1// output.cc -- manage the output file for gold
2
3// Copyright (C) 2006-2017 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstdlib>
26#include <cstring>
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/stat.h>
31#include <algorithm>
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
37#include "libiberty.h"
38
39#include "dwarf.h"
40#include "parameters.h"
41#include "object.h"
42#include "symtab.h"
43#include "reloc.h"
44#include "merge.h"
45#include "descriptors.h"
46#include "layout.h"
47#include "output.h"
48
49// For systems without mmap support.
50#ifndef HAVE_MMAP
51# define mmap gold_mmap
52# define munmap gold_munmap
53# define mremap gold_mremap
54# ifndef MAP_FAILED
55#  define MAP_FAILED (reinterpret_cast<void*>(-1))
56# endif
57# ifndef PROT_READ
58#  define PROT_READ 0
59# endif
60# ifndef PROT_WRITE
61#  define PROT_WRITE 0
62# endif
63# ifndef MAP_PRIVATE
64#  define MAP_PRIVATE 0
65# endif
66# ifndef MAP_ANONYMOUS
67#  define MAP_ANONYMOUS 0
68# endif
69# ifndef MAP_SHARED
70#  define MAP_SHARED 0
71# endif
72
73# ifndef ENOSYS
74#  define ENOSYS EINVAL
75# endif
76
77static void *
78gold_mmap(void *, size_t, int, int, int, off_t)
79{
80  errno = ENOSYS;
81  return MAP_FAILED;
82}
83
84static int
85gold_munmap(void *, size_t)
86{
87  errno = ENOSYS;
88  return -1;
89}
90
91static void *
92gold_mremap(void *, size_t, size_t, int)
93{
94  errno = ENOSYS;
95  return MAP_FAILED;
96}
97
98#endif
99
100#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101# define mremap gold_mremap
102extern "C" void *gold_mremap(void *, size_t, size_t, int);
103#endif
104
105// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106#ifndef MAP_ANONYMOUS
107# define MAP_ANONYMOUS  MAP_ANON
108#endif
109
110#ifndef MREMAP_MAYMOVE
111# define MREMAP_MAYMOVE 1
112#endif
113
114// Mingw does not have S_ISLNK.
115#ifndef S_ISLNK
116# define S_ISLNK(mode) 0
117#endif
118
119namespace gold
120{
121
122// A wrapper around posix_fallocate.  If we don't have posix_fallocate,
123// or the --no-posix-fallocate option is set, we try the fallocate
124// system call directly.  If that fails, we use ftruncate to set
125// the file size and hope that there is enough disk space.
126
127static int
128gold_fallocate(int o, off_t offset, off_t len)
129{
130#ifdef HAVE_POSIX_FALLOCATE
131  if (parameters->options().posix_fallocate())
132    return ::posix_fallocate(o, offset, len);
133#endif // defined(HAVE_POSIX_FALLOCATE)
134#ifdef HAVE_FALLOCATE
135  if (::fallocate(o, 0, offset, len) == 0)
136    return 0;
137#endif // defined(HAVE_FALLOCATE)
138  if (::ftruncate(o, offset + len) < 0)
139    return errno;
140  return 0;
141}
142
143// Output_data variables.
144
145bool Output_data::allocated_sizes_are_fixed;
146
147// Output_data methods.
148
149Output_data::~Output_data()
150{
151}
152
153// Return the default alignment for the target size.
154
155uint64_t
156Output_data::default_alignment()
157{
158  return Output_data::default_alignment_for_size(
159      parameters->target().get_size());
160}
161
162// Return the default alignment for a size--32 or 64.
163
164uint64_t
165Output_data::default_alignment_for_size(int size)
166{
167  if (size == 32)
168    return 4;
169  else if (size == 64)
170    return 8;
171  else
172    gold_unreachable();
173}
174
175// Output_section_header methods.  This currently assumes that the
176// segment and section lists are complete at construction time.
177
178Output_section_headers::Output_section_headers(
179    const Layout* layout,
180    const Layout::Segment_list* segment_list,
181    const Layout::Section_list* section_list,
182    const Layout::Section_list* unattached_section_list,
183    const Stringpool* secnamepool,
184    const Output_section* shstrtab_section)
185  : layout_(layout),
186    segment_list_(segment_list),
187    section_list_(section_list),
188    unattached_section_list_(unattached_section_list),
189    secnamepool_(secnamepool),
190    shstrtab_section_(shstrtab_section)
191{
192}
193
194// Compute the current data size.
195
196off_t
197Output_section_headers::do_size() const
198{
199  // Count all the sections.  Start with 1 for the null section.
200  off_t count = 1;
201  if (!parameters->options().relocatable())
202    {
203      for (Layout::Segment_list::const_iterator p =
204	     this->segment_list_->begin();
205	   p != this->segment_list_->end();
206	   ++p)
207	if ((*p)->type() == elfcpp::PT_LOAD)
208	  count += (*p)->output_section_count();
209    }
210  else
211    {
212      for (Layout::Section_list::const_iterator p =
213	     this->section_list_->begin();
214	   p != this->section_list_->end();
215	   ++p)
216	if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217	  ++count;
218    }
219  count += this->unattached_section_list_->size();
220
221  const int size = parameters->target().get_size();
222  int shdr_size;
223  if (size == 32)
224    shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225  else if (size == 64)
226    shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227  else
228    gold_unreachable();
229
230  return count * shdr_size;
231}
232
233// Write out the section headers.
