1// output.h -- manage the output file for gold   -*- C++ -*-
2
3// Copyright (C) 2006-2017 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#ifndef GOLD_OUTPUT_H
24#define GOLD_OUTPUT_H
25
26#include <algorithm>
27#include <list>
28#include <vector>
29
30#include "elfcpp.h"
31#include "mapfile.h"
32#include "layout.h"
33#include "reloc-types.h"
34
35namespace gold
36{
37
38class General_options;
39class Object;
40class Symbol;
41class Output_merge_base;
42class Output_section;
43class Relocatable_relocs;
44class Target;
45template<int size, bool big_endian>
46class Sized_target;
47template<int size, bool big_endian>
48class Sized_relobj;
49template<int size, bool big_endian>
50class Sized_relobj_file;
51
52// This class represents the output file.
53
54class Output_file
55{
56 public:
57  Output_file(const char* name);
58
59  // Indicate that this is a temporary file which should not be
60  // output.
61  void
62  set_is_temporary()
63  { this->is_temporary_ = true; }
64
65  // Try to open an existing file. Returns false if the file doesn't
66  // exist, has a size of 0 or can't be mmaped.  This method is
67  // thread-unsafe.  If BASE_NAME is not NULL, use the contents of
68  // that file as the base for incremental linking.
69  bool
70  open_base_file(const char* base_name, bool writable);
71
72  // Open the output file.  FILE_SIZE is the final size of the file.
73  // If the file already exists, it is deleted/truncated.  This method
74  // is thread-unsafe.
75  void
76  open(off_t file_size);
77
78  // Resize the output file.  This method is thread-unsafe.
79  void
80  resize(off_t file_size);
81
82  // Close the output file (flushing all buffered data) and make sure
83  // there are no errors.  This method is thread-unsafe.
84  void
85  close();
86
87  // Return the size of this file.
88  off_t
89  filesize()
90  { return this->file_size_; }
91
92  // Return the name of this file.
93  const char*
94  filename()
95  { return this->name_; }
96
97  // We currently always use mmap which makes the view handling quite
98  // simple.  In the future we may support other approaches.
99
100  // Write data to the output file.
101  void
102  write(off_t offset, const void* data, size_t len)
103  { memcpy(this->base_ + offset, data, len); }
104
105  // Get a buffer to use to write to the file, given the offset into
106  // the file and the size.
107  unsigned char*
108  get_output_view(off_t start, size_t size)
109  {
110    gold_assert(start >= 0
111		&& start + static_cast<off_t>(size) <= this->file_size_);
112    return this->base_ + start;
113  }
114
115  // VIEW must have been returned by get_output_view.  Write the
116  // buffer to the file, passing in the offset and the size.
117  void
118  write_output_view(off_t, size_t, unsigned char*)
119  { }
120
121  // Get a read/write buffer.  This is used when we want to write part
122  // of the file, read it in, and write it again.
123  unsigned char*
124  get_input_output_view(off_t start, size_t size)
125  { return this->get_output_view(start, size); }
126
127  // Write a read/write buffer back to the file.
128  void
129  write_input_output_view(off_t, size_t, unsigned char*)
130  { }
131
132  // Get a read buffer.  This is used when we just want to read part
133  // of the file back it in.
134  const unsigned char*
135  get_input_view(off_t start, size_t size)
136  { return this->get_output_view(start, size); }
137
138  // Release a read bfufer.
139  void
140  free_input_view(off_t, size_t, const unsigned char*)
141  { }
142
143 private:
144  // Map the file into memory or, if that fails, allocate anonymous
145  // memory.
146  void
147  map();
148
149  // Allocate anonymous memory for the file.
150  bool
151  map_anonymous();
152
153  // Map the file into memory.
154  bool
155  map_no_anonymous(bool);
156
157  // Unmap the file from memory (and flush to disk buffers).
158  void
159  unmap();
160
161  // File name.
162  const char* name_;
163  // File descriptor.
164  int o_;
165  // File size.
166  off_t file_size_;
167  // Base of file mapped into memory.
168  unsigned char* base_;
169  // True iff base_ points to a memory buffer rather than an output file.
170  bool map_is_anonymous_;
171  // True if base_ was allocated using new rather than mmap.
172  bool map_is_allocated_;
173  // True if this is a temporary file which should not be output.
174  bool is_temporary_;
175};
176
177// An abtract class for data which has to go into the output file.
178
179class Output_data
180{
181 public:
182  explicit Output_data()
183    : address_(0), data_size_(0), offset_(-1),
184      is_address_valid_(false), is_data_size_valid_(false),
185      is_offset_valid_(false), is_data_size_fixed_(false),
186      has_dynamic_reloc_(false)
187  { }
188
189  virtual
190  ~Output_data();
191
192  // Return the address.  For allocated sections, this is only valid
193  // after Layout::finalize is finished.
194  uint64_t
195  address() const
196  {
197    gold_assert(this->is_address_valid_);
198    return this->address_;
199  }
200
201  // Return the size of the data.  For allocated sections, this must
202  // be valid after Layout::finalize calls set_address, but need not
203  // be valid before then.
204  off_t
205  data_size() const
206  {
207    gold_assert(this->is_data_size_valid_);
208    return this->data_size_;
209  }
210
211  // Get the current data size.
212  off_t
213  current_data_size() const
214  { return this->current_data_size_for_child(); }
215
216  // Return true if data size is fixed.
217  bool
218  is_data_size_fixed() const
219  { return this->is_data_size_fixed_; }
220
221  // Return the file offset.  This is only valid after
222  // Layout::finalize is finished.  For some non-allocated sections,
223  // it may not be valid until near the end of the link.
224  off_t
225  offset() const
226  {
227    gold_assert(this->is_offset_valid_);
228    return this->offset_;
229  }
230
231  // Reset the address, file offset and data size.  This essentially
232  // disables the sanity testing about duplicate and unknown settings.
233  void
234  reset_address_and_file_offset()
235  {
236    this->is_address_valid_ = false;
237    this->is_offset_valid_ = false;
238    if (!this->is_data_size_fixed_)
239      this->is_data_size_valid_ = false;
240    this->do_reset_address_and_file_offset();
241  }
242
243  // As above, but just for data size.
244  void
245  reset_data_size()
246  {
247    if (!this->is_data_size_fixed_)
248      this->is_data_size_valid_ = false;
249  }
250
251  // Return true if address and file offset already have reset values. In
252  // other words, calling reset_address_and_file_offset will not change them.
253  bool
254  address_and_file_offset_have_reset_values() const
255  { return this->do_address_and_file_offset_have_reset_values(); }
256
257  // Return the required alignment.
258  uint64_t
259  addralign() const
260  { return this->do_addralign(); }
261
262  // Return whether this has a load address.
263  bool
264  has_load_address() const
265  { return this->do_has_load_address(); }
266
267  // Return the load address.
268  uint64_t
269  load_address() const
270  { return this->do_load_address(); }
271
272  // Return whether this is an Output_section.
273  bool
274  is_section() const
275  { return this->do_is_section(); }
276
277  // Return whether this is an Output_section of the specified type.
278  bool
279  is_section_type(elfcpp::Elf_Word stt) const
280  { return this->do_is_section_type(stt); }
281
282  // Return whether this is an Output_section with the specified flag
283  // set.
284  bool
285  is_section_flag_set(elfcpp::Elf_Xword shf) const
286  { return this->do_is_section_flag_set(shf); }
287
288  // Return the output section that this goes in, if there is one.
289  Output_section*
290  output_section()
291  { return this->do_output_section(); }
292
293  const Output_section*
294  output_section() const
295  { return this->do_output_section(); }
296
297  // Return the output section index, if there is an output section.
298  unsigned int
299  out_shndx() const
300  { return this->do_out_shndx(); }
301
302  // Set the output section index, if this is an output section.
303  void
304  set_out_shndx(unsigned int shndx)
305  { this->do_set_out_shndx(shndx); }
306
307  // Set the address and file offset of this data, and finalize the
308  // size of the data.  This is called during Layout::finalize for
309  // allocated sections.
310  void
311  set_address_and_file_offset(uint64_t addr, off_t off)
312  {
313    this->set_address(addr);
314    this->set_file_offset(off);
315    this->finalize_data_size();
316  }
317
318  // Set the address.
319  void
320  set_address(uint64_t addr)
321  {
322    gold_assert(!this->is_address_valid_);
323    this->address_ = addr;
324    this->is_address_valid_ = true;
325  }
326
327  // Set the file offset.
328  void
329  set_file_offset(off_t off)
330  {
331    gold_assert(!this->is_offset_valid_);
332    this->offset_ = off;
333    this->is_offset_valid_ = true;
334  }
335
336  // Update the data size without finalizing it.
337  void
338  pre_finalize_data_size()
339  {
340    if (!this->is_data_size_valid_)
341      {
342	// Tell the child class to update the data size.
343	this->update_data_size();
344      }
345  }
346
347  // Finalize the data size.
348  void
349  finalize_data_size()
350  {
351    if (!this->is_data_size_valid_)
352      {
353	// Tell the child class to set the data size.
354	this->set_final_data_size();
355	gold_assert(this->is_data_size_valid_);
356      }
357  }
358
359  // Set the TLS offset.  Called only for SHT_TLS sections.
360  void
361  set_tls_offset(uint64_t tls_base)
362  { this->do_set_tls_offset(tls_base); }
363
364  // Return the TLS offset, relative to the base of the TLS segment.
365  // Valid only for SHT_TLS sections.
366  uint64_t
367  tls_offset() const
368  { return this->do_tls_offset(); }
369
370  // Write the data to the output file.  This is called after
371  // Layout::finalize is complete.
372  void
373  write(Output_file* file)
374  { this->do_write(file); }
375
376  // This is called by Layout::finalize to note that the sizes of
377  // allocated sections must now be fixed.
378  static void
379  layout_complete()
380  { Output_data::allocated_sizes_are_fixed = true; }
381
382  // Used to check that layout has been done.
383  static bool
384  is_layout_complete()
385  { return Output_data::allocated_sizes_are_fixed; }
386
387  // Note that a dynamic reloc has been applied to this data.
388  void
389  add_dynamic_reloc()
390  { this->has_dynamic_reloc_ = true; }
391
392  // Return whether a dynamic reloc has been applied.
393  bool
394  has_dynamic_reloc() const
395  { return this->has_dynamic_reloc_; }
396
397  // Whether the address is valid.
398  bool
399  is_address_valid() const
400  { return this->is_address_valid_; }
401
402  // Whether the file offset is valid.
403  bool
404  is_offset_valid() const
405  { return this->is_offset_valid_; }
406
407  // Whether the data size is valid.
408  bool
409  is_data_size_valid() const
410  { return this->is_data_size_valid_; }
411
412  // Print information to the map file.
413  void
414  print_to_mapfile(Mapfile* mapfile) const
415  { return this->do_print_to_mapfile(mapfile); }
416
417 protected:
418  // Functions that child classes may or in some cases must implement.
419
420  // Write the data to the output file.
421  virtual void
422  do_write(Output_file*) = 0;
423
424  // Return the required alignment.
425  virtual uint64_t
426  do_addralign() const = 0;
427
428  // Return whether this has a load address.
429  virtual bool
430  do_has_load_address() const
431  { return false; }
432
433  // Return the load address.
434  virtual uint64_t
435  do_load_address() const
436  { gold_unreachable(); }
437
438  // Return whether this is an Output_section.
439  virtual bool
440  do_is_section() const
441  { return false; }
442
443  // Return whether this is an Output_section of the specified type.
444  // This only needs to be implement by Output_section.
445  virtual bool
446  do_is_section_type(elfcpp::Elf_Word) const
447  { return false; }
448
449  // Return whether this is an Output_section with the specific flag
450  // set.  This only needs to be implemented by Output_section.
451  virtual bool
452  do_is_section_flag_set(elfcpp::Elf_Xword) const
453  { return false; }
454
455  // Return the output section, if there is one.
456  virtual Output_section*
457  do_output_section()
458  { return NULL; }
459
460  virtual const Output_section*
461  do_output_section() const
462  { return NULL; }
463
464  // Return the output section index, if there is an output section.
465  virtual unsigned int
466  do_out_shndx() const
467  { gold_unreachable(); }
468
469  // Set the output section index, if this is an output section.
470  virtual void
471  do_set_out_shndx(unsigned int)
472  { gold_unreachable(); }
473
474  // This is a hook for derived classes to set the preliminary data size.
475  // This is called by pre_finalize_data_size, normally called during
476  // Layout::finalize, before the section address is set, and is used
477  // during an incremental update, when we need to know the size of a
478  // section before allocating space in the output file.  For classes
479  // where the current data size is up to date, this default version of
480  // the method can be inherited.
481  virtual void
482  update_data_size()
483  { }
484
485  // This is a hook for derived classes to set the data size.  This is
486  // called by finalize_data_size, normally called during
487  // Layout::finalize, when the section address is set.
488  virtual void
489  set_final_data_size()
490  { gold_unreachable(); }
491
492  // A hook for resetting the address and file offset.
493  virtual void
494  do_reset_address_and_file_offset()
495  { }
496
497  // Return true if address and file offset already have reset values. In
498  // other words, calling reset_address_and_file_offset will not change them.
499  // A child class overriding do_reset_address_and_file_offset may need to
500  // also override this.
501  virtual bool
502  do_address_and_file_offset_have_reset_values() const
503  { return !this->is_address_valid_ && !this->is_offset_valid_; }
504
505  // Set the TLS offset.  Called only for SHT_TLS sections.
506  virtual void
507  do_set_tls_offset(uint64_t)
508  { gold_unreachable(); }
509
510  // Return the TLS offset, relative to the base of the TLS segment.
511  // Valid only for SHT_TLS sections.
512  virtual uint64_t
513  do_tls_offset() const
514  { gold_unreachable(); }
515
516  // Print to the map file.  This only needs to be implemented by
517  // classes which may appear in a PT_LOAD segment.
518  virtual void
519  do_print_to_mapfile(Mapfile*) const
520  { gold_unreachable(); }
521
522  // Functions that child classes may call.
523
524  // Reset the address.  The Output_section class needs this when an
525  // SHF_ALLOC input section is added to an output section which was
526  // formerly not SHF_ALLOC.
527  void
528  mark_address_invalid()
529  { this->is_address_valid_ = false; }
530
531  // Set the size of the data.
532  void
533  set_data_size(off_t data_size)
534  {
535    gold_assert(!this->is_data_size_valid_
536		&& !this->is_data_size_fixed_);
537    this->data_size_ = data_size;
538    this->is_data_size_valid_ = true;
539  }
540
541  // Fix the data size.  Once it is fixed, it cannot be changed
542  // and the data size remains always valid.
543  void
544  fix_data_size()
545  {
546    gold_assert(this->is_data_size_valid_);
547    this->is_data_size_fixed_ = true;
548  }
549
550  // Get the current data size--this is for the convenience of
551  // sections which build up their size over time.
552  off_t
553  current_data_size_for_child() const
554  { return this->data_size_; }
555
556  // Set the current data size--this is for the convenience of
557  // sections which build up their size over time.
558  void
559  set_current_data_size_for_child(off_t data_size)
560  {
561    gold_assert(!this->is_data_size_valid_);
562    this->data_size_ = data_size;
563  }
564
565  // Return default alignment for the target size.
566  static uint64_t
567  default_alignment();
568
569  // Return default alignment for a specified size--32 or 64.
570  static uint64_t
571  default_alignment_for_size(int size);
572
573 private:
574  Output_data(const Output_data&);
575  Output_data& operator=(const Output_data&);
576
577  // This is used for verification, to make sure that we don't try to
578  // change any sizes of allocated sections after we set the section
579  // addresses.
580  static bool allocated_sizes_are_fixed;
581
582  // Memory address in output file.
583  uint64_t address_;
584  // Size of data in output file.
585  off_t data_size_;
586  // File offset of contents in output file.
587  off_t offset_;
588  // Whether address_ is valid.
589  bool is_address_valid_ : 1;
590  // Whether data_size_ is valid.
591  bool is_data_size_valid_ : 1;
592  // Whether offset_ is valid.
593  bool is_offset_valid_ : 1;
594  // Whether data size is fixed.
595  bool is_data_size_fixed_ : 1;
596  // Whether any dynamic relocs have been applied to this section.
597  bool has_dynamic_reloc_ : 1;
598};
599
600// Output the section headers.
601
602class Output_section_headers : public Output_data
603{
604 public:
605  Output_section_headers(const Layout*,
606			 const Layout::Segment_list*,
607			 const Layout::Section_list*,
608			 const Layout::Section_list*,
609			 const Stringpool*,
610			 const Output_section*);
611
612 protected:
613  // Write the data to the file.
614  void
615  do_write(Output_file*);
616
617  // Return the required alignment.
618  uint64_t
619  do_addralign() const
620  { return Output_data::default_alignment(); }
621
622  // Write to a map file.
623  void
624  do_print_to_mapfile(Mapfile* mapfile) const
625  { mapfile->print_output_data(this, _("** section headers")); }
626
627  // Update the data size.
628  void
629  update_data_size()
630  { this->set_data_size(this->do_size()); }
631
632  // Set final data size.
633  void
634  set_final_data_size()
635  { this->set_data_size(this->do_size()); }
636
637 private:
638  // Write the data to the file with the right size and endianness.
639  template<int size, bool big_endian>
640  void
641  do_sized_write(Output_file*);
642
643  // Compute data size.
644  off_t
645  do_size() const;
646
647  const Layout* layout_;
648  const Layout::Segment_list* segment_list_;
649  const Layout::Section_list* section_list_;
650  const Layout::Section_list* unattached_section_list_;
651  const Stringpool* secnamepool_;
652  const Output_section* shstrtab_section_;
653};
654
655// Output the segment headers.
656
657class Output_segment_headers : public Output_data
658{
659 public:
660  Output_segment_headers(const Layout::Segment_list& segment_list);
661
662 protected:
663  // Write the data to the file.
664  void
665  do_write(Output_file*);
666
667  // Return the required alignment.
668  uint64_t
669  do_addralign() const
670  { return Output_data::default_alignment(); }
671
672  // Write to a map file.
673  void
674  do_print_to_mapfile(Mapfile* mapfile) const
675  { mapfile->print_output_data(this, _("** segment headers")); }
676
677  // Set final data size.
678  void
679  set_final_data_size()
680  { this->set_data_size(this->do_size()); }
681
682 private:
683  // Write the data to the file with the right size and endianness.
684  template<int size, bool big_endian>
685  void
686  do_sized_write(Output_file*);
687
688  // Compute the current size.
689  off_t
690  do_size() const;
691
692  const Layout::Segment_list& segment_list_;
693};
694
695// Output the ELF file header.
696
697class Output_file_header : public Output_data
698{
699 public:
700  Output_file_header(Target*,
701		     const Symbol_table*,
702		     const Output_segment_headers*);
703
704  // Add information about the section headers.  We lay out the ELF
705  // file header before we create the section headers.
706  void set_section_info(const Output_section_headers*,
707			const Output_section* shstrtab);
708
709 protected:
710  // Write the data to the file.
