1// symtab.h -- the gold symbol table   -*- C++ -*-
2
3// Copyright (C) 2006-2017 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Symbol_table
24//   The symbol table.
25
26#ifndef GOLD_SYMTAB_H
27#define GOLD_SYMTAB_H
28
29#include <string>
30#include <utility>
31#include <vector>
32
33#include "elfcpp.h"
34#include "parameters.h"
35#include "stringpool.h"
36#include "object.h"
37
38namespace gold
39{
40
41class Mapfile;
42class Object;
43class Relobj;
44template<int size, bool big_endian>
45class Sized_relobj_file;
46template<int size, bool big_endian>
47class Sized_pluginobj;
48class Dynobj;
49template<int size, bool big_endian>
50class Sized_dynobj;
51template<int size, bool big_endian>
52class Sized_incrobj;
53class Versions;
54class Version_script_info;
55class Input_objects;
56class Output_data;
57class Output_section;
58class Output_segment;
59class Output_file;
60class Output_symtab_xindex;
61class Garbage_collection;
62class Icf;
63
64// The base class of an entry in the symbol table.  The symbol table
65// can have a lot of entries, so we don't want this class too big.
66// Size dependent fields can be found in the template class
67// Sized_symbol.  Targets may support their own derived classes.
68
69class Symbol
70{
71 public:
72  // Because we want the class to be small, we don't use any virtual
73  // functions.  But because symbols can be defined in different
74  // places, we need to classify them.  This enum is the different
75  // sources of symbols we support.
76  enum Source
77  {
78    // Symbol defined in a relocatable or dynamic input file--this is
79    // the most common case.
80    FROM_OBJECT,
81    // Symbol defined in an Output_data, a special section created by
82    // the target.
83    IN_OUTPUT_DATA,
84    // Symbol defined in an Output_segment, with no associated
85    // section.
86    IN_OUTPUT_SEGMENT,
87    // Symbol value is constant.
88    IS_CONSTANT,
89    // Symbol is undefined.
90    IS_UNDEFINED
91  };
92
93  // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94  // the offset means.
95  enum Segment_offset_base
96  {
97    // From the start of the segment.
98    SEGMENT_START,
99    // From the end of the segment.
100    SEGMENT_END,
101    // From the filesz of the segment--i.e., after the loaded bytes
102    // but before the bytes which are allocated but zeroed.
103    SEGMENT_BSS
104  };
105
106  // Return the symbol name.
107  const char*
108  name() const
109  { return this->name_; }
110
111  // Return the (ANSI) demangled version of the name, if
112  // parameters.demangle() is true.  Otherwise, return the name.  This
113  // is intended to be used only for logging errors, so it's not
114  // super-efficient.
115  std::string
116  demangled_name() const;
117
118  // Return the symbol version.  This will return NULL for an
119  // unversioned symbol.
120  const char*
121  version() const
122  { return this->version_; }
123
124  void
125  clear_version()
126  { this->version_ = NULL; }
127
128  // Return whether this version is the default for this symbol name
129  // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
130  // meaningful for versioned symbols.
131  bool
132  is_default() const
133  {
134    gold_assert(this->version_ != NULL);
135    return this->is_def_;
136  }
137
138  // Set that this version is the default for this symbol name.
139  void
140  set_is_default()
141  { this->is_def_ = true; }
142
143  // Set that this version is not the default for this symbol name.
144  void
145  set_is_not_default()
146  { this->is_def_ = false; }
147
148  // Return the symbol's name as name@version (or name@@version).
149  std::string
150  versioned_name() const;
151
152  // Return the symbol source.
153  Source
154  source() const
155  { return this->source_; }
156
157  // Return the object with which this symbol is associated.
158  Object*
159  object() const
160  {
161    gold_assert(this->source_ == FROM_OBJECT);
162    return this->u_.from_object.object;
163  }
164
165  // Return the index of the section in the input relocatable or
166  // dynamic object file.
167  unsigned int
168  shndx(bool* is_ordinary) const
169  {
170    gold_assert(this->source_ == FROM_OBJECT);
171    *is_ordinary = this->is_ordinary_shndx_;
172    return this->u_.from_object.shndx;
173  }
174
175  // Return the output data section with which this symbol is
176  // associated, if the symbol was specially defined with respect to
177  // an output data section.
178  Output_data*
179  output_data() const
180  {
181    gold_assert(this->source_ == IN_OUTPUT_DATA);
182    return this->u_.in_output_data.output_data;
183  }
184
185  // If this symbol was defined with respect to an output data
186  // section, return whether the value is an offset from end.
187  bool
188  offset_is_from_end() const
189  {
190    gold_assert(this->source_ == IN_OUTPUT_DATA);
191    return this->u_.in_output_data.offset_is_from_end;
192  }
193
194  // Return the output segment with which this symbol is associated,
195  // if the symbol was specially defined with respect to an output
196  // segment.
197  Output_segment*
198  output_segment() const
199  {
200    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201    return this->u_.in_output_segment.output_segment;
202  }
203
204  // If this symbol was defined with respect to an output segment,
205  // return the offset base.
206  Segment_offset_base
207  offset_base() const
208  {
209    gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210    return this->u_.in_output_segment.offset_base;
211  }
212
213  // Return the symbol binding.
214  elfcpp::STB
215  binding() const
216  { return this->binding_; }
217
218  // Return the symbol type.
219  elfcpp::STT
220  type() const
221  { return this->type_; }
222
223  // Set the symbol type.
224  void
225  set_type(elfcpp::STT type)
226  { this->type_ = type; }
227
228  // Return true for function symbol.
229  bool
230  is_func() const
231  {
232    return (this->type_ == elfcpp::STT_FUNC
233	    || this->type_ == elfcpp::STT_GNU_IFUNC);
234  }
235
236  // Return the symbol visibility.
237  elfcpp::STV
238  visibility() const
239  { return this->visibility_; }
240
241  // Set the visibility.
242  void
243  set_visibility(elfcpp::STV visibility)
244  { this->visibility_ = visibility; }
245
246  // Override symbol visibility.
247  void
248  override_visibility(elfcpp::STV);
249
250  // Set whether the symbol was originally a weak undef or a regular undef
251  // when resolved by a dynamic def or by a special symbol.
252  inline void
253  set_undef_binding(elfcpp::STB bind)
254  {
255    if (!this->undef_binding_set_ || this->undef_binding_weak_)
256      {
257        this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258        this->undef_binding_set_ = true;
259      }
260  }
261
262  // Return TRUE if a weak undef was resolved by a dynamic def or
263  // by a special symbol.
264  inline bool
265  is_undef_binding_weak() const
266  { return this->undef_binding_weak_; }
267
268  // Return the non-visibility part of the st_other field.
269  unsigned char
270  nonvis() const
271  { return this->nonvis_; }
272
273  // Set the non-visibility part of the st_other field.
274  void
275  set_nonvis(unsigned int nonvis)
276  { this->nonvis_ = nonvis; }
277
278  // Return whether this symbol is a forwarder.  This will never be
279  // true of a symbol found in the hash table, but may be true of
280  // symbol pointers attached to object files.
281  bool
282  is_forwarder() const
283  { return this->is_forwarder_; }
284
285  // Mark this symbol as a forwarder.
286  void
287  set_forwarder()
288  { this->is_forwarder_ = true; }
289
290  // Return whether this symbol has an alias in the weak aliases table
291  // in Symbol_table.
292  bool
293  has_alias() const
294  { return this->has_alias_; }
295
296  // Mark this symbol as having an alias.
297  void
298  set_has_alias()
299  { this->has_alias_ = true; }
300
301  // Return whether this symbol needs an entry in the dynamic symbol
302  // table.
303  bool
304  needs_dynsym_entry() const
305  {
306    return (this->needs_dynsym_entry_
307            || (this->in_reg()
308		&& this->in_dyn()
309		&& this->is_externally_visible()));
310  }
311
312  // Mark this symbol as needing an entry in the dynamic symbol table.
313  void
314  set_needs_dynsym_entry()
315  { this->needs_dynsym_entry_ = true; }
316
317  // Return whether this symbol should be added to the dynamic symbol
318  // table.
319  bool
320  should_add_dynsym_entry(Symbol_table*) const;
321
322  // Return whether this symbol has been seen in a regular object.