234
235void
236Output_section_headers::do_write(Output_file* of)
237{
238  switch (parameters->size_and_endianness())
239    {
240#ifdef HAVE_TARGET_32_LITTLE
241    case Parameters::TARGET_32_LITTLE:
242      this->do_sized_write<32, false>(of);
243      break;
244#endif
245#ifdef HAVE_TARGET_32_BIG
246    case Parameters::TARGET_32_BIG:
247      this->do_sized_write<32, true>(of);
248      break;
249#endif
250#ifdef HAVE_TARGET_64_LITTLE
251    case Parameters::TARGET_64_LITTLE:
252      this->do_sized_write<64, false>(of);
253      break;
254#endif
255#ifdef HAVE_TARGET_64_BIG
256    case Parameters::TARGET_64_BIG:
257      this->do_sized_write<64, true>(of);
258      break;
259#endif
260    default:
261      gold_unreachable();
262    }
263}
264
265template<int size, bool big_endian>
266void
267Output_section_headers::do_sized_write(Output_file* of)
268{
269  off_t all_shdrs_size = this->data_size();
270  unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273  unsigned char* v = view;
274
275  {
276    typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277    oshdr.put_sh_name(0);
278    oshdr.put_sh_type(elfcpp::SHT_NULL);
279    oshdr.put_sh_flags(0);
280    oshdr.put_sh_addr(0);
281    oshdr.put_sh_offset(0);
282
283    size_t section_count = (this->data_size()
284			    / elfcpp::Elf_sizes<size>::shdr_size);
285    if (section_count < elfcpp::SHN_LORESERVE)
286      oshdr.put_sh_size(0);
287    else
288      oshdr.put_sh_size(section_count);
289
290    unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291    if (shstrndx < elfcpp::SHN_LORESERVE)
292      oshdr.put_sh_link(0);
293    else
294      oshdr.put_sh_link(shstrndx);
295
296    size_t segment_count = this->segment_list_->size();
297    oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299    oshdr.put_sh_addralign(0);
300    oshdr.put_sh_entsize(0);
301  }
302
303  v += shdr_size;
304
305  unsigned int shndx = 1;
306  if (!parameters->options().relocatable())
307    {
308      for (Layout::Segment_list::const_iterator p =
309	     this->segment_list_->begin();
310	   p != this->segment_list_->end();
311	   ++p)
312	v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313							  this->secnamepool_,
314							  v,
315							  &shndx);
316    }
317  else
318    {
319      for (Layout::Section_list::const_iterator p =
320	     this->section_list_->begin();
321	   p != this->section_list_->end();
322	   ++p)
323	{
324	  // We do unallocated sections below, except that group
325	  // sections have to come first.
326	  if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327	      && (*p)->type() != elfcpp::SHT_GROUP)
328	    continue;
329	  gold_assert(shndx == (*p)->out_shndx());
330	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
331	  (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332	  v += shdr_size;
333	  ++shndx;
334	}
335    }
336
337  for (Layout::Section_list::const_iterator p =
338	 this->unattached_section_list_->begin();
339       p != this->unattached_section_list_->end();
340       ++p)
341    {
342      // For a relocatable link, we did unallocated group sections
343      // above, since they have to come first.
344      if ((*p)->type() == elfcpp::SHT_GROUP
345	  && parameters->options().relocatable())
346	continue;
347      gold_assert(shndx == (*p)->out_shndx());
348      elfcpp::Shdr_write<size, big_endian> oshdr(v);
349      (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350      v += shdr_size;
351      ++shndx;
352    }
353
354  of->write_output_view(this->offset(), all_shdrs_size, view);
355}
356
357// Output_segment_header methods.
358
359Output_segment_headers::Output_segment_headers(
360    const Layout::Segment_list& segment_list)
361  : segment_list_(segment_list)
362{
363  this->set_current_data_size_for_child(this->do_size());
364}
365
366void
367Output_segment_headers::do_write(Output_file* of)
368{
369  switch (parameters->size_and_endianness())
370    {
371#ifdef HAVE_TARGET_32_LITTLE
372    case Parameters::TARGET_32_LITTLE:
373      this->do_sized_write<32, false>(of);
374      break;
375#endif
376#ifdef HAVE_TARGET_32_BIG
377    case Parameters::TARGET_32_BIG:
378      this->do_sized_write<32, true>(of);
379      break;
380#endif
381#ifdef HAVE_TARGET_64_LITTLE
382    case Parameters::TARGET_64_LITTLE:
383      this->do_sized_write<64, false>(of);
384      break;
385#endif
386#ifdef HAVE_TARGET_64_BIG
387    case Parameters::TARGET_64_BIG:
388      this->do_sized_write<64, true>(of);
389      break;
390#endif
391    default:
392      gold_unreachable();
393    }
394}
395
396template<int size, bool big_endian>
397void
398Output_segment_headers::do_sized_write(Output_file* of)
399{
400  const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401  off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402  gold_assert(all_phdrs_size == this->data_size());
403  unsigned char* view = of->get_output_view(this->offset(),
404					    all_phdrs_size);
405  unsigned char* v = view;
406  for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407       p != this->segment_list_.end();
408       ++p)
409    {
410      elfcpp::Phdr_write<size, big_endian> ophdr(v);
411      (*p)->write_header(&ophdr);
412      v += phdr_size;
413    }
414
415  gold_assert(v - view == all_phdrs_size);
416
417  of->write_output_view(this->offset(), all_phdrs_size, view);
418}
419
420off_t
421Output_segment_headers::do_size() const
422{
423  const int size = parameters->target().get_size();
424  int phdr_size;
425  if (size == 32)
426    phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427  else if (size == 64)
428    phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429  else
430    gold_unreachable();
431
432  return this->segment_list_.size() * phdr_size;
433}
434
435// Output_file_header methods.
436
437Output_file_header::Output_file_header(Target* target,
438				       const Symbol_table* symtab,
439				       const Output_segment_headers* osh)
440  : target_(target),
441    symtab_(symtab),
442    segment_header_(osh),
443    section_header_(NULL),
444    shstrtab_(NULL)
445{
446  this->set_data_size(this->do_size());
447}
448
449// Set the section table information for a file header.
450
451void
452Output_file_header::set_section_info(const Output_section_headers* shdrs,
453				     const Output_section* shstrtab)
454{
455  this->section_header_ = shdrs;
456  this->shstrtab_ = shstrtab;
457}
458
459// Write out the file header.
