Present. Sub_Aggr is the
4079      --  array sub-aggregate we start the computation from. Dim is the
4080      --  dimension corresponding to the sub-aggregate.
4081
4082      function In_Place_Assign_OK return Boolean;
4083      --  Simple predicate to determine whether an aggregate assignment can
4084      --  be done in place, because none of the new values can depend on the
4085      --  components of the target of the assignment.
4086
4087      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
4088      --  Checks that if an others choice is present in any sub-aggregate no
4089      --  aggregate index is outside the bounds of the index constraint.
4090      --  Sub_Aggr is an array sub-aggregate. Dim is the dimension
4091      --  corresponding to the sub-aggregate.
4092
4093      function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
4094      --  In addition to Maybe_In_Place_OK, in order for an aggregate to be
4095      --  built directly into the target of the assignment it must be free
4096      --  of side-effects.
4097
4098      ------------------------------------
4099      -- Aggr_Assignment_OK_For_Backend --
4100      ------------------------------------
4101
4102      --  Backend processing by Gigi/gcc is possible only if all the following
4103      --  conditions are met:
4104
4105      --    1. N consists of a single OTHERS choice, possibly recursively
4106
4107      --    2. The array type is not packed
4108
4109      --    3. The array type has no atomic components
4110
4111      --    4. The array type has no null ranges (the purpose of this is to
4112      --       avoid a bogus warning for an out-of-range value).
4113
4114      --    5. The component type is discrete
4115
4116      --    6. The component size is Storage_Unit or the value is of the form
4117      --       M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
4118      --       and M in 1 .. A-1. This can also be viewed as K occurrences of
4119      --       the 8-bit value M, concatenated together.
4120
4121      --  The ultimate goal is to generate a call to a fast memset routine
4122      --  specifically optimized for the target.
4123
4124      function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is
4125         Ctyp      : Entity_Id;
4126         Index     : Entity_Id;
4127         Expr      : Node_Id := N;
4128         Low       : Node_Id;
4129         High      : Node_Id;
4130         Remainder : Uint;
4131         Value     : Uint;
4132         Nunits    : Nat;
4133
4134      begin
4135         --  Recurse as far as possible to find the innermost component type
4136
4137         Ctyp := Etype (N);
4138         while Is_Array_Type (Ctyp) loop
4139            if Nkind (Expr) /= N_Aggregate
4140              or else not Is_Others_Aggregate (Expr)
4141            then
4142               return False;
4143            end if;
4144
4145            if Present (Packed_Array_Impl_Type (Ctyp)) then
4146               return False;
4147            end if;
4148
4149            if Has_Atomic_Components (Ctyp) then
4150               return False;
4151            end if;
4152
4153            Index := First_Index (Ctyp);
4154            while Present (Index) loop
4155               Get_Index_Bounds (Index, Low, High);
4156
4157               if Is_Null_Range (Low, High) then
4158                  return False;
4159               end if;
4160
4161               Next_Index (Index);
4162            end loop;
4163
4164            Expr := Expression (First (Component_Associations (Expr)));
4165
4166            for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
4167               if Nkind (Expr) /= N_Aggregate
4168                 or else not Is_Others_Aggregate (Expr)
4169               then
4170                  return False;
4171               end if;
4172
4173               Expr := Expression (First (Component_Associations (Expr)));
4174            end loop;
4175
4176            Ctyp := Component_Type (Ctyp);
4177
4178            if Is_Atomic (Ctyp) then
4179               return False;
4180            end if;
4181         end loop;
4182
4183         if not Is_Discrete_Type (Ctyp) then
4184            return False;
4185         end if;
4186
4187         --  The expression needs to be analyzed if True is returned
4188
4189         Analyze_And_Resolve (Expr, Ctyp);
4190
4191         --  The back end uses the Esize as the precision of the type
4192
4193         Nunits := UI_To_Int (Esize (Ctyp)) / System_Storage_Unit;
4194
4195         if Nunits = 1 then
4196            return True;
4197         end if;
4198
4199         if not Compile_Time_Known_Value (Expr) then
4200            return False;
4201         end if;
4202
4203         Value := Expr_Value (Expr);
4204
4205         if Has_Biased_Representation (Ctyp) then
4206            Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
4207         end if;
4208
4209         --  Values 0 and -1 immediately satisfy the last check
4210
4211         if Value = Uint_0 or else Value = Uint_Minus_1 then
4212            return True;
4213         end if;
4214
4215         --  We need to work with an unsigned value
4216
4217         if Value < 0 then
4218            Value := Value + 2**(System_Storage_Unit * Nunits);
4219         end if;
4220
4221         Remainder := Value rem 2**System_Storage_Unit;
4222
4223         for J in 1 .. Nunits - 1 loop
4224            Value := Value / 2**System_Storage_Unit;
4225
4226            if Value rem 2**System_Storage_Unit /= Remainder then
4227               return False;
4228            end if;
4229         end loop;
4230
4231         return True;
4232      end Aggr_Assignment_OK_For_Backend;
4233
4234      ----------------------------
4235      -- Build_Constrained_Type --
4236      ----------------------------
4237
4238      procedure Build_Constrained_Type (Positional : Boolean) is
4239         Loc      : constant Source_Ptr := Sloc (N);
4240         Agg_Type : constant Entity_Id  := Make_Temporary (Loc, 'A');
4241         Comp     : Node_Id;
4242         Decl     : Node_Id;
4243         Typ      : constant Entity_Id := Etype (N);
4244         Indexes  : constant List_Id   := New_List;
4245         Num      : Int;
4246         Sub_Agg  : Node_Id;
4247
4248      begin
4249         --  If the aggregate is purely positional, all its subaggregates
4250         --  have the same size. We collect the dimensions from the first
4251         --  subaggregate at each level.
4252
4253         if Positional then
4254            Sub_Agg := N;
4255
4256            for D in 1 .. Number_Dimensions (Typ) loop
4257               Sub_Agg := First (Expressions (Sub_Agg));
4258
4259               Comp := Sub_Agg;
4260               Num := 0;
4261               while Present (Comp) loop
4262                  Num := Num + 1;
4263                  Next (Comp);
4264               end loop;
4265
4266               Append_To (Indexes,
4267                 Make_Range (Loc,
4268                   Low_Bound  => Make_Integer_Literal (Loc, 1),
4269                   High_Bound => Make_Integer_Literal (Loc, Num)));
4270            end loop;
4271
4272         else
4273            --  We know the aggregate type is unconstrained and the aggregate
4274            --  is not processable by the back end, therefore not necessarily
4275            --  positional. Retrieve each dimension bounds (computed earlier).
4276
4277            for D in 1 .. Number_Dimensions (Typ) loop
4278               Append_To (Indexes,
4279                 Make_Range (Loc,
4280                   Low_Bound  => Aggr_Low  (D),
4281                   High_Bound => Aggr_High (D)));
4282            end loop;
4283         end if;
4284
4285         Decl :=
4286           Make_Full_Type_Declaration (Loc,
4287               Defining_Identifier => Agg_Type,
4288               Type_Definition     =>
4289                 Make_Constrained_Array_Definition (Loc,
4290                   Discrete_Subtype_Definitions => Indexes,
4291                   Component_Definition         =>
4292                     Make_Component_Definition (Loc,
4293                       Aliased_Present    => False,
4294                       Subtype_Indication =>
4295                         New_Occurrence_Of (Component_Type (Typ), Loc))));
4296
4297         Insert_Action (N, Decl);
4298         Analyze (Decl);
4299         Set_Etype (N, Agg_Type);
4300         Set_Is_Itype (Agg_Type);
4301         Freeze_Itype (Agg_Type, N);
4302      end Build_Constrained_Type;
4303
4304      ------------------
4305      -- Check_Bounds --
4306      ------------------
4307
4308      procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
4309         Aggr_Lo : Node_Id;
4310         Aggr_Hi : Node_Id;
4311
4312         Ind_Lo  : Node_Id;
4313         Ind_Hi  : Node_Id;
4314
4315         Cond    : Node_Id := Empty;
4316
4317      begin
4318         Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
4319         Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
4320
4321         --  Generate the following test:
4322
4323         --    [constraint_error when
4324         --      Aggr_Lo <= Aggr_Hi and then
4325         --        (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
4326
4327         --  As an optimization try to see if some tests are trivially vacuous
4328         --  because we are comparing an expression against itself.
4329
4330         if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
4331            Cond := Empty;
4332
4333         elsif Aggr_Hi = Ind_Hi then
4334            Cond :=
4335              Make_Op_Lt (Loc,
4336                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4337                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
4338
4339         elsif Aggr_Lo = Ind_Lo then
4340            Cond :=
4341              Make_Op_Gt (Loc,
4342                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4343                Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
4344
4345         else
4346            Cond :=
4347              Make_Or_Else (Loc,
4348                Left_Opnd =>
4349                  Make_Op_Lt (Loc,
4350                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4351                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
4352
4353                Right_Opnd =>
4354                  Make_Op_Gt (Loc,
4355                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
4356                    Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
4357         end if;
4358
4359         if Present (Cond) then
4360            Cond :=
4361              Make_And_Then (Loc,
4362                Left_Opnd =>
4363                  Make_Op_Le (Loc,
4364                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4365                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
4366
4367                Right_Opnd => Cond);
4368
4369            Set_Analyzed (Left_Opnd  (Left_Opnd (Cond)), False);
4370            Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
4371            Insert_Action (N,
4372              Make_Raise_Constraint_Error (Loc,
4373                Condition => Cond,
4374                Reason    => CE_Range_Check_Failed));
4375         end if;
4376      end Check_Bounds;
4377
4378      ----------------------------
4379      -- Check_Same_Aggr_Bounds --
4380      ----------------------------
4381
4382      procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
4383         Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
4384         Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
4385         --  The bounds of this specific sub-aggregate
4386
4387         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4388         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4389         --  The bounds of the aggregate for this dimension
4390
4391         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4392         --  The index type for this dimension.xxx
4393
4394         Cond  : Node_Id := Empty;
4395         Assoc : Node_Id;
4396         Expr  : Node_Id;
4397
4398      begin
4399         --  If index checks are on generate the test
4400
4401         --    [constraint_error when
4402         --      Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
4403
4404         --  As an optimization try to see if some tests are trivially vacuos
4405         --  because we are comparing an expression against itself. Also for
4406         --  the first dimension the test is trivially vacuous because there
4407         --  is just one aggregate for dimension 1.
4408
4409         if Index_Checks_Suppressed (Ind_Typ) then
4410            Cond := Empty;
4411
4412         elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
4413         then
4414            Cond := Empty;
4415
4416         elsif Aggr_Hi = Sub_Hi then
4417            Cond :=
4418              Make_Op_Ne (Loc,
4419                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4420                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
4421
4422         elsif Aggr_Lo = Sub_Lo then
4423            Cond :=
4424              Make_Op_Ne (Loc,
4425                Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
4426                Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
4427
4428         else
4429            Cond :=
4430              Make_Or_Else (Loc,
4431                Left_Opnd =>
4432                  Make_Op_Ne (Loc,
4433                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
4434                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
4435
4436                Right_Opnd =>
4437                  Make_Op_Ne (Loc,
4438                    Left_Opnd  => Duplicate_Subexpr (Aggr_Hi),
4439                    Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
4440         end if;
4441
4442         if Present (Cond) then
4443            Insert_Action (N,
4444              Make_Raise_Constraint_Error (Loc,
4445                Condition => Cond,
4446                Reason    => CE_Length_Check_Failed));
4447         end if;
4448
4449         --  Now look inside the sub-aggregate to see if there is more work
4450
4451         if Dim < Aggr_Dimension then
4452
4453            --  Process positional components
4454
4455            if Present (Expressions (Sub_Aggr)) then
4456               Expr := First (Expressions (Sub_Aggr));
4457               while Present (Expr) loop
4458                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
4459                  Next (Expr);
4460               end loop;
4461            end if;
4462
4463            --  Process component associations
4464
4465            if Present (Component_Associations (Sub_Aggr)) then
4466               Assoc := First (Component_Associations (Sub_Aggr));
4467               while Present (Assoc) loop
4468                  Expr := Expression (Assoc);
4469                  Check_Same_Aggr_Bounds (Expr, Dim + 1);
4470                  Next (Assoc);
4471               end loop;
4472            end if;
4473         end if;
4474      end Check_Same_Aggr_Bounds;
4475
4476      ----------------------------
4477      -- Compute_Others_Present --
4478      ----------------------------
4479
4480      procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
4481         Assoc : Node_Id;
4482         Expr  : Node_Id;
4483
4484      begin
4485         if Present (Component_Associations (Sub_Aggr)) then
4486            Assoc := Last (Component_Associations (Sub_Aggr));
4487
4488            if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4489               Others_Present (Dim) := True;
4490            end if;
4491         end if;
4492
4493         --  Now look inside the sub-aggregate to see if there is more work
4494
4495         if Dim < Aggr_Dimension then
4496
4497            --  Process positional components
4498
4499            if Present (Expressions (Sub_Aggr)) then
4500               Expr := First (Expressions (Sub_Aggr));
4501               while Present (Expr) loop
4502                  Compute_Others_Present (Expr, Dim + 1);
4503                  Next (Expr);
4504               end loop;
4505            end if;
4506
4507            --  Process component associations
4508
4509            if Present (Component_Associations (Sub_Aggr)) then
4510               Assoc := First (Component_Associations (Sub_Aggr));
4511               while Present (Assoc) loop
4512                  Expr := Expression (Assoc);
4513                  Compute_Others_Present (Expr, Dim + 1);
4514                  Next (Assoc);
4515               end loop;
4516            end if;
4517         end if;
4518      end Compute_Others_Present;
4519
4520      ------------------------
4521      -- In_Place_Assign_OK --
4522      ------------------------
4523
4524      function In_Place_Assign_OK return Boolean is
4525         Aggr_In : Node_Id;
4526         Aggr_Lo : Node_Id;
4527         Aggr_Hi : Node_Id;
4528         Obj_In  : Node_Id;
4529         Obj_Lo  : Node_Id;
4530         Obj_Hi  : Node_Id;
4531
4532         function Safe_Aggregate (Aggr : Node_Id) return Boolean;
4533         --  Check recursively that each component of a (sub)aggregate does
4534         --  not depend on the variable being assigned to.