711  void
712  do_write(Output_file*);
713
714  // Return the required alignment.
715  uint64_t
716  do_addralign() const
717  { return Output_data::default_alignment(); }
718
719  // Write to a map file.
720  void
721  do_print_to_mapfile(Mapfile* mapfile) const
722  { mapfile->print_output_data(this, _("** file header")); }
723
724  // Set final data size.
725  void
726  set_final_data_size(void)
727  { this->set_data_size(this->do_size()); }
728
729 private:
730  // Write the data to the file with the right size and endianness.
731  template<int size, bool big_endian>
732  void
733  do_sized_write(Output_file*);
734
735  // Return the value to use for the entry address.
736  template<int size>
737  typename elfcpp::Elf_types<size>::Elf_Addr
738  entry();
739
740  // Compute the current data size.
741  off_t
742  do_size() const;
743
744  Target* target_;
745  const Symbol_table* symtab_;
746  const Output_segment_headers* segment_header_;
747  const Output_section_headers* section_header_;
748  const Output_section* shstrtab_;
749};
750
751// Output sections are mainly comprised of input sections.  However,
752// there are cases where we have data to write out which is not in an
753// input section.  Output_section_data is used in such cases.  This is
754// an abstract base class.
755
756class Output_section_data : public Output_data
757{
758 public:
759  Output_section_data(off_t data_size, uint64_t addralign,
760		      bool is_data_size_fixed)
761    : Output_data(), output_section_(NULL), addralign_(addralign)
762  {
763    this->set_data_size(data_size);
764    if (is_data_size_fixed)
765      this->fix_data_size();
766  }
767
768  Output_section_data(uint64_t addralign)
769    : Output_data(), output_section_(NULL), addralign_(addralign)
770  { }
771
772  // Return the output section.
773  Output_section*
774  output_section()
775  { return this->output_section_; }
776
777  const Output_section*
778  output_section() const
779  { return this->output_section_; }
780
781  // Record the output section.
782  void
783  set_output_section(Output_section* os);
784
785  // Add an input section, for SHF_MERGE sections.  This returns true
786  // if the section was handled.
787  bool
788  add_input_section(Relobj* object, unsigned int shndx)
789  { return this->do_add_input_section(object, shndx); }
790
791  // Given an input OBJECT, an input section index SHNDX within that
792  // object, and an OFFSET relative to the start of that input
793  // section, return whether or not the corresponding offset within
794  // the output section is known.  If this function returns true, it
795  // sets *POUTPUT to the output offset.  The value -1 indicates that
796  // this input offset is being discarded.
797  bool
798  output_offset(const Relobj* object, unsigned int shndx,
799		section_offset_type offset,
800		section_offset_type* poutput) const
801  { return this->do_output_offset(object, shndx, offset, poutput); }
802
803  // Write the contents to a buffer.  This is used for sections which
804  // require postprocessing, such as compression.
805  void
806  write_to_buffer(unsigned char* buffer)
807  { this->do_write_to_buffer(buffer); }
808
809  // Print merge stats to stderr.  This should only be called for
810  // SHF_MERGE sections.
811  void
812  print_merge_stats(const char* section_name)
813  { this->do_print_merge_stats(section_name); }
814
815 protected:
816  // The child class must implement do_write.
817
818  // The child class may implement specific adjustments to the output
819  // section.
820  virtual void
821  do_adjust_output_section(Output_section*)
822  { }
823
824  // May be implemented by child class.  Return true if the section
825  // was handled.
826  virtual bool
827  do_add_input_section(Relobj*, unsigned int)
828  { gold_unreachable(); }
829
830  // The child class may implement output_offset.
831  virtual bool
832  do_output_offset(const Relobj*, unsigned int, section_offset_type,
833		   section_offset_type*) const
834  { return false; }
835
836  // The child class may implement write_to_buffer.  Most child
837  // classes can not appear in a compressed section, and they do not
838  // implement this.
839  virtual void
840  do_write_to_buffer(unsigned char*)
841  { gold_unreachable(); }
842
843  // Print merge statistics.
844  virtual void
845  do_print_merge_stats(const char*)
846  { gold_unreachable(); }
847
848  // Return the required alignment.
849  uint64_t
850  do_addralign() const
851  { return this->addralign_; }
852
853  // Return the output section.
854  Output_section*
855  do_output_section()
856  { return this->output_section_; }
857
858  const Output_section*
859  do_output_section() const
860  { return this->output_section_; }
861
862  // Return the section index of the output section.
863  unsigned int
864  do_out_shndx() const;
865
866  // Set the alignment.
867  void
868  set_addralign(uint64_t addralign);
869
870 private:
871  // The output section for this section.
872  Output_section* output_section_;
873  // The required alignment.
874  uint64_t addralign_;
875};
876
877// Some Output_section_data classes build up their data step by step,
878// rather than all at once.  This class provides an interface for
879// them.
880
881class Output_section_data_build : public Output_section_data
882{
883 public:
884  Output_section_data_build(uint64_t addralign)
885    : Output_section_data(addralign)
886  { }
887
888  Output_section_data_build(off_t data_size, uint64_t addralign)
889    : Output_section_data(data_size, addralign, false)
890  { }
891
892  // Set the current data size.
893  void
894  set_current_data_size(off_t data_size)
895  { this->set_current_data_size_for_child(data_size); }
896
897 protected:
898  // Set the final data size.
899  virtual void
900  set_final_data_size()
901  { this->set_data_size(this->current_data_size_for_child()); }
902};
903
904// A simple case of Output_data in which we have constant data to
905// output.
906
907class Output_data_const : public Output_section_data
908{
909 public:
910  Output_data_const(const std::string& data, uint64_t addralign)
911    : Output_section_data(data.size(), addralign, true), data_(data)
912  { }
913
914  Output_data_const(const char* p, off_t len, uint64_t addralign)
915    : Output_section_data(len, addralign, true), data_(p, len)
916  { }
917
918  Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
919    : Output_section_data(len, addralign, true),
920      data_(reinterpret_cast<const char*>(p), len)
921  { }
922
923 protected:
924  // Write the data to the output file.
925  void
926  do_write(Output_file*);
927
928  // Write the data to a buffer.
929  void
930  do_write_to_buffer(unsigned char* buffer)
931  { memcpy(buffer, this->data_.data(), this->data_.size()); }
932
933  // Write to a map file.
934  void
935  do_print_to_mapfile(Mapfile* mapfile) const
936  { mapfile->print_output_data(this, _("** fill")); }
937
938 private:
939  std::string data_;
940};
941
942// Another version of Output_data with constant data, in which the
943// buffer is allocated by the caller.
944
945class Output_data_const_buffer : public Output_section_data
946{
947 public:
948  Output_data_const_buffer(const unsigned char* p, off_t len,
949			   uint64_t addralign, const char* map_name)
950    : Output_section_data(len, addralign, true),
951      p_(p), map_name_(map_name)
952  { }
953
954 protected:
955  // Write the data the output file.
956  void
957  do_write(Output_file*);
958
959  // Write the data to a buffer.
960  void
961  do_write_to_buffer(unsigned char* buffer)
962  { memcpy(buffer, this->p_, this->data_size()); }
963
964  // Write to a map file.
965  void
966  do_print_to_mapfile(Mapfile* mapfile) const
967  { mapfile->print_output_data(this, _(this->map_name_)); }
968
969 private:
970  // The data to output.
971  const unsigned char* p_;
972  // Name to use in a map file.  Maps are a rarely used feature, but
973  // the space usage is minor as aren't very many of these objects.
974  const char* map_name_;
975};
976
977// A place holder for a fixed amount of data written out via some
978// other mechanism.
979
980class Output_data_fixed_space : public Output_section_data
981{
982 public:
983  Output_data_fixed_space(off_t data_size, uint64_t addralign,
984			  const char* map_name)
985    : Output_section_data(data_size, addralign, true),
986      map_name_(map_name)
987  { }
988
989 protected:
990  // Write out the data--the actual data must be written out
991  // elsewhere.
992  void
993  do_write(Output_file*)
994  { }
995
996  // Write to a map file.
997  void
998  do_print_to_mapfile(Mapfile* mapfile) const
999  { mapfile->print_output_data(this, _(this->map_name_)); }
1000
1001 private:
1002  // Name to use in a map file.  Maps are a rarely used feature, but
1003  // the space usage is minor as aren't very many of these objects.
1004  const char* map_name_;
1005};
1006
1007// A place holder for variable sized data written out via some other
1008// mechanism.
1009
1010class Output_data_space : public Output_section_data_build
1011{
1012 public:
1013  explicit Output_data_space(uint64_t addralign, const char* map_name)
1014    : Output_section_data_build(addralign),
1015      map_name_(map_name)
1016  { }
1017
1018  explicit Output_data_space(off_t data_size, uint64_t addralign,
1019			     const char* map_name)
1020    : Output_section_data_build(data_size, addralign),
1021      map_name_(map_name)
1022  { }
1023
1024  // Set the alignment.
1025  void
1026  set_space_alignment(uint64_t align)
1027  { this->set_addralign(align); }
1028
1029 protected:
1030  // Write out the data--the actual data must be written out
1031  // elsewhere.
1032  void
1033  do_write(Output_file*)
1034  { }
1035
1036  // Write to a map file.
1037  void
1038  do_print_to_mapfile(Mapfile* mapfile) const
1039  { mapfile->print_output_data(this, _(this->map_name_)); }
1040
1041 private:
1042  // Name to use in a map file.  Maps are a rarely used feature, but
1043  // the space usage is minor as aren't very many of these objects.
1044  const char* map_name_;
1045};
1046
1047// Fill fixed space with zeroes.  This is just like
1048// Output_data_fixed_space, except that the map name is known.
1049
1050class Output_data_zero_fill : public Output_section_data
1051{
1052 public:
1053  Output_data_zero_fill(off_t data_size, uint64_t addralign)
1054    : Output_section_data(data_size, addralign, true)
1055  { }
1056
1057 protected:
1058  // There is no data to write out.
1059  void
1060  do_write(Output_file*)
1061  { }
1062
1063  // Write to a map file.
1064  void
1065  do_print_to_mapfile(Mapfile* mapfile) const
1066  { mapfile->print_output_data(this, "** zero fill"); }
1067};
1068
1069// A string table which goes into an output section.
1070
1071class Output_data_strtab : public Output_section_data
1072{
1073 public:
1074  Output_data_strtab(Stringpool* strtab)
1075    : Output_section_data(1), strtab_(strtab)
1076  { }
1077
1078 protected:
1079  // This is called to update the section size prior to assigning
1080  // the address and file offset.
1081  void
1082  update_data_size()
1083  { this->set_final_data_size(); }
1084
1085  // This is called to set the address and file offset.  Here we make
1086  // sure that the Stringpool is finalized.
1087  void
1088  set_final_data_size();
1089
1090  // Write out the data.
1091  void
1092  do_write(Output_file*);
1093
1094  // Write the data to a buffer.
1095  void
1096  do_write_to_buffer(unsigned char* buffer)
1097  { this->strtab_->write_to_buffer(buffer, this->data_size()); }
1098
1099  // Write to a map file.
1100  void
1101  do_print_to_mapfile(Mapfile* mapfile) const
1102  { mapfile->print_output_data(this, _("** string table")); }
1103
1104 private:
1105  Stringpool* strtab_;
1106};
1107
1108// This POD class is used to represent a single reloc in the output
1109// file.  This could be a private class within Output_data_reloc, but
1110// the templatization is complex enough that I broke it out into a
1111// separate class.  The class is templatized on either elfcpp::SHT_REL
1112// or elfcpp::SHT_RELA, and also on whether this is a dynamic
1113// relocation or an ordinary relocation.
1114
1115// A relocation can be against a global symbol, a local symbol, a
1116// local section symbol, an output section, or the undefined symbol at
1117// index 0.  We represent the latter by using a NULL global symbol.
1118
1119template<int sh_type, bool dynamic, int size, bool big_endian>
1120class Output_reloc;
1121
1122template<bool dynamic, int size, bool big_endian>
1123class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1124{
1125 public:
1126  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1127  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1128
1129  static const Address invalid_address = static_cast<Address>(0) - 1;
1130
1131  // An uninitialized entry.  We need this because we want to put
1132  // instances of this class into an STL container.
1133  Output_reloc()
1134    : local_sym_index_(INVALID_CODE)
1135  { }
1136
1137  // We have a bunch of different constructors.  They come in pairs
1138  // depending on how the address of the relocation is specified.  It
1139  // can either be an offset in an Output_data or an offset in an
1140  // input section.
1141
1142  // A reloc against a global symbol.
1143
1144  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1145	       Address address, bool is_relative, bool is_symbolless,
1146	       bool use_plt_offset);
1147
1148  Output_reloc(Symbol* gsym, unsigned int type,
1149	       Sized_relobj<size, big_endian>* relobj,
1150	       unsigned int shndx, Address address, bool is_relative,
1151	       bool is_symbolless, bool use_plt_offset);
1152
1153  // A reloc against a local symbol or local section symbol.
1154
1155  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1156	       unsigned int local_sym_index, unsigned int type,
1157	       Output_data* od, Address address, bool is_relative,
1158	       bool is_symbolless, bool is_section_symbol,
1159	       bool use_plt_offset);
1160
1161  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1162	       unsigned int local_sym_index, unsigned int type,
1163	       unsigned int shndx, Address address, bool is_relative,
1164	       bool is_symbolless, bool is_section_symbol,
1165	       bool use_plt_offset);
1166
1167  // A reloc against the STT_SECTION symbol of an output section.
1168
1169  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1170	       Address address, bool is_relative);
1171
1172  Output_reloc(Output_section* os, unsigned int type,
1173	       Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1174	       Address address, bool is_relative);
1175
1176  // An absolute or relative relocation with no symbol.
1177
1178  Output_reloc(unsigned int type, Output_data* od, Address address,
1179	       bool is_relative);
1180
1181  Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1182	       unsigned int shndx, Address address, bool is_relative);
1183
1184  // A target specific relocation.  The target will be called to get
1185  // the symbol index, passing ARG.  The type and offset will be set
1186  // as for other relocation types.
1187
1188  Output_reloc(unsigned int type, void* arg, Output_data* od,
1189	       Address address);
1190
1191  Output_reloc(unsigned int type, void* arg,
1192	       Sized_relobj<size, big_endian>* relobj,
1193	       unsigned int shndx, Address address);
1194
1195  // Return the reloc type.
1196  unsigned int
1197  type() const
1198  { return this->type_; }
1199
1200  // Return whether this is a RELATIVE relocation.
1201  bool
1202  is_relative() const
1203  { return this->is_relative_; }
1204
1205  // Return whether this is a relocation which should not use
1206  // a symbol, but which obtains its addend from a symbol.
1207  bool
1208  is_symbolless() const
1209  { return this->is_symbolless_; }
1210
1211  // Return whether this is against a local section symbol.
1212  bool
1213  is_local_section_symbol() const
1214  {
1215    return (this->local_sym_index_ != GSYM_CODE
1216	    && this->local_sym_index_ != SECTION_CODE
1217	    && this->local_sym_index_ != INVALID_CODE
1218	    && this->local_sym_index_ != TARGET_CODE
1219	    && this->is_section_symbol_);
1220  }
1221
1222  // Return whether this is a target specific relocation.
1223  bool
1224  is_target_specific() const
1225  { return this->local_sym_index_ == TARGET_CODE; }
1226
1227  // Return the argument to pass to the target for a target specific
1228  // relocation.
1229  void*
1230  target_arg() const
1231  {
1232    gold_assert(this->local_sym_index_ == TARGET_CODE);
1233    return this->u1_.arg;
1234  }
1235
1236  // For a local section symbol, return the offset of the input
1237  // section within the output section.  ADDEND is the addend being
1238  // applied to the input section.
1239  Address
1240  local_section_offset(Addend addend) const;
1241
1242  // Get the value of the symbol referred to by a Rel relocation when
1243  // we are adding the given ADDEND.
1244  Address
1245  symbol_value(Addend addend) const;
1246
1247  // If this relocation is against an input section, return the
1248  // relocatable object containing the input section.
1249  Sized_relobj<size, big_endian>*
1250  get_relobj() const
1251  {
1252    if (this->shndx_ == INVALID_CODE)
1253      return NULL;
1254    return this->u2_.relobj;
1255  }
1256
1257  // Write the reloc entry to an output view.
1258  void
1259  write(unsigned char* pov) const;
1260
1261  // Write the offset and info fields to Write_rel.
1262  template<typename Write_rel>
1263  void write_rel(Write_rel*) const;
1264
1265  // This is used when sorting dynamic relocs.  Return -1 to sort this
1266  // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1267  int
1268  compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1269    const;
1270
1271  // Return whether this reloc should be sorted before the argument
1272  // when sorting dynamic relocs.
1273  bool
1274  sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1275	      r2) const
1276  { return this->compare(r2) < 0; }
1277
1278  // Return the symbol index.
1279  unsigned int
1280  get_symbol_index() const;
1281
1282  // Return the output address.
1283  Address
1284  get_address() const;
1285
1286 private:
1287  // Record that we need a dynamic symbol index.
1288  void
1289  set_needs_dynsym_index();
1290
1291  // Codes for local_sym_index_.
1292  enum
1293  {
1294    // Global symbol.
1295    GSYM_CODE = -1U,
1296    // Output section.
1297    SECTION_CODE = -2U,
1298    // Target specific.
1299    TARGET_CODE = -3U,
1300    // Invalid uninitialized entry.
1301    INVALID_CODE = -4U
1302  };
1303
1304  union
1305  {
1306    // For a local symbol or local section symbol
1307    // (this->local_sym_index_ >= 0), the object.  We will never
1308    // generate a relocation against a local symbol in a dynamic
1309    // object; that doesn't make sense.  And our callers will always
1310    // be templatized, so we use Sized_relobj here.
1311    Sized_relobj<size, big_endian>* relobj;
1312    // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1313    // symbol.  If this is NULL, it indicates a relocation against the
1314    // undefined 0 symbol.
1315    Symbol* gsym;
1316    // For a relocation against an output section
1317    // (this->local_sym_index_ == SECTION_CODE), the output section.
1318    Output_section* os;
1319    // For a target specific relocation, an argument to pass to the
1320    // target.
1321    void* arg;
1322  } u1_;
1323  union
1324  {
1325    // If this->shndx_ is not INVALID CODE, the object which holds the
1326    // input section being used to specify the reloc address.
1327    Sized_relobj<size, big_endian>* relobj;
1328    // If this->shndx_ is INVALID_CODE, the output data being used to
1329    // specify the reloc address.  This may be NULL if the reloc
1330    // address is absolute.
1331    Output_data* od;
1332  } u2_;
1333  // The address offset within the input section or the Output_data.
1334  Address address_;
1335  // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1336  // relocation against an output section, or TARGET_CODE for a target
1337  // specific relocation, or INVALID_CODE for an uninitialized value.
1338  // Otherwise, for a local symbol (this->is_section_symbol_ is
1339  // false), the local symbol index.  For a local section symbol
1340  // (this->is_section_symbol_ is true), the section index in the
1341  // input file.