460
461void
462Output_file_header::do_write(Output_file* of)
463{
464  gold_assert(this->offset() == 0);
465
466  switch (parameters->size_and_endianness())
467    {
468#ifdef HAVE_TARGET_32_LITTLE
469    case Parameters::TARGET_32_LITTLE:
470      this->do_sized_write<32, false>(of);
471      break;
472#endif
473#ifdef HAVE_TARGET_32_BIG
474    case Parameters::TARGET_32_BIG:
475      this->do_sized_write<32, true>(of);
476      break;
477#endif
478#ifdef HAVE_TARGET_64_LITTLE
479    case Parameters::TARGET_64_LITTLE:
480      this->do_sized_write<64, false>(of);
481      break;
482#endif
483#ifdef HAVE_TARGET_64_BIG
484    case Parameters::TARGET_64_BIG:
485      this->do_sized_write<64, true>(of);
486      break;
487#endif
488    default:
489      gold_unreachable();
490    }
491}
492
493// Write out the file header with appropriate size and endianness.
494
495template<int size, bool big_endian>
496void
497Output_file_header::do_sized_write(Output_file* of)
498{
499  gold_assert(this->offset() == 0);
500
501  int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502  unsigned char* view = of->get_output_view(0, ehdr_size);
503  elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505  unsigned char e_ident[elfcpp::EI_NIDENT];
506  memset(e_ident, 0, elfcpp::EI_NIDENT);
507  e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508  e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509  e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510  e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511  if (size == 32)
512    e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513  else if (size == 64)
514    e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515  else
516    gold_unreachable();
517  e_ident[elfcpp::EI_DATA] = (big_endian
518			      ? elfcpp::ELFDATA2MSB
519			      : elfcpp::ELFDATA2LSB);
520  e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521  oehdr.put_e_ident(e_ident);
522
523  elfcpp::ET e_type;
524  if (parameters->options().relocatable())
525    e_type = elfcpp::ET_REL;
526  else if (parameters->options().output_is_position_independent())
527    e_type = elfcpp::ET_DYN;
528  else
529    e_type = elfcpp::ET_EXEC;
530  oehdr.put_e_type(e_type);
531
532  oehdr.put_e_machine(this->target_->machine_code());
533  oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535  oehdr.put_e_entry(this->entry<size>());
536
537  if (this->segment_header_ == NULL)
538    oehdr.put_e_phoff(0);
539  else
540    oehdr.put_e_phoff(this->segment_header_->offset());
541
542  oehdr.put_e_shoff(this->section_header_->offset());
543  oehdr.put_e_flags(this->target_->processor_specific_flags());
544  oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546  if (this->segment_header_ == NULL)
547    {
548      oehdr.put_e_phentsize(0);
549      oehdr.put_e_phnum(0);
550    }
551  else
552    {
553      oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554      size_t phnum = (this->segment_header_->data_size()
555		      / elfcpp::Elf_sizes<size>::phdr_size);
556      if (phnum > elfcpp::PN_XNUM)
557	phnum = elfcpp::PN_XNUM;
558      oehdr.put_e_phnum(phnum);
559    }
560
561  oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562  size_t section_count = (this->section_header_->data_size()
563			  / elfcpp::Elf_sizes<size>::shdr_size);
564
565  if (section_count < elfcpp::SHN_LORESERVE)
566    oehdr.put_e_shnum(this->section_header_->data_size()
567		      / elfcpp::Elf_sizes<size>::shdr_size);
568  else
569    oehdr.put_e_shnum(0);
570
571  unsigned int shstrndx = this->shstrtab_->out_shndx();
572  if (shstrndx < elfcpp::SHN_LORESERVE)
573    oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574  else
575    oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577  // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578  // the e_ident field.
579  this->target_->adjust_elf_header(view, ehdr_size);
580
581  of->write_output_view(0, ehdr_size, view);
582}
583
584// Return the value to use for the entry address.
585
586template<int size>
587typename elfcpp::Elf_types<size>::Elf_Addr
588Output_file_header::entry()
589{
590  const bool should_issue_warning = (parameters->options().entry() != NULL
591				     && !parameters->options().relocatable()
592				     && !parameters->options().shared());
593  const char* entry = parameters->entry();
594  Symbol* sym = this->symtab_->lookup(entry);
595
596  typename Sized_symbol<size>::Value_type v;
597  if (sym != NULL)
598    {
599      Sized_symbol<size>* ssym;
600      ssym = this->symtab_->get_sized_symbol<size>(sym);
601      if (!ssym->is_defined() && should_issue_warning)
602	gold_warning("entry symbol '%s' exists but is not defined", entry);
603      v = ssym->value();
604    }
605  else
606    {
607      // We couldn't find the entry symbol.  See if we can parse it as
608      // a number.  This supports, e.g., -e 0x1000.
609      char* endptr;
610      v = strtoull(entry, &endptr, 0);
611      if (*endptr != '\0')
612	{
613	  if (should_issue_warning)
614	    gold_warning("cannot find entry symbol '%s'", entry);
615	  v = 0;
616	}
617    }
618
619  return v;
620}
621
622// Compute the current data size.
623
624off_t
625Output_file_header::do_size() const
626{
627  const int size = parameters->target().get_size();
628  if (size == 32)
629    return elfcpp::Elf_sizes<32>::ehdr_size;
630  else if (size == 64)
631    return elfcpp::Elf_sizes<64>::ehdr_size;
632  else
633    gold_unreachable();
634}
635
636// Output_data_const methods.
637
638void
639Output_data_const::do_write(Output_file* of)
640{
641  of->write(this->offset(), this->data_.data(), this->data_.size());
642}
643
644// Output_data_const_buffer methods.
645
646void
647Output_data_const_buffer::do_write(Output_file* of)
648{
649  of->write(this->offset(), this->p_, this->data_size());
650}
651
652// Output_section_data methods.
653
654// Record the output section, and set the entry size and such.
655
656void
657Output_section_data::set_output_section(Output_section* os)
658{
659  gold_assert(this->output_section_ == NULL);
660  this->output_section_ = os;
661  this->do_adjust_output_section(os);
662}
663
664// Return the section index of the output section.