4535
4536         function Safe_Component (Expr : Node_Id) return Boolean;
4537         --  Verify that an expression cannot depend on the variable being
4538         --  assigned to. Room for improvement here (but less than before).
4539
4540         --------------------
4541         -- Safe_Aggregate --
4542         --------------------
4543
4544         function Safe_Aggregate (Aggr : Node_Id) return Boolean is
4545            Expr : Node_Id;
4546
4547         begin
4548            if Present (Expressions (Aggr)) then
4549               Expr := First (Expressions (Aggr));
4550               while Present (Expr) loop
4551                  if Nkind (Expr) = N_Aggregate then
4552                     if not Safe_Aggregate (Expr) then
4553                        return False;
4554                     end if;
4555
4556                  elsif not Safe_Component (Expr) then
4557                     return False;
4558                  end if;
4559
4560                  Next (Expr);
4561               end loop;
4562            end if;
4563
4564            if Present (Component_Associations (Aggr)) then
4565               Expr := First (Component_Associations (Aggr));
4566               while Present (Expr) loop
4567                  if Nkind (Expression (Expr)) = N_Aggregate then
4568                     if not Safe_Aggregate (Expression (Expr)) then
4569                        return False;
4570                     end if;
4571
4572                  --  If association has a box, no way to determine yet
4573                  --  whether default can be assigned in place.
4574
4575                  elsif Box_Present (Expr) then
4576                     return False;
4577
4578                  elsif not Safe_Component (Expression (Expr)) then
4579                     return False;
4580                  end if;
4581
4582                  Next (Expr);
4583               end loop;
4584            end if;
4585
4586            return True;
4587         end Safe_Aggregate;
4588
4589         --------------------
4590         -- Safe_Component --
4591         --------------------
4592
4593         function Safe_Component (Expr : Node_Id) return Boolean is
4594            Comp : Node_Id := Expr;
4595
4596            function Check_Component (Comp : Node_Id) return Boolean;
4597            --  Do the recursive traversal, after copy
4598
4599            ---------------------
4600            -- Check_Component --
4601            ---------------------
4602
4603            function Check_Component (Comp : Node_Id) return Boolean is
4604            begin
4605               if Is_Overloaded (Comp) then
4606                  return False;
4607               end if;
4608
4609               return Compile_Time_Known_Value (Comp)
4610
4611                 or else (Is_Entity_Name (Comp)
4612                           and then Present (Entity (Comp))
4613                           and then No (Renamed_Object (Entity (Comp))))
4614
4615                 or else (Nkind (Comp) = N_Attribute_Reference
4616                           and then Check_Component (Prefix (Comp)))
4617
4618                 or else (Nkind (Comp) in N_Binary_Op
4619                           and then Check_Component (Left_Opnd  (Comp))
4620                           and then Check_Component (Right_Opnd (Comp)))
4621
4622                 or else (Nkind (Comp) in N_Unary_Op
4623                           and then Check_Component (Right_Opnd (Comp)))
4624
4625                 or else (Nkind (Comp) = N_Selected_Component
4626                           and then Check_Component (Prefix (Comp)))
4627
4628                 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
4629                           and then Check_Component (Expression (Comp)));
4630            end Check_Component;
4631
4632         --  Start of processing for Safe_Component
4633
4634         begin
4635            --  If the component appears in an association that may correspond
4636            --  to more than one element, it is not analyzed before expansion
4637            --  into assignments, to avoid side effects. We analyze, but do not
4638            --  resolve the copy, to obtain sufficient entity information for
4639            --  the checks that follow. If component is overloaded we assume
4640            --  an unsafe function call.
4641
4642            if not Analyzed (Comp) then
4643               if Is_Overloaded (Expr) then
4644                  return False;
4645
4646               elsif Nkind (Expr) = N_Aggregate
4647                  and then not Is_Others_Aggregate (Expr)
4648               then
4649                  return False;
4650
4651               elsif Nkind (Expr) = N_Allocator then
4652
4653                  --  For now, too complex to analyze
4654
4655                  return False;
4656               end if;
4657
4658               Comp := New_Copy_Tree (Expr);
4659               Set_Parent (Comp, Parent (Expr));
4660               Analyze (Comp);
4661            end if;
4662
4663            if Nkind (Comp) = N_Aggregate then
4664               return Safe_Aggregate (Comp);
4665            else
4666               return Check_Component (Comp);
4667            end if;
4668         end Safe_Component;
4669
4670      --  Start of processing for In_Place_Assign_OK
4671
4672      begin
4673         if Present (Component_Associations (N)) then
4674
4675            --  On assignment, sliding can take place, so we cannot do the
4676            --  assignment in place unless the bounds of the aggregate are
4677            --  statically equal to those of the target.
4678
4679            --  If the aggregate is given by an others choice, the bounds are
4680            --  derived from the left-hand side, and the assignment is safe if
4681            --  the expression is.
4682
4683            if Is_Others_Aggregate (N) then
4684               return
4685                 Safe_Component
4686                  (Expression (First (Component_Associations (N))));
4687            end if;
4688
4689            Aggr_In := First_Index (Etype (N));
4690
4691            if Nkind (Parent (N)) = N_Assignment_Statement then
4692               Obj_In  := First_Index (Etype (Name (Parent (N))));
4693
4694            else
4695               --  Context is an allocator. Check bounds of aggregate against
4696               --  given type in qualified expression.
4697
4698               pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
4699               Obj_In :=
4700                 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
4701            end if;
4702
4703            while Present (Aggr_In) loop
4704               Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
4705               Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
4706
4707               if not Compile_Time_Known_Value (Aggr_Lo)
4708                 or else not Compile_Time_Known_Value (Aggr_Hi)
4709                 or else not Compile_Time_Known_Value (Obj_Lo)
4710                 or else not Compile_Time_Known_Value (Obj_Hi)
4711                 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
4712                 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
4713               then
4714                  return False;
4715               end if;
4716
4717               Next_Index (Aggr_In);
4718               Next_Index (Obj_In);
4719            end loop;
4720         end if;
4721
4722         --  Now check the component values themselves
4723
4724         return Safe_Aggregate (N);
4725      end In_Place_Assign_OK;
4726
4727      ------------------
4728      -- Others_Check --
4729      ------------------
4730
4731      procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
4732         Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
4733         Aggr_Hi : constant Node_Id := Aggr_High (Dim);
4734         --  The bounds of the aggregate for this dimension
4735
4736         Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
4737         --  The index type for this dimension
4738
4739         Need_To_Check : Boolean := False;
4740
4741         Choices_Lo : Node_Id := Empty;
4742         Choices_Hi : Node_Id := Empty;
4743         --  The lowest and highest discrete choices for a named sub-aggregate
4744
4745         Nb_Choices : Int := -1;
4746         --  The number of discrete non-others choices in this sub-aggregate
4747
4748         Nb_Elements : Uint := Uint_0;
4749         --  The number of elements in a positional aggregate
4750
4751         Cond : Node_Id := Empty;
4752
4753         Assoc  : Node_Id;
4754         Choice : Node_Id;
4755         Expr   : Node_Id;
4756
4757      begin
4758         --  Check if we have an others choice. If we do make sure that this
4759         --  sub-aggregate contains at least one element in addition to the
4760         --  others choice.
4761
4762         if Range_Checks_Suppressed (Ind_Typ) then
4763            Need_To_Check := False;
4764
4765         elsif Present (Expressions (Sub_Aggr))
4766           and then Present (Component_Associations (Sub_Aggr))
4767         then
4768            Need_To_Check := True;
4769
4770         elsif Present (Component_Associations (Sub_Aggr)) then
4771            Assoc := Last (Component_Associations (Sub_Aggr));
4772
4773            if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
4774               Need_To_Check := False;
4775
4776            else
4777               --  Count the number of discrete choices. Start with -1 because
4778               --  the others choice does not count.
4779
4780               --  Is there some reason we do not use List_Length here ???
4781
4782               Nb_Choices := -1;
4783               Assoc := First (Component_Associations (Sub_Aggr));
4784               while Present (Assoc) loop
4785                  Choice := First (Choices (Assoc));
4786                  while Present (Choice) loop
4787                     Nb_Choices := Nb_Choices + 1;
4788                     Next (Choice);
4789                  end loop;
4790
4791                  Next (Assoc);
4792               end loop;
4793
4794               --  If there is only an others choice nothing to do
4795
4796               Need_To_Check := (Nb_Choices > 0);
4797            end if;
4798
4799         else
4800            Need_To_Check := False;
4801         end if;
4802
4803         --  If we are dealing with a positional sub-aggregate with an others
4804         --  choice then compute the number or positional elements.
4805
4806         if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
4807            Expr := First (Expressions (Sub_Aggr));
4808            Nb_Elements := Uint_0;
4809            while Present (Expr) loop
4810               Nb_Elements := Nb_Elements + 1;
4811               Next (Expr);
4812            end loop;
4813
4814         --  If the aggregate contains discrete choices and an others choice
4815         --  compute the smallest and largest discrete choice values.
4816
4817         elsif Need_To_Check then
4818            Compute_Choices_Lo_And_Choices_Hi : declare
4819
4820               Table : Case_Table_Type (1 .. Nb_Choices);
4821               --  Used to sort all the different choice values
4822
4823               J    : Pos := 1;
4824               Low  : Node_Id;
4825               High : Node_Id;
4826
4827            begin
4828               Assoc := First (Component_Associations (Sub_Aggr));
4829               while Present (Assoc) loop
4830                  Choice := First (Choices (Assoc));
4831                  while Present (Choice) loop
4832                     if Nkind (Choice) = N_Others_Choice then
4833                        exit;
4834                     end if;
4835
4836                     Get_Index_Bounds (Choice, Low, High);
4837                     Table (J).Choice_Lo := Low;
4838                     Table (J).Choice_Hi := High;
4839
4840                     J := J + 1;
4841                     Next (Choice);
4842                  end loop;
4843
4844                  Next (Assoc);
4845               end loop;
4846
4847               --  Sort the discrete choices
4848
4849               Sort_Case_Table (Table);
4850
4851               Choices_Lo := Table (1).Choice_Lo;
4852               Choices_Hi := Table (Nb_Choices).Choice_Hi;
4853            end Compute_Choices_Lo_And_Choices_Hi;
4854         end if;
4855
4856         --  If no others choice in this sub-aggregate, or the aggregate
4857         --  comprises only an others choice, nothing to do.
4858
4859         if not Need_To_Check then
4860            Cond := Empty;
4861
4862         --  If we are dealing with an aggregate containing an others choice
4863         --  and positional components, we generate the following test:
4864
4865         --    if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
4866         --            Ind_Typ'Pos (Aggr_Hi)
4867         --    then
4868         --       raise Constraint_Error;
4869         --    end if;
4870
4871         elsif Nb_Elements > Uint_0 then
4872            Cond :=
4873              Make_Op_Gt (Loc,
4874                Left_Opnd  =>
4875                  Make_Op_Add (Loc,
4876                    Left_Opnd  =>
4877                      Make_Attribute_Reference (Loc,
4878                        Prefix         => New_Occurrence_Of (Ind_Typ, Loc),
4879                        Attribute_Name => Name_Pos,
4880                        Expressions    =>
4881                          New_List
4882                            (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
4883                Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
4884
4885                Right_Opnd =>
4886                  Make_Attribute_Reference (Loc,
4887                    Prefix         => New_Occurrence_Of (Ind_Typ, Loc),
4888                    Attribute_Name => Name_Pos,
4889                    Expressions    => New_List (
4890                      Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
4891
4892         --  If we are dealing with an aggregate containing an others choice
4893         --  and discrete choices we generate the following test:
4894
4895         --    [constraint_error when
4896         --      Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
4897
4898         else
4899            Cond :=
4900              Make_Or_Else (Loc,
4901                Left_Opnd =>
4902                  Make_Op_Lt (Loc,
4903                    Left_Opnd  => Duplicate_Subexpr_Move_Checks (Choices_Lo),
4904                    Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
4905
4906                Right_Opnd =>
4907                  Make_Op_Gt (Loc,
4908                    Left_Opnd  => Duplicate_Subexpr (Choices_Hi),
4909                    Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
4910         end if;
4911
4912         if Present (Cond) then
4913            Insert_Action (N,
4914              Make_Raise_Constraint_Error (Loc,
4915                Condition => Cond,
4916                Reason    => CE_Length_Check_Failed));
4917            --  Questionable reason code, shouldn't that be a
4918            --  CE_Range_Check_Failed ???