323  bool
324  in_reg() const
325  { return this->in_reg_; }
326
327  // Mark this symbol as having been seen in a regular object.
328  void
329  set_in_reg()
330  { this->in_reg_ = true; }
331
332  // Return whether this symbol has been seen in a dynamic object.
333  bool
334  in_dyn() const
335  { return this->in_dyn_; }
336
337  // Mark this symbol as having been seen in a dynamic object.
338  void
339  set_in_dyn()
340  { this->in_dyn_ = true; }
341
342  // Return whether this symbol has been seen in a real ELF object.
343  // (IN_REG will return TRUE if the symbol has been seen in either
344  // a real ELF object or an object claimed by a plugin.)
345  bool
346  in_real_elf() const
347  { return this->in_real_elf_; }
348
349  // Mark this symbol as having been seen in a real ELF object.
350  void
351  set_in_real_elf()
352  { this->in_real_elf_ = true; }
353
354  // Return whether this symbol was defined in a section that was
355  // discarded from the link.  This is used to control some error
356  // reporting.
357  bool
358  is_defined_in_discarded_section() const
359  { return this->is_defined_in_discarded_section_; }
360
361  // Mark this symbol as having been defined in a discarded section.
362  void
363  set_is_defined_in_discarded_section()
364  { this->is_defined_in_discarded_section_ = true; }
365
366  // Return the index of this symbol in the output file symbol table.
367  // A value of -1U means that this symbol is not going into the
368  // output file.  This starts out as zero, and is set to a non-zero
369  // value by Symbol_table::finalize.  It is an error to ask for the
370  // symbol table index before it has been set.
371  unsigned int
372  symtab_index() const
373  {
374    gold_assert(this->symtab_index_ != 0);
375    return this->symtab_index_;
376  }
377
378  // Set the index of the symbol in the output file symbol table.
379  void
380  set_symtab_index(unsigned int index)
381  {
382    gold_assert(index != 0);
383    this->symtab_index_ = index;
384  }
385
386  // Return whether this symbol already has an index in the output
387  // file symbol table.
388  bool
389  has_symtab_index() const
390  { return this->symtab_index_ != 0; }
391
392  // Return the index of this symbol in the dynamic symbol table.  A
393  // value of -1U means that this symbol is not going into the dynamic
394  // symbol table.  This starts out as zero, and is set to a non-zero
395  // during Layout::finalize.  It is an error to ask for the dynamic
396  // symbol table index before it has been set.
397  unsigned int
398  dynsym_index() const
399  {
400    gold_assert(this->dynsym_index_ != 0);
401    return this->dynsym_index_;
402  }
403
404  // Set the index of the symbol in the dynamic symbol table.
405  void
406  set_dynsym_index(unsigned int index)
407  {
408    gold_assert(index != 0);
409    this->dynsym_index_ = index;
410  }
411
412  // Return whether this symbol already has an index in the dynamic
413  // symbol table.
414  bool
415  has_dynsym_index() const
416  { return this->dynsym_index_ != 0; }
417
418  // Return whether this symbol has an entry in the GOT section.
419  // For a TLS symbol, this GOT entry will hold its tp-relative offset.
420  bool
421  has_got_offset(unsigned int got_type) const
422  { return this->got_offsets_.get_offset(got_type) != -1U; }
423
424  // Return the offset into the GOT section of this symbol.
425  unsigned int
426  got_offset(unsigned int got_type) const
427  {
428    unsigned int got_offset = this->got_offsets_.get_offset(got_type);
429    gold_assert(got_offset != -1U);
430    return got_offset;
431  }
432
433  // Set the GOT offset of this symbol.
434  void
435  set_got_offset(unsigned int got_type, unsigned int got_offset)
436  { this->got_offsets_.set_offset(got_type, got_offset); }
437
438  // Return the GOT offset list.
439  const Got_offset_list*
440  got_offset_list() const
441  { return this->got_offsets_.get_list(); }
442
443  // Return whether this symbol has an entry in the PLT section.
444  bool
445  has_plt_offset() const
446  { return this->plt_offset_ != -1U; }
447
448  // Return the offset into the PLT section of this symbol.
449  unsigned int
450  plt_offset() const
451  {
452    gold_assert(this->has_plt_offset());
453    return this->plt_offset_;
454  }
455
456  // Set the PLT offset of this symbol.
457  void
458  set_plt_offset(unsigned int plt_offset)
459  {
460    gold_assert(plt_offset != -1U);
461    this->plt_offset_ = plt_offset;
462  }
463
464  // Return whether this dynamic symbol needs a special value in the
465  // dynamic symbol table.
466  bool
467  needs_dynsym_value() const
468  { return this->needs_dynsym_value_; }
469
470  // Set that this dynamic symbol needs a special value in the dynamic
471  // symbol table.
472  void
473  set_needs_dynsym_value()
474  {
475    gold_assert(this->object()->is_dynamic());
476    this->needs_dynsym_value_ = true;
477  }
478
479  // Return true if the final value of this symbol is known at link
480  // time.
481  bool
482  final_value_is_known() const;
483
484  // Return true if SHNDX represents a common symbol.  This depends on
485  // the target.
486  static bool
487  is_common_shndx(unsigned int shndx);
488
489  // Return whether this is a defined symbol (not undefined or
490  // common).
491  bool
492  is_defined() const
493  {
494    bool is_ordinary;
495    if (this->source_ != FROM_OBJECT)
496      return this->source_ != IS_UNDEFINED;
497    unsigned int shndx = this->shndx(&is_ordinary);
498    return (is_ordinary
499	    ? shndx != elfcpp::SHN_UNDEF
500	    : !Symbol::is_common_shndx(shndx));
501  }
502
503  // Return true if this symbol is from a dynamic object.
504  bool
505  is_from_dynobj() const
506  {
507    return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
508  }
509
510  // Return whether this is a placeholder symbol from a plugin object.
511  bool
512  is_placeholder() const
513  {
514    return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
515  }
516
517  // Return whether this is an undefined symbol.
518  bool
519  is_undefined() const
520  {
521    bool is_ordinary;
522    return ((this->source_ == FROM_OBJECT
523	     && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
524	     && is_ordinary)
525	    || this->source_ == IS_UNDEFINED);
526  }
527
528  // Return whether this is a weak undefined symbol.
529  bool
530  is_weak_undefined() const
531  {
532    return (this->is_undefined()
533	    && (this->binding() == elfcpp::STB_WEAK
534		|| this->is_undef_binding_weak()
535		|| parameters->options().weak_unresolved_symbols()));
536  }
537
538  // Return whether this is a strong undefined symbol.
539  bool
540  is_strong_undefined() const
541  {
542    return (this->is_undefined()
543	    && this->binding() != elfcpp::STB_WEAK
544	    && !this->is_undef_binding_weak()
545	    && !parameters->options().weak_unresolved_symbols());
546  }
547
548  // Return whether this is an absolute symbol.
549  bool
550  is_absolute() const
551  {
552    bool is_ordinary;
553    return ((this->source_ == FROM_OBJECT
554	     && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
555	     && !is_ordinary)
556	    || this->source_ == IS_CONSTANT);
557  }
558
559  // Return whether this is a common symbol.
560  bool
561  is_common() const
562  {
563    if (this->source_ != FROM_OBJECT)
564      return false;
565    bool is_ordinary;
566    unsigned int shndx = this->shndx(&is_ordinary);
567    return !is_ordinary && Symbol::is_common_shndx(shndx);
568  }
569
570  // Return whether this symbol can be seen outside this object.
571  bool
572  is_externally_visible() const
573  {
574    return ((this->visibility_ == elfcpp::STV_DEFAULT
575             || this->visibility_ == elfcpp::STV_PROTECTED)
576	    && !this->is_forced_local_);
577  }
578
579  // Return true if this symbol can be preempted by a definition in
580  // another link unit.
581  bool
582  is_preemptible() const
583  {
584    // It doesn't make sense to ask whether a symbol defined in
585    // another object is preemptible.
586    gold_assert(!this->is_from_dynobj());
587
588    // It doesn't make sense to ask whether an undefined symbol
589    // is preemptible.