665
666unsigned int
667Output_section_data::do_out_shndx() const
668{
669  gold_assert(this->output_section_ != NULL);
670  return this->output_section_->out_shndx();
671}
672
673// Set the alignment, which means we may need to update the alignment
674// of the output section.
675
676void
677Output_section_data::set_addralign(uint64_t addralign)
678{
679  this->addralign_ = addralign;
680  if (this->output_section_ != NULL
681      && this->output_section_->addralign() < addralign)
682    this->output_section_->set_addralign(addralign);
683}
684
685// Output_data_strtab methods.
686
687// Set the final data size.
688
689void
690Output_data_strtab::set_final_data_size()
691{
692  this->strtab_->set_string_offsets();
693  this->set_data_size(this->strtab_->get_strtab_size());
694}
695
696// Write out a string table.
697
698void
699Output_data_strtab::do_write(Output_file* of)
700{
701  this->strtab_->write(of, this->offset());
702}
703
704// Output_reloc methods.
705
706// A reloc against a global symbol.
707
708template<bool dynamic, int size, bool big_endian>
709Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710    Symbol* gsym,
711    unsigned int type,
712    Output_data* od,
713    Address address,
714    bool is_relative,
715    bool is_symbolless,
716    bool use_plt_offset)
717  : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718    is_relative_(is_relative), is_symbolless_(is_symbolless),
719    is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720{
721  // this->type_ is a bitfield; make sure TYPE fits.
722  gold_assert(this->type_ == type);
723  this->u1_.gsym = gsym;
724  this->u2_.od = od;
725  if (dynamic)
726    this->set_needs_dynsym_index();
727}
728
729template<bool dynamic, int size, bool big_endian>
730Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731    Symbol* gsym,
732    unsigned int type,
733    Sized_relobj<size, big_endian>* relobj,
734    unsigned int shndx,
735    Address address,
736    bool is_relative,
737    bool is_symbolless,
738    bool use_plt_offset)
739  : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740    is_relative_(is_relative), is_symbolless_(is_symbolless),
741    is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742{
743  gold_assert(shndx != INVALID_CODE);
744  // this->type_ is a bitfield; make sure TYPE fits.
745  gold_assert(this->type_ == type);
746  this->u1_.gsym = gsym;
747  this->u2_.relobj = relobj;
748  if (dynamic)
749    this->set_needs_dynsym_index();
750}
751
752// A reloc against a local symbol.
753
754template<bool dynamic, int size, bool big_endian>
755Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756    Sized_relobj<size, big_endian>* relobj,
757    unsigned int local_sym_index,
758    unsigned int type,
759    Output_data* od,
760    Address address,
761    bool is_relative,
762    bool is_symbolless,
763    bool is_section_symbol,
764    bool use_plt_offset)
765  : address_(address), local_sym_index_(local_sym_index), type_(type),
766    is_relative_(is_relative), is_symbolless_(is_symbolless),
767    is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768    shndx_(INVALID_CODE)
769{
770  gold_assert(local_sym_index != GSYM_CODE
771	      && local_sym_index != INVALID_CODE);
772  // this->type_ is a bitfield; make sure TYPE fits.
773  gold_assert(this->type_ == type);
774  this->u1_.relobj = relobj;
775  this->u2_.od = od;
776  if (dynamic)
777    this->set_needs_dynsym_index();
778}
779
780template<bool dynamic, int size, bool big_endian>
781Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782    Sized_relobj<size, big_endian>* relobj,
783    unsigned int local_sym_index,
784    unsigned int type,
785    unsigned int shndx,
786    Address address,
787    bool is_relative,
788    bool is_symbolless,
789    bool is_section_symbol,
790    bool use_plt_offset)
791  : address_(address), local_sym_index_(local_sym_index), type_(type),
792    is_relative_(is_relative), is_symbolless_(is_symbolless),
793    is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794    shndx_(shndx)
795{
796  gold_assert(local_sym_index != GSYM_CODE
797	      && local_sym_index != INVALID_CODE);
798  gold_assert(shndx != INVALID_CODE);
799  // this->type_ is a bitfield; make sure TYPE fits.
800  gold_assert(this->type_ == type);
801  this->u1_.relobj = relobj;
802  this->u2_.relobj = relobj;
803  if (dynamic)
804    this->set_needs_dynsym_index();
805}
806
807// A reloc against the STT_SECTION symbol of an output section.
808
809template<bool dynamic, int size, bool big_endian>
810Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811    Output_section* os,
812    unsigned int type,
813    Output_data* od,
814    Address address,
815    bool is_relative)
816  : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817    is_relative_(is_relative), is_symbolless_(is_relative),
818    is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819{
820  // this->type_ is a bitfield; make sure TYPE fits.
821  gold_assert(this->type_ == type);
822  this->u1_.os = os;
823  this->u2_.od = od;
824  if (dynamic)
825    this->set_needs_dynsym_index();
826  else
827    os->set_needs_symtab_index();
828}
829
830template<bool dynamic, int size, bool big_endian>
831Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832    Output_section* os,
833    unsigned int type,
834    Sized_relobj<size, big_endian>* relobj,
835    unsigned int shndx,
836    Address address,
837    bool is_relative)
838  : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839    is_relative_(is_relative), is_symbolless_(is_relative),
840    is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841{
842  gold_assert(shndx != INVALID_CODE);
843  // this->type_ is a bitfield; make sure TYPE fits.
844  gold_assert(this->type_ == type);
845  this->u1_.os = os;
846  this->u2_.relobj = relobj;
847  if (dynamic)
848    this->set_needs_dynsym_index();
849  else
850    os->set_needs_symtab_index();
851}
852
853// An absolute or relative relocation.
854
855template<bool dynamic, int size, bool big_endian>
856Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857    unsigned int type,
858    Output_data* od,
859    Address address,
860    bool is_relative)
861  : address_(address), local_sym_index_(0), type_(type),
862    is_relative_(is_relative), is_symbolless_(false),
863    is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864{
865  // this->type_ is a bitfield; make sure TYPE fits.