4919         end if;
4920
4921         --  Now look inside the sub-aggregate to see if there is more work
4922
4923         if Dim < Aggr_Dimension then
4924
4925            --  Process positional components
4926
4927            if Present (Expressions (Sub_Aggr)) then
4928               Expr := First (Expressions (Sub_Aggr));
4929               while Present (Expr) loop
4930                  Others_Check (Expr, Dim + 1);
4931                  Next (Expr);
4932               end loop;
4933            end if;
4934
4935            --  Process component associations
4936
4937            if Present (Component_Associations (Sub_Aggr)) then
4938               Assoc := First (Component_Associations (Sub_Aggr));
4939               while Present (Assoc) loop
4940                  Expr := Expression (Assoc);
4941                  Others_Check (Expr, Dim + 1);
4942                  Next (Assoc);
4943               end loop;
4944            end if;
4945         end if;
4946      end Others_Check;
4947
4948      -------------------------
4949      -- Safe_Left_Hand_Side --
4950      -------------------------
4951
4952      function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
4953         function Is_Safe_Index (Indx : Node_Id) return Boolean;
4954         --  If the left-hand side includes an indexed component, check that
4955         --  the indexes are free of side-effect.
4956
4957         -------------------
4958         -- Is_Safe_Index --
4959         -------------------
4960
4961         function Is_Safe_Index (Indx : Node_Id) return Boolean is
4962         begin
4963            if Is_Entity_Name (Indx) then
4964               return True;
4965
4966            elsif Nkind (Indx) = N_Integer_Literal then
4967               return True;
4968
4969            elsif Nkind (Indx) = N_Function_Call
4970              and then Is_Entity_Name (Name (Indx))
4971              and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
4972            then
4973               return True;
4974
4975            elsif Nkind (Indx) = N_Type_Conversion
4976              and then Is_Safe_Index (Expression (Indx))
4977            then
4978               return True;
4979
4980            else
4981               return False;
4982            end if;
4983         end Is_Safe_Index;
4984
4985      --  Start of processing for Safe_Left_Hand_Side
4986
4987      begin
4988         if Is_Entity_Name (N) then
4989            return True;
4990
4991         elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
4992           and then Safe_Left_Hand_Side (Prefix (N))
4993         then
4994            return True;
4995
4996         elsif Nkind (N) = N_Indexed_Component
4997           and then Safe_Left_Hand_Side (Prefix (N))
4998           and then Is_Safe_Index (First (Expressions (N)))
4999         then
5000            return True;
5001
5002         elsif Nkind (N) = N_Unchecked_Type_Conversion then
5003            return Safe_Left_Hand_Side (Expression (N));
5004
5005         else
5006            return False;
5007         end if;
5008      end Safe_Left_Hand_Side;
5009
5010      --  Local variables
5011
5012      Tmp : Entity_Id;
5013      --  Holds the temporary aggregate value
5014
5015      Tmp_Decl : Node_Id;
5016      --  Holds the declaration of Tmp
5017
5018      Aggr_Code   : List_Id;
5019      Parent_Node : Node_Id;
5020      Parent_Kind : Node_Kind;
5021
5022   --  Start of processing for Expand_Array_Aggregate
5023
5024   begin
5025      --  Do not touch the special aggregates of attributes used for Asm calls
5026
5027      if Is_RTE (Ctyp, RE_Asm_Input_Operand)
5028        or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
5029      then
5030         return;
5031
5032      --  Do not expand an aggregate for an array type which contains tasks if
5033      --  the aggregate is associated with an unexpanded return statement of a
5034      --  build-in-place function. The aggregate is expanded when the related
5035      --  return statement (rewritten into an extended return) is processed.
5036      --  This delay ensures that any temporaries and initialization code
5037      --  generated for the aggregate appear in the proper return block and
5038      --  use the correct _chain and _master.
5039
5040      elsif Has_Task (Base_Type (Etype (N)))
5041        and then Nkind (Parent (N)) = N_Simple_Return_Statement
5042        and then Is_Build_In_Place_Function
5043                   (Return_Applies_To (Return_Statement_Entity (Parent (N))))
5044      then
5045         return;
5046
5047      --  Do not attempt expansion if error already detected. We may reach this
5048      --  point in spite of previous errors when compiling with -gnatq, to
5049      --  force all possible errors (this is the usual ACATS mode).
5050
5051      elsif Error_Posted (N) then
5052         return;
5053      end if;
5054
5055      --  If the semantic analyzer has determined that aggregate N will raise
5056      --  Constraint_Error at run time, then the aggregate node has been
5057      --  replaced with an N_Raise_Constraint_Error node and we should
5058      --  never get here.
5059
5060      pragma Assert (not Raises_Constraint_Error (N));
5061
5062      --  STEP 1a
5063
5064      --  Check that the index range defined by aggregate bounds is
5065      --  compatible with corresponding index subtype.
5066
5067      Index_Compatibility_Check : declare
5068         Aggr_Index_Range : Node_Id := First_Index (Typ);
5069         --  The current aggregate index range
5070
5071         Index_Constraint : Node_Id := First_Index (Etype (Typ));
5072         --  The corresponding index constraint against which we have to
5073         --  check the above aggregate index range.
5074
5075      begin
5076         Compute_Others_Present (N, 1);
5077
5078         for J in 1 .. Aggr_Dimension loop
5079            --  There is no need to emit a check if an others choice is present
5080            --  for this array aggregate dimension since in this case one of
5081            --  N's sub-aggregates has taken its bounds from the context and
5082            --  these bounds must have been checked already. In addition all
5083            --  sub-aggregates corresponding to the same dimension must all
5084            --  have the same bounds (checked in (c) below).
5085
5086            if not Range_Checks_Suppressed (Etype (Index_Constraint))
5087              and then not Others_Present (J)
5088            then
5089               --  We don't use Checks.Apply_Range_Check here because it emits
5090               --  a spurious check. Namely it checks that the range defined by
5091               --  the aggregate bounds is non empty. But we know this already
5092               --  if we get here.
5093
5094               Check_Bounds (Aggr_Index_Range, Index_Constraint);
5095            end if;
5096
5097            --  Save the low and high bounds of the aggregate index as well as
5098            --  the index type for later use in checks (b) and (c) below.
5099
5100            Aggr_Low  (J) := Low_Bound (Aggr_Index_Range);
5101            Aggr_High (J) := High_Bound (Aggr_Index_Range);
5102
5103            Aggr_Index_Typ (J) := Etype (Index_Constraint);
5104
5105            Next_Index (Aggr_Index_Range);
5106            Next_Index (Index_Constraint);
5107         end loop;
5108      end Index_Compatibility_Check;
5109
5110      --  STEP 1b
5111
5112      --  If an others choice is present check that no aggregate index is
5113      --  outside the bounds of the index constraint.
5114
5115      Others_Check (N, 1);
5116
5117      --  STEP 1c
5118
5119      --  For multidimensional arrays make sure that all subaggregates
5120      --  corresponding to the same dimension have the same bounds.
5121
5122      if Aggr_Dimension > 1 then
5123         Check_Same_Aggr_Bounds (N, 1);
5124      end if;
5125
5126      --  STEP 1d
5127
5128      --  If we have a default component value, or simple initialization is
5129      --  required for the component type, then we replace <> in component
5130      --  associations by the required default value.
5131
5132      declare
5133         Default_Val : Node_Id;
5134         Assoc       : Node_Id;
5135
5136      begin
5137         if (Present (Default_Aspect_Component_Value (Typ))
5138              or else Needs_Simple_Initialization (Ctyp))
5139           and then Present (Component_Associations (N))
5140         then
5141            Assoc := First (Component_Associations (N));
5142            while Present (Assoc) loop
5143               if Nkind (Assoc) = N_Component_Association
5144                 and then Box_Present (Assoc)
5145               then
5146                  Set_Box_Present (Assoc, False);
5147
5148                  if Present (Default_Aspect_Component_Value (Typ)) then
5149                     Default_Val := Default_Aspect_Component_Value (Typ);
5150                  else
5151                     Default_Val := Get_Simple_Init_Val (Ctyp, N);
5152                  end if;
5153
5154                  Set_Expression (Assoc, New_Copy_Tree (Default_Val));
5155                  Analyze_And_Resolve (Expression (Assoc), Ctyp);
5156               end if;
5157
5158               Next (Assoc);
5159            end loop;
5160         end if;
5161      end;
5162
5163      --  STEP 2
5164
5165      --  Here we test for is packed array aggregate that we can handle at
5166      --  compile time. If so, return with transformation done. Note that we do
5167      --  this even if the aggregate is nested, because once we have done this
5168      --  processing, there is no more nested aggregate.
5169
5170      if Packed_Array_Aggregate_Handled (N) then
5171         return;
5172      end if;
5173
5174      --  At this point we try to convert to positional form
5175
5176      if Ekind (Current_Scope) = E_Package
5177        and then Static_Elaboration_Desired (Current_Scope)
5178      then
5179         Convert_To_Positional (N, Max_Others_Replicate => 100);
5180      else
5181         Convert_To_Positional (N);
5182      end if;
5183
5184      --  if the result is no longer an aggregate (e.g. it may be a string
5185      --  literal, or a temporary which has the needed value), then we are
5186      --  done, since there is no longer a nested aggregate.
5187
5188      if Nkind (N) /= N_Aggregate then
5189         return;
5190
5191      --  We are also done if the result is an analyzed aggregate, indicating
5192      --  that Convert_To_Positional succeeded and reanalyzed the rewritten
5193      --  aggregate.
5194
5195      elsif Analyzed (N) and then N /= Original_Node (N) then
5196         return;
5197      end if;
5198
5199      --  If all aggregate components are compile-time known and the aggregate
5200      --  has been flattened, nothing left to do. The same occurs if the
5201      --  aggregate is used to initialize the components of a statically
5202      --  allocated dispatch table.
5203
5204      if Compile_Time_Known_Aggregate (N)
5205        or else Is_Static_Dispatch_Table_Aggregate (N)
5206      then
5207         Set_Expansion_Delayed (N, False);
5208         return;
5209      end if;
5210
5211      --  Now see if back end processing is possible
5212
5213      if Backend_Processing_Possible (N) then
5214
5215         --  If the aggregate is static but the constraints are not, build
5216         --  a static subtype for the aggregate, so that Gigi can place it
5217         --  in static memory. Perform an unchecked_conversion to the non-
5218         --  static type imposed by the context.
5219
5220         declare
5221            Itype      : constant Entity_Id := Etype (N);
5222            Index      : Node_Id;
5223            Needs_Type : Boolean := False;
5224
5225         begin
5226            Index := First_Index (Itype);
5227            while Present (Index) loop
5228               if not Is_OK_Static_Subtype (Etype (Index)) then
5229                  Needs_Type := True;
5230                  exit;
5231               else
5232                  Next_Index (Index);
5233               end if;
5234            end loop;
5235
5236            if Needs_Type then
5237               Build_Constrained_Type (Positional => True);
5238               Rewrite (N, Unchecked_Convert_To (Itype, N));
5239               Analyze (N);
5240            end if;
5241         end;
5242
5243         return;
5244      end if;
5245
5246      --  STEP 3
5247
5248      --  Delay expansion for nested aggregates: it will be taken care of
5249      --  when the parent aggregate is expanded.
5250
5251      Parent_Node := Parent (N);
5252      Parent_Kind := Nkind (Parent_Node);
5253
5254      if Parent_Kind = N_Qualified_Expression then
5255         Parent_Node := Parent (Parent_Node);
5256         Parent_Kind := Nkind (Parent_Node);
5257      end if;
5258
5259      if Parent_Kind = N_Aggregate
5260        or else Parent_Kind = N_Extension_Aggregate
5261        or else Parent_Kind = N_Component_Association
5262        or else (Parent_Kind = N_Object_Declaration
5263                  and then Needs_Finalization (Typ))
5264        or else (Parent_Kind = N_Assignment_Statement
5265                  and then Inside_Init_Proc)
5266      then
5267         if Static_Array_Aggregate (N)
5268           or else Compile_Time_Known_Aggregate (N)
5269         then
5270            Set_Expansion_Delayed (N, False);
5271            return;
5272         else
5273            Set_Expansion_Delayed (N);
5274            return;
5275         end if;
5276      end if;
5277
5278      --  STEP 4
5279
5280      --  Look if in place aggregate expansion is possible
5281
5282      --  For object declarations we build the aggregate in place, unless
5283      --  the array is bit-packed or the component is controlled.