1342  unsigned int local_sym_index_;
1343  // The reloc type--a processor specific code.
1344  unsigned int type_ : 28;
1345  // True if the relocation is a RELATIVE relocation.
1346  bool is_relative_ : 1;
1347  // True if the relocation is one which should not use
1348  // a symbol, but which obtains its addend from a symbol.
1349  bool is_symbolless_ : 1;
1350  // True if the relocation is against a section symbol.
1351  bool is_section_symbol_ : 1;
1352  // True if the addend should be the PLT offset.
1353  // (Used only for RELA, but stored here for space.)
1354  bool use_plt_offset_ : 1;
1355  // If the reloc address is an input section in an object, the
1356  // section index.  This is INVALID_CODE if the reloc address is
1357  // specified in some other way.
1358  unsigned int shndx_;
1359};
1360
1361// The SHT_RELA version of Output_reloc<>.  This is just derived from
1362// the SHT_REL version of Output_reloc, but it adds an addend.
1363
1364template<bool dynamic, int size, bool big_endian>
1365class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1366{
1367 public:
1368  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1369  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1370
1371  // An uninitialized entry.
1372  Output_reloc()
1373    : rel_()
1374  { }
1375
1376  // A reloc against a global symbol.
1377
1378  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1379	       Address address, Addend addend, bool is_relative,
1380	       bool is_symbolless, bool use_plt_offset)
1381    : rel_(gsym, type, od, address, is_relative, is_symbolless,
1382	   use_plt_offset),
1383      addend_(addend)
1384  { }
1385
1386  Output_reloc(Symbol* gsym, unsigned int type,
1387	       Sized_relobj<size, big_endian>* relobj,
1388	       unsigned int shndx, Address address, Addend addend,
1389	       bool is_relative, bool is_symbolless, bool use_plt_offset)
1390    : rel_(gsym, type, relobj, shndx, address, is_relative,
1391	   is_symbolless, use_plt_offset), addend_(addend)
1392  { }
1393
1394  // A reloc against a local symbol.
1395
1396  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1397	       unsigned int local_sym_index, unsigned int type,
1398	       Output_data* od, Address address,
1399	       Addend addend, bool is_relative,
1400	       bool is_symbolless, bool is_section_symbol,
1401	       bool use_plt_offset)
1402    : rel_(relobj, local_sym_index, type, od, address, is_relative,
1403	   is_symbolless, is_section_symbol, use_plt_offset),
1404      addend_(addend)
1405  { }
1406
1407  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1408	       unsigned int local_sym_index, unsigned int type,
1409	       unsigned int shndx, Address address,
1410	       Addend addend, bool is_relative,
1411	       bool is_symbolless, bool is_section_symbol,
1412	       bool use_plt_offset)
1413    : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1414	   is_symbolless, is_section_symbol, use_plt_offset),
1415      addend_(addend)
1416  { }
1417
1418  // A reloc against the STT_SECTION symbol of an output section.
1419
1420  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1421	       Address address, Addend addend, bool is_relative)
1422    : rel_(os, type, od, address, is_relative), addend_(addend)
1423  { }
1424
1425  Output_reloc(Output_section* os, unsigned int type,
1426	       Sized_relobj<size, big_endian>* relobj,
1427	       unsigned int shndx, Address address, Addend addend,
1428	       bool is_relative)
1429    : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1430  { }
1431
1432  // An absolute or relative relocation with no symbol.
1433
1434  Output_reloc(unsigned int type, Output_data* od, Address address,
1435	       Addend addend, bool is_relative)
1436    : rel_(type, od, address, is_relative), addend_(addend)
1437  { }
1438
1439  Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1440	       unsigned int shndx, Address address, Addend addend,
1441	       bool is_relative)
1442    : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
1443  { }
1444
1445  // A target specific relocation.  The target will be called to get
1446  // the symbol index and the addend, passing ARG.  The type and
1447  // offset will be set as for other relocation types.
1448
1449  Output_reloc(unsigned int type, void* arg, Output_data* od,
1450	       Address address, Addend addend)
1451    : rel_(type, arg, od, address), addend_(addend)
1452  { }
1453
1454  Output_reloc(unsigned int type, void* arg,
1455	       Sized_relobj<size, big_endian>* relobj,
1456	       unsigned int shndx, Address address, Addend addend)
1457    : rel_(type, arg, relobj, shndx, address), addend_(addend)
1458  { }
1459
1460  // Return whether this is a RELATIVE relocation.
1461  bool
1462  is_relative() const
1463  { return this->rel_.is_relative(); }
1464
1465  // Return whether this is a relocation which should not use
1466  // a symbol, but which obtains its addend from a symbol.
1467  bool
1468  is_symbolless() const
1469  { return this->rel_.is_symbolless(); }
1470
1471  // If this relocation is against an input section, return the
1472  // relocatable object containing the input section.
1473  Sized_relobj<size, big_endian>*
1474  get_relobj() const
1475  { return this->rel_.get_relobj(); }
1476
1477  // Write the reloc entry to an output view.
1478  void
1479  write(unsigned char* pov) const;
1480
1481  // Return whether this reloc should be sorted before the argument
1482  // when sorting dynamic relocs.
1483  bool
1484  sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1485	      r2) const
1486  {
1487    int i = this->rel_.compare(r2.rel_);
1488    if (i < 0)
1489      return true;
1490    else if (i > 0)
1491      return false;
1492    else
1493      return this->addend_ < r2.addend_;
1494  }
1495
1496 private:
1497  // The basic reloc.
1498  Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1499  // The addend.
1500  Addend addend_;
1501};
1502
1503// Output_data_reloc_generic is a non-template base class for
1504// Output_data_reloc_base.  This gives the generic code a way to hold
1505// a pointer to a reloc section.
1506
1507class Output_data_reloc_generic : public Output_section_data_build
1508{
1509 public:
1510  Output_data_reloc_generic(int size, bool sort_relocs)
1511    : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1512      relative_reloc_count_(0), sort_relocs_(sort_relocs)
1513  { }
1514
1515  // Return the number of relative relocs in this section.
1516  size_t
1517  relative_reloc_count() const
1518  { return this->relative_reloc_count_; }
1519
1520  // Whether we should sort the relocs.
1521  bool
1522  sort_relocs() const
1523  { return this->sort_relocs_; }
1524
1525  // Add a reloc of type TYPE against the global symbol GSYM.  The
1526  // relocation applies to the data at offset ADDRESS within OD.
1527  virtual void
1528  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1529		     uint64_t address, uint64_t addend) = 0;
1530
1531  // Add a reloc of type TYPE against the global symbol GSYM.  The
1532  // relocation applies to data at offset ADDRESS within section SHNDX
1533  // of object file RELOBJ.  OD is the associated output section.
1534  virtual void
1535  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1536		     Relobj* relobj, unsigned int shndx, uint64_t address,
1537		     uint64_t addend) = 0;
1538
1539  // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1540  // in RELOBJ.  The relocation applies to the data at offset ADDRESS
1541  // within OD.
1542  virtual void
1543  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1544		    unsigned int type, Output_data* od, uint64_t address,
1545		    uint64_t addend) = 0;
1546
1547  // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1548  // in RELOBJ.  The relocation applies to the data at offset ADDRESS
1549  // within section SHNDX of RELOBJ.  OD is the associated output
1550  // section.
1551  virtual void
1552  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1553		    unsigned int type, Output_data* od, unsigned int shndx,
1554		    uint64_t address, uint64_t addend) = 0;
1555
1556  // Add a reloc of type TYPE against the STT_SECTION symbol of the
1557  // output section OS.  The relocation applies to the data at offset
1558  // ADDRESS within OD.
1559  virtual void
1560  add_output_section_generic(Output_section *os, unsigned int type,
1561			     Output_data* od, uint64_t address,
1562			     uint64_t addend) = 0;
1563
1564  // Add a reloc of type TYPE against the STT_SECTION symbol of the
1565  // output section OS.  The relocation applies to the data at offset
1566  // ADDRESS within section SHNDX of RELOBJ.  OD is the associated
1567  // output section.
1568  virtual void
1569  add_output_section_generic(Output_section* os, unsigned int type,
1570			     Output_data* od, Relobj* relobj,
1571			     unsigned int shndx, uint64_t address,
1572			     uint64_t addend) = 0;
1573
1574 protected:
1575  // Note that we've added another relative reloc.
1576  void
1577  bump_relative_reloc_count()
1578  { ++this->relative_reloc_count_; }
1579
1580 private:
1581  // The number of relative relocs added to this section.  This is to
1582  // support DT_RELCOUNT.
1583  size_t relative_reloc_count_;
1584  // Whether to sort the relocations when writing them out, to make
1585  // the dynamic linker more efficient.
1586  bool sort_relocs_;
1587};
1588
1589// Output_data_reloc is used to manage a section containing relocs.
1590// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
1591// indicates whether this is a dynamic relocation or a normal
1592// relocation.  Output_data_reloc_base is a base class.
1593// Output_data_reloc is the real class, which we specialize based on
1594// the reloc type.
1595
1596template<int sh_type, bool dynamic, int size, bool big_endian>
1597class Output_data_reloc_base : public Output_data_reloc_generic
1598{
1599 public:
1600  typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1601  typedef typename Output_reloc_type::Address Address;
1602  static const int reloc_size =
1603    Reloc_types<sh_type, size, big_endian>::reloc_size;
1604
1605  // Construct the section.
1606  Output_data_reloc_base(bool sort_relocs)
1607    : Output_data_reloc_generic(size, sort_relocs)
1608  { }
1609
1610 protected:
1611  // Write out the data.
1612  void
1613  do_write(Output_file*);
1614
1615  // Generic implementation of do_write, allowing a customized
1616  // class for writing the output relocation (e.g., for MIPS-64).
1617  template<class Output_reloc_writer>
1618  void
1619  do_write_generic(Output_file* of)
1620  {
1621    const off_t off = this->offset();
1622    const off_t oview_size = this->data_size();
1623    unsigned char* const oview = of->get_output_view(off, oview_size);
1624
1625    if (this->sort_relocs())
1626      {
1627	gold_assert(dynamic);
1628	std::sort(this->relocs_.begin(), this->relocs_.end(),
1629		  Sort_relocs_comparison());
1630      }
1631
1632    unsigned char* pov = oview;
1633    for (typename Relocs::const_iterator p = this->relocs_.begin();
1634	 p != this->relocs_.end();
1635	 ++p)
1636      {
1637	Output_reloc_writer::write(p, pov);
1638	pov += reloc_size;
1639      }
1640
1641    gold_assert(pov - oview == oview_size);
1642
1643    of->write_output_view(off, oview_size, oview);
1644
1645    // We no longer need the relocation entries.
1646    this->relocs_.clear();
1647  }
1648
1649  // Set the entry size and the link.
1650  void
1651  do_adjust_output_section(Output_section* os);
1652
1653  // Write to a map file.
1654  void
1655  do_print_to_mapfile(Mapfile* mapfile) const
1656  {
1657    mapfile->print_output_data(this,
1658			       (dynamic
1659				? _("** dynamic relocs")
1660				: _("** relocs")));
1661  }
1662
1663  // Add a relocation entry.
1664  void
1665  add(Output_data* od, const Output_reloc_type& reloc)
1666  {
1667    this->relocs_.push_back(reloc);
1668    this->set_current_data_size(this->relocs_.size() * reloc_size);
1669    if (dynamic)
1670      od->add_dynamic_reloc();
1671    if (reloc.is_relative())
1672      this->bump_relative_reloc_count();
1673    Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1674    if (relobj != NULL)
1675      relobj->add_dyn_reloc(this->relocs_.size() - 1);
1676  }
1677
1678 private:
1679  typedef std::vector<Output_reloc_type> Relocs;
1680
1681  // The class used to sort the relocations.
1682  struct Sort_relocs_comparison
1683  {
1684    bool
1685    operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1686    { return r1.sort_before(r2); }
1687  };
1688
1689  // The relocations in this section.
1690  Relocs relocs_;
1691};
1692
1693// The class which callers actually create.
1694
1695template<int sh_type, bool dynamic, int size, bool big_endian>
1696class Output_data_reloc;
1697
1698// The SHT_REL version of Output_data_reloc.
1699
1700template<bool dynamic, int size, bool big_endian>
1701class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1702  : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1703{
1704 private:
1705  typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1706				 big_endian> Base;
1707
1708 public:
1709  typedef typename Base::Output_reloc_type Output_reloc_type;
1710  typedef typename Output_reloc_type::Address Address;
1711
1712  Output_data_reloc(bool sr)
1713    : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1714  { }
1715
1716  // Add a reloc against a global symbol.
1717
1718  void
1719  add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1720  {
1721    this->add(od, Output_reloc_type(gsym, type, od, address,
1722				    false, false, false));
1723  }
1724
1725  void
1726  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1727	     Sized_relobj<size, big_endian>* relobj,
1728	     unsigned int shndx, Address address)
1729  {
1730    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1731				    false, false, false));
1732  }
1733
1734  void
1735  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1736		     uint64_t address, uint64_t addend)
1737  {
1738    gold_assert(addend == 0);
1739    this->add(od, Output_reloc_type(gsym, type, od,
1740				    convert_types<Address, uint64_t>(address),
1741				    false, false, false));
1742  }
1743
1744  void
1745  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1746		     Relobj* relobj, unsigned int shndx, uint64_t address,
1747		     uint64_t addend)
1748  {
1749    gold_assert(addend == 0);
1750    Sized_relobj<size, big_endian>* sized_relobj =
1751      static_cast<Sized_relobj<size, big_endian>*>(relobj);
1752    this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1753				    convert_types<Address, uint64_t>(address),
1754				    false, false, false));
1755  }
1756
1757  // Add a RELATIVE reloc against a global symbol.  The final relocation
1758  // will not reference the symbol.
1759
1760  void
1761  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1762		      Address address)
1763  {
1764    this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1765				    false));
1766  }
1767
1768  void
1769  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1770		      Sized_relobj<size, big_endian>* relobj,
1771		      unsigned int shndx, Address address)
1772  {
1773    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1774				    true, true, false));
1775  }
1776
1777  // Add a global relocation which does not use a symbol for the relocation,
1778  // but which gets its addend from a symbol.
1779
1780  void
1781  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1782			       Output_data* od, Address address)
1783  {
1784    this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1785				    false));
1786  }
1787
1788  void
1789  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1790			       Output_data* od,
1791			       Sized_relobj<size, big_endian>* relobj,
1792			       unsigned int shndx, Address address)
1793  {
1794    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1795				    false, true, false));
1796  }
1797
1798  // Add a reloc against a local symbol.
1799
1800  void
1801  add_local(Sized_relobj<size, big_endian>* relobj,
1802	    unsigned int local_sym_index, unsigned int type,
1803	    Output_data* od, Address address)
1804  {
1805    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1806				    address, false, false, false, false));
1807  }
1808
1809  void
1810  add_local(Sized_relobj<size, big_endian>* relobj,
1811	    unsigned int local_sym_index, unsigned int type,
1812	    Output_data* od, unsigned int shndx, Address address)
1813  {
1814    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1815				    address, false, false, false, false));
1816  }
1817
1818  void
1819  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1820		    unsigned int type, Output_data* od, uint64_t address,
1821		    uint64_t addend)
1822  {
1823    gold_assert(addend == 0);
1824    Sized_relobj<size, big_endian>* sized_relobj =
1825      static_cast<Sized_relobj<size, big_endian> *>(relobj);
1826    this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1827				    convert_types<Address, uint64_t>(address),
1828				    false, false, false, false));
1829  }
1830
1831  void
1832  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1833		    unsigned int type, Output_data* od, unsigned int shndx,
1834		    uint64_t address, uint64_t addend)
1835  {
1836    gold_assert(addend == 0);
1837    Sized_relobj<size, big_endian>* sized_relobj =
1838      static_cast<Sized_relobj<size, big_endian>*>(relobj);
1839    this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1840				    convert_types<Address, uint64_t>(address),
1841				    false, false, false, false));
1842  }
1843
1844  // Add a RELATIVE reloc against a local symbol.
1845
1846  void
1847  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1848		     unsigned int local_sym_index, unsigned int type,
1849		     Output_data* od, Address address)
1850  {
1851    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1852				    address, true, true, false, false));
1853  }
1854
1855  void
1856  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1857		     unsigned int local_sym_index, unsigned int type,
1858		     Output_data* od, unsigned int shndx, Address address)
1859  {
1860    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1861				    address, true, true, false, false));
1862  }
1863
1864  void
1865  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1866		     unsigned int local_sym_index, unsigned int type,
1867		     Output_data* od, unsigned int shndx, Address address,
1868		     bool use_plt_offset)
1869  {
1870    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1871				    address, true, true, false,
1872				    use_plt_offset));
1873  }
1874
1875  // Add a local relocation which does not use a symbol for the relocation,
1876  // but which gets its addend from a symbol.
1877
1878  void
1879  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1880			      unsigned int local_sym_index, unsigned int type,
1881			      Output_data* od, Address address)
1882  {
1883    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1884				    address, false, true, false, false));
1885  }
1886
1887  void
1888  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1889			      unsigned int local_sym_index, unsigned int type,
1890			      Output_data* od, unsigned int shndx,
1891			      Address address)
1892  {
1893    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1894				    address, false, true, false, false));
1895  }
1896
1897  // Add a reloc against a local section symbol.  This will be
1898  // converted into a reloc against the STT_SECTION symbol of the
1899  // output section.
1900
1901  void
1902  add_local_section(Sized_relobj<size, big_endian>* relobj,
1903		    unsigned int input_shndx, unsigned int type,
1904		    Output_data* od, Address address)
1905  {
1906    this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1907				    address, false, false, true, false));
1908  }
1909
1910  void
1911  add_local_section(Sized_relobj<size, big_endian>* relobj,
1912		    unsigned int input_shndx, unsigned int type,
1913		    Output_data* od, unsigned int shndx, Address address)
1914  {
1915    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1916				    address, false, false, true, false));
1917  }
1918
1919  // A reloc against the STT_SECTION symbol of an output section.
1920  // OS is the Output_section that the relocation refers to; OD is
1921  // the Output_data object being relocated.
1922
1923  void
1924  add_output_section(Output_section* os, unsigned int type,
1925		     Output_data* od, Address address)
1926  { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1927
1928  void
1929  add_output_section(Output_section* os, unsigned int type, Output_data* od,
1930		     Sized_relobj<size, big_endian>* relobj,
1931		     unsigned int shndx, Address address)
1932  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1933
1934  void
1935  add_output_section_generic(Output_section* os, unsigned int type,
1936			     Output_data* od, uint64_t address,
1937			     uint64_t addend)
1938  {
1939    gold_assert(addend == 0);
1940    this->add(od, Output_reloc_type(os, type, od,
1941				    convert_types<Address, uint64_t>(address),
1942				    false));
1943  }
1944
1945  void
1946  add_output_section_generic(Output_section* os, unsigned int type,
1947			     Output_data* od, Relobj* relobj,
1948			     unsigned int shndx, uint64_t address,
1949			     uint64_t addend)
1950  {
1951    gold_assert(addend == 0);
1952    Sized_relobj<size, big_endian>* sized_relobj =
1953      static_cast<Sized_relobj<size, big_endian>*>(relobj);
1954    this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1955				    convert_types<Address, uint64_t>(address),
1956				    false));
1957  }
1958
1959  // As above, but the reloc TYPE is relative
1960
1961  void
1962  add_output_section_relative(Output_section* os, unsigned int type,
1963			      Output_data* od, Address address)
1964  { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1965
1966  void
1967  add_output_section_relative(Output_section* os, unsigned int type,
1968			      Output_data* od,
1969			      Sized_relobj<size, big_endian>* relobj,
1970			      unsigned int shndx, Address address)
1971  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1972
1973  // Add an absolute relocation.