866  gold_assert(this->type_ == type);
867  this->u1_.relobj = NULL;
868  this->u2_.od = od;
869}
870
871template<bool dynamic, int size, bool big_endian>
872Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873    unsigned int type,
874    Sized_relobj<size, big_endian>* relobj,
875    unsigned int shndx,
876    Address address,
877    bool is_relative)
878  : address_(address), local_sym_index_(0), type_(type),
879    is_relative_(is_relative), is_symbolless_(false),
880    is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881{
882  gold_assert(shndx != INVALID_CODE);
883  // this->type_ is a bitfield; make sure TYPE fits.
884  gold_assert(this->type_ == type);
885  this->u1_.relobj = NULL;
886  this->u2_.relobj = relobj;
887}
888
889// A target specific relocation.
890
891template<bool dynamic, int size, bool big_endian>
892Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893    unsigned int type,
894    void* arg,
895    Output_data* od,
896    Address address)
897  : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898    is_relative_(false), is_symbolless_(false),
899    is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900{
901  // this->type_ is a bitfield; make sure TYPE fits.
902  gold_assert(this->type_ == type);
903  this->u1_.arg = arg;
904  this->u2_.od = od;
905}
906
907template<bool dynamic, int size, bool big_endian>
908Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909    unsigned int type,
910    void* arg,
911    Sized_relobj<size, big_endian>* relobj,
912    unsigned int shndx,
913    Address address)
914  : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915    is_relative_(false), is_symbolless_(false),
916    is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917{
918  gold_assert(shndx != INVALID_CODE);
919  // this->type_ is a bitfield; make sure TYPE fits.
920  gold_assert(this->type_ == type);
921  this->u1_.arg = arg;
922  this->u2_.relobj = relobj;
923}
924
925// Record that we need a dynamic symbol index for this relocation.
926
927template<bool dynamic, int size, bool big_endian>
928void
929Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930set_needs_dynsym_index()
931{
932  if (this->is_symbolless_)
933    return;
934  switch (this->local_sym_index_)
935    {
936    case INVALID_CODE:
937      gold_unreachable();
938
939    case GSYM_CODE:
940      this->u1_.gsym->set_needs_dynsym_entry();
941      break;
942
943    case SECTION_CODE:
944      this->u1_.os->set_needs_dynsym_index();
945      break;
946
947    case TARGET_CODE:
948      // The target must take care of this if necessary.
949      break;
950
951    case 0:
952      break;
953
954    default:
955      {
956	const unsigned int lsi = this->local_sym_index_;
957	Sized_relobj_file<size, big_endian>* relobj =
958	    this->u1_.relobj->sized_relobj();
959	gold_assert(relobj != NULL);
960	if (!this->is_section_symbol_)
961	  relobj->set_needs_output_dynsym_entry(lsi);
962	else
963	  relobj->output_section(lsi)->set_needs_dynsym_index();
964      }
965      break;
966    }
967}
968
969// Get the symbol index of a relocation.
970
971template<bool dynamic, int size, bool big_endian>
972unsigned int
973Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974  const
975{
976  unsigned int index;
977  if (this->is_symbolless_)
978    return 0;
979  switch (this->local_sym_index_)
980    {
981    case INVALID_CODE:
982      gold_unreachable();
983
984    case GSYM_CODE:
985      if (this->u1_.gsym == NULL)
986	index = 0;
987      else if (dynamic)
988	index = this->u1_.gsym->dynsym_index();
989      else
990	index = this->u1_.gsym->symtab_index();
991      break;
992
993    case SECTION_CODE:
994      if (dynamic)
995	index = this->u1_.os->dynsym_index();
996      else
997	index = this->u1_.os->symtab_index();
998      break;
999
1000    case TARGET_CODE:
1001      index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002						      this->type_);
1003      break;
1004
1005    case 0:
1006      // Relocations without symbols use a symbol index of 0.
1007      index = 0;
1008      break;
1009
1010    default:
1011      {
1012	const unsigned int lsi = this->local_sym_index_;
1013	Sized_relobj_file<size, big_endian>* relobj =
1014	    this->u1_.relobj->sized_relobj();
1015	gold_assert(relobj != NULL);
1016	if (!this->is_section_symbol_)
1017	  {
1018	    if (dynamic)
1019	      index = relobj->dynsym_index(lsi);
1020	    else
1021	      index = relobj->symtab_index(lsi);
1022	  }
1023	else
1024	  {
1025	    Output_section* os = relobj->output_section(lsi);
1026	    gold_assert(os != NULL);
1027	    if (dynamic)
1028	      index = os->dynsym_index();
1029	    else
1030	      index = os->symtab_index();
1031	  }
1032      }
1033      break;
1034    }
1035  gold_assert(index != -1U);
1036  return index;
1037}
1038
1039// For a local section symbol, get the address of the offset ADDEND
1040// within the input section.
1041
1042template<bool dynamic, int size, bool big_endian>
1043typename elfcpp::Elf_types<size>::Elf_Addr
1044Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045  local_section_offset(Addend addend) const
1046{
1047  gold_assert(this->local_sym_index_ != GSYM_CODE
1048	      && this->local_sym_index_ != SECTION_CODE
1049	      && this->local_sym_index_ != TARGET_CODE
1050	      && this->local_sym_index_ != INVALID_CODE
1051	      && this->local_sym_index_ != 0
1052	      && this->is_section_symbol_);
1053  const unsigned int lsi = this->local_sym_index_;
1054  Output_section* os = this->u1_.relobj->output_section(lsi);
1055  gold_assert(os != NULL);
1056  Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057  if (offset != invalid_address)
1058    return offset + addend;
1059  // This is a merge section.
1060  Sized_relobj_file<size, big_endian>* relobj =
1061      this->u1_.relobj->sized_relobj();
1062  gold_assert(relobj != NULL);
1063  offset = os->output_address(relobj, lsi, addend);
1064  gold_assert(offset != invalid_address);
1065  return offset;
1066}
1067
1068// Get the output address of a relocation.