590    gold_assert(!this->is_undefined());
591
592    // If a symbol does not have default visibility, it can not be
593    // seen outside this link unit and therefore is not preemptible.
594    if (this->visibility_ != elfcpp::STV_DEFAULT)
595      return false;
596
597    // If this symbol has been forced to be a local symbol by a
598    // version script, then it is not visible outside this link unit
599    // and is not preemptible.
600    if (this->is_forced_local_)
601      return false;
602
603    // If we are not producing a shared library, then nothing is
604    // preemptible.
605    if (!parameters->options().shared())
606      return false;
607
608    // If the symbol was named in a --dynamic-list script, it is preemptible.
609    if (parameters->options().in_dynamic_list(this->name()))
610      return true;
611
612    // If the user used -Bsymbolic, then nothing (else) is preemptible.
613    if (parameters->options().Bsymbolic())
614      return false;
615
616    // If the user used -Bsymbolic-functions, then functions are not
617    // preemptible.  We explicitly check for not being STT_OBJECT,
618    // rather than for being STT_FUNC, because that is what the GNU
619    // linker does.
620    if (this->type() != elfcpp::STT_OBJECT
621	&& parameters->options().Bsymbolic_functions())
622      return false;
623
624    // Otherwise the symbol is preemptible.
625    return true;
626  }
627
628  // Return true if this symbol is a function that needs a PLT entry.
629  bool
630  needs_plt_entry() const
631  {
632    // An undefined symbol from an executable does not need a PLT entry.
633    if (this->is_undefined() && !parameters->options().shared())
634      return false;
635
636    // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
637    // doing a static link.
638    if (this->type() == elfcpp::STT_GNU_IFUNC)
639      return true;
640
641    // We only need a PLT entry for a function.
642    if (!this->is_func())
643      return false;
644
645    // If we're doing a static link or a -pie link, we don't create
646    // PLT entries.
647    if (parameters->doing_static_link()
648	|| parameters->options().pie())
649      return false;
650
651    // We need a PLT entry if the function is defined in a dynamic
652    // object, or is undefined when building a shared object, or if it
653    // is subject to pre-emption.
654    return (this->is_from_dynobj()
655	    || this->is_undefined()
656	    || this->is_preemptible());
657  }
658
659  // When determining whether a reference to a symbol needs a dynamic
660  // relocation, we need to know several things about the reference.
661  // These flags may be or'ed together.  0 means that the symbol
662  // isn't referenced at all.
663  enum Reference_flags
664  {
665    // A reference to the symbol's absolute address.  This includes
666    // references that cause an absolute address to be stored in the GOT.
667    ABSOLUTE_REF = 1,
668    // A reference that calculates the offset of the symbol from some
669    // anchor point, such as the PC or GOT.
670    RELATIVE_REF = 2,
671    // A TLS-related reference.
672    TLS_REF = 4,
673    // A reference that can always be treated as a function call.
674    FUNCTION_CALL = 8,
675    // When set, says that dynamic relocations are needed even if a
676    // symbol has a plt entry.
677    FUNC_DESC_ABI = 16,
678  };
679
680  // Given a direct absolute or pc-relative static relocation against
681  // the global symbol, this function returns whether a dynamic relocation
682  // is needed.
683
684  bool
685  needs_dynamic_reloc(int flags) const
686  {
687    // No dynamic relocations in a static link!
688    if (parameters->doing_static_link())
689      return false;
690
691    // A reference to an undefined symbol from an executable should be
692    // statically resolved to 0, and does not need a dynamic relocation.
693    // This matches gnu ld behavior.
694    if (this->is_undefined() && !parameters->options().shared())
695      return false;
696
697    // A reference to an absolute symbol does not need a dynamic relocation.
698    if (this->is_absolute())
699      return false;
700
701    // An absolute reference within a position-independent output file
702    // will need a dynamic relocation.
703    if ((flags & ABSOLUTE_REF)
704        && parameters->options().output_is_position_independent())
705      return true;
706
707    // A function call that can branch to a local PLT entry does not need
708    // a dynamic relocation.
709    if ((flags & FUNCTION_CALL) && this->has_plt_offset())
710      return false;
711
712    // A reference to any PLT entry in a non-position-independent executable
713    // does not need a dynamic relocation.
714    if (!(flags & FUNC_DESC_ABI)
715	&& !parameters->options().output_is_position_independent()
716        && this->has_plt_offset())
717      return false;
718
719    // A reference to a symbol defined in a dynamic object or to a
720    // symbol that is preemptible will need a dynamic relocation.
721    if (this->is_from_dynobj()
722        || this->is_undefined()
723        || this->is_preemptible())
724      return true;
725
726    // For all other cases, return FALSE.
727    return false;
728  }
729
730  // Whether we should use the PLT offset associated with a symbol for
731  // a relocation.  FLAGS is a set of Reference_flags.
732
733  bool
734  use_plt_offset(int flags) const
735  {
736    // If the symbol doesn't have a PLT offset, then naturally we
737    // don't want to use it.
738    if (!this->has_plt_offset())
739      return false;
740
741    // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
742    if (this->type() == elfcpp::STT_GNU_IFUNC)
743      return true;
744
745    // If we are going to generate a dynamic relocation, then we will
746    // wind up using that, so no need to use the PLT entry.
747    if (this->needs_dynamic_reloc(flags))
748      return false;
749
750    // If the symbol is from a dynamic object, we need to use the PLT
751    // entry.
752    if (this->is_from_dynobj())
753      return true;
754
755    // If we are generating a shared object, and this symbol is
756    // undefined or preemptible, we need to use the PLT entry.
757    if (parameters->options().shared()
758	&& (this->is_undefined() || this->is_preemptible()))
759      return true;
760
761    // If this is a call to a weak undefined symbol, we need to use
762    // the PLT entry; the symbol may be defined by a library loaded
763    // at runtime.
764    if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
765      return true;
766
767    // Otherwise we can use the regular definition.
768    return false;
769  }
770
771  // Given a direct absolute static relocation against
772  // the global symbol, where a dynamic relocation is needed, this
773  // function returns whether a relative dynamic relocation can be used.
774  // The caller must determine separately whether the static relocation
775  // is compatible with a relative relocation.
776
777  bool
778  can_use_relative_reloc(bool is_function_call) const
779  {
780    // A function call that can branch to a local PLT entry can
781    // use a RELATIVE relocation.
782    if (is_function_call && this->has_plt_offset())
783      return true;
784
785    // A reference to a symbol defined in a dynamic object or to a
786    // symbol that is preemptible can not use a RELATIVE relocation.
787    if (this->is_from_dynobj()
788        || this->is_undefined()
789        || this->is_preemptible())
790      return false;
791
792    // For all other cases, return TRUE.
793    return true;
794  }
795
796  // Return the output section where this symbol is defined.  Return
797  // NULL if the symbol has an absolute value.
798  Output_section*
799  output_section() const;
800
801  // Set the symbol's output section.  This is used for symbols
802  // defined in scripts.  This should only be called after the symbol
803  // table has been finalized.
804  void
805  set_output_section(Output_section*);
806
807  // Set the symbol's output segment.  This is used for pre-defined
808  // symbols whose segments aren't known until after layout is done
809  // (e.g., __ehdr_start).
810  void
811  set_output_segment(Output_segment*, Segment_offset_base);
812
813  // Set the symbol to undefined.  This is used for pre-defined
814  // symbols whose segments aren't known until after layout is done
815  // (e.g., __ehdr_start).
816  void
817  set_undefined();
818
819  // Return whether there should be a warning for references to this
820  // symbol.
821  bool
822  has_warning() const
823  { return this->has_warning_; }
824
825  // Mark this symbol as having a warning.
826  void
827  set_has_warning()
828  { this->has_warning_ = true; }
829
830  // Return whether this symbol is defined by a COPY reloc from a
831  // dynamic object.
832  bool
833  is_copied_from_dynobj() const
834  { return this->is_copied_from_dynobj_; }
835
836  // Mark this symbol as defined by a COPY reloc.
837  void
838  set_is_copied_from_dynobj()
839  { this->is_copied_from_dynobj_ = true; }
840
841  // Return whether this symbol is forced to visibility STB_LOCAL
842  // by a "local:" entry in a version script.