1974
1975  void
1976  add_absolute(unsigned int type, Output_data* od, Address address)
1977  { this->add(od, Output_reloc_type(type, od, address, false)); }
1978
1979  void
1980  add_absolute(unsigned int type, Output_data* od,
1981	       Sized_relobj<size, big_endian>* relobj,
1982	       unsigned int shndx, Address address)
1983  { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
1984
1985  // Add a relative relocation
1986
1987  void
1988  add_relative(unsigned int type, Output_data* od, Address address)
1989  { this->add(od, Output_reloc_type(type, od, address, true)); }
1990
1991  void
1992  add_relative(unsigned int type, Output_data* od,
1993	       Sized_relobj<size, big_endian>* relobj,
1994	       unsigned int shndx, Address address)
1995  { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
1996
1997  // Add a target specific relocation.  A target which calls this must
1998  // define the reloc_symbol_index and reloc_addend virtual functions.
1999
2000  void
2001  add_target_specific(unsigned int type, void* arg, Output_data* od,
2002		      Address address)
2003  { this->add(od, Output_reloc_type(type, arg, od, address)); }
2004
2005  void
2006  add_target_specific(unsigned int type, void* arg, Output_data* od,
2007		      Sized_relobj<size, big_endian>* relobj,
2008		      unsigned int shndx, Address address)
2009  { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
2010};
2011
2012// The SHT_RELA version of Output_data_reloc.
2013
2014template<bool dynamic, int size, bool big_endian>
2015class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
2016  : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
2017{
2018 private:
2019  typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
2020				 big_endian> Base;
2021
2022 public:
2023  typedef typename Base::Output_reloc_type Output_reloc_type;
2024  typedef typename Output_reloc_type::Address Address;
2025  typedef typename Output_reloc_type::Addend Addend;
2026
2027  Output_data_reloc(bool sr)
2028    : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
2029  { }
2030
2031  // Add a reloc against a global symbol.
2032
2033  void
2034  add_global(Symbol* gsym, unsigned int type, Output_data* od,
2035	     Address address, Addend addend)
2036  {
2037    this->add(od, Output_reloc_type(gsym, type, od, address, addend,
2038				    false, false, false));
2039  }
2040
2041  void
2042  add_global(Symbol* gsym, unsigned int type, Output_data* od,
2043	     Sized_relobj<size, big_endian>* relobj,
2044	     unsigned int shndx, Address address,
2045	     Addend addend)
2046  {
2047    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2048				    addend, false, false, false));
2049  }
2050
2051  void
2052  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
2053		     uint64_t address, uint64_t addend)
2054  {
2055    this->add(od, Output_reloc_type(gsym, type, od,
2056				    convert_types<Address, uint64_t>(address),
2057				    convert_types<Addend, uint64_t>(addend),
2058				    false, false, false));
2059  }
2060
2061  void
2062  add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
2063		     Relobj* relobj, unsigned int shndx, uint64_t address,
2064		     uint64_t addend)
2065  {
2066    Sized_relobj<size, big_endian>* sized_relobj =
2067      static_cast<Sized_relobj<size, big_endian>*>(relobj);
2068    this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
2069				    convert_types<Address, uint64_t>(address),
2070				    convert_types<Addend, uint64_t>(addend),
2071				    false, false, false));
2072  }
2073
2074  // Add a RELATIVE reloc against a global symbol.  The final output
2075  // relocation will not reference the symbol, but we must keep the symbol
2076  // information long enough to set the addend of the relocation correctly
2077  // when it is written.
2078
2079  void
2080  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
2081		      Address address, Addend addend, bool use_plt_offset)
2082  {
2083    this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
2084				    true, use_plt_offset));
2085  }
2086
2087  void
2088  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
2089		      Sized_relobj<size, big_endian>* relobj,
2090		      unsigned int shndx, Address address, Addend addend,
2091		      bool use_plt_offset)
2092  {
2093    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2094				    addend, true, true, use_plt_offset));
2095  }
2096
2097  // Add a global relocation which does not use a symbol for the relocation,
2098  // but which gets its addend from a symbol.
2099
2100  void
2101  add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
2102			       Address address, Addend addend)
2103  {
2104    this->add(od, Output_reloc_type(gsym, type, od, address, addend,
2105				    false, true, false));
2106  }
2107
2108  void
2109  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
2110			       Output_data* od,
2111			       Sized_relobj<size, big_endian>* relobj,
2112			       unsigned int shndx, Address address,
2113			       Addend addend)
2114  {
2115    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2116				    addend, false, true, false));
2117  }
2118
2119  // Add a reloc against a local symbol.
2120
2121  void
2122  add_local(Sized_relobj<size, big_endian>* relobj,
2123	    unsigned int local_sym_index, unsigned int type,
2124	    Output_data* od, Address address, Addend addend)
2125  {
2126    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2127				    addend, false, false, false, false));
2128  }
2129
2130  void
2131  add_local(Sized_relobj<size, big_endian>* relobj,
2132	    unsigned int local_sym_index, unsigned int type,
2133	    Output_data* od, unsigned int shndx, Address address,
2134	    Addend addend)
2135  {
2136    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2137				    address, addend, false, false, false,
2138				    false));
2139  }
2140
2141  void
2142  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
2143		    unsigned int type, Output_data* od, uint64_t address,
2144		    uint64_t addend)
2145  {
2146    Sized_relobj<size, big_endian>* sized_relobj =
2147      static_cast<Sized_relobj<size, big_endian> *>(relobj);
2148    this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
2149				    convert_types<Address, uint64_t>(address),
2150				    convert_types<Addend, uint64_t>(addend),
2151				    false, false, false, false));
2152  }
2153
2154  void
2155  add_local_generic(Relobj* relobj, unsigned int local_sym_index,
2156		    unsigned int type, Output_data* od, unsigned int shndx,
2157		    uint64_t address, uint64_t addend)
2158  {
2159    Sized_relobj<size, big_endian>* sized_relobj =
2160      static_cast<Sized_relobj<size, big_endian>*>(relobj);
2161    this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
2162				    convert_types<Address, uint64_t>(address),
2163				    convert_types<Addend, uint64_t>(addend),
2164				    false, false, false, false));
2165  }
2166
2167  // Add a RELATIVE reloc against a local symbol.
2168
2169  void
2170  add_local_relative(Sized_relobj<size, big_endian>* relobj,
2171		     unsigned int local_sym_index, unsigned int type,
2172		     Output_data* od, Address address, Addend addend,
2173		     bool use_plt_offset)
2174  {
2175    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2176				    addend, true, true, false,
2177				    use_plt_offset));
2178  }
2179
2180  void
2181  add_local_relative(Sized_relobj<size, big_endian>* relobj,
2182		     unsigned int local_sym_index, unsigned int type,
2183		     Output_data* od, unsigned int shndx, Address address,
2184		     Addend addend, bool use_plt_offset)
2185  {
2186    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2187				    address, addend, true, true, false,
2188				    use_plt_offset));
2189  }
2190
2191  // Add a local relocation which does not use a symbol for the relocation,
2192  // but which gets it's addend from a symbol.
2193
2194  void
2195  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2196			      unsigned int local_sym_index, unsigned int type,
2197			      Output_data* od, Address address, Addend addend)
2198  {
2199    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2200				    addend, false, true, false, false));
2201  }
2202
2203  void
2204  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2205			      unsigned int local_sym_index, unsigned int type,
2206			      Output_data* od, unsigned int shndx,
2207			      Address address, Addend addend)
2208  {
2209    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2210				    address, addend, false, true, false,
2211				    false));
2212  }
2213
2214  // Add a reloc against a local section symbol.  This will be
2215  // converted into a reloc against the STT_SECTION symbol of the
2216  // output section.
2217
2218  void
2219  add_local_section(Sized_relobj<size, big_endian>* relobj,
2220		    unsigned int input_shndx, unsigned int type,
2221		    Output_data* od, Address address, Addend addend)
2222  {
2223    this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2224				    addend, false, false, true, false));
2225  }
2226
2227  void
2228  add_local_section(Sized_relobj<size, big_endian>* relobj,
2229		    unsigned int input_shndx, unsigned int type,
2230		    Output_data* od, unsigned int shndx, Address address,
2231		    Addend addend)
2232  {
2233    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2234				    address, addend, false, false, true,
2235				    false));
2236  }
2237
2238  // A reloc against the STT_SECTION symbol of an output section.
2239
2240  void
2241  add_output_section(Output_section* os, unsigned int type, Output_data* od,
2242		     Address address, Addend addend)
2243  { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2244
2245  void
2246  add_output_section(Output_section* os, unsigned int type, Output_data* od,
2247		     Sized_relobj<size, big_endian>* relobj,
2248		     unsigned int shndx, Address address, Addend addend)
2249  {
2250    this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2251				    addend, false));
2252  }
2253
2254  void
2255  add_output_section_generic(Output_section* os, unsigned int type,
2256			     Output_data* od, uint64_t address,
2257			     uint64_t addend)
2258  {
2259    this->add(od, Output_reloc_type(os, type, od,
2260				    convert_types<Address, uint64_t>(address),
2261				    convert_types<Addend, uint64_t>(addend),
2262				    false));
2263  }
2264
2265  void
2266  add_output_section_generic(Output_section* os, unsigned int type,
2267			     Output_data* od, Relobj* relobj,
2268			     unsigned int shndx, uint64_t address,
2269			     uint64_t addend)
2270  {
2271    Sized_relobj<size, big_endian>* sized_relobj =
2272      static_cast<Sized_relobj<size, big_endian>*>(relobj);
2273    this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2274				    convert_types<Address, uint64_t>(address),
2275				    convert_types<Addend, uint64_t>(addend),
2276				    false));
2277  }
2278
2279  // As above, but the reloc TYPE is relative
2280
2281  void
2282  add_output_section_relative(Output_section* os, unsigned int type,
2283			      Output_data* od, Address address, Addend addend)
2284  { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2285
2286  void
2287  add_output_section_relative(Output_section* os, unsigned int type,
2288			      Output_data* od,
2289			      Sized_relobj<size, big_endian>* relobj,
2290			      unsigned int shndx, Address address,
2291			      Addend addend)
2292  {
2293    this->add(od, Output_reloc_type(os, type, relobj, shndx,
2294				    address, addend, true));
2295  }
2296
2297  // Add an absolute relocation.
2298
2299  void
2300  add_absolute(unsigned int type, Output_data* od, Address address,
2301	       Addend addend)
2302  { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
2303
2304  void
2305  add_absolute(unsigned int type, Output_data* od,
2306	       Sized_relobj<size, big_endian>* relobj,
2307	       unsigned int shndx, Address address, Addend addend)
2308  {
2309    this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2310				    false));
2311  }
2312
2313  // Add a relative relocation
2314
2315  void
2316  add_relative(unsigned int type, Output_data* od, Address address,
2317	       Addend addend)
2318  { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
2319
2320  void
2321  add_relative(unsigned int type, Output_data* od,
2322	       Sized_relobj<size, big_endian>* relobj,
2323	       unsigned int shndx, Address address, Addend addend)
2324  {
2325    this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2326				    true));
2327  }
2328
2329  // Add a target specific relocation.  A target which calls this must
2330  // define the reloc_symbol_index and reloc_addend virtual functions.
2331
2332  void
2333  add_target_specific(unsigned int type, void* arg, Output_data* od,
2334		      Address address, Addend addend)
2335  { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2336
2337  void
2338  add_target_specific(unsigned int type, void* arg, Output_data* od,
2339		      Sized_relobj<size, big_endian>* relobj,
2340		      unsigned int shndx, Address address, Addend addend)
2341  {
2342    this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2343				    addend));
2344  }
2345};
2346
2347// Output_relocatable_relocs represents a relocation section in a
2348// relocatable link.  The actual data is written out in the target
2349// hook relocate_relocs.  This just saves space for it.
2350
2351template<int sh_type, int size, bool big_endian>
2352class Output_relocatable_relocs : public Output_section_data
2353{
2354 public:
2355  Output_relocatable_relocs(Relocatable_relocs* rr)
2356    : Output_section_data(Output_data::default_alignment_for_size(size)),
2357      rr_(rr)
2358  { }
2359
2360  void
2361  set_final_data_size();
2362
2363  // Write out the data.  There is nothing to do here.
2364  void
2365  do_write(Output_file*)
2366  { }
2367
2368  // Write to a map file.
2369  void
2370  do_print_to_mapfile(Mapfile* mapfile) const
2371  { mapfile->print_output_data(this, _("** relocs")); }
2372
2373 private:
2374  // The relocs associated with this input section.
2375  Relocatable_relocs* rr_;
2376};
2377
2378// Handle a GROUP section.
2379
2380template<int size, bool big_endian>
2381class Output_data_group : public Output_section_data
2382{
2383 public:
2384  // The constructor clears *INPUT_SHNDXES.
2385  Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2386		    section_size_type entry_count,
2387		    elfcpp::Elf_Word flags,
2388		    std::vector<unsigned int>* input_shndxes);
2389
2390  void
2391  do_write(Output_file*);
2392
2393  // Write to a map file.
2394  void
2395  do_print_to_mapfile(Mapfile* mapfile) const
2396  { mapfile->print_output_data(this, _("** group")); }
2397
2398  // Set final data size.
2399  void
2400  set_final_data_size()
2401  { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2402
2403 private:
2404  // The input object.
2405  Sized_relobj_file<size, big_endian>* relobj_;
2406  // The group flag word.
2407  elfcpp::Elf_Word flags_;
2408  // The section indexes of the input sections in this group.
2409  std::vector<unsigned int> input_shndxes_;
2410};
2411
2412// Output_data_got is used to manage a GOT.  Each entry in the GOT is
2413// for one symbol--either a global symbol or a local symbol in an
2414// object.  The target specific code adds entries to the GOT as
2415// needed.  The GOT_SIZE template parameter is the size in bits of a
2416// GOT entry, typically 32 or 64.
2417
2418class Output_data_got_base : public Output_section_data_build
2419{
2420 public:
2421  Output_data_got_base(uint64_t align)
2422    : Output_section_data_build(align)
2423  { }
2424
2425  Output_data_got_base(off_t data_size, uint64_t align)
2426    : Output_section_data_build(data_size, align)
2427  { }
2428
2429  // Reserve the slot at index I in the GOT.
2430  void
2431  reserve_slot(unsigned int i)
2432  { this->do_reserve_slot(i); }
2433
2434 protected:
2435  // Reserve the slot at index I in the GOT.
2436  virtual void
2437  do_reserve_slot(unsigned int i) = 0;
2438};
2439
2440template<int got_size, bool big_endian>
2441class Output_data_got : public Output_data_got_base
2442{
2443 public:
2444  typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2445
2446  Output_data_got()
2447    : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2448      entries_(), free_list_()
2449  { }
2450
2451  Output_data_got(off_t data_size)
2452    : Output_data_got_base(data_size,
2453			   Output_data::default_alignment_for_size(got_size)),
2454      entries_(), free_list_()
2455  {
2456    // For an incremental update, we have an existing GOT section.
2457    // Initialize the list of entries and the free list.
2458    this->entries_.resize(data_size / (got_size / 8));
2459    this->free_list_.init(data_size, false);
2460  }
2461
2462  // Add an entry for a global symbol to the GOT.  Return true if this
2463  // is a new GOT entry, false if the symbol was already in the GOT.
2464  bool
2465  add_global(Symbol* gsym, unsigned int got_type);
2466
2467  // Like add_global, but use the PLT offset of the global symbol if
2468  // it has one.
2469  bool
2470  add_global_plt(Symbol* gsym, unsigned int got_type);
2471
2472  // Like add_global, but for a TLS symbol where the value will be
2473  // offset using Target::tls_offset_for_global.
2474  bool
2475  add_global_tls(Symbol* gsym, unsigned int got_type)
2476  { return add_global_plt(gsym, got_type); }
2477
2478  // Add an entry for a global symbol to the GOT, and add a dynamic
2479  // relocation of type R_TYPE for the GOT entry.
2480  void
2481  add_global_with_rel(Symbol* gsym, unsigned int got_type,
2482		      Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2483
2484  // Add a pair of entries for a global symbol to the GOT, and add
2485  // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2486  void
2487  add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2488			   Output_data_reloc_generic* rel_dyn,
2489			   unsigned int r_type_1, unsigned int r_type_2);
2490
2491  // Add an entry for a local symbol to the GOT.  This returns true if
2492  // this is a new GOT entry, false if the symbol already has a GOT
2493  // entry.
2494  bool
2495  add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2496
2497  // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
2498  // true if this is a new GOT entry, false if the symbol already has a GOT
2499  // entry.
2500  bool
2501  add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
2502	    uint64_t addend);
2503
2504  // Like add_local, but use the PLT offset of the local symbol if it
2505  // has one.
2506  bool
2507  add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2508
2509  // Like add_local, but for a TLS symbol where the value will be
2510  // offset using Target::tls_offset_for_local.
2511  bool
2512  add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2513  { return add_local_plt(object, sym_index, got_type); }
2514
2515  // Add an entry for a local symbol to the GOT, and add a dynamic
2516  // relocation of type R_TYPE for the GOT entry.
2517  void
2518  add_local_with_rel(Relobj* object, unsigned int sym_index,
2519		     unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2520		     unsigned int r_type);
2521
2522  // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
2523  // relocation of type R_TYPE for the GOT entry.
2524  void
2525  add_local_with_rel(Relobj* object, unsigned int sym_index,
2526		     unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2527		     unsigned int r_type, uint64_t addend);
2528
2529  // Add a pair of entries for a local symbol to the GOT, and add
2530  // a dynamic relocation of type R_TYPE using the section symbol of
2531  // the output section to which input section SHNDX maps, on the first.
2532  // The first got entry will have a value of zero, the second the
2533  // value of the local symbol.
2534  void
2535  add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2536			  unsigned int shndx, unsigned int got_type,
2537			  Output_data_reloc_generic* rel_dyn,
2538			  unsigned int r_type);
2539
2540  // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
2541  // a dynamic relocation of type R_TYPE using the section symbol of
2542  // the output section to which input section SHNDX maps, on the first.
2543  // The first got entry will have a value of zero, the second the
2544  // value of the local symbol.
2545  void
2546  add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2547			  unsigned int shndx, unsigned int got_type,
2548			  Output_data_reloc_generic* rel_dyn,
2549			  unsigned int r_type, uint64_t addend);
2550
2551  // Add a pair of entries for a local symbol to the GOT, and add
2552  // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2553  // The first got entry will have a value of zero, the second the
2554  // value of the local symbol offset by Target::tls_offset_for_local.