5284
5285      --  For assignments we do the assignment in place if all the component
5286      --  associations have compile-time known values. For other cases we
5287      --  create a temporary. The analysis for safety of on-line assignment
5288      --  is delicate, i.e. we don't know how to do it fully yet ???
5289
5290      --  For allocators we assign to the designated object in place if the
5291      --  aggregate meets the same conditions as other in-place assignments.
5292      --  In this case the aggregate may not come from source but was created
5293      --  for default initialization, e.g. with Initialize_Scalars.
5294
5295      if Requires_Transient_Scope (Typ) then
5296         Establish_Transient_Scope
5297           (N, Sec_Stack => Has_Controlled_Component (Typ));
5298      end if;
5299
5300      if Has_Default_Init_Comps (N) then
5301         Maybe_In_Place_OK := False;
5302
5303      elsif Is_Bit_Packed_Array (Typ)
5304        or else Has_Controlled_Component (Typ)
5305      then
5306         Maybe_In_Place_OK := False;
5307
5308      else
5309         Maybe_In_Place_OK :=
5310          (Nkind (Parent (N)) = N_Assignment_Statement
5311            and then In_Place_Assign_OK)
5312
5313            or else
5314             (Nkind (Parent (Parent (N))) = N_Allocator
5315              and then In_Place_Assign_OK);
5316      end if;
5317
5318      --  If this is an array of tasks, it will be expanded into build-in-place
5319      --  assignments. Build an activation chain for the tasks now.
5320
5321      if Has_Task (Etype (N)) then
5322         Build_Activation_Chain_Entity (N);
5323      end if;
5324
5325      --  Perform in-place expansion of aggregate in an object declaration.
5326      --  Note: actions generated for the aggregate will be captured in an
5327      --  expression-with-actions statement so that they can be transferred
5328      --  to freeze actions later if there is an address clause for the
5329      --  object. (Note: we don't use a block statement because this would
5330      --  cause generated freeze nodes to be elaborated in the wrong scope).
5331
5332      --  Should document these individual tests ???
5333
5334      if not Has_Default_Init_Comps (N)
5335         and then Comes_From_Source (Parent_Node)
5336         and then Parent_Kind = N_Object_Declaration
5337         and then not
5338           Must_Slide (Etype (Defining_Identifier (Parent_Node)), Typ)
5339         and then N = Expression (Parent_Node)
5340         and then not Is_Bit_Packed_Array (Typ)
5341         and then not Has_Controlled_Component (Typ)
5342      then
5343         In_Place_Assign_OK_For_Declaration := True;
5344         Tmp := Defining_Identifier (Parent (N));
5345         Set_No_Initialization (Parent (N));
5346         Set_Expression (Parent (N), Empty);
5347
5348         --  Set kind and type of the entity, for use in the analysis
5349         --  of the subsequent assignments. If the nominal type is not
5350         --  constrained, build a subtype from the known bounds of the
5351         --  aggregate. If the declaration has a subtype mark, use it,
5352         --  otherwise use the itype of the aggregate.
5353
5354         Set_Ekind (Tmp, E_Variable);
5355
5356         if not Is_Constrained (Typ) then
5357            Build_Constrained_Type (Positional => False);
5358
5359         elsif Is_Entity_Name (Object_Definition (Parent (N)))
5360           and then Is_Constrained (Entity (Object_Definition (Parent (N))))
5361         then
5362            Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
5363
5364         else
5365            Set_Size_Known_At_Compile_Time (Typ, False);
5366            Set_Etype (Tmp, Typ);
5367         end if;
5368
5369      elsif Maybe_In_Place_OK
5370        and then Nkind (Parent (N)) = N_Qualified_Expression
5371        and then Nkind (Parent (Parent (N))) = N_Allocator
5372      then
5373         Set_Expansion_Delayed (N);
5374         return;
5375
5376      --  In the remaining cases the aggregate is the RHS of an assignment
5377
5378      elsif Maybe_In_Place_OK
5379        and then Safe_Left_Hand_Side (Name (Parent (N)))
5380      then
5381         Tmp := Name (Parent (N));
5382
5383         if Etype (Tmp) /= Etype (N) then
5384            Apply_Length_Check (N, Etype (Tmp));
5385
5386            if Nkind (N) = N_Raise_Constraint_Error then
5387
5388               --  Static error, nothing further to expand
5389
5390               return;
5391            end if;
5392         end if;
5393
5394      --  If a slice assignment has an aggregate with a single others_choice,
5395      --  the assignment can be done in place even if bounds are not static,
5396      --  by converting it into a loop over the discrete range of the slice.
5397
5398      elsif Maybe_In_Place_OK
5399        and then Nkind (Name (Parent (N))) = N_Slice
5400        and then Is_Others_Aggregate (N)
5401      then
5402         Tmp := Name (Parent (N));
5403
5404         --  Set type of aggregate to be type of lhs in assignment, in order
5405         --  to suppress redundant length checks.
5406
5407         Set_Etype (N, Etype (Tmp));
5408
5409      --  Step 5
5410
5411      --  In place aggregate expansion is not possible
5412
5413      else
5414         Maybe_In_Place_OK := False;
5415         Tmp := Make_Temporary (Loc, 'A', N);
5416         Tmp_Decl :=
5417           Make_Object_Declaration (Loc,
5418             Defining_Identifier => Tmp,
5419             Object_Definition   => New_Occurrence_Of (Typ, Loc));
5420         Set_No_Initialization (Tmp_Decl, True);
5421
5422         --  If we are within a loop, the temporary will be pushed on the
5423         --  stack at each iteration. If the aggregate is the expression for an
5424         --  allocator, it will be immediately copied to the heap and can
5425         --  be reclaimed at once. We create a transient scope around the
5426         --  aggregate for this purpose.
5427
5428         if Ekind (Current_Scope) = E_Loop
5429           and then Nkind (Parent (Parent (N))) = N_Allocator
5430         then
5431            Establish_Transient_Scope (N, False);
5432         end if;
5433
5434         Insert_Action (N, Tmp_Decl);
5435      end if;
5436
5437      --  Construct and insert the aggregate code. We can safely suppress index
5438      --  checks because this code is guaranteed not to raise CE on index
5439      --  checks. However we should *not* suppress all checks.
5440
5441      declare
5442         Target : Node_Id;
5443
5444      begin
5445         if Nkind (Tmp) = N_Defining_Identifier then
5446            Target := New_Occurrence_Of (Tmp, Loc);
5447
5448         else
5449            if Has_Default_Init_Comps (N) then
5450
5451               --  Ada 2005 (AI-287): This case has not been analyzed???
5452
5453               raise Program_Error;
5454            end if;
5455
5456            --  Name in assignment is explicit dereference
5457
5458            Target := New_Copy (Tmp);
5459         end if;
5460
5461         --  If we are to generate an in place assignment for a declaration or
5462         --  an assignment statement, and the assignment can be done directly
5463         --  by the back end, then do not expand further.
5464
5465         --  ??? We can also do that if in place expansion is not possible but
5466         --  then we could go into an infinite recursion.
5467
5468         if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK)
5469           and then VM_Target = No_VM
5470           and then not AAMP_On_Target
5471           and then not Generate_SCIL
5472           and then not Possible_Bit_Aligned_Component (Target)
5473           and then not Is_Possibly_Unaligned_Slice (Target)
5474           and then Aggr_Assignment_OK_For_Backend (N)
5475         then
5476            if Maybe_In_Place_OK then
5477               return;
5478            end if;
5479
5480            Aggr_Code :=
5481              New_List (
5482                Make_Assignment_Statement (Loc,
5483                  Name       => Target,
5484                  Expression => New_Copy (N)));
5485
5486         else
5487            Aggr_Code :=
5488              Build_Array_Aggr_Code (N,
5489                Ctype       => Ctyp,
5490                Index       => First_Index (Typ),
5491                Into        => Target,
5492                Scalar_Comp => Is_Scalar_Type (Ctyp));
5493         end if;
5494
5495         --  Save the last assignment statement associated with the aggregate
5496         --  when building a controlled object. This reference is utilized by
5497         --  the finalization machinery when marking an object as successfully
5498         --  initialized.
5499
5500         if Needs_Finalization (Typ)
5501           and then Is_Entity_Name (Target)
5502           and then Present (Entity (Target))
5503           and then Ekind_In (Entity (Target), E_Constant, E_Variable)
5504         then
5505            Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
5506         end if;
5507      end;
5508
5509      --  If the aggregate is the expression in a declaration, the expanded
5510      --  code must be inserted after it. The defining entity might not come
5511      --  from source if this is part of an inlined body, but the declaration
5512      --  itself will.
5513
5514      if Comes_From_Source (Tmp)
5515        or else
5516          (Nkind (Parent (N)) = N_Object_Declaration
5517            and then Comes_From_Source (Parent (N))
5518            and then Tmp = Defining_Entity (Parent (N)))
5519      then
5520         declare
5521            Node_After : constant Node_Id := Next (Parent_Node);
5522
5523         begin
5524            Insert_Actions_After (Parent_Node, Aggr_Code);
5525
5526            if Parent_Kind = N_Object_Declaration then
5527               Collect_Initialization_Statements
5528                 (Obj => Tmp, N => Parent_Node, Node_After => Node_After);
5529            end if;
5530         end;
5531
5532      else
5533         Insert_Actions (N, Aggr_Code);
5534      end if;
5535
5536      --  If the aggregate has been assigned in place, remove the original
5537      --  assignment.
5538
5539      if Nkind (Parent (N)) = N_Assignment_Statement
5540        and then Maybe_In_Place_OK
5541      then
5542         Rewrite (Parent (N), Make_Null_Statement (Loc));
5543
5544      elsif Nkind (Parent (N)) /= N_Object_Declaration
5545        or else Tmp /= Defining_Identifier (Parent (N))
5546      then
5547         Rewrite (N, New_Occurrence_Of (Tmp, Loc));
5548         Analyze_And_Resolve (N, Typ);
5549      end if;
5550   end Expand_Array_Aggregate;
5551
5552   ------------------------
5553   -- Expand_N_Aggregate --
5554   ------------------------
5555
5556   procedure Expand_N_Aggregate (N : Node_Id) is
5557   begin
5558      --  Record aggregate case
5559
5560      if Is_Record_Type (Etype (N)) then
5561         Expand_Record_Aggregate (N);
5562
5563      --  Array aggregate case
5564
5565      else
5566         --  A special case, if we have a string subtype with bounds 1 .. N,
5567         --  where N is known at compile time, and the aggregate is of the
5568         --  form (others => 'x'), with a single choice and no expressions,
5569         --  and N is less than 80 (an arbitrary limit for now), then replace
5570         --  the aggregate by the equivalent string literal (but do not mark
5571         --  it as static since it is not).
5572
5573         --  Note: this entire circuit is redundant with respect to code in
5574         --  Expand_Array_Aggregate that collapses others choices to positional
5575         --  form, but there are two problems with that circuit:
5576
5577         --    a) It is limited to very small cases due to ill-understood
5578         --       interactions with bootstrapping. That limit is removed by
5579         --       use of the No_Implicit_Loops restriction.
5580
5581         --    b) It incorrectly ends up with the resulting expressions being
5582         --       considered static when they are not. For example, the
5583         --       following test should fail:
5584
5585         --           pragma Restrictions (No_Implicit_Loops);
5586         --           package NonSOthers4 is
5587         --              B  : constant String (1 .. 6) := (others => 'A');
5588         --              DH : constant String (1 .. 8) := B & "BB";
5589         --              X : Integer;
5590         --              pragma Export (C, X, Link_Name => DH);
5591         --           end;
5592
5593         --       But it succeeds (DH looks static to pragma Export)
5594
5595         --    To be sorted out ???
5596
5597         if Present (Component_Associations (N)) then
5598            declare
5599               CA : constant Node_Id := First (Component_Associations (N));
5600               MX : constant         := 80;
5601
5602            begin
5603               if Nkind (First (Choices (CA))) = N_Others_Choice
5604                 and then Nkind (Expression (CA)) = N_Character_Literal
5605                 and then No (Expressions (N))
5606               then
5607                  declare
5608                     T  : constant Entity_Id := Etype (N);
5609                     X  : constant Node_Id   := First_Index (T);
5610                     EC : constant Node_Id   := Expression (CA);
5611                     CV : constant Uint      := Char_Literal_Value (EC);
5612                     CC : constant Int       := UI_To_Int (CV);
5613
5614                  begin
5615                     if Nkind (X) = N_Range
5616                       and then Compile_Time_Known_Value (Low_Bound (X))
5617                       and then Expr_Value (Low_Bound (X)) = 1
5618                       and then Compile_Time_Known_Value (High_Bound (X))
5619                     then
5620                        declare
5621                           Hi : constant Uint := Expr_Value (High_Bound (X));
5622
5623                        begin
5624                           if Hi <= MX then
5625                              Start_String;
5626
5627                              for J in 1 .. UI_To_Int (Hi) loop
5628                                 Store_String_Char (Char_Code (CC));
5629                              end loop;
5630
5631                              Rewrite (N,
5632                                Make_String_Literal (Sloc (N),
5633                                  Strval => End_String));
5634
5635                              if CC >= Int (2 ** 16) then
5636                                 Set_Has_Wide_Wide_Character (N);
5637                              elsif CC >= Int (2 ** 8) then
5638                                 Set_Has_Wide_Character (N);
5639                              end if;
5640
5641                              Analyze_And_Resolve (N, T);
5642                              Set_Is_Static_Expression (N, False);
5643                              return;
5644                           end if;
5645                        end;
5646                     end if;
5647                  end;
5648               end if;
5649            end;
5650         end if;
5651
5652         --  Not that special case, so normal expansion of array aggregate
5653
5654         Expand_Array_Aggregate (N);
5655      end if;
5656
5657   exception
5658      when RE_Not_Available =>
5659         return;
5660   end Expand_N_Aggregate;
5661
5662   ----------------------------------
5663   -- Expand_N_Extension_Aggregate --
5664   ----------------------------------
5665
5666   --  If the ancestor part is an expression, add a component association for
5667   --  the parent field. If the type of the ancestor part is not the direct
5668   --  parent of the expected type,  build recursively the needed ancestors.