843  bool
844  is_forced_local() const
845  { return this->is_forced_local_; }
846
847  // Mark this symbol as forced to STB_LOCAL visibility.
848  void
849  set_is_forced_local()
850  { this->is_forced_local_ = true; }
851
852  // Return true if this may need a COPY relocation.
853  // References from an executable object to non-function symbols
854  // defined in a dynamic object may need a COPY relocation.
855  bool
856  may_need_copy_reloc() const
857  {
858    return (parameters->options().copyreloc()
859	    && this->is_from_dynobj()
860	    && !this->is_func());
861  }
862
863  // Return true if this symbol was predefined by the linker.
864  bool
865  is_predefined() const
866  { return this->is_predefined_; }
867
868  // Return true if this is a C++ vtable symbol.
869  bool
870  is_cxx_vtable() const
871  { return is_prefix_of("_ZTV", this->name_); }
872
873  // Return true if this symbol is protected in a shared object.
874  // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
875  // because the visibility_ field reflects the symbol's visibility from
876  // outside the shared object.
877  bool
878  is_protected() const
879  { return this->is_protected_; }
880
881  // Mark this symbol as protected in a shared object.
882  void
883  set_is_protected()
884  { this->is_protected_ = true; }
885
886 protected:
887  // Instances of this class should always be created at a specific
888  // size.
889  Symbol()
890  { memset(this, 0, sizeof *this); }
891
892  // Initialize the general fields.
893  void
894  init_fields(const char* name, const char* version,
895	      elfcpp::STT type, elfcpp::STB binding,
896	      elfcpp::STV visibility, unsigned char nonvis);
897
898  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
899  // section index, IS_ORDINARY is whether it is a normal section
900  // index rather than a special code.
901  template<int size, bool big_endian>
902  void
903  init_base_object(const char* name, const char* version, Object* object,
904		   const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
905		   bool is_ordinary);
906
907  // Initialize fields for an Output_data.
908  void
909  init_base_output_data(const char* name, const char* version, Output_data*,
910			elfcpp::STT, elfcpp::STB, elfcpp::STV,
911			unsigned char nonvis, bool offset_is_from_end,
912			bool is_predefined);
913
914  // Initialize fields for an Output_segment.
915  void
916  init_base_output_segment(const char* name, const char* version,
917			   Output_segment* os, elfcpp::STT type,
918			   elfcpp::STB binding, elfcpp::STV visibility,
919			   unsigned char nonvis,
920			   Segment_offset_base offset_base,
921			   bool is_predefined);
922
923  // Initialize fields for a constant.
924  void
925  init_base_constant(const char* name, const char* version, elfcpp::STT type,
926		     elfcpp::STB binding, elfcpp::STV visibility,
927		     unsigned char nonvis, bool is_predefined);
928
929  // Initialize fields for an undefined symbol.
930  void
931  init_base_undefined(const char* name, const char* version, elfcpp::STT type,
932		      elfcpp::STB binding, elfcpp::STV visibility,
933		      unsigned char nonvis);
934
935  // Override existing symbol.
936  template<int size, bool big_endian>
937  void
938  override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
939		bool is_ordinary, Object* object, const char* version);
940
941  // Override existing symbol with a special symbol.
942  void
943  override_base_with_special(const Symbol* from);
944
945  // Override symbol version.
946  void
947  override_version(const char* version);
948
949  // Allocate a common symbol by giving it a location in the output
950  // file.
951  void
952  allocate_base_common(Output_data*);
953
954 private:
955  Symbol(const Symbol&);
956  Symbol& operator=(const Symbol&);
957
958  // Symbol name (expected to point into a Stringpool).
959  const char* name_;
960  // Symbol version (expected to point into a Stringpool).  This may
961  // be NULL.
962  const char* version_;
963
964  union
965  {
966    // This struct is used if SOURCE_ == FROM_OBJECT.
967    struct
968    {
969      // Object in which symbol is defined, or in which it was first
970      // seen.
971      Object* object;
972      // Section number in object_ in which symbol is defined.
973      unsigned int shndx;
974    } from_object;
975
976    // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
977    struct
978    {
979      // Output_data in which symbol is defined.  Before
980      // Layout::finalize the symbol's value is an offset within the
981      // Output_data.
982      Output_data* output_data;
983      // True if the offset is from the end, false if the offset is
984      // from the beginning.
985      bool offset_is_from_end;
986    } in_output_data;
987
988    // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
989    struct
990    {
991      // Output_segment in which the symbol is defined.  Before
992      // Layout::finalize the symbol's value is an offset.
993      Output_segment* output_segment;
994      // The base to use for the offset before Layout::finalize.
995      Segment_offset_base offset_base;
996    } in_output_segment;
997  } u_;
998
999  // The index of this symbol in the output file.  If the symbol is
1000  // not going into the output file, this value is -1U.  This field
1001  // starts as always holding zero.  It is set to a non-zero value by
1002  // Symbol_table::finalize.
1003  unsigned int symtab_index_;
1004
1005  // The index of this symbol in the dynamic symbol table.  If the
1006  // symbol is not going into the dynamic symbol table, this value is
1007  // -1U.  This field starts as always holding zero.  It is set to a
1008  // non-zero value during Layout::finalize.
1009  unsigned int dynsym_index_;
1010
1011  // The GOT section entries for this symbol.  A symbol may have more
1012  // than one GOT offset (e.g., when mixing modules compiled with two
1013  // different TLS models), but will usually have at most one.
1014  Got_offset_list got_offsets_;
1015
1016  // If this symbol has an entry in the PLT section, then this is the
1017  // offset from the start of the PLT section.  This is -1U if there
1018  // is no PLT entry.
1019  unsigned int plt_offset_;
1020
1021  // Symbol type (bits 0 to 3).
1022  elfcpp::STT type_ : 4;
1023  // Symbol binding (bits 4 to 7).
1024  elfcpp::STB binding_ : 4;
1025  // Symbol visibility (bits 8 to 9).
1026  elfcpp::STV visibility_ : 2;
1027  // Rest of symbol st_other field (bits 10 to 15).
1028  unsigned int nonvis_ : 6;
1029  // The type of symbol (bits 16 to 18).
1030  Source source_ : 3;
1031  // True if this is the default version of the symbol (bit 19).
1032  bool is_def_ : 1;
1033  // True if this symbol really forwards to another symbol.  This is
1034  // used when we discover after the fact that two different entries
1035  // in the hash table really refer to the same symbol.  This will
1036  // never be set for a symbol found in the hash table, but may be set
1037  // for a symbol found in the list of symbols attached to an Object.
1038  // It forwards to the symbol found in the forwarders_ map of
1039  // Symbol_table (bit 20).
1040  bool is_forwarder_ : 1;
1041  // True if the symbol has an alias in the weak_aliases table in
1042  // Symbol_table (bit 21).
1043  bool has_alias_ : 1;
1044  // True if this symbol needs to be in the dynamic symbol table (bit
1045  // 22).
1046  bool needs_dynsym_entry_ : 1;
1047  // True if we've seen this symbol in a regular object (bit 23).
1048  bool in_reg_ : 1;
1049  // True if we've seen this symbol in a dynamic object (bit 24).
1050  bool in_dyn_ : 1;
1051  // True if this is a dynamic symbol which needs a special value in
1052  // the dynamic symbol table (bit 25).
1053  bool needs_dynsym_value_ : 1;
1054  // True if there is a warning for this symbol (bit 26).
1055  bool has_warning_ : 1;
1056  // True if we are using a COPY reloc for this symbol, so that the
1057  // real definition lives in a dynamic object (bit 27).
1058  bool is_copied_from_dynobj_ : 1;
1059  // True if this symbol was forced to local visibility by a version
1060  // script (bit 28).
1061  bool is_forced_local_ : 1;
1062  // True if the field u_.from_object.shndx is an ordinary section
1063  // index, not one of the special codes from SHN_LORESERVE to
1064  // SHN_HIRESERVE (bit 29).
1065  bool is_ordinary_shndx_ : 1;
1066  // True if we've seen this symbol in a "real" ELF object (bit 30).
1067  // If the symbol has been seen in a relocatable, non-IR, object file,
1068  // it's known to be referenced from outside the IR.  A reference from
1069  // a dynamic object doesn't count as a "real" ELF, and we'll simply
1070  // mark the symbol as "visible" from outside the IR.  The compiler
1071  // can use this distinction to guide its handling of COMDAT symbols.