1069
1070template<bool dynamic, int size, bool big_endian>
1071typename elfcpp::Elf_types<size>::Elf_Addr
1072Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073{
1074  Address address = this->address_;
1075  if (this->shndx_ != INVALID_CODE)
1076    {
1077      Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078      gold_assert(os != NULL);
1079      Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080      if (off != invalid_address)
1081	address += os->address() + off;
1082      else
1083	{
1084	  Sized_relobj_file<size, big_endian>* relobj =
1085	      this->u2_.relobj->sized_relobj();
1086	  gold_assert(relobj != NULL);
1087	  address = os->output_address(relobj, this->shndx_, address);
1088	  gold_assert(address != invalid_address);
1089	}
1090    }
1091  else if (this->u2_.od != NULL)
1092    address += this->u2_.od->address();
1093  return address;
1094}
1095
1096// Write out the offset and info fields of a Rel or Rela relocation
1097// entry.
1098
1099template<bool dynamic, int size, bool big_endian>
1100template<typename Write_rel>
1101void
1102Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103    Write_rel* wr) const
1104{
1105  wr->put_r_offset(this->get_address());
1106  unsigned int sym_index = this->get_symbol_index();
1107  wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108}
1109
1110// Write out a Rel relocation.
1111
1112template<bool dynamic, int size, bool big_endian>
1113void
1114Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115    unsigned char* pov) const
1116{
1117  elfcpp::Rel_write<size, big_endian> orel(pov);
1118  this->write_rel(&orel);
1119}
1120
1121// Get the value of the symbol referred to by a Rel relocation.
1122
1123template<bool dynamic, int size, bool big_endian>
1124typename elfcpp::Elf_types<size>::Elf_Addr
1125Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126    Addend addend) const
1127{
1128  if (this->local_sym_index_ == GSYM_CODE)
1129    {
1130      const Sized_symbol<size>* sym;
1131      sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132      if (this->use_plt_offset_ && sym->has_plt_offset())
1133	return parameters->target().plt_address_for_global(sym);
1134      else
1135	return sym->value() + addend;
1136    }
1137  if (this->local_sym_index_ == SECTION_CODE)
1138    {
1139      gold_assert(!this->use_plt_offset_);
1140      return this->u1_.os->address() + addend;
1141    }
1142  gold_assert(this->local_sym_index_ != TARGET_CODE
1143	      && this->local_sym_index_ != INVALID_CODE
1144	      && this->local_sym_index_ != 0
1145	      && !this->is_section_symbol_);
1146  const unsigned int lsi = this->local_sym_index_;
1147  Sized_relobj_file<size, big_endian>* relobj =
1148      this->u1_.relobj->sized_relobj();
1149  gold_assert(relobj != NULL);
1150  if (this->use_plt_offset_)
1151    return parameters->target().plt_address_for_local(relobj, lsi);
1152  const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153  return symval->value(relobj, addend);
1154}
1155
1156// Reloc comparison.  This function sorts the dynamic relocs for the
1157// benefit of the dynamic linker.  First we sort all relative relocs
1158// to the front.  Among relative relocs, we sort by output address.
1159// Among non-relative relocs, we sort by symbol index, then by output
1160// address.
1161
1162template<bool dynamic, int size, bool big_endian>
1163int
1164Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165  compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166    const
1167{
1168  if (this->is_relative_)
1169    {
1170      if (!r2.is_relative_)
1171	return -1;
1172      // Otherwise sort by reloc address below.
1173    }
1174  else if (r2.is_relative_)
1175    return 1;
1176  else
1177    {
1178      unsigned int sym1 = this->get_symbol_index();
1179      unsigned int sym2 = r2.get_symbol_index();
1180      if (sym1 < sym2)
1181	return -1;
1182      else if (sym1 > sym2)
1183	return 1;
1184      // Otherwise sort by reloc address.
1185    }
1186
1187  section_offset_type addr1 = this->get_address();
1188  section_offset_type addr2 = r2.get_address();
1189  if (addr1 < addr2)
1190    return -1;
1191  else if (addr1 > addr2)
1192    return 1;
1193
1194  // Final tie breaker, in order to generate the same output on any
1195  // host: reloc type.
1196  unsigned int type1 = this->type_;
1197  unsigned int type2 = r2.type_;
1198  if (type1 < type2)
1199    return -1;
1200  else if (type1 > type2)
1201    return 1;
1202
1203  // These relocs appear to be exactly the same.
1204  return 0;
1205}
1206
1207// Write out a Rela relocation.
1208
1209template<bool dynamic, int size, bool big_endian>
1210void
1211Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212    unsigned char* pov) const
1213{
1214  elfcpp::Rela_write<size, big_endian> orel(pov);
1215  this->rel_.write_rel(&orel);
1216  Addend addend = this->addend_;
1217  if (this->rel_.is_target_specific())
1218    addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219					       this->rel_.type(), addend);
1220  else if (this->rel_.is_symbolless())
1221    addend = this->rel_.symbol_value(addend);
1222  else if (this->rel_.is_local_section_symbol())
1223    addend = this->rel_.local_section_offset(addend);
1224  orel.put_r_addend(addend);
1225}
1226
1227// Output_data_reloc_base methods.
1228
1229// Adjust the output section.
1230
1231template<int sh_type, bool dynamic, int size, bool big_endian>
1232void
1233Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234    ::do_adjust_output_section(Output_section* os)
1235{
1236  if (sh_type == elfcpp::SHT_REL)
1237    os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238  else if (sh_type == elfcpp::SHT_RELA)
1239    os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240  else
1241    gold_unreachable();
1242
1243  // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244  // static link.  The backends will generate a dynamic reloc section
1245  // to hold this.  In that case we don't want to link to the dynsym
1246  // section, because there isn't one.
1247  if (!dynamic)
1248    os->set_should_link_to_symtab();
1249  else if (parameters->doing_static_link())
1250    ;
1251  else
1252    os->set_should_link_to_dynsym();
1253}
1254
1255// Standard relocation writer, which just calls Output_reloc::write().