5669   --  If the ancestor part is a subtype_mark, replace aggregate with a decla-
5670   --  ration for a temporary of the expected type, followed by individual
5671   --  assignments to the given components.
5672
5673   procedure Expand_N_Extension_Aggregate (N : Node_Id) is
5674      Loc : constant Source_Ptr := Sloc  (N);
5675      A   : constant Node_Id    := Ancestor_Part (N);
5676      Typ : constant Entity_Id  := Etype (N);
5677
5678   begin
5679      --  If the ancestor is a subtype mark, an init proc must be called
5680      --  on the resulting object which thus has to be materialized in
5681      --  the front-end
5682
5683      if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
5684         Convert_To_Assignments (N, Typ);
5685
5686      --  The extension aggregate is transformed into a record aggregate
5687      --  of the following form (c1 and c2 are inherited components)
5688
5689      --   (Exp with c3 => a, c4 => b)
5690      --      ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
5691
5692      else
5693         Set_Etype (N, Typ);
5694
5695         if Tagged_Type_Expansion then
5696            Expand_Record_Aggregate (N,
5697              Orig_Tag    =>
5698                New_Occurrence_Of
5699                  (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
5700              Parent_Expr => A);
5701
5702         --  No tag is needed in the case of a VM
5703
5704         else
5705            Expand_Record_Aggregate (N, Parent_Expr => A);
5706         end if;
5707      end if;
5708
5709   exception
5710      when RE_Not_Available =>
5711         return;
5712   end Expand_N_Extension_Aggregate;
5713
5714   -----------------------------
5715   -- Expand_Record_Aggregate --
5716   -----------------------------
5717
5718   procedure Expand_Record_Aggregate
5719     (N           : Node_Id;
5720      Orig_Tag    : Node_Id := Empty;
5721      Parent_Expr : Node_Id := Empty)
5722   is
5723      Loc      : constant Source_Ptr := Sloc  (N);
5724      Comps    : constant List_Id    := Component_Associations (N);
5725      Typ      : constant Entity_Id  := Etype (N);
5726      Base_Typ : constant Entity_Id  := Base_Type (Typ);
5727
5728      Static_Components : Boolean := True;
5729      --  Flag to indicate whether all components are compile-time known,
5730      --  and the aggregate can be constructed statically and handled by
5731      --  the back-end.
5732
5733      function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
5734      --  Returns true if N is an expression of composite type which can be
5735      --  fully evaluated at compile time without raising constraint error.
5736      --  Such expressions can be passed as is to Gigi without any expansion.
5737      --
5738      --  This returns true for N_Aggregate with Compile_Time_Known_Aggregate
5739      --  set and constants whose expression is such an aggregate, recursively.
5740
5741      function Component_Not_OK_For_Backend return Boolean;
5742      --  Check for presence of a component which makes it impossible for the
5743      --  backend to process the aggregate, thus requiring the use of a series
5744      --  of assignment statements. Cases checked for are a nested aggregate
5745      --  needing Late_Expansion, the presence of a tagged component which may
5746      --  need tag adjustment, and a bit unaligned component reference.
5747      --
5748      --  We also force expansion into assignments if a component is of a
5749      --  mutable type (including a private type with discriminants) because
5750      --  in that case the size of the component to be copied may be smaller
5751      --  than the side of the target, and there is no simple way for gigi
5752      --  to compute the size of the object to be copied.
5753      --
5754      --  NOTE: This is part of the ongoing work to define precisely the
5755      --  interface between front-end and back-end handling of aggregates.
5756      --  In general it is desirable to pass aggregates as they are to gigi,
5757      --  in order to minimize elaboration code. This is one case where the
5758      --  semantics of Ada complicate the analysis and lead to anomalies in
5759      --  the gcc back-end if the aggregate is not expanded into assignments.
5760
5761      function Has_Visible_Private_Ancestor (Id : E) return Boolean;
5762      --  If any ancestor of the current type is private, the aggregate
5763      --  cannot be built in place. We cannot rely on Has_Private_Ancestor,
5764      --  because it will not be set when type and its parent are in the
5765      --  same scope, and the parent component needs expansion.
5766
5767      function Top_Level_Aggregate (N : Node_Id) return Node_Id;
5768      --  For nested aggregates return the ultimate enclosing aggregate; for
5769      --  non-nested aggregates return N.
5770
5771      ----------------------------------------
5772      -- Compile_Time_Known_Composite_Value --
5773      ----------------------------------------
5774
5775      function Compile_Time_Known_Composite_Value
5776        (N : Node_Id) return Boolean
5777      is
5778      begin
5779         --  If we have an entity name, then see if it is the name of a
5780         --  constant and if so, test the corresponding constant value.
5781
5782         if Is_Entity_Name (N) then
5783            declare
5784               E : constant Entity_Id := Entity (N);
5785               V : Node_Id;
5786            begin
5787               if Ekind (E) /= E_Constant then
5788                  return False;
5789               else
5790                  V := Constant_Value (E);
5791                  return Present (V)
5792                    and then Compile_Time_Known_Composite_Value (V);
5793               end if;
5794            end;
5795
5796         --  We have a value, see if it is compile time known
5797
5798         else
5799            if Nkind (N) = N_Aggregate then
5800               return Compile_Time_Known_Aggregate (N);
5801            end if;
5802
5803            --  All other types of values are not known at compile time
5804
5805            return False;
5806         end if;
5807
5808      end Compile_Time_Known_Composite_Value;
5809
5810      ----------------------------------
5811      -- Component_Not_OK_For_Backend --
5812      ----------------------------------
5813
5814      function Component_Not_OK_For_Backend return Boolean is
5815         C      : Node_Id;
5816         Expr_Q : Node_Id;
5817
5818      begin
5819         if No (Comps) then
5820            return False;
5821         end if;
5822
5823         C := First (Comps);
5824         while Present (C) loop
5825
5826            --  If the component has box initialization, expansion is needed
5827            --  and component is not ready for backend.
5828
5829            if Box_Present (C) then
5830               return True;
5831            end if;
5832
5833            if Nkind (Expression (C)) = N_Qualified_Expression then
5834               Expr_Q := Expression (Expression (C));
5835            else
5836               Expr_Q := Expression (C);
5837            end if;
5838
5839            --  Return true if the aggregate has any associations for tagged
5840            --  components that may require tag adjustment.
5841
5842            --  These are cases where the source expression may have a tag that
5843            --  could differ from the component tag (e.g., can occur for type
5844            --  conversions and formal parameters). (Tag adjustment not needed
5845            --  if VM_Target because object tags are implicit in the machine.)
5846
5847            if Is_Tagged_Type (Etype (Expr_Q))
5848              and then (Nkind (Expr_Q) = N_Type_Conversion
5849                         or else (Is_Entity_Name (Expr_Q)
5850                                    and then
5851                                      Ekind (Entity (Expr_Q)) in Formal_Kind))
5852              and then Tagged_Type_Expansion
5853            then
5854               Static_Components := False;
5855               return True;
5856
5857            elsif Is_Delayed_Aggregate (Expr_Q) then
5858               Static_Components := False;
5859               return True;
5860
5861            elsif Possible_Bit_Aligned_Component (Expr_Q) then
5862               Static_Components := False;
5863               return True;
5864            end if;
5865
5866            if Is_Elementary_Type (Etype (Expr_Q)) then
5867               if not Compile_Time_Known_Value (Expr_Q) then
5868                  Static_Components := False;
5869               end if;
5870
5871            elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
5872               Static_Components := False;
5873
5874               if Is_Private_Type (Etype (Expr_Q))
5875                 and then Has_Discriminants (Etype (Expr_Q))
5876               then
5877                  return True;
5878               end if;
5879            end if;
5880
5881            Next (C);
5882         end loop;
5883
5884         return False;
5885      end Component_Not_OK_For_Backend;
5886
5887      -----------------------------------
5888      --  Has_Visible_Private_Ancestor --
5889      -----------------------------------
5890
5891      function Has_Visible_Private_Ancestor (Id : E) return Boolean is
5892         R  : constant Entity_Id := Root_Type (Id);
5893         T1 : Entity_Id := Id;
5894
5895      begin
5896         loop
5897            if Is_Private_Type (T1) then
5898               return True;
5899
5900            elsif T1 = R then
5901               return False;
5902
5903            else
5904               T1 := Etype (T1);
5905            end if;
5906         end loop;
5907      end Has_Visible_Private_Ancestor;
5908
5909      -------------------------
5910      -- Top_Level_Aggregate --
5911      -------------------------
5912
5913      function Top_Level_Aggregate (N : Node_Id) return Node_Id is
5914         Aggr : Node_Id;
5915
5916      begin
5917         Aggr := N;
5918         while Present (Parent (Aggr))
5919           and then Nkind_In (Parent (Aggr), N_Component_Association,
5920                                             N_Aggregate)
5921         loop
5922            Aggr := Parent (Aggr);
5923         end loop;
5924
5925         return Aggr;
5926      end Top_Level_Aggregate;
5927
5928      --  Local variables
5929
5930      Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
5931      Tag_Value      : Node_Id;
5932      Comp           : Entity_Id;
5933      New_Comp       : Node_Id;
5934
5935   --  Start of processing for Expand_Record_Aggregate
5936
5937   begin
5938      --  If the aggregate is to be assigned to an atomic variable, we have
5939      --  to prevent a piecemeal assignment even if the aggregate is to be
5940      --  expanded. We create a temporary for the aggregate, and assign the
5941      --  temporary instead, so that the back end can generate an atomic move
5942      --  for it.
5943
5944      if Is_Atomic (Typ)
5945        and then Comes_From_Source (Parent (N))
5946        and then Is_Atomic_Aggregate (N, Typ)
5947      then
5948         return;
5949
5950      --  No special management required for aggregates used to initialize
5951      --  statically allocated dispatch tables
5952
5953      elsif Is_Static_Dispatch_Table_Aggregate (N) then
5954         return;
5955      end if;
5956
5957      --  Ada 2005 (AI-318-2): We need to convert to assignments if components
5958      --  are build-in-place function calls. The assignments will each turn
5959      --  into a build-in-place function call. If components are all static,
5960      --  we can pass the aggregate to the backend regardless of limitedness.
5961
5962      --  Extension aggregates, aggregates in extended return statements, and
5963      --  aggregates for C++ imported types must be expanded.
5964
5965      if Ada_Version >= Ada_2005 and then Is_Limited_View (Typ) then
5966         if not Nkind_In (Parent (N), N_Object_Declaration,
5967                                      N_Component_Association)
5968         then
5969            Convert_To_Assignments (N, Typ);
5970
5971         elsif Nkind (N) = N_Extension_Aggregate
5972           or else Convention (Typ) = Convention_CPP
5973         then
5974            Convert_To_Assignments (N, Typ);
5975
5976         elsif not Size_Known_At_Compile_Time (Typ)
5977           or else Component_Not_OK_For_Backend
5978           or else not Static_Components
5979         then
5980            Convert_To_Assignments (N, Typ);
5981
5982         else
5983            Set_Compile_Time_Known_Aggregate (N);
5984            Set_Expansion_Delayed (N, False);
5985         end if;
5986
5987      --  Gigi doesn't properly handle temporaries of variable size so we
5988      --  generate it in the front-end
5989
5990      elsif not Size_Known_At_Compile_Time (Typ)
5991        and then Tagged_Type_Expansion
5992      then
5993         Convert_To_Assignments (N, Typ);
5994
5995      --  An aggregate used to initialize a controlled object must be turned
5996      --  into component assignments as the components themselves may require
5997      --  finalization actions such as adjustment.
5998
5999      elsif Needs_Finalization (Typ) then
6000         Convert_To_Assignments (N, Typ);
6001
6002      --  Ada 2005 (AI-287): In case of default initialized components we
6003      --  convert the aggregate into assignments.