1072  bool in_real_elf_ : 1;
1073  // True if this symbol is defined in a section which was discarded
1074  // (bit 31).
1075  bool is_defined_in_discarded_section_ : 1;
1076  // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1077  bool undef_binding_set_ : 1;
1078  // True if this symbol was a weak undef resolved by a dynamic def
1079  // or by a special symbol (bit 33).
1080  bool undef_binding_weak_ : 1;
1081  // True if this symbol is a predefined linker symbol (bit 34).
1082  bool is_predefined_ : 1;
1083  // True if this symbol has protected visibility in a shared object (bit 35).
1084  // The visibility_ field will be STV_DEFAULT in this case because we
1085  // must treat it as such from outside the shared object.
1086  bool is_protected_  : 1;
1087};
1088
1089// The parts of a symbol which are size specific.  Using a template
1090// derived class like this helps us use less space on a 32-bit system.
1091
1092template<int size>
1093class Sized_symbol : public Symbol
1094{
1095 public:
1096  typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1097  typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1098
1099  Sized_symbol()
1100  { }
1101
1102  // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
1103  // section index, IS_ORDINARY is whether it is a normal section
1104  // index rather than a special code.
1105  template<bool big_endian>
1106  void
1107  init_object(const char* name, const char* version, Object* object,
1108	      const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1109	      bool is_ordinary);
1110
1111  // Initialize fields for an Output_data.
1112  void
1113  init_output_data(const char* name, const char* version, Output_data*,
1114		   Value_type value, Size_type symsize, elfcpp::STT,
1115		   elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1116		   bool offset_is_from_end, bool is_predefined);
1117
1118  // Initialize fields for an Output_segment.
1119  void
1120  init_output_segment(const char* name, const char* version, Output_segment*,
1121		      Value_type value, Size_type symsize, elfcpp::STT,
1122		      elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1123		      Segment_offset_base offset_base, bool is_predefined);
1124
1125  // Initialize fields for a constant.
1126  void
1127  init_constant(const char* name, const char* version, Value_type value,
1128		Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1129		unsigned char nonvis, bool is_predefined);
1130
1131  // Initialize fields for an undefined symbol.
1132  void
1133  init_undefined(const char* name, const char* version, Value_type value,
1134		 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1135
1136  // Override existing symbol.
1137  template<bool big_endian>
1138  void
1139  override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1140	   bool is_ordinary, Object* object, const char* version);
1141
1142  // Override existing symbol with a special symbol.
1143  void
1144  override_with_special(const Sized_symbol<size>*);
1145
1146  // Return the symbol's value.
1147  Value_type
1148  value() const
1149  { return this->value_; }
1150
1151  // Return the symbol's size (we can't call this 'size' because that
1152  // is a template parameter).
1153  Size_type
1154  symsize() const
1155  { return this->symsize_; }
1156
1157  // Set the symbol size.  This is used when resolving common symbols.
1158  void
1159  set_symsize(Size_type symsize)
1160  { this->symsize_ = symsize; }
1161
1162  // Set the symbol value.  This is called when we store the final
1163  // values of the symbols into the symbol table.
1164  void
1165  set_value(Value_type value)
1166  { this->value_ = value; }
1167
1168  // Allocate a common symbol by giving it a location in the output
1169  // file.
1170  void
1171  allocate_common(Output_data*, Value_type value);
1172
1173 private:
1174  Sized_symbol(const Sized_symbol&);
1175  Sized_symbol& operator=(const Sized_symbol&);
1176
1177  // Symbol value.  Before Layout::finalize this is the offset in the
1178  // input section.  This is set to the final value during
1179  // Layout::finalize.
1180  Value_type value_;
1181  // Symbol size.
1182  Size_type symsize_;
1183};
1184
1185// A struct describing a symbol defined by the linker, where the value
1186// of the symbol is defined based on an output section.  This is used
1187// for symbols defined by the linker, like "_init_array_start".
1188
1189struct Define_symbol_in_section
1190{
1191  // The symbol name.
1192  const char* name;
1193  // The name of the output section with which this symbol should be
1194  // associated.  If there is no output section with that name, the
1195  // symbol will be defined as zero.
1196  const char* output_section;
1197  // The offset of the symbol within the output section.  This is an
1198  // offset from the start of the output section, unless start_at_end
1199  // is true, in which case this is an offset from the end of the
1200  // output section.
1201  uint64_t value;
1202  // The size of the symbol.
1203  uint64_t size;
1204  // The symbol type.
1205  elfcpp::STT type;
1206  // The symbol binding.
1207  elfcpp::STB binding;
1208  // The symbol visibility.
1209  elfcpp::STV visibility;
1210  // The rest of the st_other field.
1211  unsigned char nonvis;
1212  // If true, the value field is an offset from the end of the output
1213  // section.
1214  bool offset_is_from_end;
1215  // If true, this symbol is defined only if we see a reference to it.
1216  bool only_if_ref;
1217};
1218
1219// A struct describing a symbol defined by the linker, where the value
1220// of the symbol is defined based on a segment.  This is used for
1221// symbols defined by the linker, like "_end".  We describe the
1222// segment with which the symbol should be associated by its
1223// characteristics.  If no segment meets these characteristics, the
1224// symbol will be defined as zero.  If there is more than one segment
1225// which meets these characteristics, we will use the first one.
1226
1227struct Define_symbol_in_segment
1228{
1229  // The symbol name.
1230  const char* name;
1231  // The segment type where the symbol should be defined, typically
1232  // PT_LOAD.
1233  elfcpp::PT segment_type;
1234  // Bitmask of segment flags which must be set.
1235  elfcpp::PF segment_flags_set;
1236  // Bitmask of segment flags which must be clear.
1237  elfcpp::PF segment_flags_clear;
1238  // The offset of the symbol within the segment.  The offset is
1239  // calculated from the position set by offset_base.
1240  uint64_t value;
1241  // The size of the symbol.
1242  uint64_t size;
1243  // The symbol type.
1244  elfcpp::STT type;
1245  // The symbol binding.
1246  elfcpp::STB binding;
1247  // The symbol visibility.
1248  elfcpp::STV visibility;
1249  // The rest of the st_other field.
1250  unsigned char nonvis;
1251  // The base from which we compute the offset.
1252  Symbol::Segment_offset_base offset_base;
1253  // If true, this symbol is defined only if we see a reference to it.
1254  bool only_if_ref;
1255};
1256
1257// Specify an object/section/offset location.  Used by ODR code.
1258
1259struct Symbol_location
1260{
1261  // Object where the symbol is defined.
1262  Object* object;
1263  // Section-in-object where the symbol is defined.
1264  unsigned int shndx;
1265  // For relocatable objects, offset-in-section where the symbol is defined.
1266  // For dynamic objects, address where the symbol is defined.
1267  off_t offset;
1268  bool operator==(const Symbol_location& that) const
1269  {
1270    return (this->object == that.object
1271	    && this->shndx == that.shndx
1272	    && this->offset == that.offset);
1273  }
1274};
1275
1276// This class manages warnings.  Warnings are a GNU extension.  When
1277// we see a section named .gnu.warning.SYM in an object file, and if
1278// we wind using the definition of SYM from that object file, then we
1279// will issue a warning for any relocation against SYM from a
1280// different object file.  The text of the warning is the contents of
1281// the section.  This is not precisely the definition used by the old
1282// GNU linker; the old GNU linker treated an occurrence of
1283// .gnu.warning.SYM as defining a warning symbol.  A warning symbol
1284// would trigger a warning on any reference.  However, it was
1285// inconsistent in that a warning in a dynamic object only triggered
1286// if there was no definition in a regular object.  This linker is
1287// different in that we only issue a warning if we use the symbol
1288// definition from the same object file as the warning section.
1289
1290class Warnings
1291{
1292 public:
1293  Warnings()
1294    : warnings_()
1295  { }
1296
1297  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1298  // of the warning.
1299  void
1300  add_warning(Symbol_table* symtab, const char* name, Object* obj,
1301	      const std::string& warning);
1302
1303  // For each symbol for which we should give a warning, make a note
1304  // on the symbol.