2555  void
2556  add_local_tls_pair(Relobj* object, unsigned int sym_index,
2557		     unsigned int got_type,
2558		     Output_data_reloc_generic* rel_dyn,
2559		     unsigned int r_type);
2560
2561  // Add a constant to the GOT.  This returns the offset of the new
2562  // entry from the start of the GOT.
2563  unsigned int
2564  add_constant(Valtype constant)
2565  { return this->add_got_entry(Got_entry(constant)); }
2566
2567  // Add a pair of constants to the GOT.  This returns the offset of
2568  // the new entry from the start of the GOT.
2569  unsigned int
2570  add_constant_pair(Valtype c1, Valtype c2)
2571  { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
2572
2573  // Replace GOT entry I with a new constant.
2574  void
2575  replace_constant(unsigned int i, Valtype constant)
2576  {
2577    this->replace_got_entry(i, Got_entry(constant));
2578  }
2579
2580  // Reserve a slot in the GOT for a local symbol.
2581  void
2582  reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2583		unsigned int got_type);
2584
2585  // Reserve a slot in the GOT for a global symbol.
2586  void
2587  reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2588
2589 protected:
2590  // Write out the GOT table.
2591  void
2592  do_write(Output_file*);
2593
2594  // Write to a map file.
2595  void
2596  do_print_to_mapfile(Mapfile* mapfile) const
2597  { mapfile->print_output_data(this, _("** GOT")); }
2598
2599  // Reserve the slot at index I in the GOT.
2600  virtual void
2601  do_reserve_slot(unsigned int i)
2602  { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2603
2604  // Return the number of words in the GOT.
2605  unsigned int
2606  num_entries () const
2607  { return this->entries_.size(); }
2608
2609  // Return the offset into the GOT of GOT entry I.
2610  unsigned int
2611  got_offset(unsigned int i) const
2612  { return i * (got_size / 8); }
2613
2614 private:
2615  // This POD class holds a single GOT entry.
2616  class Got_entry
2617  {
2618   public:
2619    // Create a zero entry.
2620    Got_entry()
2621      : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false),
2622	addend_(0)
2623    { this->u_.constant = 0; }
2624
2625    // Create a global symbol entry.
2626    Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2627      : local_sym_index_(GSYM_CODE),
2628	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
2629    { this->u_.gsym = gsym; }
2630
2631    // Create a local symbol entry.
2632    Got_entry(Relobj* object, unsigned int local_sym_index,
2633	      bool use_plt_or_tls_offset)
2634      : local_sym_index_(local_sym_index),
2635	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
2636    {
2637      gold_assert(local_sym_index != GSYM_CODE
2638		  && local_sym_index != CONSTANT_CODE
2639		  && local_sym_index != RESERVED_CODE
2640		  && local_sym_index == this->local_sym_index_);
2641      this->u_.object = object;
2642    }
2643
2644    // Create a local symbol entry plus addend.
2645    Got_entry(Relobj* object, unsigned int local_sym_index,
2646	bool use_plt_or_tls_offset, uint64_t addend)
2647      : local_sym_index_(local_sym_index),
2648	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
2649    {
2650      gold_assert(local_sym_index != GSYM_CODE
2651      && local_sym_index != CONSTANT_CODE
2652      && local_sym_index != RESERVED_CODE
2653      && local_sym_index == this->local_sym_index_);
2654      this->u_.object = object;
2655    }
2656
2657    // Create a constant entry.  The constant is a host value--it will
2658    // be swapped, if necessary, when it is written out.
2659    explicit Got_entry(Valtype constant)
2660      : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2661    { this->u_.constant = constant; }
2662
2663    // Write the GOT entry to an output view.
2664    void
2665    write(unsigned int got_indx, unsigned char* pov) const;
2666
2667   private:
2668    enum
2669    {
2670      GSYM_CODE = 0x7fffffff,
2671      CONSTANT_CODE = 0x7ffffffe,
2672      RESERVED_CODE = 0x7ffffffd
2673    };
2674
2675    union
2676    {
2677      // For a local symbol, the object.
2678      Relobj* object;
2679      // For a global symbol, the symbol.
2680      Symbol* gsym;
2681      // For a constant, the constant.
2682      Valtype constant;
2683    } u_;
2684    // For a local symbol, the local symbol index.  This is GSYM_CODE
2685    // for a global symbol, or CONSTANT_CODE for a constant.
2686    unsigned int local_sym_index_ : 31;
2687    // Whether to use the PLT offset of the symbol if it has one.
2688    // For TLS symbols, whether to offset the symbol value.
2689    bool use_plt_or_tls_offset_ : 1;
2690    // The addend.
2691    uint64_t addend_;
2692  };
2693
2694  typedef std::vector<Got_entry> Got_entries;
2695
2696  // Create a new GOT entry and return its offset.
2697  unsigned int
2698  add_got_entry(Got_entry got_entry);
2699
2700  // Create a pair of new GOT entries and return the offset of the first.
2701  unsigned int
2702  add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2703
2704  // Replace GOT entry I with a new value.
2705  void
2706  replace_got_entry(unsigned int i, Got_entry got_entry);
2707
2708  // Return the offset into the GOT of the last entry added.
2709  unsigned int
2710  last_got_offset() const
2711  { return this->got_offset(this->num_entries() - 1); }
2712
2713  // Set the size of the section.
2714  void
2715  set_got_size()
2716  { this->set_current_data_size(this->got_offset(this->num_entries())); }
2717
2718  // The list of GOT entries.
2719  Got_entries entries_;
2720
2721  // List of available regions within the section, for incremental
2722  // update links.
2723  Free_list free_list_;
2724};
2725
2726// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2727// section.
2728
2729class Output_data_dynamic : public Output_section_data
2730{
2731 public:
2732  Output_data_dynamic(Stringpool* pool)
2733    : Output_section_data(Output_data::default_alignment()),
2734      entries_(), pool_(pool)
2735  { }
2736
2737  // Add a new dynamic entry with a fixed numeric value.
2738  void
2739  add_constant(elfcpp::DT tag, unsigned int val)
2740  { this->add_entry(Dynamic_entry(tag, val)); }
2741
2742  // Add a new dynamic entry with the address of output data.
2743  void
2744  add_section_address(elfcpp::DT tag, const Output_data* od)
2745  { this->add_entry(Dynamic_entry(tag, od, false)); }
2746
2747  // Add a new dynamic entry with the address of output data
2748  // plus a constant offset.
2749  void
2750  add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2751			  unsigned int offset)
2752  { this->add_entry(Dynamic_entry(tag, od, offset)); }
2753
2754  // Add a new dynamic entry with the size of output data.
2755  void
2756  add_section_size(elfcpp::DT tag, const Output_data* od)
2757  { this->add_entry(Dynamic_entry(tag, od, true)); }
2758
2759  // Add a new dynamic entry with the total size of two output datas.
2760  void
2761  add_section_size(elfcpp::DT tag, const Output_data* od,
2762		   const Output_data* od2)
2763  { this->add_entry(Dynamic_entry(tag, od, od2)); }
2764
2765  // Add a new dynamic entry with the address of a symbol.
2766  void
2767  add_symbol(elfcpp::DT tag, const Symbol* sym)
2768  { this->add_entry(Dynamic_entry(tag, sym)); }
2769
2770  // Add a new dynamic entry with a string.
2771  void
2772  add_string(elfcpp::DT tag, const char* str)
2773  { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2774
2775  void
2776  add_string(elfcpp::DT tag, const std::string& str)
2777  { this->add_string(tag, str.c_str()); }
2778
2779  // Add a new dynamic entry with custom value.
2780  void
2781  add_custom(elfcpp::DT tag)
2782  { this->add_entry(Dynamic_entry(tag)); }
2783
2784  // Get a dynamic entry offset.
2785  unsigned int
2786  get_entry_offset(elfcpp::DT tag) const;
2787
2788 protected:
2789  // Adjust the output section to set the entry size.
2790  void
2791  do_adjust_output_section(Output_section*);
2792
2793  // Set the final data size.
2794  void
2795  set_final_data_size();
2796
2797  // Write out the dynamic entries.
2798  void
2799  do_write(Output_file*);
2800
2801  // Write to a map file.
2802  void
2803  do_print_to_mapfile(Mapfile* mapfile) const
2804  { mapfile->print_output_data(this, _("** dynamic")); }
2805
2806 private:
2807  // This POD class holds a single dynamic entry.
2808  class Dynamic_entry
2809  {
2810   public:
2811    // Create an entry with a fixed numeric value.
2812    Dynamic_entry(elfcpp::DT tag, unsigned int val)
2813      : tag_(tag), offset_(DYNAMIC_NUMBER)
2814    { this->u_.val = val; }
2815
2816    // Create an entry with the size or address of a section.
2817    Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2818      : tag_(tag),
2819	offset_(section_size
2820		? DYNAMIC_SECTION_SIZE
2821		: DYNAMIC_SECTION_ADDRESS)
2822    {
2823      this->u_.od = od;
2824      this->od2 = NULL;
2825    }
2826
2827    // Create an entry with the size of two sections.
2828    Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2829      : tag_(tag),
2830	offset_(DYNAMIC_SECTION_SIZE)
2831    {
2832      this->u_.od = od;
2833      this->od2 = od2;
2834    }
2835
2836    // Create an entry with the address of a section plus a constant offset.
2837    Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2838      : tag_(tag),
2839	offset_(offset)
2840    { this->u_.od = od; }
2841
2842    // Create an entry with the address of a symbol.
2843    Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2844      : tag_(tag), offset_(DYNAMIC_SYMBOL)
2845    { this->u_.sym = sym; }
2846
2847    // Create an entry with a string.
2848    Dynamic_entry(elfcpp::DT tag, const char* str)
2849      : tag_(tag), offset_(DYNAMIC_STRING)
2850    { this->u_.str = str; }
2851
2852    // Create an entry with a custom value.
2853    Dynamic_entry(elfcpp::DT tag)
2854      : tag_(tag), offset_(DYNAMIC_CUSTOM)
2855    { }
2856
2857    // Return the tag of this entry.
2858    elfcpp::DT
2859    tag() const
2860    { return this->tag_; }
2861
2862    // Write the dynamic entry to an output view.
2863    template<int size, bool big_endian>
2864    void
2865    write(unsigned char* pov, const Stringpool*) const;
2866
2867   private:
2868    // Classification is encoded in the OFFSET field.
2869    enum Classification
2870    {
2871      // Section address.
2872      DYNAMIC_SECTION_ADDRESS = 0,
2873      // Number.
2874      DYNAMIC_NUMBER = -1U,
2875      // Section size.
2876      DYNAMIC_SECTION_SIZE = -2U,
2877      // Symbol address.
2878      DYNAMIC_SYMBOL = -3U,
2879      // String.
2880      DYNAMIC_STRING = -4U,
2881      // Custom value.
2882      DYNAMIC_CUSTOM = -5U
2883      // Any other value indicates a section address plus OFFSET.
2884    };
2885
2886    union
2887    {
2888      // For DYNAMIC_NUMBER.
2889      unsigned int val;
2890      // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2891      const Output_data* od;
2892      // For DYNAMIC_SYMBOL.
2893      const Symbol* sym;
2894      // For DYNAMIC_STRING.
2895      const char* str;
2896    } u_;
2897    // For DYNAMIC_SYMBOL with two sections.
2898    const Output_data* od2;
2899    // The dynamic tag.
2900    elfcpp::DT tag_;
2901    // The type of entry (Classification) or offset within a section.
2902    unsigned int offset_;
2903  };
2904
2905  // Add an entry to the list.
2906  void
2907  add_entry(const Dynamic_entry& entry)
2908  { this->entries_.push_back(entry); }
2909
2910  // Sized version of write function.
2911  template<int size, bool big_endian>
2912  void
2913  sized_write(Output_file* of);
2914
2915  // The type of the list of entries.
2916  typedef std::vector<Dynamic_entry> Dynamic_entries;
2917
2918  // The entries.
2919  Dynamic_entries entries_;
2920  // The pool used for strings.
2921  Stringpool* pool_;
2922};
2923
2924// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2925// which may be required if the object file has more than
2926// SHN_LORESERVE sections.
2927
2928class Output_symtab_xindex : public Output_section_data
2929{
2930 public:
2931  Output_symtab_xindex(size_t symcount)
2932    : Output_section_data(symcount * 4, 4, true),
2933      entries_()
2934  { }
2935
2936  // Add an entry: symbol number SYMNDX has section SHNDX.
2937  void
2938  add(unsigned int symndx, unsigned int shndx)
2939  { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2940
2941 protected:
2942  void
2943  do_write(Output_file*);
2944
2945  // Write to a map file.
2946  void
2947  do_print_to_mapfile(Mapfile* mapfile) const
2948  { mapfile->print_output_data(this, _("** symtab xindex")); }
2949
2950 private:
2951  template<bool big_endian>
2952  void
2953  endian_do_write(unsigned char*);
2954
2955  // It is likely that most symbols will not require entries.  Rather
2956  // than keep a vector for all symbols, we keep pairs of symbol index
2957  // and section index.
2958  typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2959
2960  // The entries we need.
2961  Xindex_entries entries_;
2962};
2963
2964// A relaxed input section.
2965class Output_relaxed_input_section : public Output_section_data_build
2966{
2967 public:
2968  // We would like to call relobj->section_addralign(shndx) to get the
2969  // alignment but we do not want the constructor to fail.  So callers
2970  // are repsonsible for ensuring that.
2971  Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2972			       uint64_t addralign)
2973    : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2974  { }
2975
2976  // Return the Relobj of this relaxed input section.
2977  Relobj*
2978  relobj() const
2979  { return this->relobj_; }
2980
2981  // Return the section index of this relaxed input section.
2982  unsigned int
2983  shndx() const
2984  { return this->shndx_; }
2985
2986 protected:
2987  void
2988  set_relobj(Relobj* relobj)
2989  { this->relobj_ = relobj; }
2990
2991  void
2992  set_shndx(unsigned int shndx)
2993  { this->shndx_ = shndx; }
2994
2995 private:
2996  Relobj* relobj_;
2997  unsigned int shndx_;
2998};
2999
3000// This class describes properties of merge data sections.  It is used
3001// as a key type for maps.
3002class Merge_section_properties
3003{
3004 public:
3005  Merge_section_properties(bool is_string, uint64_t entsize,
3006			     uint64_t addralign)
3007    : is_string_(is_string), entsize_(entsize), addralign_(addralign)
3008  { }
3009
3010  // Whether this equals to another Merge_section_properties MSP.
3011  bool
3012  eq(const Merge_section_properties& msp) const
3013  {
3014    return ((this->is_string_ == msp.is_string_)
3015	    && (this->entsize_ == msp.entsize_)
3016	    && (this->addralign_ == msp.addralign_));
3017  }
3018
3019  // Compute a hash value for this using 64-bit FNV-1a hash.
3020  size_t
3021  hash_value() const
3022  {
3023    uint64_t h = 14695981039346656037ULL;	// FNV offset basis.
3024    uint64_t prime = 1099511628211ULL;
3025    h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
3026    h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
3027    h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
3028    return h;
3029  }
3030
3031  // Functors for associative containers.
3032  struct equal_to
3033  {
3034    bool
3035    operator()(const Merge_section_properties& msp1,
3036	       const Merge_section_properties& msp2) const
3037    { return msp1.eq(msp2); }
3038  };
3039
3040  struct hash
3041  {
3042    size_t
3043    operator()(const Merge_section_properties& msp) const
3044    { return msp.hash_value(); }
3045  };
3046
3047 private:
3048  // Whether this merge data section is for strings.
3049  bool is_string_;
3050  // Entsize of this merge data section.
3051  uint64_t entsize_;
3052  // Address alignment.
3053  uint64_t addralign_;
3054};
3055
3056// This class is used to speed up look up of special input sections in an
3057// Output_section.
3058
3059class Output_section_lookup_maps
3060{
3061 public:
3062  Output_section_lookup_maps()
3063    : is_valid_(true), merge_sections_by_properties_(),
3064      relaxed_input_sections_by_id_()
3065  { }
3066
3067  // Whether the maps are valid.
3068  bool
3069  is_valid() const
3070  { return this->is_valid_; }
3071
3072  // Invalidate the maps.
3073  void
3074  invalidate()
3075  { this->is_valid_ = false; }
3076
3077  // Clear the maps.
3078  void
3079  clear()
3080  {
3081    this->merge_sections_by_properties_.clear();
3082    this->relaxed_input_sections_by_id_.clear();
3083    // A cleared map is valid.
3084    this->is_valid_ = true;
3085  }
3086
3087  // Find a merge section by merge section properties.  Return NULL if none
3088  // is found.
3089  Output_merge_base*
3090  find_merge_section(const Merge_section_properties& msp) const
3091  {
3092    gold_assert(this->is_valid_);
3093    Merge_sections_by_properties::const_iterator p =
3094      this->merge_sections_by_properties_.find(msp);
3095    return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
3096  }
3097
3098  // Add a merge section pointed by POMB with properties MSP.
3099  void
3100  add_merge_section(const Merge_section_properties& msp,
3101		    Output_merge_base* pomb)
3102  {
3103    std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
3104    std::pair<Merge_sections_by_properties::iterator, bool> result =
3105      this->merge_sections_by_properties_.insert(value);
3106    gold_assert(result.second);
3107  }
3108
3109  // Find a relaxed input section of OBJECT with index SHNDX.
3110  Output_relaxed_input_section*
3111  find_relaxed_input_section(const Relobj* object, unsigned int shndx) const
3112  {
3113    gold_assert(this->is_valid_);
3114    Relaxed_input_sections_by_id::const_iterator p =
3115      this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
3116    return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
3117  }
3118
3119  // Add a relaxed input section pointed by POMB and whose original input
3120  // section is in OBJECT with index SHNDX.
3121  void
3122  add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
3123			    Output_relaxed_input_section* poris)
3124  {
3125    Const_section_id csid(relobj, shndx);
3126    std::pair<Const_section_id, Output_relaxed_input_section*>
3127      value(csid, poris);
3128    std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
3129      this->relaxed_input_sections_by_id_.insert(value);
3130    gold_assert(result.second);
3131  }
3132
3133 private:
3134  typedef Unordered_map<Merge_section_properties, Output_merge_base*,
3135			Merge_section_properties::hash,
3136			Merge_section_properties::equal_to>
3137    Merge_sections_by_properties;
3138
3139  typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
3140			Const_section_id_hash>
3141    Relaxed_input_sections_by_id;
3142
3143  // Whether this is valid
3144  bool is_valid_;
3145  // Merge sections by merge section properties.
3146  Merge_sections_by_properties merge_sections_by_properties_;
3147  // Relaxed sections by section IDs.
3148  Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
3149};
3150
3151// This abstract base class defines the interface for the
3152// types of methods used to fill free space left in an output
3153// section during an incremental link.  These methods are used
3154// to insert dummy compilation units into debug info so that
3155// debug info consumers can scan the debug info serially.