6004
6005      elsif Has_Default_Init_Comps (N) then
6006         Convert_To_Assignments (N, Typ);
6007
6008      --  Check components
6009
6010      elsif Component_Not_OK_For_Backend then
6011         Convert_To_Assignments (N, Typ);
6012
6013      --  If an ancestor is private, some components are not inherited and we
6014      --  cannot expand into a record aggregate.
6015
6016      elsif Has_Visible_Private_Ancestor (Typ) then
6017         Convert_To_Assignments (N, Typ);
6018
6019      --  ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
6020      --  is not able to handle the aggregate for Late_Request.
6021
6022      elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
6023         Convert_To_Assignments (N, Typ);
6024
6025      --  If the tagged types covers interface types we need to initialize all
6026      --  hidden components containing pointers to secondary dispatch tables.
6027
6028      elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
6029         Convert_To_Assignments (N, Typ);
6030
6031      --  If some components are mutable, the size of the aggregate component
6032      --  may be distinct from the default size of the type component, so
6033      --  we need to expand to insure that the back-end copies the proper
6034      --  size of the data. However, if the aggregate is the initial value of
6035      --  a constant, the target is immutable and might be built statically
6036      --  if components are appropriate.
6037
6038      elsif Has_Mutable_Components (Typ)
6039        and then
6040          (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
6041            or else not Constant_Present (Parent (Top_Level_Aggr))
6042            or else not Static_Components)
6043      then
6044         Convert_To_Assignments (N, Typ);
6045
6046      --  If the type involved has bit aligned components, then we are not sure
6047      --  that the back end can handle this case correctly.
6048
6049      elsif Type_May_Have_Bit_Aligned_Components (Typ) then
6050         Convert_To_Assignments (N, Typ);
6051
6052      --  In all other cases, build a proper aggregate to be handled by gigi
6053
6054      else
6055         if Nkind (N) = N_Aggregate then
6056
6057            --  If the aggregate is static and can be handled by the back-end,
6058            --  nothing left to do.
6059
6060            if Static_Components then
6061               Set_Compile_Time_Known_Aggregate (N);
6062               Set_Expansion_Delayed (N, False);
6063            end if;
6064         end if;
6065
6066         --  If no discriminants, nothing special to do
6067
6068         if not Has_Discriminants (Typ) then
6069            null;
6070
6071         --  Case of discriminants present
6072
6073         elsif Is_Derived_Type (Typ) then
6074
6075            --  For untagged types, non-stored discriminants are replaced
6076            --  with stored discriminants, which are the ones that gigi uses
6077            --  to describe the type and its components.
6078
6079            Generate_Aggregate_For_Derived_Type : declare
6080               Constraints  : constant List_Id := New_List;
6081               First_Comp   : Node_Id;
6082               Discriminant : Entity_Id;
6083               Decl         : Node_Id;
6084               Num_Disc     : Int := 0;
6085               Num_Gird     : Int := 0;
6086
6087               procedure Prepend_Stored_Values (T : Entity_Id);
6088               --  Scan the list of stored discriminants of the type, and add
6089               --  their values to the aggregate being built.
6090
6091               ---------------------------
6092               -- Prepend_Stored_Values --
6093               ---------------------------
6094
6095               procedure Prepend_Stored_Values (T : Entity_Id) is
6096               begin
6097                  Discriminant := First_Stored_Discriminant (T);
6098                  while Present (Discriminant) loop
6099                     New_Comp :=
6100                       Make_Component_Association (Loc,
6101                         Choices    =>
6102                           New_List (New_Occurrence_Of (Discriminant, Loc)),
6103
6104                         Expression =>
6105                           New_Copy_Tree
6106                             (Get_Discriminant_Value
6107                                (Discriminant,
6108                                 Typ,
6109                                 Discriminant_Constraint (Typ))));
6110
6111                     if No (First_Comp) then
6112                        Prepend_To (Component_Associations (N), New_Comp);
6113                     else
6114                        Insert_After (First_Comp, New_Comp);
6115                     end if;
6116
6117                     First_Comp := New_Comp;
6118                     Next_Stored_Discriminant (Discriminant);
6119                  end loop;
6120               end Prepend_Stored_Values;
6121
6122            --  Start of processing for Generate_Aggregate_For_Derived_Type
6123
6124            begin
6125               --  Remove the associations for the discriminant of derived type
6126
6127               First_Comp := First (Component_Associations (N));
6128               while Present (First_Comp) loop
6129                  Comp := First_Comp;
6130                  Next (First_Comp);
6131
6132                  if Ekind (Entity (First (Choices (Comp)))) = E_Discriminant
6133                  then
6134                     Remove (Comp);
6135                     Num_Disc := Num_Disc + 1;
6136                  end if;
6137               end loop;
6138
6139               --  Insert stored discriminant associations in the correct
6140               --  order. If there are more stored discriminants than new
6141               --  discriminants, there is at least one new discriminant that
6142               --  constrains more than one of the stored discriminants. In
6143               --  this case we need to construct a proper subtype of the
6144               --  parent type, in order to supply values to all the
6145               --  components. Otherwise there is one-one correspondence
6146               --  between the constraints and the stored discriminants.
6147
6148               First_Comp := Empty;
6149
6150               Discriminant := First_Stored_Discriminant (Base_Type (Typ));
6151               while Present (Discriminant) loop
6152                  Num_Gird := Num_Gird + 1;
6153                  Next_Stored_Discriminant (Discriminant);
6154               end loop;
6155
6156               --  Case of more stored discriminants than new discriminants
6157
6158               if Num_Gird > Num_Disc then
6159
6160                  --  Create a proper subtype of the parent type, which is the
6161                  --  proper implementation type for the aggregate, and convert
6162                  --  it to the intended target type.
6163
6164                  Discriminant := First_Stored_Discriminant (Base_Type (Typ));
6165                  while Present (Discriminant) loop
6166                     New_Comp :=
6167                       New_Copy_Tree
6168                         (Get_Discriminant_Value
6169                            (Discriminant,
6170                             Typ,
6171                             Discriminant_Constraint (Typ)));
6172                     Append (New_Comp, Constraints);
6173                     Next_Stored_Discriminant (Discriminant);
6174                  end loop;
6175
6176                  Decl :=
6177                    Make_Subtype_Declaration (Loc,
6178                      Defining_Identifier => Make_Temporary (Loc, 'T'),
6179                      Subtype_Indication  =>
6180                        Make_Subtype_Indication (Loc,
6181                          Subtype_Mark =>
6182                            New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
6183                          Constraint   =>
6184                            Make_Index_Or_Discriminant_Constraint
6185                              (Loc, Constraints)));
6186
6187                  Insert_Action (N, Decl);
6188                  Prepend_Stored_Values (Base_Type (Typ));
6189
6190                  Set_Etype (N, Defining_Identifier (Decl));
6191                  Set_Analyzed (N);
6192
6193                  Rewrite (N, Unchecked_Convert_To (Typ, N));
6194                  Analyze (N);
6195
6196               --  Case where we do not have fewer new discriminants than
6197               --  stored discriminants, so in this case we can simply use the
6198               --  stored discriminants of the subtype.
6199
6200               else
6201                  Prepend_Stored_Values (Typ);
6202               end if;
6203            end Generate_Aggregate_For_Derived_Type;
6204         end if;
6205
6206         if Is_Tagged_Type (Typ) then
6207
6208            --  In the tagged case, _parent and _tag component must be created
6209
6210            --  Reset Null_Present unconditionally. Tagged records always have
6211            --  at least one field (the tag or the parent).
6212
6213            Set_Null_Record_Present (N, False);
6214
6215            --  When the current aggregate comes from the expansion of an
6216            --  extension aggregate, the parent expr is replaced by an
6217            --  aggregate formed by selected components of this expr.
6218
6219            if Present (Parent_Expr) and then Is_Empty_List (Comps) then
6220               Comp := First_Component_Or_Discriminant (Typ);
6221               while Present (Comp) loop
6222
6223                  --  Skip all expander-generated components
6224
6225                  if not Comes_From_Source (Original_Record_Component (Comp))
6226                  then
6227                     null;
6228
6229                  else
6230                     New_Comp :=
6231                       Make_Selected_Component (Loc,
6232                         Prefix        =>
6233                           Unchecked_Convert_To (Typ,
6234                             Duplicate_Subexpr (Parent_Expr, True)),
6235                         Selector_Name => New_Occurrence_Of (Comp, Loc));
6236
6237                     Append_To (Comps,
6238                       Make_Component_Association (Loc,
6239                         Choices    =>
6240                           New_List (New_Occurrence_Of (Comp, Loc)),
6241                         Expression => New_Comp));
6242
6243                     Analyze_And_Resolve (New_Comp, Etype (Comp));
6244                  end if;
6245
6246                  Next_Component_Or_Discriminant (Comp);
6247               end loop;
6248            end if;
6249
6250            --  Compute the value for the Tag now, if the type is a root it
6251            --  will be included in the aggregate right away, otherwise it will
6252            --  be propagated to the parent aggregate.
6253
6254            if Present (Orig_Tag) then
6255               Tag_Value := Orig_Tag;
6256            elsif not Tagged_Type_Expansion then
6257               Tag_Value := Empty;
6258            else
6259               Tag_Value :=
6260                 New_Occurrence_Of
6261                   (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
6262            end if;
6263
6264            --  For a derived type, an aggregate for the parent is formed with
6265            --  all the inherited components.
6266
6267            if Is_Derived_Type (Typ) then
6268
6269               declare
6270                  First_Comp   : Node_Id;
6271                  Parent_Comps : List_Id;
6272                  Parent_Aggr  : Node_Id;
6273                  Parent_Name  : Node_Id;
6274
6275               begin
6276                  --  Remove the inherited component association from the
6277                  --  aggregate and store them in the parent aggregate
6278
6279                  First_Comp := First (Component_Associations (N));
6280                  Parent_Comps := New_List;
6281                  while Present (First_Comp)
6282                    and then
6283                      Scope (Original_Record_Component
6284                               (Entity (First (Choices (First_Comp))))) /=
6285                                                                    Base_Typ
6286                  loop
6287                     Comp := First_Comp;
6288                     Next (First_Comp);
6289                     Remove (Comp);
6290                     Append (Comp, Parent_Comps);
6291                  end loop;
6292
6293                  Parent_Aggr :=
6294                    Make_Aggregate (Loc,
6295                      Component_Associations => Parent_Comps);
6296                  Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
6297
6298                  --  Find the _parent component
6299
6300                  Comp := First_Component (Typ);
6301                  while Chars (Comp) /= Name_uParent loop
6302                     Comp := Next_Component (Comp);
6303                  end loop;
6304
6305                  Parent_Name := New_Occurrence_Of (Comp, Loc);
6306
6307                  --  Insert the parent aggregate
6308
6309                  Prepend_To (Component_Associations (N),
6310                    Make_Component_Association (Loc,
6311                      Choices    => New_List (Parent_Name),
6312                      Expression => Parent_Aggr));
6313
6314                  --  Expand recursively the parent propagating the right Tag
6315
6316                  Expand_Record_Aggregate
6317                    (Parent_Aggr, Tag_Value, Parent_Expr);
6318
6319                  --  The ancestor part may be a nested aggregate that has
6320                  --  delayed expansion: recheck now.
6321
6322                  if Component_Not_OK_For_Backend then
6323                     Convert_To_Assignments (N, Typ);
6324                  end if;
6325               end;
6326
6327            --  For a root type, the tag component is added (unless compiling
6328            --  for the VMs, where tags are implicit).