1305  void
1306  note_warnings(Symbol_table* symtab);
1307
1308  // Issue a warning for a reference to SYM at RELINFO's location.
1309  template<int size, bool big_endian>
1310  void
1311  issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1312		size_t relnum, off_t reloffset) const;
1313
1314 private:
1315  Warnings(const Warnings&);
1316  Warnings& operator=(const Warnings&);
1317
1318  // What we need to know to get the warning text.
1319  struct Warning_location
1320  {
1321    // The object the warning is in.
1322    Object* object;
1323    // The warning text.
1324    std::string text;
1325
1326    Warning_location()
1327      : object(NULL), text()
1328    { }
1329
1330    void
1331    set(Object* o, const std::string& t)
1332    {
1333      this->object = o;
1334      this->text = t;
1335    }
1336  };
1337
1338  // A mapping from warning symbol names (canonicalized in
1339  // Symbol_table's namepool_ field) to warning information.
1340  typedef Unordered_map<const char*, Warning_location> Warning_table;
1341
1342  Warning_table warnings_;
1343};
1344
1345// The main linker symbol table.
1346
1347class Symbol_table
1348{
1349 public:
1350  // The different places where a symbol definition can come from.
1351  enum Defined
1352  {
1353    // Defined in an object file--the normal case.
1354    OBJECT,
1355    // Defined for a COPY reloc.
1356    COPY,
1357    // Defined on the command line using --defsym.
1358    DEFSYM,
1359    // Defined (so to speak) on the command line using -u.
1360    UNDEFINED,
1361    // Defined in a linker script.
1362    SCRIPT,
1363    // Predefined by the linker.
1364    PREDEFINED,
1365    // Defined by the linker during an incremental base link, but not
1366    // a predefined symbol (e.g., common, defined in script).
1367    INCREMENTAL_BASE,
1368  };
1369
1370  // The order in which we sort common symbols.
1371  enum Sort_commons_order
1372  {
1373    SORT_COMMONS_BY_SIZE_DESCENDING,
1374    SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1375    SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1376  };
1377
1378  // COUNT is an estimate of how many symbols will be inserted in the
1379  // symbol table.  It's ok to put 0 if you don't know; a correct
1380  // guess will just save some CPU by reducing hashtable resizes.
1381  Symbol_table(unsigned int count, const Version_script_info& version_script);
1382
1383  ~Symbol_table();
1384
1385  void
1386  set_icf(Icf* icf)
1387  { this->icf_ = icf;}
1388
1389  Icf*
1390  icf() const
1391  { return this->icf_; }
1392
1393  // Returns true if ICF determined that this is a duplicate section.
1394  bool
1395  is_section_folded(Relobj* obj, unsigned int shndx) const;
1396
1397  void
1398  set_gc(Garbage_collection* gc)
1399  { this->gc_ = gc; }
1400
1401  Garbage_collection*
1402  gc() const
1403  { return this->gc_; }
1404
1405  // During garbage collection, this keeps undefined symbols.
1406  void
1407  gc_mark_undef_symbols(Layout*);
1408
1409  // This tells garbage collection that this symbol is referenced.
1410  void
1411  gc_mark_symbol(Symbol* sym);
1412
1413  // During garbage collection, this keeps sections that correspond to
1414  // symbols seen in dynamic objects.
1415  inline void
1416  gc_mark_dyn_syms(Symbol* sym);
1417
1418  // Add COUNT external symbols from the relocatable object RELOBJ to
1419  // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
1420  // offset in the symbol table of the first symbol, SYM_NAMES is
1421  // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
1422  // SYMPOINTERS to point to the symbols in the symbol table.  It sets
1423  // *DEFINED to the number of defined symbols.
1424  template<int size, bool big_endian>
1425  void
1426  add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1427		  const unsigned char* syms, size_t count,
1428		  size_t symndx_offset, const char* sym_names,
1429		  size_t sym_name_size,
1430		  typename Sized_relobj_file<size, big_endian>::Symbols*,
1431		  size_t* defined);
1432
1433  // Add one external symbol from the plugin object OBJ to the symbol table.
1434  // Returns a pointer to the resolved symbol in the symbol table.
1435  template<int size, bool big_endian>
1436  Symbol*
1437  add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1438                     const char* name, const char* ver,
1439                     elfcpp::Sym<size, big_endian>* sym);
1440
1441  // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1442  // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
1443  // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
1444  // symbol version data.
1445  template<int size, bool big_endian>
1446  void
1447  add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1448		  const unsigned char* syms, size_t count,
1449		  const char* sym_names, size_t sym_name_size,
1450		  const unsigned char* versym, size_t versym_size,
1451		  const std::vector<const char*>*,
1452		  typename Sized_relobj_file<size, big_endian>::Symbols*,
1453		  size_t* defined);
1454
1455  // Add one external symbol from the incremental object OBJ to the symbol
1456  // table.  Returns a pointer to the resolved symbol in the symbol table.
1457  template<int size, bool big_endian>
1458  Sized_symbol<size>*
1459  add_from_incrobj(Object* obj, const char* name,
1460		   const char* ver, elfcpp::Sym<size, big_endian>* sym);
1461
1462  // Define a special symbol based on an Output_data.  It is a
1463  // multiple definition error if this symbol is already defined.
1464  Symbol*
1465  define_in_output_data(const char* name, const char* version, Defined,
1466			Output_data*, uint64_t value, uint64_t symsize,
1467			elfcpp::STT type, elfcpp::STB binding,
1468			elfcpp::STV visibility, unsigned char nonvis,
1469			bool offset_is_from_end, bool only_if_ref);
1470
1471  // Define a special symbol based on an Output_segment.  It is a
1472  // multiple definition error if this symbol is already defined.
1473  Symbol*
1474  define_in_output_segment(const char* name, const char* version, Defined,
1475			   Output_segment*, uint64_t value, uint64_t symsize,
1476			   elfcpp::STT type, elfcpp::STB binding,
1477			   elfcpp::STV visibility, unsigned char nonvis,
1478			   Symbol::Segment_offset_base, bool only_if_ref);
1479
1480  // Define a special symbol with a constant value.  It is a multiple
1481  // definition error if this symbol is already defined.
1482  Symbol*
1483  define_as_constant(const char* name, const char* version, Defined,
1484		     uint64_t value, uint64_t symsize, elfcpp::STT type,
1485		     elfcpp::STB binding, elfcpp::STV visibility,
1486		     unsigned char nonvis, bool only_if_ref,
1487                     bool force_override);
1488
1489  // Define a set of symbols in output sections.  If ONLY_IF_REF is
1490  // true, only define them if they are referenced.
1491  void
1492  define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1493		 bool only_if_ref);
1494
1495  // Define a set of symbols in output segments.  If ONLY_IF_REF is
1496  // true, only defined them if they are referenced.
1497  void
1498  define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1499		 bool only_if_ref);
1500
1501  // Add a target-specific global symbol.
1502  // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1503  void
1504  add_target_global_symbol(Symbol* sym)
1505  { this->target_symbols_.push_back(sym); }
1506
1507  // Define SYM using a COPY reloc.  POSD is the Output_data where the
1508  // symbol should be defined--typically a .dyn.bss section.  VALUE is
1509  // the offset within POSD.
1510  template<int size>
1511  void
1512  define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1513			 typename elfcpp::Elf_types<size>::Elf_Addr);
1514
1515  // Look up a symbol.
1516  Symbol*
1517  lookup(const char*, const char* version = NULL) const;
1518
1519  // Return the real symbol associated with the forwarder symbol FROM.
1520  Symbol*
1521  resolve_forwards(const Symbol* from) const;
1522
1523  // Return the sized version of a symbol in this table.
1524  template<int size>
1525  Sized_symbol<size>*
1526  get_sized_symbol(Symbol*) const;
1527
1528  template<int size>
1529  const Sized_symbol<size>*
1530  get_sized_symbol(const Symbol*) const;
1531
1532  // Return the count of undefined symbols seen.
1533  size_t
1534  saw_undefined() const
1535  { return this->saw_undefined_; }
1536
1537  // Allocate the common symbols
1538  void
1539  allocate_commons(Layout*, Mapfile*);
1540
1541  // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1542  // of the warning.