3156
3157class Output_fill
3158{
3159 public:
3160  Output_fill()
3161    : is_big_endian_(parameters->target().is_big_endian())
3162  { }
3163
3164  virtual
3165  ~Output_fill()
3166  { }
3167
3168  // Return the smallest size chunk of free space that can be
3169  // filled with a dummy compilation unit.
3170  size_t
3171  minimum_hole_size() const
3172  { return this->do_minimum_hole_size(); }
3173
3174  // Write a fill pattern of length LEN at offset OFF in the file.
3175  void
3176  write(Output_file* of, off_t off, size_t len) const
3177  { this->do_write(of, off, len); }
3178
3179 protected:
3180  virtual size_t
3181  do_minimum_hole_size() const = 0;
3182
3183  virtual void
3184  do_write(Output_file* of, off_t off, size_t len) const = 0;
3185
3186  bool
3187  is_big_endian() const
3188  { return this->is_big_endian_; }
3189
3190 private:
3191  bool is_big_endian_;
3192};
3193
3194// Fill method that introduces a dummy compilation unit in
3195// a .debug_info or .debug_types section.
3196
3197class Output_fill_debug_info : public Output_fill
3198{
3199 public:
3200  Output_fill_debug_info(bool is_debug_types)
3201    : is_debug_types_(is_debug_types)
3202  { }
3203
3204 protected:
3205  virtual size_t
3206  do_minimum_hole_size() const;
3207
3208  virtual void
3209  do_write(Output_file* of, off_t off, size_t len) const;
3210
3211 private:
3212  // Version of the header.
3213  static const int version = 4;
3214  // True if this is a .debug_types section.
3215  bool is_debug_types_;
3216};
3217
3218// Fill method that introduces a dummy compilation unit in
3219// a .debug_line section.
3220
3221class Output_fill_debug_line : public Output_fill
3222{
3223 public:
3224  Output_fill_debug_line()
3225  { }
3226
3227 protected:
3228  virtual size_t
3229  do_minimum_hole_size() const;
3230
3231  virtual void
3232  do_write(Output_file* of, off_t off, size_t len) const;
3233
3234 private:
3235  // Version of the header.  We write a DWARF-3 header because it's smaller
3236  // and many tools have not yet been updated to understand the DWARF-4 header.
3237  static const int version = 3;
3238  // Length of the portion of the header that follows the header_length
3239  // field.  This includes the following fields:
3240  // minimum_instruction_length, default_is_stmt, line_base, line_range,
3241  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
3242  // The standard_opcode_lengths array is 12 bytes long, and the
3243  // include_directories and filenames fields each contain only a single
3244  // null byte.
3245  static const size_t header_length = 19;
3246};
3247
3248// An output section.  We don't expect to have too many output
3249// sections, so we don't bother to do a template on the size.
3250
3251class Output_section : public Output_data
3252{
3253 public:
3254  // Create an output section, giving the name, type, and flags.
3255  Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
3256  virtual ~Output_section();
3257
3258  // Add a new input section SHNDX, named NAME, with header SHDR, from
3259  // object OBJECT.  RELOC_SHNDX is the index of a relocation section
3260  // which applies to this section, or 0 if none, or -1 if more than
3261  // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3262  // in a linker script; in that case we need to keep track of input
3263  // sections associated with an output section.  Return the offset
3264  // within the output section.
3265  template<int size, bool big_endian>
3266  off_t
3267  add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3268		    unsigned int shndx, const char* name,
3269		    const elfcpp::Shdr<size, big_endian>& shdr,
3270		    unsigned int reloc_shndx, bool have_sections_script);
3271
3272  // Add generated data POSD to this output section.
3273  void
3274  add_output_section_data(Output_section_data* posd);
3275
3276  // Add a relaxed input section PORIS called NAME to this output section
3277  // with LAYOUT.
3278  void
3279  add_relaxed_input_section(Layout* layout,
3280			    Output_relaxed_input_section* poris,
3281			    const std::string& name);
3282
3283  // Return the section name.
3284  const char*
3285  name() const
3286  { return this->name_; }
3287
3288  // Return the section type.
3289  elfcpp::Elf_Word
3290  type() const
3291  { return this->type_; }
3292
3293  // Return the section flags.
3294  elfcpp::Elf_Xword
3295  flags() const
3296  { return this->flags_; }
3297
3298  typedef std::map<Section_id, unsigned int> Section_layout_order;
3299
3300  void
3301  update_section_layout(const Section_layout_order* order_map);
3302
3303  // Update the output section flags based on input section flags.
3304  void
3305  update_flags_for_input_section(elfcpp::Elf_Xword flags);
3306
3307  // Set the output section flags.
3308  void
3309  set_flags(elfcpp::Elf_Xword flags)
3310  { this->flags_ = flags; }
3311
3312  // Return the entsize field.
3313  uint64_t
3314  entsize() const
3315  { return this->entsize_; }
3316
3317  // Set the entsize field.
3318  void
3319  set_entsize(uint64_t v);
3320
3321  // Set the load address.
3322  void
3323  set_load_address(uint64_t load_address)
3324  {
3325    this->load_address_ = load_address;
3326    this->has_load_address_ = true;
3327  }
3328
3329  // Set the link field to the output section index of a section.
3330  void
3331  set_link_section(const Output_data* od)
3332  {
3333    gold_assert(this->link_ == 0
3334		&& !this->should_link_to_symtab_
3335		&& !this->should_link_to_dynsym_);
3336    this->link_section_ = od;
3337  }
3338
3339  // Set the link field to a constant.
3340  void
3341  set_link(unsigned int v)
3342  {
3343    gold_assert(this->link_section_ == NULL
3344		&& !this->should_link_to_symtab_
3345		&& !this->should_link_to_dynsym_);
3346    this->link_ = v;
3347  }
3348
3349  // Record that this section should link to the normal symbol table.
3350  void
3351  set_should_link_to_symtab()
3352  {
3353    gold_assert(this->link_section_ == NULL
3354		&& this->link_ == 0
3355		&& !this->should_link_to_dynsym_);
3356    this->should_link_to_symtab_ = true;
3357  }
3358
3359  // Record that this section should link to the dynamic symbol table.
3360  void
3361  set_should_link_to_dynsym()
3362  {
3363    gold_assert(this->link_section_ == NULL
3364		&& this->link_ == 0
3365		&& !this->should_link_to_symtab_);
3366    this->should_link_to_dynsym_ = true;
3367  }
3368
3369  // Return the info field.
3370  unsigned int
3371  info() const
3372  {
3373    gold_assert(this->info_section_ == NULL
3374		&& this->info_symndx_ == NULL);
3375    return this->info_;
3376  }
3377
3378  // Set the info field to the output section index of a section.
3379  void
3380  set_info_section(const Output_section* os)
3381  {
3382    gold_assert((this->info_section_ == NULL
3383		 || (this->info_section_ == os
3384		     && this->info_uses_section_index_))
3385		&& this->info_symndx_ == NULL
3386		&& this->info_ == 0);
3387    this->info_section_ = os;
3388    this->info_uses_section_index_= true;
3389  }
3390
3391  // Set the info field to the symbol table index of a symbol.
3392  void
3393  set_info_symndx(const Symbol* sym)
3394  {
3395    gold_assert(this->info_section_ == NULL
3396		&& (this->info_symndx_ == NULL
3397		    || this->info_symndx_ == sym)
3398		&& this->info_ == 0);
3399    this->info_symndx_ = sym;
3400  }
3401
3402  // Set the info field to the symbol table index of a section symbol.
3403  void
3404  set_info_section_symndx(const Output_section* os)
3405  {
3406    gold_assert((this->info_section_ == NULL
3407		 || (this->info_section_ == os
3408		     && !this->info_uses_section_index_))
3409		&& this->info_symndx_ == NULL
3410		&& this->info_ == 0);
3411    this->info_section_ = os;
3412    this->info_uses_section_index_ = false;
3413  }
3414
3415  // Set the info field to a constant.
3416  void
3417  set_info(unsigned int v)
3418  {
3419    gold_assert(this->info_section_ == NULL
3420		&& this->info_symndx_ == NULL
3421		&& (this->info_ == 0
3422		    || this->info_ == v));
3423    this->info_ = v;
3424  }
3425
3426  // Set the addralign field.
3427  void
3428  set_addralign(uint64_t v)
3429  { this->addralign_ = v; }
3430
3431  void
3432  checkpoint_set_addralign(uint64_t val)
3433  {
3434    if (this->checkpoint_ != NULL)
3435      this->checkpoint_->set_addralign(val);
3436  }
3437
3438  // Whether the output section index has been set.
3439  bool
3440  has_out_shndx() const
3441  { return this->out_shndx_ != -1U; }
3442
3443  // Indicate that we need a symtab index.
3444  void
3445  set_needs_symtab_index()
3446  { this->needs_symtab_index_ = true; }
3447
3448  // Return whether we need a symtab index.
3449  bool
3450  needs_symtab_index() const
3451  { return this->needs_symtab_index_; }
3452
3453  // Get the symtab index.
3454  unsigned int
3455  symtab_index() const
3456  {
3457    gold_assert(this->symtab_index_ != 0);
3458    return this->symtab_index_;
3459  }
3460
3461  // Set the symtab index.
3462  void
3463  set_symtab_index(unsigned int index)
3464  {
3465    gold_assert(index != 0);
3466    this->symtab_index_ = index;
3467  }
3468
3469  // Indicate that we need a dynsym index.
3470  void
3471  set_needs_dynsym_index()
3472  { this->needs_dynsym_index_ = true; }
3473
3474  // Return whether we need a dynsym index.
3475  bool
3476  needs_dynsym_index() const
3477  { return this->needs_dynsym_index_; }
3478
3479  // Get the dynsym index.
3480  unsigned int
3481  dynsym_index() const
3482  {
3483    gold_assert(this->dynsym_index_ != 0);
3484    return this->dynsym_index_;
3485  }
3486
3487  // Set the dynsym index.
3488  void
3489  set_dynsym_index(unsigned int index)
3490  {
3491    gold_assert(index != 0);
3492    this->dynsym_index_ = index;
3493  }
3494
3495  // Sort the attached input sections.
3496  void
3497  sort_attached_input_sections();
3498
3499  // Return whether the input sections sections attachd to this output
3500  // section may require sorting.  This is used to handle constructor
3501  // priorities compatibly with GNU ld.
3502  bool
3503  may_sort_attached_input_sections() const
3504  { return this->may_sort_attached_input_sections_; }
3505
3506  // Record that the input sections attached to this output section
3507  // may require sorting.
3508  void
3509  set_may_sort_attached_input_sections()
3510  { this->may_sort_attached_input_sections_ = true; }
3511
3512   // Returns true if input sections must be sorted according to the
3513  // order in which their name appear in the --section-ordering-file.
3514  bool
3515  input_section_order_specified()
3516  { return this->input_section_order_specified_; }
3517
3518  // Record that input sections must be sorted as some of their names
3519  // match the patterns specified through --section-ordering-file.
3520  void
3521  set_input_section_order_specified()
3522  { this->input_section_order_specified_ = true; }
3523
3524  // Return whether the input sections attached to this output section
3525  // require sorting.  This is used to handle constructor priorities
3526  // compatibly with GNU ld.
3527  bool
3528  must_sort_attached_input_sections() const
3529  { return this->must_sort_attached_input_sections_; }
3530
3531  // Record that the input sections attached to this output section
3532  // require sorting.
3533  void
3534  set_must_sort_attached_input_sections()
3535  { this->must_sort_attached_input_sections_ = true; }
3536
3537  // Get the order in which this section appears in the PT_LOAD output
3538  // segment.
3539  Output_section_order
3540  order() const
3541  { return this->order_; }
3542
3543  // Set the order for this section.
3544  void
3545  set_order(Output_section_order order)
3546  { this->order_ = order; }
3547
3548  // Return whether this section holds relro data--data which has
3549  // dynamic relocations but which may be marked read-only after the
3550  // dynamic relocations have been completed.
3551  bool
3552  is_relro() const
3553  { return this->is_relro_; }
3554
3555  // Record that this section holds relro data.
3556  void
3557  set_is_relro()
3558  { this->is_relro_ = true; }
3559
3560  // Record that this section does not hold relro data.
3561  void
3562  clear_is_relro()
3563  { this->is_relro_ = false; }
3564
3565  // True if this is a small section: a section which holds small
3566  // variables.
3567  bool
3568  is_small_section() const
3569  { return this->is_small_section_; }
3570
3571  // Record that this is a small section.
3572  void
3573  set_is_small_section()
3574  { this->is_small_section_ = true; }
3575
3576  // True if this is a large section: a section which holds large
3577  // variables.
3578  bool
3579  is_large_section() const
3580  { return this->is_large_section_; }
3581
3582  // Record that this is a large section.
3583  void
3584  set_is_large_section()
3585  { this->is_large_section_ = true; }
3586
3587  // True if this is a large data (not BSS) section.
3588  bool
3589  is_large_data_section()
3590  { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3591
3592  // Return whether this section should be written after all the input
3593  // sections are complete.
3594  bool
3595  after_input_sections() const
3596  { return this->after_input_sections_; }
3597
3598  // Record that this section should be written after all the input
3599  // sections are complete.
3600  void
3601  set_after_input_sections()
3602  { this->after_input_sections_ = true; }
3603
3604  // Return whether this section requires postprocessing after all
3605  // relocations have been applied.
3606  bool
3607  requires_postprocessing() const
3608  { return this->requires_postprocessing_; }
3609
3610  bool
3611  is_unique_segment() const
3612  { return this->is_unique_segment_; }
3613
3614  void
3615  set_is_unique_segment()
3616  { this->is_unique_segment_ = true; }
3617
3618  uint64_t extra_segment_flags() const
3619  { return this->extra_segment_flags_; }
3620
3621  void
3622  set_extra_segment_flags(uint64_t flags)
3623  { this->extra_segment_flags_ = flags; }
3624
3625  uint64_t segment_alignment() const
3626  { return this->segment_alignment_; }
3627
3628  void
3629  set_segment_alignment(uint64_t align)
3630  { this->segment_alignment_ = align; }
3631
3632  // If a section requires postprocessing, return the buffer to use.
3633  unsigned char*
3634  postprocessing_buffer() const
3635  {
3636    gold_assert(this->postprocessing_buffer_ != NULL);
3637    return this->postprocessing_buffer_;
3638  }
3639
3640  // If a section requires postprocessing, create the buffer to use.
3641  void
3642  create_postprocessing_buffer();
3643
3644  // If a section requires postprocessing, this is the size of the
3645  // buffer to which relocations should be applied.
3646  off_t
3647  postprocessing_buffer_size() const
3648  { return this->current_data_size_for_child(); }
3649
3650  // Modify the section name.  This is only permitted for an
3651  // unallocated section, and only before the size has been finalized.
3652  // Otherwise the name will not get into Layout::namepool_.
3653  void
3654  set_name(const char* newname)
3655  {
3656    gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3657    gold_assert(!this->is_data_size_valid());
3658    this->name_ = newname;
3659  }
3660
3661  // Return whether the offset OFFSET in the input section SHNDX in
3662  // object OBJECT is being included in the link.
3663  bool
3664  is_input_address_mapped(const Relobj* object, unsigned int shndx,
3665			  off_t offset) const;
3666
3667  // Return the offset within the output section of OFFSET relative to
3668  // the start of input section SHNDX in object OBJECT.
3669  section_offset_type
3670  output_offset(const Relobj* object, unsigned int shndx,
3671		section_offset_type offset) const;
3672
3673  // Return the output virtual address of OFFSET relative to the start
3674  // of input section SHNDX in object OBJECT.
3675  uint64_t
3676  output_address(const Relobj* object, unsigned int shndx,
3677		 off_t offset) const;
3678
3679  // Look for the merged section for input section SHNDX in object
3680  // OBJECT.  If found, return true, and set *ADDR to the address of
3681  // the start of the merged section.  This is not necessary the
3682  // output offset corresponding to input offset 0 in the section,
3683  // since the section may be mapped arbitrarily.
3684  bool
3685  find_starting_output_address(const Relobj* object, unsigned int shndx,
3686			       uint64_t* addr) const;
3687
3688  // Record that this output section was found in the SECTIONS clause
3689  // of a linker script.
3690  void
3691  set_found_in_sections_clause()
3692  { this->found_in_sections_clause_ = true; }
3693
3694  // Return whether this output section was found in the SECTIONS
3695  // clause of a linker script.
3696  bool
3697  found_in_sections_clause() const
3698  { return this->found_in_sections_clause_; }
3699
3700  // Write the section header into *OPHDR.
3701  template<int size, bool big_endian>
3702  void
3703  write_header(const Layout*, const Stringpool*,
3704	       elfcpp::Shdr_write<size, big_endian>*) const;
3705
3706  // The next few calls are for linker script support.
3707
3708  // In some cases we need to keep a list of the input sections
3709  // associated with this output section.  We only need the list if we
3710  // might have to change the offsets of the input section within the
3711  // output section after we add the input section.  The ordinary
3712  // input sections will be written out when we process the object
3713  // file, and as such we don't need to track them here.  We do need
3714  // to track Output_section_data objects here.  We store instances of
3715  // this structure in a std::vector, so it must be a POD.  There can
3716  // be many instances of this structure, so we use a union to save
3717  // some space.
3718  class Input_section
3719  {
3720   public:
3721    Input_section()
3722      : shndx_(0), p2align_(0)
3723    {
3724      this->u1_.data_size = 0;
3725      this->u2_.object = NULL;
3726    }
3727
3728    // For an ordinary input section.
3729    Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3730		  uint64_t addralign)
3731      : shndx_(shndx),
3732	p2align_(ffsll(static_cast<long long>(addralign))),
3733	section_order_index_(0)
3734    {
3735      gold_assert(shndx != OUTPUT_SECTION_CODE
3736		  && shndx != MERGE_DATA_SECTION_CODE
3737		  && shndx != MERGE_STRING_SECTION_CODE
3738		  && shndx != RELAXED_INPUT_SECTION_CODE);
3739      this->u1_.data_size = data_size;
3740      this->u2_.object = object;
3741    }
3742
3743    // For a non-merge output section.
3744    Input_section(Output_section_data* posd)
3745      : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3746	section_order_index_(0)
3747    {
3748      this->u1_.data_size = 0;
3749      this->u2_.posd = posd;
3750    }
3751
3752    // For a merge section.
3753    Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3754      : shndx_(is_string
3755	       ? MERGE_STRING_SECTION_CODE
3756	       : MERGE_DATA_SECTION_CODE),
3757	p2align_(0),
3758	section_order_index_(0)
3759    {
3760      this->u1_.entsize = entsize;
3761      this->u2_.posd = posd;
3762    }
3763
3764    // For a relaxed input section.
3765    Input_section(Output_relaxed_input_section* psection)
3766      : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3767	section_order_index_(0)
3768    {
3769      this->u1_.data_size = 0;
3770      this->u2_.poris = psection;
3771    }
3772
3773    unsigned int
3774    section_order_index() const
3775    {
3776      return this->section_order_index_;
3777    }
3778
3779    void
3780    set_section_order_index(unsigned int number)
3781    {
3782      this->section_order_index_ = number;
3783    }
3784
3785    // The required alignment.