1256
1257template<int sh_type, bool dynamic, int size, bool big_endian>
1258struct Output_reloc_writer
1259{
1260  typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1261  typedef std::vector<Output_reloc_type> Relocs;
1262
1263  static void
1264  write(typename Relocs::const_iterator p, unsigned char* pov)
1265  { p->write(pov); }
1266};
1267
1268// Write out relocation data.
1269
1270template<int sh_type, bool dynamic, int size, bool big_endian>
1271void
1272Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1273    Output_file* of)
1274{
1275  typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1276  this->do_write_generic<Writer>(of);
1277}
1278
1279// Class Output_relocatable_relocs.
1280
1281template<int sh_type, int size, bool big_endian>
1282void
1283Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1284{
1285  this->set_data_size(this->rr_->output_reloc_count()
1286		      * Reloc_types<sh_type, size, big_endian>::reloc_size);
1287}
1288
1289// class Output_data_group.
1290
1291template<int size, bool big_endian>
1292Output_data_group<size, big_endian>::Output_data_group(
1293    Sized_relobj_file<size, big_endian>* relobj,
1294    section_size_type entry_count,
1295    elfcpp::Elf_Word flags,
1296    std::vector<unsigned int>* input_shndxes)
1297  : Output_section_data(entry_count * 4, 4, false),
1298    relobj_(relobj),
1299    flags_(flags)
1300{
1301  this->input_shndxes_.swap(*input_shndxes);
1302}
1303
1304// Write out the section group, which means translating the section
1305// indexes to apply to the output file.
1306
1307template<int size, bool big_endian>
1308void
1309Output_data_group<size, big_endian>::do_write(Output_file* of)
1310{
1311  const off_t off = this->offset();
1312  const section_size_type oview_size =
1313    convert_to_section_size_type(this->data_size());
1314  unsigned char* const oview = of->get_output_view(off, oview_size);
1315
1316  elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1317  elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1318  ++contents;
1319
1320  for (std::vector<unsigned int>::const_iterator p =
1321	 this->input_shndxes_.begin();
1322       p != this->input_shndxes_.end();
1323       ++p, ++contents)
1324    {
1325      Output_section* os = this->relobj_->output_section(*p);
1326
1327      unsigned int output_shndx;
1328      if (os != NULL)
1329	output_shndx = os->out_shndx();
1330      else
1331	{
1332	  this->relobj_->error(_("section group retained but "
1333				 "group element discarded"));
1334	  output_shndx = 0;
1335	}
1336
1337      elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1338    }
1339
1340  size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1341  gold_assert(wrote == oview_size);
1342
1343  of->write_output_view(off, oview_size, oview);
1344
1345  // We no longer need this information.
1346  this->input_shndxes_.clear();
1347}
1348
1349// Output_data_got::Got_entry methods.
1350
1351// Write out the entry.
1352
1353template<int got_size, bool big_endian>
1354void
1355Output_data_got<got_size, big_endian>::Got_entry::write(
1356    unsigned int got_indx,
1357    unsigned char* pov) const
1358{
1359  Valtype val = 0;
1360
1361  switch (this->local_sym_index_)
1362    {
1363    case GSYM_CODE:
1364      {
1365	// If the symbol is resolved locally, we need to write out the
1366	// link-time value, which will be relocated dynamically by a
1367	// RELATIVE relocation.
1368	Symbol* gsym = this->u_.gsym;
1369	if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1370	  val = parameters->target().plt_address_for_global(gsym);
1371	else
1372	  {
1373	    switch (parameters->size_and_endianness())
1374	      {
1375#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1376	      case Parameters::TARGET_32_LITTLE:
1377	      case Parameters::TARGET_32_BIG:
1378		{
1379		  // This cast is ugly.  We don't want to put a
1380		  // virtual method in Symbol, because we want Symbol
1381		  // to be as small as possible.
1382		  Sized_symbol<32>::Value_type v;
1383		  v = static_cast<Sized_symbol<32>*>(gsym)->value();
1384		  val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1385		}
1386		break;
1387#endif
1388#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1389	      case Parameters::TARGET_64_LITTLE:
1390	      case Parameters::TARGET_64_BIG:
1391		{
1392		  Sized_symbol<64>::Value_type v;
1393		  v = static_cast<Sized_symbol<64>*>(gsym)->value();
1394		  val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1395		}
1396		break;
1397#endif
1398	      default:
1399		gold_unreachable();
1400	      }
1401	    if (this->use_plt_or_tls_offset_
1402		&& gsym->type() == elfcpp::STT_TLS)
1403	      val += parameters->target().tls_offset_for_global(gsym,
1404								got_indx);
1405	  }
1406      }
1407      break;
1408
1409    case CONSTANT_CODE:
1410      val = this->u_.constant;
1411      break;
1412
1413    case RESERVED_CODE:
1414      // If we're doing an incremental update, don't touch this GOT entry.
1415      if (parameters->incremental_update())
1416	return;
1417      val = this->u_.constant;
1418      break;
1419
1420    default:
1421      {
1422	const Relobj* object = this->u_.object;
1423	const unsigned int lsi = this->local_sym_index_;
1424	bool is_tls = object->local_is_tls(lsi);
1425	if (this->use_plt_or_tls_offset_ && !is_tls)
1426	  val = parameters->target().plt_address_for_local(object, lsi);
1427	else
1428	  {
1429	    uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1430	    val = convert_types<Valtype, uint64_t>(lval);
1431	    if (this->use_plt_or_tls_offset_ && is_tls)
1432	      val += parameters->target().tls_offset_for_local(object, lsi,
1433							       got_indx);
1434	  }
1435      }
1436      break;
1437    }
1438
1439  elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1440}
1441
1442// Output_data_got methods.
1443
1444// Add an entry for a global symbol to the GOT.  This returns true if
1445// this is a new GOT entry, false if the symbol already had a GOT
1446// entry.
1447
1448template<int got_size, bool big_endian>
1449bool
1450Output_data_got<got_size, big_endian>::add_global(
1451    Symbol* gsym,
1452    unsigned int got_type)
1453{
1454  if (gsym->has_got_offset(got_type))
1455    return false;
1456
1457  unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1458  gsym->set_got_offset(got_type, got_offset);
1459  return true;
1460}
1461
1462// Like add_global, but use the PLT offset.