1543  void
1544  add_warning(const char* name, Object* obj, const std::string& warning)
1545  { this->warnings_.add_warning(this, name, obj, warning); }
1546
1547  // Canonicalize a symbol name for use in the hash table.
1548  const char*
1549  canonicalize_name(const char* name)
1550  { return this->namepool_.add(name, true, NULL); }
1551
1552  // Possibly issue a warning for a reference to SYM at LOCATION which
1553  // is in OBJ.
1554  template<int size, bool big_endian>
1555  void
1556  issue_warning(const Symbol* sym,
1557		const Relocate_info<size, big_endian>* relinfo,
1558		size_t relnum, off_t reloffset) const
1559  { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1560
1561  // Check candidate_odr_violations_ to find symbols with the same name
1562  // but apparently different definitions (different source-file/line-no).
1563  void
1564  detect_odr_violations(const Task*, const char* output_file_name) const;
1565
1566  // Add any undefined symbols named on the command line to the symbol
1567  // table.
1568  void
1569  add_undefined_symbols_from_command_line(Layout*);
1570
1571  // SYM is defined using a COPY reloc.  Return the dynamic object
1572  // where the original definition was found.
1573  Dynobj*
1574  get_copy_source(const Symbol* sym) const;
1575
1576  // Set the dynamic symbol indexes.  INDEX is the index of the first
1577  // global dynamic symbol.  Return the count of forced-local symbols in
1578  // *PFORCED_LOCAL_COUNT.  Pointers to the symbols are stored into
1579  // the vector.  The names are stored into the Stringpool.  This
1580  // returns an updated dynamic symbol index.
1581  unsigned int
1582  set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1583		     std::vector<Symbol*>*, Stringpool*, Versions*);
1584
1585  // Finalize the symbol table after we have set the final addresses
1586  // of all the input sections.  This sets the final symbol indexes,
1587  // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
1588  // index of the first global symbol.  OFF is the file offset of the
1589  // global symbol table, DYNOFF is the offset of the globals in the
1590  // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1591  // global dynamic symbol, and DYNCOUNT is the number of global
1592  // dynamic symbols.  This records the parameters, and returns the
1593  // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
1594  // local symbols.
1595  off_t
1596  finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1597	   Stringpool* pool, unsigned int* plocal_symcount);
1598
1599  // Set the final file offset of the symbol table.
1600  void
1601  set_file_offset(off_t off)
1602  { this->offset_ = off; }
1603
1604  // Status code of Symbol_table::compute_final_value.
1605  enum Compute_final_value_status
1606  {
1607    // No error.
1608    CFVS_OK,
1609    // Unsupported symbol section.
1610    CFVS_UNSUPPORTED_SYMBOL_SECTION,
1611    // No output section.
1612    CFVS_NO_OUTPUT_SECTION
1613  };
1614
1615  // Compute the final value of SYM and store status in location PSTATUS.
1616  // During relaxation, this may be called multiple times for a symbol to
1617  // compute its would-be final value in each relaxation pass.
1618
1619  template<int size>
1620  typename Sized_symbol<size>::Value_type
1621  compute_final_value(const Sized_symbol<size>* sym,
1622		      Compute_final_value_status* pstatus) const;
1623
1624  // Return the index of the first global symbol.
1625  unsigned int
1626  first_global_index() const
1627  { return this->first_global_index_; }
1628
1629  // Return the total number of symbols in the symbol table.
1630  unsigned int
1631  output_count() const
1632  { return this->output_count_; }
1633
1634  // Write out the global symbols.
1635  void
1636  write_globals(const Stringpool*, const Stringpool*,
1637		Output_symtab_xindex*, Output_symtab_xindex*,
1638		Output_file*) const;
1639
1640  // Write out a section symbol.  Return the updated offset.
1641  void
1642  write_section_symbol(const Output_section*, Output_symtab_xindex*,
1643		       Output_file*, off_t) const;
1644
1645  // Loop over all symbols, applying the function F to each.
1646  template<int size, typename F>
1647  void
1648  for_all_symbols(F f) const
1649  {
1650    for (Symbol_table_type::const_iterator p = this->table_.begin();
1651         p != this->table_.end();
1652         ++p)
1653      {
1654	Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1655	f(sym);
1656      }
1657  }
1658
1659  // Dump statistical information to stderr.
1660  void
1661  print_stats() const;
1662
1663  // Return the version script information.
1664  const Version_script_info&
1665  version_script() const
1666  { return version_script_; }
1667
1668 private:
1669  Symbol_table(const Symbol_table&);
1670  Symbol_table& operator=(const Symbol_table&);
1671
1672  // The type of the list of common symbols.
1673  typedef std::vector<Symbol*> Commons_type;
1674
1675  // The type of the symbol hash table.
1676
1677  typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1678
1679  // The hash function.  The key values are Stringpool keys.
1680  struct Symbol_table_hash
1681  {
1682    inline size_t
1683    operator()(const Symbol_table_key& key) const
1684    {
1685      return key.first ^ key.second;
1686    }
1687  };
1688
1689  struct Symbol_table_eq
1690  {
1691    bool
1692    operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1693  };
1694
1695  typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1696			Symbol_table_eq> Symbol_table_type;
1697
1698  // A map from symbol name (as a pointer into the namepool) to all
1699  // the locations the symbols is (weakly) defined (and certain other
1700  // conditions are met).  This map will be used later to detect
1701  // possible One Definition Rule (ODR) violations.
1702  struct Symbol_location_hash
1703  {
1704    size_t operator()(const Symbol_location& loc) const
1705    { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1706  };
1707
1708  typedef Unordered_map<const char*,
1709                        Unordered_set<Symbol_location, Symbol_location_hash> >
1710  Odr_map;
1711
1712  // Make FROM a forwarder symbol to TO.
1713  void
1714  make_forwarder(Symbol* from, Symbol* to);
1715
1716  // Add a symbol.
1717  template<int size, bool big_endian>
1718  Sized_symbol<size>*
1719  add_from_object(Object*, const char* name, Stringpool::Key name_key,
1720		  const char* version, Stringpool::Key version_key,
1721		  bool def, const elfcpp::Sym<size, big_endian>& sym,
1722		  unsigned int st_shndx, bool is_ordinary,
1723		  unsigned int orig_st_shndx);
1724
1725  // Define a default symbol.
1726  template<int size, bool big_endian>
1727  void
1728  define_default_version(Sized_symbol<size>*, bool,
1729			 Symbol_table_type::iterator);
1730
1731  // Resolve symbols.
1732  template<int size, bool big_endian>
1733  void
1734  resolve(Sized_symbol<size>* to,
1735	  const elfcpp::Sym<size, big_endian>& sym,
1736	  unsigned int st_shndx, bool is_ordinary,
1737	  unsigned int orig_st_shndx,
1738	  Object*, const char* version,
1739	  bool is_default_version);
1740
1741  template<int size, bool big_endian>
1742  void
1743  resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1744
1745  // Record that a symbol is forced to be local by a version script or
1746  // by visibility.
1747  void
1748  force_local(Symbol*);
1749
1750  // Adjust NAME and *NAME_KEY for wrapping.
1751  const char*
1752  wrap_symbol(const char* name, Stringpool::Key* name_key);
1753
1754  // Whether we should override a symbol, based on flags in
1755  // resolve.cc.
1756  static bool
1757  should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1758		  Object*, bool*, bool*, bool);
1759
1760  // Report a problem in symbol resolution.
1761  static void
1762  report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1763			 Defined, Object* object);
1764
1765  // Override a symbol.
1766  template<int size, bool big_endian>
1767  void
1768  override(Sized_symbol<size>* tosym,
1769	   const elfcpp::Sym<size, big_endian>& fromsym,
1770	   unsigned int st_shndx, bool is_ordinary,
1771	   Object* object, const char* version);
1772
1773  // Whether we should override a symbol with a special symbol which
1774  // is automatically defined by the linker.
1775  static bool
1776  should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1777
1778  // Override a symbol with a special symbol.
1779  template<int size>
1780  void
1781  override_with_special(Sized_symbol<size>* tosym,
1782			const Sized_symbol<size>* fromsym);
1783
1784  // Record all weak alias sets for a dynamic object.
1785  template<int size>
1786  void
1787  record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1788
1789  // Define a special symbol.