3786    uint64_t
3787    addralign() const
3788    {
3789      if (this->p2align_ != 0)
3790	return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3791      else if (!this->is_input_section())
3792	return this->u2_.posd->addralign();
3793      else
3794	return 0;
3795    }
3796
3797    // Set the required alignment, which must be either 0 or a power of 2.
3798    // For input sections that are sub-classes of Output_section_data, a
3799    // alignment of zero means asking the underlying object for alignment.
3800    void
3801    set_addralign(uint64_t addralign)
3802    {
3803      if (addralign == 0)
3804	this->p2align_ = 0;
3805      else
3806	{
3807	  gold_assert((addralign & (addralign - 1)) == 0);
3808	  this->p2align_ = ffsll(static_cast<long long>(addralign));
3809	}
3810    }
3811
3812    // Return the current required size, without finalization.
3813    off_t
3814    current_data_size() const;
3815
3816    // Return the required size.
3817    off_t
3818    data_size() const;
3819
3820    // Whether this is an input section.
3821    bool
3822    is_input_section() const
3823    {
3824      return (this->shndx_ != OUTPUT_SECTION_CODE
3825	      && this->shndx_ != MERGE_DATA_SECTION_CODE
3826	      && this->shndx_ != MERGE_STRING_SECTION_CODE
3827	      && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3828    }
3829
3830    // Return whether this is a merge section which matches the
3831    // parameters.
3832    bool
3833    is_merge_section(bool is_string, uint64_t entsize,
3834		     uint64_t addralign) const
3835    {
3836      return (this->shndx_ == (is_string
3837			       ? MERGE_STRING_SECTION_CODE
3838			       : MERGE_DATA_SECTION_CODE)
3839	      && this->u1_.entsize == entsize
3840	      && this->addralign() == addralign);
3841    }
3842
3843    // Return whether this is a merge section for some input section.
3844    bool
3845    is_merge_section() const
3846    {
3847      return (this->shndx_ == MERGE_DATA_SECTION_CODE
3848	      || this->shndx_ == MERGE_STRING_SECTION_CODE);
3849    }
3850
3851    // Return whether this is a relaxed input section.
3852    bool
3853    is_relaxed_input_section() const
3854    { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3855
3856    // Return whether this is a generic Output_section_data.
3857    bool
3858    is_output_section_data() const
3859    {
3860      return this->shndx_ == OUTPUT_SECTION_CODE;
3861    }
3862
3863    // Return the object for an input section.
3864    Relobj*
3865    relobj() const;
3866
3867    // Return the input section index for an input section.
3868    unsigned int
3869    shndx() const;
3870
3871    // For non-input-sections, return the associated Output_section_data
3872    // object.
3873    Output_section_data*
3874    output_section_data() const
3875    {
3876      gold_assert(!this->is_input_section());
3877      return this->u2_.posd;
3878    }
3879
3880    // For a merge section, return the Output_merge_base pointer.
3881    Output_merge_base*
3882    output_merge_base() const
3883    {
3884      gold_assert(this->is_merge_section());
3885      return this->u2_.pomb;
3886    }
3887
3888    // Return the Output_relaxed_input_section object.
3889    Output_relaxed_input_section*
3890    relaxed_input_section() const
3891    {
3892      gold_assert(this->is_relaxed_input_section());
3893      return this->u2_.poris;
3894    }
3895
3896    // Set the output section.
3897    void
3898    set_output_section(Output_section* os)
3899    {
3900      gold_assert(!this->is_input_section());
3901      Output_section_data* posd =
3902	this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3903      posd->set_output_section(os);
3904    }
3905
3906    // Set the address and file offset.  This is called during
3907    // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
3908    // the enclosing section.
3909    void
3910    set_address_and_file_offset(uint64_t address, off_t file_offset,
3911				off_t section_file_offset);
3912
3913    // Reset the address and file offset.
3914    void
3915    reset_address_and_file_offset();
3916
3917    // Finalize the data size.
3918    void
3919    finalize_data_size();
3920
3921    // Add an input section, for SHF_MERGE sections.
3922    bool
3923    add_input_section(Relobj* object, unsigned int shndx)
3924    {
3925      gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3926		  || this->shndx_ == MERGE_STRING_SECTION_CODE);
3927      return this->u2_.posd->add_input_section(object, shndx);
3928    }
3929
3930    // Given an input OBJECT, an input section index SHNDX within that
3931    // object, and an OFFSET relative to the start of that input
3932    // section, return whether or not the output offset is known.  If
3933    // this function returns true, it sets *POUTPUT to the offset in
3934    // the output section, relative to the start of the input section
3935    // in the output section.  *POUTPUT may be different from OFFSET
3936    // for a merged section.
3937    bool
3938    output_offset(const Relobj* object, unsigned int shndx,
3939		  section_offset_type offset,
3940		  section_offset_type* poutput) const;
3941
3942    // Write out the data.  This does nothing for an input section.
3943    void
3944    write(Output_file*);
3945
3946    // Write the data to a buffer.  This does nothing for an input
3947    // section.
3948    void
3949    write_to_buffer(unsigned char*);
3950
3951    // Print to a map file.
3952    void
3953    print_to_mapfile(Mapfile*) const;
3954
3955    // Print statistics about merge sections to stderr.
3956    void
3957    print_merge_stats(const char* section_name)
3958    {
3959      if (this->shndx_ == MERGE_DATA_SECTION_CODE
3960	  || this->shndx_ == MERGE_STRING_SECTION_CODE)
3961	this->u2_.posd->print_merge_stats(section_name);
3962    }
3963
3964   private:
3965    // Code values which appear in shndx_.  If the value is not one of
3966    // these codes, it is the input section index in the object file.
3967    enum
3968    {
3969      // An Output_section_data.
3970      OUTPUT_SECTION_CODE = -1U,
3971      // An Output_section_data for an SHF_MERGE section with
3972      // SHF_STRINGS not set.
3973      MERGE_DATA_SECTION_CODE = -2U,
3974      // An Output_section_data for an SHF_MERGE section with
3975      // SHF_STRINGS set.
3976      MERGE_STRING_SECTION_CODE = -3U,
3977      // An Output_section_data for a relaxed input section.
3978      RELAXED_INPUT_SECTION_CODE = -4U
3979    };
3980
3981    // For an ordinary input section, this is the section index in the
3982    // input file.  For an Output_section_data, this is
3983    // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3984    // MERGE_STRING_SECTION_CODE.
3985    unsigned int shndx_;
3986    // The required alignment, stored as a power of 2.
3987    unsigned int p2align_;
3988    union
3989    {
3990      // For an ordinary input section, the section size.
3991      off_t data_size;
3992      // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3993      // used.  For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3994      // entity size.
3995      uint64_t entsize;
3996    } u1_;
3997    union
3998    {
3999      // For an ordinary input section, the object which holds the
4000      // input section.
4001      Relobj* object;
4002      // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
4003      // MERGE_STRING_SECTION_CODE, the data.
4004      Output_section_data* posd;
4005      Output_merge_base* pomb;
4006      // For RELAXED_INPUT_SECTION_CODE, the data.
4007      Output_relaxed_input_section* poris;
4008    } u2_;
4009    // The line number of the pattern it matches in the --section-ordering-file
4010    // file.  It is 0 if does not match any pattern.
4011    unsigned int section_order_index_;
4012  };
4013
4014  // Store the list of input sections for this Output_section into the
4015  // list passed in.  This removes the input sections, leaving only
4016  // any Output_section_data elements.  This returns the size of those
4017  // Output_section_data elements.  ADDRESS is the address of this
4018  // output section.  FILL is the fill value to use, in case there are
4019  // any spaces between the remaining Output_section_data elements.
4020  uint64_t
4021  get_input_sections(uint64_t address, const std::string& fill,
4022		     std::list<Input_section>*);
4023
4024  // Add a script input section.  A script input section can either be
4025  // a plain input section or a sub-class of Output_section_data.
4026  void
4027  add_script_input_section(const Input_section& input_section);
4028
4029  // Set the current size of the output section.
4030  void
4031  set_current_data_size(off_t size)
4032  { this->set_current_data_size_for_child(size); }
4033
4034  // End of linker script support.
4035
4036  // Save states before doing section layout.
4037  // This is used for relaxation.
4038  void
4039  save_states();
4040
4041  // Restore states prior to section layout.
4042  void
4043  restore_states();
4044
4045  // Discard states.
4046  void
4047  discard_states();
4048
4049  // Convert existing input sections to relaxed input sections.
4050  void
4051  convert_input_sections_to_relaxed_sections(
4052      const std::vector<Output_relaxed_input_section*>& sections);
4053
4054  // Find a relaxed input section to an input section in OBJECT
4055  // with index SHNDX.  Return NULL if none is found.
4056  const Output_relaxed_input_section*
4057  find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
4058
4059  // Whether section offsets need adjustment due to relaxation.
4060  bool
4061  section_offsets_need_adjustment() const
4062  { return this->section_offsets_need_adjustment_; }
4063
4064  // Set section_offsets_need_adjustment to be true.
4065  void
4066  set_section_offsets_need_adjustment()
4067  { this->section_offsets_need_adjustment_ = true; }
4068
4069  // Set section_offsets_need_adjustment to be false.
4070  void
4071  clear_section_offsets_need_adjustment()
4072  { this->section_offsets_need_adjustment_ = false; }
4073
4074  // Adjust section offsets of input sections in this.  This is
4075  // requires if relaxation caused some input sections to change sizes.
4076  void
4077  adjust_section_offsets();
4078
4079  // Whether this is a NOLOAD section.
4080  bool
4081  is_noload() const
4082  { return this->is_noload_; }
4083
4084  // Set NOLOAD flag.
4085  void
4086  set_is_noload()
4087  { this->is_noload_ = true; }
4088
4089  // Print merge statistics to stderr.
4090  void
4091  print_merge_stats();
4092
4093  // Set a fixed layout for the section.  Used for incremental update links.
4094  void
4095  set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
4096		   uint64_t sh_addralign);
4097
4098  // Return TRUE if the section has a fixed layout.
4099  bool
4100  has_fixed_layout() const
4101  { return this->has_fixed_layout_; }
4102
4103  // Set flag to allow patch space for this section.  Used for full
4104  // incremental links.
4105  void
4106  set_is_patch_space_allowed()
4107  { this->is_patch_space_allowed_ = true; }
4108
4109  // Set a fill method to use for free space left in the output section
4110  // during incremental links.
4111  void
4112  set_free_space_fill(Output_fill* free_space_fill)
4113  {
4114    this->free_space_fill_ = free_space_fill;
4115    this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
4116  }
4117
4118  // Reserve space within the fixed layout for the section.  Used for
4119  // incremental update links.
4120  void
4121  reserve(uint64_t sh_offset, uint64_t sh_size);
4122
4123  // Allocate space from the free list for the section.  Used for
4124  // incremental update links.
4125  off_t
4126  allocate(off_t len, uint64_t addralign);
4127
4128  typedef std::vector<Input_section> Input_section_list;
4129
4130  // Allow access to the input sections.
4131  const Input_section_list&
4132  input_sections() const
4133  { return this->input_sections_; }
4134
4135  Input_section_list&
4136  input_sections()
4137  { return this->input_sections_; }
4138
4139 protected:
4140  // Return the output section--i.e., the object itself.
4141  Output_section*
4142  do_output_section()
4143  { return this; }
4144
4145  const Output_section*
4146  do_output_section() const
4147  { return this; }
4148
4149  // Return the section index in the output file.
4150  unsigned int
4151  do_out_shndx() const
4152  {
4153    gold_assert(this->out_shndx_ != -1U);
4154    return this->out_shndx_;
4155  }
4156
4157  // Set the output section index.
4158  void
4159  do_set_out_shndx(unsigned int shndx)
4160  {
4161    gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
4162    this->out_shndx_ = shndx;
4163  }
4164
4165  // Update the data size of the Output_section.  For a typical
4166  // Output_section, there is nothing to do, but if there are any
4167  // Output_section_data objects we need to do a trial layout
4168  // here.
4169  virtual void
4170  update_data_size();
4171
4172  // Set the final data size of the Output_section.  For a typical
4173  // Output_section, there is nothing to do, but if there are any
4174  // Output_section_data objects we need to set their final addresses
4175  // here.
4176  virtual void
4177  set_final_data_size();
4178
4179  // Reset the address and file offset.
4180  void
4181  do_reset_address_and_file_offset();
4182
4183  // Return true if address and file offset already have reset values. In
4184  // other words, calling reset_address_and_file_offset will not change them.
4185  bool
4186  do_address_and_file_offset_have_reset_values() const;
4187
4188  // Write the data to the file.  For a typical Output_section, this
4189  // does nothing: the data is written out by calling Object::Relocate
4190  // on each input object.  But if there are any Output_section_data
4191  // objects we do need to write them out here.
4192  virtual void
4193  do_write(Output_file*);
4194
4195  // Return the address alignment--function required by parent class.
4196  uint64_t
4197  do_addralign() const
4198  { return this->addralign_; }
4199
4200  // Return whether there is a load address.
4201  bool
4202  do_has_load_address() const
4203  { return this->has_load_address_; }
4204
4205  // Return the load address.
4206  uint64_t
4207  do_load_address() const
4208  {
4209    gold_assert(this->has_load_address_);
4210    return this->load_address_;
4211  }
4212
4213  // Return whether this is an Output_section.
4214  bool
4215  do_is_section() const
4216  { return true; }
4217
4218  // Return whether this is a section of the specified type.
4219  bool
4220  do_is_section_type(elfcpp::Elf_Word type) const
4221  { return this->type_ == type; }
4222
4223  // Return whether the specified section flag is set.
4224  bool
4225  do_is_section_flag_set(elfcpp::Elf_Xword flag) const
4226  { return (this->flags_ & flag) != 0; }
4227
4228  // Set the TLS offset.  Called only for SHT_TLS sections.
4229  void
4230  do_set_tls_offset(uint64_t tls_base);
4231
4232  // Return the TLS offset, relative to the base of the TLS segment.
4233  // Valid only for SHT_TLS sections.
4234  uint64_t
4235  do_tls_offset() const
4236  { return this->tls_offset_; }
4237
4238  // This may be implemented by a child class.
4239  virtual void
4240  do_finalize_name(Layout*)
4241  { }
4242
4243  // Print to the map file.
4244  virtual void
4245  do_print_to_mapfile(Mapfile*) const;
4246
4247  // Record that this section requires postprocessing after all
4248  // relocations have been applied.  This is called by a child class.
4249  void
4250  set_requires_postprocessing()
4251  {
4252    this->requires_postprocessing_ = true;
4253    this->after_input_sections_ = true;
4254  }
4255
4256  // Write all the data of an Output_section into the postprocessing
4257  // buffer.
4258  void
4259  write_to_postprocessing_buffer();
4260
4261  // Whether this always keeps an input section list
4262  bool
4263  always_keeps_input_sections() const
4264  { return this->always_keeps_input_sections_; }
4265
4266  // Always keep an input section list.
4267  void
4268  set_always_keeps_input_sections()
4269  {
4270    gold_assert(this->current_data_size_for_child() == 0);
4271    this->always_keeps_input_sections_ = true;
4272  }
4273
4274 private:
4275  // We only save enough information to undo the effects of section layout.
4276  class Checkpoint_output_section
4277  {
4278   public:
4279    Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
4280			      const Input_section_list& input_sections,
4281			      off_t first_input_offset,
4282			      bool attached_input_sections_are_sorted)
4283      : addralign_(addralign), flags_(flags),
4284	input_sections_(input_sections),
4285	input_sections_size_(input_sections_.size()),
4286	input_sections_copy_(), first_input_offset_(first_input_offset),
4287	attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4288    { }
4289
4290    virtual
4291    ~Checkpoint_output_section()
4292    { }
4293
4294    // Return the address alignment.
4295    uint64_t
4296    addralign() const
4297    { return this->addralign_; }
4298
4299    void
4300    set_addralign(uint64_t val)
4301    { this->addralign_ = val; }
4302
4303    // Return the section flags.
4304    elfcpp::Elf_Xword
4305    flags() const
4306    { return this->flags_; }
4307
4308    // Return a reference to the input section list copy.
4309    Input_section_list*
4310    input_sections()
4311    { return &this->input_sections_copy_; }
4312
4313    // Return the size of input_sections at the time when checkpoint is
4314    // taken.
4315    size_t
4316    input_sections_size() const
4317    { return this->input_sections_size_; }
4318
4319    // Whether input sections are copied.
4320    bool
4321    input_sections_saved() const
4322    { return this->input_sections_copy_.size() == this->input_sections_size_; }
4323
4324    off_t
4325    first_input_offset() const
4326    { return this->first_input_offset_; }
4327
4328    bool
4329    attached_input_sections_are_sorted() const
4330    { return this->attached_input_sections_are_sorted_; }
4331
4332    // Save input sections.
4333    void
4334    save_input_sections()
4335    {
4336      this->input_sections_copy_.reserve(this->input_sections_size_);
4337      this->input_sections_copy_.clear();
4338      Input_section_list::const_iterator p = this->input_sections_.begin();
4339      gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4340      for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4341	this->input_sections_copy_.push_back(*p);
4342    }
4343
4344   private:
4345    // The section alignment.
4346    uint64_t addralign_;
4347    // The section flags.
4348    elfcpp::Elf_Xword flags_;
4349    // Reference to the input sections to be checkpointed.
4350    const Input_section_list& input_sections_;
4351    // Size of the checkpointed portion of input_sections_;
4352    size_t input_sections_size_;
4353    // Copy of input sections.
4354    Input_section_list input_sections_copy_;
4355    // The offset of the first entry in input_sections_.
4356    off_t first_input_offset_;
4357    // True if the input sections attached to this output section have
4358    // already been sorted.
4359    bool attached_input_sections_are_sorted_;
4360  };
4361
4362  // This class is used to sort the input sections.
4363  class Input_section_sort_entry;
4364
4365  // This is the sort comparison function for ctors and dtors.
4366  struct Input_section_sort_compare
4367  {
4368    bool
4369    operator()(const Input_section_sort_entry&,
4370	       const Input_section_sort_entry&) const;
4371  };
4372
4373  // This is the sort comparison function for .init_array and .fini_array.
4374  struct Input_section_sort_init_fini_compare
4375  {
4376    bool
4377    operator()(const Input_section_sort_entry&,
4378	       const Input_section_sort_entry&) const;
4379  };
4380
4381  // This is the sort comparison function when a section order is specified
4382  // from an input file.
4383  struct Input_section_sort_section_order_index_compare
4384  {
4385    bool
4386    operator()(const Input_section_sort_entry&,
4387	       const Input_section_sort_entry&) const;
4388  };
4389
4390  // This is the sort comparison function for .text to sort sections with
4391  // prefixes .text.{unlikely,exit,startup,hot} before other sections.
4392  struct Input_section_sort_section_prefix_special_ordering_compare
4393  {
4394    bool
4395    operator()(const Input_section_sort_entry&,
4396	       const Input_section_sort_entry&) const;
4397  };
4398
4399  // This is the sort comparison function for sorting sections by name.