6329
6330            elsif Tagged_Type_Expansion then
6331               declare
6332                  Tag_Name  : constant Node_Id :=
6333                    New_Occurrence_Of (First_Tag_Component (Typ), Loc);
6334                  Typ_Tag   : constant Entity_Id := RTE (RE_Tag);
6335                  Conv_Node : constant Node_Id :=
6336                    Unchecked_Convert_To (Typ_Tag, Tag_Value);
6337
6338               begin
6339                  Set_Etype (Conv_Node, Typ_Tag);
6340                  Prepend_To (Component_Associations (N),
6341                    Make_Component_Association (Loc,
6342                      Choices    => New_List (Tag_Name),
6343                      Expression => Conv_Node));
6344               end;
6345            end if;
6346         end if;
6347      end if;
6348
6349   end Expand_Record_Aggregate;
6350
6351   ----------------------------
6352   -- Has_Default_Init_Comps --
6353   ----------------------------
6354
6355   function Has_Default_Init_Comps (N : Node_Id) return Boolean is
6356      Comps : constant List_Id := Component_Associations (N);
6357      C     : Node_Id;
6358      Expr  : Node_Id;
6359
6360   begin
6361      pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
6362
6363      if No (Comps) then
6364         return False;
6365      end if;
6366
6367      if Has_Self_Reference (N) then
6368         return True;
6369      end if;
6370
6371      --  Check if any direct component has default initialized components
6372
6373      C := First (Comps);
6374      while Present (C) loop
6375         if Box_Present (C) then
6376            return True;
6377         end if;
6378
6379         Next (C);
6380      end loop;
6381
6382      --  Recursive call in case of aggregate expression
6383
6384      C := First (Comps);
6385      while Present (C) loop
6386         Expr := Expression (C);
6387
6388         if Present (Expr)
6389           and then Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
6390           and then Has_Default_Init_Comps (Expr)
6391         then
6392            return True;
6393         end if;
6394
6395         Next (C);
6396      end loop;
6397
6398      return False;
6399   end Has_Default_Init_Comps;
6400
6401   --------------------------
6402   -- Is_Delayed_Aggregate --
6403   --------------------------
6404
6405   function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
6406      Node : Node_Id   := N;
6407      Kind : Node_Kind := Nkind (Node);
6408
6409   begin
6410      if Kind = N_Qualified_Expression then
6411         Node := Expression (Node);
6412         Kind := Nkind (Node);
6413      end if;
6414
6415      if not Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate) then
6416         return False;
6417      else
6418         return Expansion_Delayed (Node);
6419      end if;
6420   end Is_Delayed_Aggregate;
6421
6422   ----------------------------------------
6423   -- Is_Static_Dispatch_Table_Aggregate --
6424   ----------------------------------------
6425
6426   function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
6427      Typ : constant Entity_Id := Base_Type (Etype (N));
6428
6429   begin
6430      return Static_Dispatch_Tables
6431        and then Tagged_Type_Expansion
6432        and then RTU_Loaded (Ada_Tags)
6433
6434         --  Avoid circularity when rebuilding the compiler
6435
6436        and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
6437        and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
6438                    or else
6439                  Typ = RTE (RE_Address_Array)
6440                    or else
6441                  Typ = RTE (RE_Type_Specific_Data)
6442                    or else
6443                  Typ = RTE (RE_Tag_Table)
6444                    or else
6445                  (RTE_Available (RE_Interface_Data)
6446                     and then Typ = RTE (RE_Interface_Data))
6447                    or else
6448                  (RTE_Available (RE_Interfaces_Array)
6449                     and then Typ = RTE (RE_Interfaces_Array))
6450                    or else
6451                  (RTE_Available (RE_Interface_Data_Element)
6452                     and then Typ = RTE (RE_Interface_Data_Element)));
6453   end Is_Static_Dispatch_Table_Aggregate;
6454
6455   -----------------------------
6456   -- Is_Two_Dim_Packed_Array --
6457   -----------------------------
6458
6459   function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
6460      C : constant Int := UI_To_Int (Component_Size (Typ));
6461   begin
6462      return Number_Dimensions (Typ) = 2
6463        and then Is_Bit_Packed_Array (Typ)
6464        and then (C = 1 or else C = 2 or else C = 4);
6465   end Is_Two_Dim_Packed_Array;
6466
6467   --------------------
6468   -- Late_Expansion --
6469   --------------------
6470
6471   function Late_Expansion
6472     (N      : Node_Id;
6473      Typ    : Entity_Id;
6474      Target : Node_Id) return List_Id
6475   is
6476      Aggr_Code : List_Id;
6477
6478   begin
6479      if Is_Record_Type (Etype (N)) then
6480         Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
6481
6482      else pragma Assert (Is_Array_Type (Etype (N)));
6483         Aggr_Code :=
6484           Build_Array_Aggr_Code
6485             (N           => N,
6486              Ctype       => Component_Type (Etype (N)),
6487              Index       => First_Index (Typ),
6488              Into        => Target,
6489              Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
6490              Indexes     => No_List);
6491      end if;
6492
6493      --  Save the last assignment statement associated with the aggregate
6494      --  when building a controlled object. This reference is utilized by
6495      --  the finalization machinery when marking an object as successfully
6496      --  initialized.
6497
6498      if Needs_Finalization (Typ)
6499        and then Is_Entity_Name (Target)
6500        and then Present (Entity (Target))
6501        and then Ekind_In (Entity (Target), E_Constant, E_Variable)
6502      then
6503         Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
6504      end if;
6505
6506      return Aggr_Code;
6507   end Late_Expansion;
6508
6509   ----------------------------------
6510   -- Make_OK_Assignment_Statement --
6511   ----------------------------------
6512
6513   function Make_OK_Assignment_Statement
6514     (Sloc       : Source_Ptr;
6515      Name       : Node_Id;
6516      Expression : Node_Id) return Node_Id
6517   is
6518   begin
6519      Set_Assignment_OK (Name);
6520      return Make_Assignment_Statement (Sloc, Name, Expression);
6521   end Make_OK_Assignment_Statement;
6522
6523   -----------------------
6524   -- Number_Of_Choices --
6525   -----------------------
6526
6527   function Number_Of_Choices (N : Node_Id) return Nat is
6528      Assoc  : Node_Id;
6529      Choice : Node_Id;
6530
6531      Nb_Choices : Nat := 0;
6532
6533   begin
6534      if Present (Expressions (N)) then
6535         return 0;
6536      end if;
6537
6538      Assoc := First (Component_Associations (N));
6539      while Present (Assoc) loop
6540         Choice := First (Choices (Assoc));
6541         while Present (Choice) loop
6542            if Nkind (Choice) /= N_Others_Choice then
6543               Nb_Choices := Nb_Choices + 1;
6544            end if;
6545
6546            Next (Choice);
6547         end loop;
6548
6549         Next (Assoc);
6550      end loop;
6551
6552      return Nb_Choices;
6553   end Number_Of_Choices;
6554
6555   ------------------------------------
6556   -- Packed_Array_Aggregate_Handled --
6557   ------------------------------------
6558
6559   --  The current version of this procedure will handle at compile time
6560   --  any array aggregate that meets these conditions:
6561
6562   --    One and two dimensional, bit packed
6563   --    Underlying packed type is modular type
6564   --    Bounds are within 32-bit Int range
6565   --    All bounds and values are static
6566
6567   --  Note: for now, in the 2-D case, we only handle component sizes of
6568   --  1, 2, 4 (cases where an integral number of elements occupies a byte).
6569
6570   function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
6571      Loc  : constant Source_Ptr := Sloc (N);
6572      Typ  : constant Entity_Id  := Etype (N);
6573      Ctyp : constant Entity_Id  := Component_Type (Typ);
6574
6575      Not_Handled : exception;
6576      --  Exception raised if this aggregate cannot be handled
6577
6578   begin
6579      --  Handle one- or two dimensional bit packed array
6580
6581      if not Is_Bit_Packed_Array (Typ)
6582        or else Number_Dimensions (Typ) > 2
6583      then
6584         return False;
6585      end if;
6586
6587      --  If two-dimensional, check whether it can be folded, and transformed
6588      --  into a one-dimensional aggregate for the Packed_Array_Impl_Type of
6589      --  the original type.
6590
6591      if Number_Dimensions (Typ) = 2 then
6592         return Two_Dim_Packed_Array_Handled (N);
6593      end if;
6594
6595      if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
6596         return False;
6597      end if;
6598
6599      if not Is_Scalar_Type (Component_Type (Typ))
6600        and then Has_Non_Standard_Rep (Component_Type (Typ))
6601      then
6602         return False;
6603      end if;
6604
6605      declare
6606         Csiz  : constant Nat := UI_To_Int (Component_Size (Typ));
6607
6608         Lo : Node_Id;
6609         Hi : Node_Id;
6610         --  Bounds of index type
6611
6612         Lob : Uint;
6613         Hib : Uint;
6614         --  Values of bounds if compile time known
6615
6616         function Get_Component_Val (N : Node_Id) return Uint;
6617         --  Given a expression value N of the component type Ctyp, returns a
6618         --  value of Csiz (component size) bits representing this value. If
6619         --  the value is non-static or any other reason exists why the value
6620         --  cannot be returned, then Not_Handled is raised.
6621
6622         -----------------------
6623         -- Get_Component_Val --
6624         -----------------------
6625
6626         function Get_Component_Val (N : Node_Id) return Uint is
6627            Val  : Uint;
6628
6629         begin
6630            --  We have to analyze the expression here before doing any further
6631            --  processing here. The analysis of such expressions is deferred
6632            --  till expansion to prevent some problems of premature analysis.
6633
6634            Analyze_And_Resolve (N, Ctyp);
6635
6636            --  Must have a compile time value. String literals have to be
6637            --  converted into temporaries as well, because they cannot easily
6638            --  be converted into their bit representation.
6639
6640            if not Compile_Time_Known_Value (N)
6641              or else Nkind (N) = N_String_Literal
6642            then
6643               raise Not_Handled;
6644            end if;
6645
6646            Val := Expr_Rep_Value (N);
6647
6648            --  Adjust for bias, and strip proper number of bits
6649
6650            if Has_Biased_Representation (Ctyp) then
6651               Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
6652            end if;
6653
6654            return Val mod Uint_2 ** Csiz;
6655         end Get_Component_Val;
6656
6657      --  Here we know we have a one dimensional bit packed array
6658
6659      begin
6660         Get_Index_Bounds (First_Index (Typ), Lo, Hi);
6661
6662         --  Cannot do anything if bounds are dynamic
6663
6664         if not Compile_Time_Known_Value (Lo)
6665              or else
6666            not Compile_Time_Known_Value (Hi)
6667         then
6668            return False;
6669         end if;
6670
6671         --  Or are silly out of range of int bounds
6672
6673         Lob := Expr_Value (Lo);
6674         Hib := Expr_Value (Hi);
6675
6676         if not UI_Is_In_Int_Range (Lob)
6677              or else
6678            not UI_Is_In_Int_Range (Hib)
6679         then
6680            return False;
6681         end if;
6682
6683         --  At this stage we have a suitable aggregate for handling at compile
6684         --  time. The only remaining checks are that the values of expressions
6685         --  in the aggregate are compile-time known (checks are performed by
6686         --  Get_Component_Val), and that any subtypes or ranges are statically
6687         --  known.
6688
6689         --  If the aggregate is not fully positional at this stage, then
6690         --  convert it to positional form. Either this will fail, in which
6691         --  case we can do nothing, or it will succeed, in which case we have
6692         --  succeeded in handling the aggregate and transforming it into a
6693         --  modular value, or it will stay an aggregate, in which case we
6694         --  have failed to create a packed value for it.
6695
6696         if Present (Component_Associations (N)) then
6697            Convert_To_Positional
6698              (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6699            return Nkind (N) /= N_Aggregate;
6700         end if;
6701
6702         --  Otherwise we are all positional, so convert to proper value
6703
6704         declare
6705            Lov : constant Int := UI_To_Int (Lob);
6706            Hiv : constant Int := UI_To_Int (Hib);
6707
6708            Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
6709            --  The length of the array (number of elements)
6710
6711            Aggregate_Val : Uint;
6712            --  Value of aggregate. The value is set in the low order bits of
6713            --  this value. For the little-endian case, the values are stored
6714            --  from low-order to high-order and for the big-endian case the
6715            --  values are stored from high-order to low-order. Note that gigi
6716            --  will take care of the conversions to left justify the value in
6717            --  the big endian case (because of left justified modular type
6718            --  processing), so we do not have to worry about that here.
6719
6720            Lit : Node_Id;
6721            --  Integer literal for resulting constructed value
6722
6723            Shift : Nat;
6724            --  Shift count from low order for next value
6725
6726            Incr : Int;
6727            --  Shift increment for loop
6728
6729            Expr : Node_Id;
6730            --  Next expression from positional parameters of aggregate
6731
6732            Left_Justified : Boolean;
6733            --  Set True if we are filling the high order bits of the target
6734            --  value (i.e. the value is left justified).
6735
6736         begin
6737            --  For little endian, we fill up the low order bits of the target
6738            --  value. For big endian we fill up the high order bits of the
6739            --  target value (which is a left justified modular value).
6740
6741            Left_Justified := Bytes_Big_Endian;
6742
6743            --  Switch justification if using -gnatd8
6744
6745            if Debug_Flag_8 then
6746               Left_Justified := not Left_Justified;
6747            end if;
6748
6749            --  Switch justfification if reverse storage order
6750
6751            if Reverse_Storage_Order (Base_Type (Typ)) then
6752               Left_Justified := not Left_Justified;
6753            end if;
6754
6755            if Left_Justified then
6756               Shift := Csiz * (Len - 1);
6757               Incr  := -Csiz;
6758            else
6759               Shift := 0;
6760               Incr  := +Csiz;
6761            end if;
6762
6763            --  Loop to set the values
6764
6765            if Len = 0 then
6766               Aggregate_Val := Uint_0;
6767            else
6768               Expr := First (Expressions (N));
6769               Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
6770
6771               for J in 2 .. Len loop
6772                  Shift := Shift + Incr;
6773                  Next (Expr);
6774                  Aggregate_Val :=
6775                    Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
6776               end loop;
6777            end if;
6778
6779            --  Now we can rewrite with the proper value
6780
6781            Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
6782            Set_Print_In_Hex (Lit);
6783
6784            --  Construct the expression using this literal. Note that it is
6785            --  important to qualify the literal with its proper modular type
6786            --  since universal integer does not have the required range and
6787            --  also this is a left justified modular type, which is important
6788            --  in the big-endian case.