1790  template<int size, bool big_endian>
1791  Sized_symbol<size>*
1792  define_special_symbol(const char** pname, const char** pversion,
1793			bool only_if_ref, Sized_symbol<size>** poldsym,
1794			bool* resolve_oldsym, bool is_forced_local);
1795
1796  // Define a symbol in an Output_data, sized version.
1797  template<int size>
1798  Sized_symbol<size>*
1799  do_define_in_output_data(const char* name, const char* version, Defined,
1800			   Output_data*,
1801			   typename elfcpp::Elf_types<size>::Elf_Addr value,
1802			   typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1803			   elfcpp::STT type, elfcpp::STB binding,
1804			   elfcpp::STV visibility, unsigned char nonvis,
1805			   bool offset_is_from_end, bool only_if_ref);
1806
1807  // Define a symbol in an Output_segment, sized version.
1808  template<int size>
1809  Sized_symbol<size>*
1810  do_define_in_output_segment(
1811    const char* name, const char* version, Defined, Output_segment* os,
1812    typename elfcpp::Elf_types<size>::Elf_Addr value,
1813    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1814    elfcpp::STT type, elfcpp::STB binding,
1815    elfcpp::STV visibility, unsigned char nonvis,
1816    Symbol::Segment_offset_base offset_base, bool only_if_ref);
1817
1818  // Define a symbol as a constant, sized version.
1819  template<int size>
1820  Sized_symbol<size>*
1821  do_define_as_constant(
1822    const char* name, const char* version, Defined,
1823    typename elfcpp::Elf_types<size>::Elf_Addr value,
1824    typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1825    elfcpp::STT type, elfcpp::STB binding,
1826    elfcpp::STV visibility, unsigned char nonvis,
1827    bool only_if_ref, bool force_override);
1828
1829  // Add any undefined symbols named on the command line to the symbol
1830  // table, sized version.
1831  template<int size>
1832  void
1833  do_add_undefined_symbols_from_command_line(Layout*);
1834
1835  // Add one undefined symbol.
1836  template<int size>
1837  void
1838  add_undefined_symbol_from_command_line(const char* name);
1839
1840  // Types of common symbols.
1841
1842  enum Commons_section_type
1843  {
1844    COMMONS_NORMAL,
1845    COMMONS_TLS,
1846    COMMONS_SMALL,
1847    COMMONS_LARGE
1848  };
1849
1850  // Allocate the common symbols, sized version.
1851  template<int size>
1852  void
1853  do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1854
1855  // Allocate the common symbols from one list.
1856  template<int size>
1857  void
1858  do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1859			   Mapfile*, Sort_commons_order);
1860
1861  // Returns all of the lines attached to LOC, not just the one the
1862  // instruction actually came from.  This helps the ODR checker avoid
1863  // false positives.
1864  static std::vector<std::string>
1865  linenos_from_loc(const Task* task, const Symbol_location& loc);
1866
1867  // Implement detect_odr_violations.
1868  template<int size, bool big_endian>
1869  void
1870  sized_detect_odr_violations() const;
1871
1872  // Finalize symbols specialized for size.
1873  template<int size>
1874  off_t
1875  sized_finalize(off_t, Stringpool*, unsigned int*);
1876
1877  // Finalize a symbol.  Return whether it should be added to the
1878  // symbol table.
1879  template<int size>
1880  bool
1881  sized_finalize_symbol(Symbol*);
1882
1883  // Add a symbol the final symtab by setting its index.
1884  template<int size>
1885  void
1886  add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1887
1888  // Write globals specialized for size and endianness.
1889  template<int size, bool big_endian>
1890  void
1891  sized_write_globals(const Stringpool*, const Stringpool*,
1892		      Output_symtab_xindex*, Output_symtab_xindex*,
1893		      Output_file*) const;
1894
1895  // Write out a symbol to P.
1896  template<int size, bool big_endian>
1897  void
1898  sized_write_symbol(Sized_symbol<size>*,
1899		     typename elfcpp::Elf_types<size>::Elf_Addr value,
1900		     unsigned int shndx, elfcpp::STB,
1901		     const Stringpool*, unsigned char* p) const;
1902
1903  // Possibly warn about an undefined symbol from a dynamic object.
1904  void
1905  warn_about_undefined_dynobj_symbol(Symbol*) const;
1906
1907  // Write out a section symbol, specialized for size and endianness.
1908  template<int size, bool big_endian>
1909  void
1910  sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1911			     Output_file*, off_t) const;
1912
1913  // The type of the list of symbols which have been forced local.
1914  typedef std::vector<Symbol*> Forced_locals;
1915
1916  // A map from symbols with COPY relocs to the dynamic objects where
1917  // they are defined.
1918  typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1919
1920  // We increment this every time we see a new undefined symbol, for
1921  // use in archive groups.
1922  size_t saw_undefined_;
1923  // The index of the first global symbol in the output file.
1924  unsigned int first_global_index_;
1925  // The file offset within the output symtab section where we should
1926  // write the table.
1927  off_t offset_;
1928  // The number of global symbols we want to write out.
1929  unsigned int output_count_;
1930  // The file offset of the global dynamic symbols, or 0 if none.
1931  off_t dynamic_offset_;
1932  // The index of the first global dynamic symbol (including
1933  // forced-local symbols).
1934  unsigned int first_dynamic_global_index_;
1935  // The number of global dynamic symbols (including forced-local symbols),
1936  // or 0 if none.
1937  unsigned int dynamic_count_;
1938  // The symbol hash table.
1939  Symbol_table_type table_;
1940  // A pool of symbol names.  This is used for all global symbols.
1941  // Entries in the hash table point into this pool.
1942  Stringpool namepool_;
1943  // Forwarding symbols.
1944  Unordered_map<const Symbol*, Symbol*> forwarders_;
1945  // Weak aliases.  A symbol in this list points to the next alias.
1946  // The aliases point to each other in a circular list.
1947  Unordered_map<Symbol*, Symbol*> weak_aliases_;
1948  // We don't expect there to be very many common symbols, so we keep
1949  // a list of them.  When we find a common symbol we add it to this
1950  // list.  It is possible that by the time we process the list the
1951  // symbol is no longer a common symbol.  It may also have become a
1952  // forwarder.
1953  Commons_type commons_;
1954  // This is like the commons_ field, except that it holds TLS common
1955  // symbols.
1956  Commons_type tls_commons_;
1957  // This is for small common symbols.
1958  Commons_type small_commons_;
1959  // This is for large common symbols.
1960  Commons_type large_commons_;
1961  // A list of symbols which have been forced to be local.  We don't
1962  // expect there to be very many of them, so we keep a list of them
1963  // rather than walking the whole table to find them.
1964  Forced_locals forced_locals_;
1965  // Manage symbol warnings.
1966  Warnings warnings_;
1967  // Manage potential One Definition Rule (ODR) violations.
1968  Odr_map candidate_odr_violations_;
1969
1970  // When we emit a COPY reloc for a symbol, we define it in an
1971  // Output_data.  When it's time to emit version information for it,
1972  // we need to know the dynamic object in which we found the original
1973  // definition.  This maps symbols with COPY relocs to the dynamic
1974  // object where they were defined.
1975  Copied_symbol_dynobjs copied_symbol_dynobjs_;
1976  // Information parsed from the version script, if any.
1977  const Version_script_info& version_script_;
1978  Garbage_collection* gc_;
1979  Icf* icf_;
1980  // Target-specific symbols, if any.
1981  std::vector<Symbol*> target_symbols_;
1982};
1983
1984// We inline get_sized_symbol for efficiency.
1985
1986template<int size>
1987Sized_symbol<size>*
1988Symbol_table::get_sized_symbol(Symbol* sym) const
1989{
1990  gold_assert(size == parameters->target().get_size());
1991  return static_cast<Sized_symbol<size>*>(sym);
1992}
1993
1994template<int size>
1995const Sized_symbol<size>*
1996Symbol_table::get_sized_symbol(const Symbol* sym) const
1997{
1998  gold_assert(size == parameters->target().get_size());
1999  return static_cast<const Sized_symbol<size>*>(sym);
2000}
2001
2002} // End namespace gold.
2003
2004#endif // !defined(GOLD_SYMTAB_H)
2005