4400  struct Input_section_sort_section_name_compare
4401  {
4402    bool
4403    operator()(const Input_section_sort_entry&,
4404	       const Input_section_sort_entry&) const;
4405  };
4406
4407  // Fill data.  This is used to fill in data between input sections.
4408  // It is also used for data statements (BYTE, WORD, etc.) in linker
4409  // scripts.  When we have to keep track of the input sections, we
4410  // can use an Output_data_const, but we don't want to have to keep
4411  // track of input sections just to implement fills.
4412  class Fill
4413  {
4414   public:
4415    Fill(off_t section_offset, off_t length)
4416      : section_offset_(section_offset),
4417	length_(convert_to_section_size_type(length))
4418    { }
4419
4420    // Return section offset.
4421    off_t
4422    section_offset() const
4423    { return this->section_offset_; }
4424
4425    // Return fill length.
4426    section_size_type
4427    length() const
4428    { return this->length_; }
4429
4430   private:
4431    // The offset within the output section.
4432    off_t section_offset_;
4433    // The length of the space to fill.
4434    section_size_type length_;
4435  };
4436
4437  typedef std::vector<Fill> Fill_list;
4438
4439  // Map used during relaxation of existing sections.  This map
4440  // a section id an input section list index.  We assume that
4441  // Input_section_list is a vector.
4442  typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4443
4444  // Add a new output section by Input_section.
4445  void
4446  add_output_section_data(Input_section*);
4447
4448  // Add an SHF_MERGE input section.  Returns true if the section was
4449  // handled.  If KEEPS_INPUT_SECTIONS is true, the output merge section
4450  // stores information about the merged input sections.
4451  bool
4452  add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4453			  uint64_t entsize, uint64_t addralign,
4454			  bool keeps_input_sections);
4455
4456  // Add an output SHF_MERGE section POSD to this output section.
4457  // IS_STRING indicates whether it is a SHF_STRINGS section, and
4458  // ENTSIZE is the entity size.  This returns the entry added to
4459  // input_sections_.
4460  void
4461  add_output_merge_section(Output_section_data* posd, bool is_string,
4462			   uint64_t entsize);
4463
4464  // Find the merge section into which an input section with index SHNDX in
4465  // OBJECT has been added.  Return NULL if none found.
4466  const Output_section_data*
4467  find_merge_section(const Relobj* object, unsigned int shndx) const;
4468
4469  // Build a relaxation map.
4470  void
4471  build_relaxation_map(
4472      const Input_section_list& input_sections,
4473      size_t limit,
4474      Relaxation_map* map) const;
4475
4476  // Convert input sections in an input section list into relaxed sections.
4477  void
4478  convert_input_sections_in_list_to_relaxed_sections(
4479      const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4480      const Relaxation_map& map,
4481      Input_section_list* input_sections);
4482
4483  // Build the lookup maps for merge and relaxed input sections.
4484  void
4485  build_lookup_maps() const;
4486
4487  // Most of these fields are only valid after layout.
4488
4489  // The name of the section.  This will point into a Stringpool.
4490  const char* name_;
4491  // The section address is in the parent class.
4492  // The section alignment.
4493  uint64_t addralign_;
4494  // The section entry size.
4495  uint64_t entsize_;
4496  // The load address.  This is only used when using a linker script
4497  // with a SECTIONS clause.  The has_load_address_ field indicates
4498  // whether this field is valid.
4499  uint64_t load_address_;
4500  // The file offset is in the parent class.
4501  // Set the section link field to the index of this section.
4502  const Output_data* link_section_;
4503  // If link_section_ is NULL, this is the link field.
4504  unsigned int link_;
4505  // Set the section info field to the index of this section.
4506  const Output_section* info_section_;
4507  // If info_section_ is NULL, set the info field to the symbol table
4508  // index of this symbol.
4509  const Symbol* info_symndx_;
4510  // If info_section_ and info_symndx_ are NULL, this is the section
4511  // info field.
4512  unsigned int info_;
4513  // The section type.
4514  const elfcpp::Elf_Word type_;
4515  // The section flags.
4516  elfcpp::Elf_Xword flags_;
4517  // The order of this section in the output segment.
4518  Output_section_order order_;
4519  // The section index.
4520  unsigned int out_shndx_;
4521  // If there is a STT_SECTION for this output section in the normal
4522  // symbol table, this is the symbol index.  This starts out as zero.
4523  // It is initialized in Layout::finalize() to be the index, or -1U
4524  // if there isn't one.
4525  unsigned int symtab_index_;
4526  // If there is a STT_SECTION for this output section in the dynamic
4527  // symbol table, this is the symbol index.  This starts out as zero.
4528  // It is initialized in Layout::finalize() to be the index, or -1U
4529  // if there isn't one.
4530  unsigned int dynsym_index_;
4531  // The input sections.  This will be empty in cases where we don't
4532  // need to keep track of them.
4533  Input_section_list input_sections_;
4534  // The offset of the first entry in input_sections_.
4535  off_t first_input_offset_;
4536  // The fill data.  This is separate from input_sections_ because we
4537  // often will need fill sections without needing to keep track of
4538  // input sections.
4539  Fill_list fills_;
4540  // If the section requires postprocessing, this buffer holds the
4541  // section contents during relocation.
4542  unsigned char* postprocessing_buffer_;
4543  // Whether this output section needs a STT_SECTION symbol in the
4544  // normal symbol table.  This will be true if there is a relocation
4545  // which needs it.
4546  bool needs_symtab_index_ : 1;
4547  // Whether this output section needs a STT_SECTION symbol in the
4548  // dynamic symbol table.  This will be true if there is a dynamic
4549  // relocation which needs it.
4550  bool needs_dynsym_index_ : 1;
4551  // Whether the link field of this output section should point to the
4552  // normal symbol table.
4553  bool should_link_to_symtab_ : 1;
4554  // Whether the link field of this output section should point to the
4555  // dynamic symbol table.
4556  bool should_link_to_dynsym_ : 1;
4557  // Whether this section should be written after all the input
4558  // sections are complete.
4559  bool after_input_sections_ : 1;
4560  // Whether this section requires post processing after all
4561  // relocations have been applied.
4562  bool requires_postprocessing_ : 1;
4563  // Whether an input section was mapped to this output section
4564  // because of a SECTIONS clause in a linker script.
4565  bool found_in_sections_clause_ : 1;
4566  // Whether this section has an explicitly specified load address.
4567  bool has_load_address_ : 1;
4568  // True if the info_section_ field means the section index of the
4569  // section, false if it means the symbol index of the corresponding
4570  // section symbol.
4571  bool info_uses_section_index_ : 1;
4572  // True if input sections attached to this output section have to be
4573  // sorted according to a specified order.
4574  bool input_section_order_specified_ : 1;
4575  // True if the input sections attached to this output section may
4576  // need sorting.
4577  bool may_sort_attached_input_sections_ : 1;
4578  // True if the input sections attached to this output section must
4579  // be sorted.
4580  bool must_sort_attached_input_sections_ : 1;
4581  // True if the input sections attached to this output section have
4582  // already been sorted.
4583  bool attached_input_sections_are_sorted_ : 1;
4584  // True if this section holds relro data.
4585  bool is_relro_ : 1;
4586  // True if this is a small section.
4587  bool is_small_section_ : 1;
4588  // True if this is a large section.
4589  bool is_large_section_ : 1;
4590  // Whether code-fills are generated at write.
4591  bool generate_code_fills_at_write_ : 1;
4592  // Whether the entry size field should be zero.
4593  bool is_entsize_zero_ : 1;
4594  // Whether section offsets need adjustment due to relaxation.
4595  bool section_offsets_need_adjustment_ : 1;
4596  // Whether this is a NOLOAD section.
4597  bool is_noload_ : 1;
4598  // Whether this always keeps input section.
4599  bool always_keeps_input_sections_ : 1;
4600  // Whether this section has a fixed layout, for incremental update links.
4601  bool has_fixed_layout_ : 1;
4602  // True if we can add patch space to this section.
4603  bool is_patch_space_allowed_ : 1;
4604  // True if this output section goes into a unique segment.
4605  bool is_unique_segment_ : 1;
4606  // For SHT_TLS sections, the offset of this section relative to the base
4607  // of the TLS segment.
4608  uint64_t tls_offset_;
4609  // Additional segment flags, specified via linker plugin, when mapping some
4610  // input sections to unique segments.
4611  uint64_t extra_segment_flags_;
4612  // Segment alignment specified via linker plugin, when mapping some
4613  // input sections to unique segments.
4614  uint64_t segment_alignment_;
4615  // Saved checkpoint.
4616  Checkpoint_output_section* checkpoint_;
4617  // Fast lookup maps for merged and relaxed input sections.
4618  Output_section_lookup_maps* lookup_maps_;
4619  // List of available regions within the section, for incremental
4620  // update links.
4621  Free_list free_list_;
4622  // Method for filling chunks of free space.
4623  Output_fill* free_space_fill_;
4624  // Amount added as patch space for incremental linking.
4625  off_t patch_space_;
4626};
4627
4628// An output segment.  PT_LOAD segments are built from collections of
4629// output sections.  Other segments typically point within PT_LOAD
4630// segments, and are built directly as needed.
4631//
4632// NOTE: We want to use the copy constructor for this class.  During
4633// relaxation, we may try built the segments multiple times.  We do
4634// that by copying the original segment list before lay-out, doing
4635// a trial lay-out and roll-back to the saved copied if we need to
4636// to the lay-out again.
4637
4638class Output_segment
4639{
4640 public:
4641  // Create an output segment, specifying the type and flags.
4642  Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4643
4644  // Return the virtual address.
4645  uint64_t
4646  vaddr() const
4647  { return this->vaddr_; }
4648
4649  // Return the physical address.
4650  uint64_t
4651  paddr() const
4652  { return this->paddr_; }
4653
4654  // Return the segment type.
4655  elfcpp::Elf_Word
4656  type() const
4657  { return this->type_; }
4658
4659  // Return the segment flags.
4660  elfcpp::Elf_Word
4661  flags() const
4662  { return this->flags_; }
4663
4664  // Return the memory size.
4665  uint64_t
4666  memsz() const
4667  { return this->memsz_; }
4668
4669  // Return the file size.
4670  off_t
4671  filesz() const
4672  { return this->filesz_; }
4673
4674  // Return the file offset.
4675  off_t
4676  offset() const
4677  { return this->offset_; }
4678
4679  // Whether this is a segment created to hold large data sections.
4680  bool
4681  is_large_data_segment() const
4682  { return this->is_large_data_segment_; }
4683
4684  // Record that this is a segment created to hold large data
4685  // sections.
4686  void
4687  set_is_large_data_segment()
4688  { this->is_large_data_segment_ = true; }
4689
4690  bool
4691  is_unique_segment() const
4692  { return this->is_unique_segment_; }
4693
4694  // Mark segment as unique, happens when linker plugins request that
4695  // certain input sections be mapped to unique segments.
4696  void
4697  set_is_unique_segment()
4698  { this->is_unique_segment_ = true; }
4699
4700  // Return the maximum alignment of the Output_data.
4701  uint64_t
4702  maximum_alignment();
4703
4704  // Add the Output_section OS to this PT_LOAD segment.  SEG_FLAGS is
4705  // the segment flags to use.
4706  void
4707  add_output_section_to_load(Layout* layout, Output_section* os,
4708			     elfcpp::Elf_Word seg_flags);
4709
4710  // Add the Output_section OS to this non-PT_LOAD segment.  SEG_FLAGS
4711  // is the segment flags to use.
4712  void
4713  add_output_section_to_nonload(Output_section* os,
4714				elfcpp::Elf_Word seg_flags);
4715
4716  // Remove an Output_section from this segment.  It is an error if it
4717  // is not present.
4718  void
4719  remove_output_section(Output_section* os);
4720
4721  // Add an Output_data (which need not be an Output_section) to the
4722  // start of this segment.
4723  void
4724  add_initial_output_data(Output_data*);
4725
4726  // Return true if this segment has any sections which hold actual
4727  // data, rather than being a BSS section.
4728  bool
4729  has_any_data_sections() const;
4730
4731  // Whether this segment has a dynamic relocs.
4732  bool
4733  has_dynamic_reloc() const;
4734
4735  // Return the first section.
4736  Output_section*
4737  first_section() const;
4738
4739  // Return the address of the first section.
4740  uint64_t
4741  first_section_load_address() const
4742  {
4743    const Output_section* os = this->first_section();
4744    gold_assert(os != NULL);
4745    return os->has_load_address() ? os->load_address() : os->address();
4746  }
4747
4748  // Return whether the addresses have been set already.
4749  bool
4750  are_addresses_set() const
4751  { return this->are_addresses_set_; }
4752
4753  // Set the addresses.
4754  void
4755  set_addresses(uint64_t vaddr, uint64_t paddr)
4756  {
4757    this->vaddr_ = vaddr;
4758    this->paddr_ = paddr;
4759    this->are_addresses_set_ = true;
4760  }
4761
4762  // Update the flags for the flags of an output section added to this
4763  // segment.
4764  void
4765  update_flags_for_output_section(elfcpp::Elf_Xword flags)
4766  {
4767    // The ELF ABI specifies that a PT_TLS segment should always have
4768    // PF_R as the flags.
4769    if (this->type() != elfcpp::PT_TLS)
4770      this->flags_ |= flags;
4771  }
4772
4773  // Set the segment flags.  This is only used if we have a PHDRS
4774  // clause which explicitly specifies the flags.
4775  void
4776  set_flags(elfcpp::Elf_Word flags)
4777  { this->flags_ = flags; }
4778
4779  // Set the address of the segment to ADDR and the offset to *POFF
4780  // and set the addresses and offsets of all contained output
4781  // sections accordingly.  Set the section indexes of all contained
4782  // output sections starting with *PSHNDX.  If RESET is true, first
4783  // reset the addresses of the contained sections.  Return the
4784  // address of the immediately following segment.  Update *POFF and
4785  // *PSHNDX.  This should only be called for a PT_LOAD segment.
4786  uint64_t
4787  set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
4788			unsigned int* increase_relro, bool* has_relro,
4789			off_t* poff, unsigned int* pshndx);
4790
4791  // Set the minimum alignment of this segment.  This may be adjusted
4792  // upward based on the section alignments.
4793  void
4794  set_minimum_p_align(uint64_t align)
4795  {
4796    if (align > this->min_p_align_)
4797      this->min_p_align_ = align;
4798  }
4799
4800  // Set the memory size of this segment.
4801  void
4802  set_size(uint64_t size)
4803  {
4804    this->memsz_ = size;
4805  }
4806
4807  // Set the offset of this segment based on the section.  This should
4808  // only be called for a non-PT_LOAD segment.
4809  void
4810  set_offset(unsigned int increase);
4811
4812  // Set the TLS offsets of the sections contained in the PT_TLS segment.
4813  void
4814  set_tls_offsets();
4815
4816  // Return the number of output sections.
4817  unsigned int
4818  output_section_count() const;
4819
4820  // Return the section attached to the list segment with the lowest
4821  // load address.  This is used when handling a PHDRS clause in a
4822  // linker script.
4823  Output_section*
4824  section_with_lowest_load_address() const;
4825
4826  // Write the segment header into *OPHDR.
4827  template<int size, bool big_endian>
4828  void
4829  write_header(elfcpp::Phdr_write<size, big_endian>*);
4830
4831  // Write the section headers of associated sections into V.
4832  template<int size, bool big_endian>
4833  unsigned char*
4834  write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4835			unsigned int* pshndx) const;
4836
4837  // Print the output sections in the map file.
4838  void
4839  print_sections_to_mapfile(Mapfile*) const;
4840
4841 private:
4842  typedef std::vector<Output_data*> Output_data_list;
4843
4844  // Find the maximum alignment in an Output_data_list.
4845  static uint64_t
4846  maximum_alignment_list(const Output_data_list*);
4847
4848  // Return whether the first data section is a relro section.
4849  bool
4850  is_first_section_relro() const;
4851
4852  // Set the section addresses in an Output_data_list.
4853  uint64_t
4854  set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4855			     uint64_t addr, off_t* poff, off_t* fpoff,
4856			     unsigned int* pshndx, bool* in_tls);
4857
4858  // Return the number of Output_sections in an Output_data_list.
4859  unsigned int
4860  output_section_count_list(const Output_data_list*) const;
4861
4862  // Return whether an Output_data_list has a dynamic reloc.
4863  bool
4864  has_dynamic_reloc_list(const Output_data_list*) const;
4865
4866  // Find the section with the lowest load address in an
4867  // Output_data_list.
4868  void
4869  lowest_load_address_in_list(const Output_data_list* pdl,
4870			      Output_section** found,
4871			      uint64_t* found_lma) const;
4872
4873  // Find the first and last entries by address.
4874  void
4875  find_first_and_last_list(const Output_data_list* pdl,
4876			   const Output_data** pfirst,
4877			   const Output_data** plast) const;
4878
4879  // Write the section headers in the list into V.
4880  template<int size, bool big_endian>
4881  unsigned char*
4882  write_section_headers_list(const Layout*, const Stringpool*,
4883			     const Output_data_list*, unsigned char* v,
4884			     unsigned int* pshdx) const;
4885
4886  // Print a section list to the mapfile.
4887  void
4888  print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4889
4890  // NOTE: We want to use the copy constructor.  Currently, shallow copy
4891  // works for us so we do not need to write our own copy constructor.
4892
4893  // The list of output data attached to this segment.
4894  Output_data_list output_lists_[ORDER_MAX];
4895  // The segment virtual address.
4896  uint64_t vaddr_;
4897  // The segment physical address.
4898  uint64_t paddr_;
4899  // The size of the segment in memory.
4900  uint64_t memsz_;
4901  // The maximum section alignment.  The is_max_align_known_ field
4902  // indicates whether this has been finalized.
4903  uint64_t max_align_;
4904  // The required minimum value for the p_align field.  This is used
4905  // for PT_LOAD segments.  Note that this does not mean that
4906  // addresses should be aligned to this value; it means the p_paddr
4907  // and p_vaddr fields must be congruent modulo this value.  For
4908  // non-PT_LOAD segments, the dynamic linker works more efficiently
4909  // if the p_align field has the more conventional value, although it
4910  // can align as needed.
4911  uint64_t min_p_align_;
4912  // The offset of the segment data within the file.
4913  off_t offset_;
4914  // The size of the segment data in the file.
4915  off_t filesz_;
4916  // The segment type;
4917  elfcpp::Elf_Word type_;
4918  // The segment flags.
4919  elfcpp::Elf_Word flags_;
4920  // Whether we have finalized max_align_.
4921  bool is_max_align_known_ : 1;
4922  // Whether vaddr and paddr were set by a linker script.
4923  bool are_addresses_set_ : 1;
4924  // Whether this segment holds large data sections.
4925  bool is_large_data_segment_ : 1;
4926  // Whether this was marked as a unique segment via a linker plugin.
4927  bool is_unique_segment_ : 1;
4928};
4929
4930} // End namespace gold.
4931
4932#endif // !defined(GOLD_OUTPUT_H)
4933