6789
6790            Rewrite (N,
6791              Unchecked_Convert_To (Typ,
6792                Make_Qualified_Expression (Loc,
6793                  Subtype_Mark =>
6794                    New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
6795                  Expression   => Lit)));
6796
6797            Analyze_And_Resolve (N, Typ);
6798            return True;
6799         end;
6800      end;
6801
6802   exception
6803      when Not_Handled =>
6804         return False;
6805   end Packed_Array_Aggregate_Handled;
6806
6807   ----------------------------
6808   -- Has_Mutable_Components --
6809   ----------------------------
6810
6811   function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
6812      Comp : Entity_Id;
6813
6814   begin
6815      Comp := First_Component (Typ);
6816      while Present (Comp) loop
6817         if Is_Record_Type (Etype (Comp))
6818           and then Has_Discriminants (Etype (Comp))
6819           and then not Is_Constrained (Etype (Comp))
6820         then
6821            return True;
6822         end if;
6823
6824         Next_Component (Comp);
6825      end loop;
6826
6827      return False;
6828   end Has_Mutable_Components;
6829
6830   ------------------------------
6831   -- Initialize_Discriminants --
6832   ------------------------------
6833
6834   procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
6835      Loc  : constant Source_Ptr := Sloc (N);
6836      Bas  : constant Entity_Id  := Base_Type (Typ);
6837      Par  : constant Entity_Id  := Etype (Bas);
6838      Decl : constant Node_Id    := Parent (Par);
6839      Ref  : Node_Id;
6840
6841   begin
6842      if Is_Tagged_Type (Bas)
6843        and then Is_Derived_Type (Bas)
6844        and then Has_Discriminants (Par)
6845        and then Has_Discriminants (Bas)
6846        and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
6847        and then Nkind (Decl) = N_Full_Type_Declaration
6848        and then Nkind (Type_Definition (Decl)) = N_Record_Definition
6849        and then
6850          Present (Variant_Part (Component_List (Type_Definition (Decl))))
6851        and then Nkind (N) /= N_Extension_Aggregate
6852      then
6853
6854         --   Call init proc to set discriminants.
6855         --   There should eventually be a special procedure for this ???
6856
6857         Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
6858         Insert_Actions_After (N,
6859           Build_Initialization_Call (Sloc (N), Ref, Typ));
6860      end if;
6861   end Initialize_Discriminants;
6862
6863   ----------------
6864   -- Must_Slide --
6865   ----------------
6866
6867   function Must_Slide
6868     (Obj_Type : Entity_Id;
6869      Typ      : Entity_Id) return Boolean
6870   is
6871      L1, L2, H1, H2 : Node_Id;
6872
6873   begin
6874      --  No sliding if the type of the object is not established yet, if it is
6875      --  an unconstrained type whose actual subtype comes from the aggregate,
6876      --  or if the two types are identical.
6877
6878      if not Is_Array_Type (Obj_Type) then
6879         return False;
6880
6881      elsif not Is_Constrained (Obj_Type) then
6882         return False;
6883
6884      elsif Typ = Obj_Type then
6885         return False;
6886
6887      else
6888         --  Sliding can only occur along the first dimension
6889
6890         Get_Index_Bounds (First_Index (Typ), L1, H1);
6891         Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
6892
6893         if not Is_OK_Static_Expression (L1) or else
6894            not Is_OK_Static_Expression (L2) or else
6895            not Is_OK_Static_Expression (H1) or else
6896            not Is_OK_Static_Expression (H2)
6897         then
6898            return False;
6899         else
6900            return Expr_Value (L1) /= Expr_Value (L2)
6901                     or else
6902                   Expr_Value (H1) /= Expr_Value (H2);
6903         end if;
6904      end if;
6905   end Must_Slide;
6906
6907   ----------------------------------
6908   -- Two_Dim_Packed_Array_Handled --
6909   ----------------------------------
6910
6911   function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
6912      Loc          : constant Source_Ptr := Sloc (N);
6913      Typ          : constant Entity_Id  := Etype (N);
6914      Ctyp         : constant Entity_Id  := Component_Type (Typ);
6915      Comp_Size    : constant Int        := UI_To_Int (Component_Size (Typ));
6916      Packed_Array : constant Entity_Id  :=
6917                       Packed_Array_Impl_Type (Base_Type (Typ));
6918
6919      One_Comp : Node_Id;
6920      --  Expression in original aggregate
6921
6922      One_Dim : Node_Id;
6923      --  One-dimensional subaggregate
6924
6925   begin
6926
6927      --  For now, only deal with cases where an integral number of elements
6928      --  fit in a single byte. This includes the most common boolean case.
6929
6930      if not (Comp_Size = 1 or else
6931              Comp_Size = 2 or else
6932              Comp_Size = 4)
6933      then
6934         return False;
6935      end if;
6936
6937      Convert_To_Positional
6938        (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
6939
6940      --  Verify that all components are static
6941
6942      if Nkind (N) = N_Aggregate
6943        and then Compile_Time_Known_Aggregate (N)
6944      then
6945         null;
6946
6947      --  The aggregate may have been re-analyzed and converted already
6948
6949      elsif Nkind (N) /= N_Aggregate then
6950         return True;
6951
6952      --  If component associations remain, the aggregate is not static
6953
6954      elsif Present (Component_Associations (N)) then
6955         return False;
6956
6957      else
6958         One_Dim := First (Expressions (N));
6959         while Present (One_Dim) loop
6960            if Present (Component_Associations (One_Dim)) then
6961               return False;
6962            end if;
6963
6964            One_Comp := First (Expressions (One_Dim));
6965            while Present (One_Comp) loop
6966               if not Is_OK_Static_Expression (One_Comp) then
6967                  return False;
6968               end if;
6969
6970               Next (One_Comp);
6971            end loop;
6972
6973            Next (One_Dim);
6974         end loop;
6975      end if;
6976
6977      --  Two-dimensional aggregate is now fully positional so pack one
6978      --  dimension to create a static one-dimensional array, and rewrite
6979      --  as an unchecked conversion to the original type.
6980
6981      declare
6982         Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
6983         --  The packed array type is a byte array
6984
6985         Packed_Num : Int;
6986         --  Number of components accumulated in current byte
6987
6988         Comps : List_Id;
6989         --  Assembled list of packed values for equivalent aggregate
6990
6991         Comp_Val : Uint;
6992         --  integer value of component
6993
6994         Incr : Int;
6995         --  Step size for packing
6996
6997         Init_Shift : Int;
6998         --  Endian-dependent start position for packing
6999
7000         Shift : Int;
7001         --  Current insertion position
7002
7003         Val : Int;
7004         --  Component of packed array being assembled.
7005
7006      begin
7007         Comps := New_List;
7008         Val   := 0;
7009         Packed_Num := 0;
7010
7011         --  Account for endianness.  See corresponding comment in
7012         --  Packed_Array_Aggregate_Handled concerning the following.
7013
7014         if Bytes_Big_Endian
7015           xor Debug_Flag_8
7016           xor Reverse_Storage_Order (Base_Type (Typ))
7017         then
7018            Init_Shift := Byte_Size - Comp_Size;
7019            Incr := -Comp_Size;
7020         else
7021            Init_Shift := 0;
7022            Incr := +Comp_Size;
7023         end if;
7024
7025         --  Iterate over each subaggregate
7026
7027         Shift := Init_Shift;
7028         One_Dim := First (Expressions (N));
7029         while Present (One_Dim) loop
7030            One_Comp := First (Expressions (One_Dim));
7031            while Present (One_Comp) loop
7032               if Packed_Num = Byte_Size / Comp_Size then
7033
7034                  --  Byte is complete, add to list of expressions
7035
7036                  Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
7037                  Val := 0;
7038                  Shift := Init_Shift;
7039                  Packed_Num := 0;
7040
7041               else
7042                  Comp_Val := Expr_Rep_Value (One_Comp);
7043
7044                  --  Adjust for bias, and strip proper number of bits
7045
7046                  if Has_Biased_Representation (Ctyp) then
7047                     Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
7048                  end if;
7049
7050                  Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
7051                  Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
7052                  Shift := Shift + Incr;
7053                  One_Comp := Next (One_Comp);
7054                  Packed_Num := Packed_Num + 1;
7055               end if;
7056            end loop;
7057
7058            One_Dim := Next (One_Dim);
7059         end loop;
7060
7061         if Packed_Num > 0 then
7062
7063            --  Add final incomplete byte if present
7064
7065            Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
7066         end if;
7067
7068         Rewrite (N,
7069             Unchecked_Convert_To (Typ,
7070               Make_Qualified_Expression (Loc,
7071                 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
7072                 Expression   => Make_Aggregate (Loc, Expressions => Comps))));
7073         Analyze_And_Resolve (N);
7074         return True;
7075      end;
7076   end Two_Dim_Packed_Array_Handled;
7077
7078   ---------------------
7079   -- Sort_Case_Table --
7080   ---------------------
7081
7082   procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
7083      L : constant Int := Case_Table'First;
7084      U : constant Int := Case_Table'Last;
7085      K : Int;
7086      J : Int;
7087      T : Case_Bounds;
7088
7089   begin
7090      K := L;
7091      while K /= U loop
7092         T := Case_Table (K + 1);
7093
7094         J := K + 1;
7095         while J /= L
7096           and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
7097                    Expr_Value (T.Choice_Lo)
7098         loop
7099            Case_Table (J) := Case_Table (J - 1);
7100            J := J - 1;
7101         end loop;
7102
7103         Case_Table (J) := T;
7104         K := K + 1;
7105      end loop;
7106   end Sort_Case_Table;
7107
7108   ----------------------------
7109   -- Static_Array_Aggregate --
7110   ----------------------------
7111
7112   function Static_Array_Aggregate (N : Node_Id) return Boolean is
7113      Bounds : constant Node_Id := Aggregate_Bounds (N);
7114
7115      Typ       : constant Entity_Id := Etype (N);
7116      Comp_Type : constant Entity_Id := Component_Type (Typ);
7117      Agg       : Node_Id;
7118      Expr      : Node_Id;
7119      Lo        : Node_Id;
7120      Hi        : Node_Id;
7121
7122   begin
7123      if Is_Tagged_Type (Typ)
7124        or else Is_Controlled (Typ)
7125        or else Is_Packed (Typ)
7126      then
7127         return False;
7128      end if;
7129
7130      if Present (Bounds)
7131        and then Nkind (Bounds) = N_Range
7132        and then Nkind (Low_Bound  (Bounds)) = N_Integer_Literal
7133        and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
7134      then
7135         Lo := Low_Bound  (Bounds);
7136         Hi := High_Bound (Bounds);
7137
7138         if No (Component_Associations (N)) then
7139
7140            --  Verify that all components are static integers
7141
7142            Expr := First (Expressions (N));
7143            while Present (Expr) loop
7144               if Nkind (Expr) /= N_Integer_Literal then
7145                  return False;
7146               end if;
7147
7148               Next (Expr);
7149            end loop;
7150
7151            return True;
7152
7153         else
7154            --  We allow only a single named association, either a static
7155            --  range or an others_clause, with a static expression.
7156
7157            Expr := First (Component_Associations (N));
7158
7159            if Present (Expressions (N)) then
7160               return False;
7161
7162            elsif Present (Next (Expr)) then
7163               return False;
7164
7165            elsif Present (Next (First (Choices (Expr)))) then
7166               return False;
7167
7168            else
7169               --  The aggregate is static if all components are literals,
7170               --  or else all its components are static aggregates for the
7171               --  component type. We also limit the size of a static aggregate
7172               --  to prevent runaway static expressions.
7173
7174               if Is_Array_Type (Comp_Type)
7175                 or else Is_Record_Type (Comp_Type)
7176               then
7177                  if Nkind (Expression (Expr)) /= N_Aggregate
7178                    or else
7179                      not Compile_Time_Known_Aggregate (Expression (Expr))
7180                  then
7181                     return False;
7182                  end if;
7183
7184               elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
7185                  return False;
7186               end if;
7187
7188               if not Aggr_Size_OK (N, Typ) then
7189                  return False;
7190               end if;
7191
7192               --  Create a positional aggregate with the right number of
7193               --  copies of the expression.
7194
7195               Agg := Make_Aggregate (Sloc (N), New_List, No_List);
7196
7197               for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
7198               loop
7199                  Append_To (Expressions (Agg), New_Copy (Expression (Expr)));
7200
7201                  --  The copied expression must be analyzed and resolved.
7202                  --  Besides setting the type, this ensures that static
7203                  --  expressions are appropriately marked as such.
7204
7205                  Analyze_And_Resolve
7206                    (Last (Expressions (Agg)), Component_Type (Typ));
7207               end loop;
7208
7209               Set_Aggregate_Bounds (Agg, Bounds);
7210               Set_Etype (Agg, Typ);
7211               Set_Analyzed (Agg);
7212               Rewrite (N, Agg);
7213               Set_Compile_Time_Known_Aggregate (N);
7214
7215               return True;
7216            end if;
7217         end if;
7218
7219      else
7220         return False;
7221      end if;
7222   end Static_Array_Aggregate;
7223
7224end Exp_Aggr;
7225