1463
1464template<int got_size, bool big_endian>
1465bool
1466Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1467						      unsigned int got_type)
1468{
1469  if (gsym->has_got_offset(got_type))
1470    return false;
1471
1472  unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1473  gsym->set_got_offset(got_type, got_offset);
1474  return true;
1475}
1476
1477// Add an entry for a global symbol to the GOT, and add a dynamic
1478// relocation of type R_TYPE for the GOT entry.
1479
1480template<int got_size, bool big_endian>
1481void
1482Output_data_got<got_size, big_endian>::add_global_with_rel(
1483    Symbol* gsym,
1484    unsigned int got_type,
1485    Output_data_reloc_generic* rel_dyn,
1486    unsigned int r_type)
1487{
1488  if (gsym->has_got_offset(got_type))
1489    return;
1490
1491  unsigned int got_offset = this->add_got_entry(Got_entry());
1492  gsym->set_got_offset(got_type, got_offset);
1493  rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1494}
1495
1496// Add a pair of entries for a global symbol to the GOT, and add
1497// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1498// If R_TYPE_2 == 0, add the second entry with no relocation.
1499template<int got_size, bool big_endian>
1500void
1501Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1502    Symbol* gsym,
1503    unsigned int got_type,
1504    Output_data_reloc_generic* rel_dyn,
1505    unsigned int r_type_1,
1506    unsigned int r_type_2)
1507{
1508  if (gsym->has_got_offset(got_type))
1509    return;
1510
1511  unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1512  gsym->set_got_offset(got_type, got_offset);
1513  rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1514
1515  if (r_type_2 != 0)
1516    rel_dyn->add_global_generic(gsym, r_type_2, this,
1517				got_offset + got_size / 8, 0);
1518}
1519
1520// Add an entry for a local symbol to the GOT.  This returns true if
1521// this is a new GOT entry, false if the symbol already has a GOT
1522// entry.
1523
1524template<int got_size, bool big_endian>
1525bool
1526Output_data_got<got_size, big_endian>::add_local(
1527    Relobj* object,
1528    unsigned int symndx,
1529    unsigned int got_type)
1530{
1531  if (object->local_has_got_offset(symndx, got_type))
1532    return false;
1533
1534  unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1535							  false));
1536  object->set_local_got_offset(symndx, got_type, got_offset);
1537  return true;
1538}
1539
1540// Add an entry for a local symbol plus ADDEND to the GOT.  This returns
1541// true if this is a new GOT entry, false if the symbol already has a GOT
1542// entry.
1543
1544template<int got_size, bool big_endian>
1545bool
1546Output_data_got<got_size, big_endian>::add_local(
1547    Relobj* object,
1548    unsigned int symndx,
1549    unsigned int got_type,
1550    uint64_t addend)
1551{
1552  if (object->local_has_got_offset(symndx, got_type, addend))
1553    return false;
1554
1555  unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1556							  false, addend));
1557  object->set_local_got_offset(symndx, got_type, got_offset, addend);
1558  return true;
1559}
1560
1561// Like add_local, but use the PLT offset.
1562
1563template<int got_size, bool big_endian>
1564bool
1565Output_data_got<got_size, big_endian>::add_local_plt(
1566    Relobj* object,
1567    unsigned int symndx,
1568    unsigned int got_type)
1569{
1570  if (object->local_has_got_offset(symndx, got_type))
1571    return false;
1572
1573  unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1574							  true));
1575  object->set_local_got_offset(symndx, got_type, got_offset);
1576  return true;
1577}
1578
1579// Add an entry for a local symbol to the GOT, and add a dynamic
1580// relocation of type R_TYPE for the GOT entry.
1581
1582template<int got_size, bool big_endian>
1583void
1584Output_data_got<got_size, big_endian>::add_local_with_rel(
1585    Relobj* object,
1586    unsigned int symndx,
1587    unsigned int got_type,
1588    Output_data_reloc_generic* rel_dyn,
1589    unsigned int r_type)
1590{
1591  if (object->local_has_got_offset(symndx, got_type))
1592    return;
1593
1594  unsigned int got_offset = this->add_got_entry(Got_entry());
1595  object->set_local_got_offset(symndx, got_type, got_offset);
1596  rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1597}
1598
1599// Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1600// relocation of type R_TYPE for the GOT entry.
1601
1602template<int got_size, bool big_endian>
1603void
1604Output_data_got<got_size, big_endian>::add_local_with_rel(
1605    Relobj* object,
1606    unsigned int symndx,
1607    unsigned int got_type,
1608    Output_data_reloc_generic* rel_dyn,
1609    unsigned int r_type, uint64_t addend)
1610{
1611  if (object->local_has_got_offset(symndx, got_type, addend))
1612    return;
1613
1614  unsigned int got_offset = this->add_got_entry(Got_entry());
1615  object->set_local_got_offset(symndx, got_type, got_offset, addend);
1616  rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1617                             addend);
1618}
1619
1620// Add a pair of entries for a local symbol to the GOT, and add
1621// a dynamic relocation of type R_TYPE using the section symbol of
1622// the output section to which input section SHNDX maps, on the first.
1623// The first got entry will have a value of zero, the second the
1624// value of the local symbol.
1625template<int got_size, bool big_endian>
1626void
1627Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1628    Relobj* object,
1629    unsigned int symndx,
1630    unsigned int shndx,
1631    unsigned int got_type,
1632    Output_data_reloc_generic* rel_dyn,
1633    unsigned int r_type)
1634{
1635  if (object->local_has_got_offset(symndx, got_type))
1636    return;
1637
1638  unsigned int got_offset =
1639      this->add_got_entry_pair(Got_entry(),
1640			       Got_entry(object, symndx, false));
1641  object->set_local_got_offset(symndx, got_type, got_offset);
1642  Output_section* os = object->output_section(shndx);
1643  rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1644}
1645
1646// Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1647// a dynamic relocation of type R_TYPE using the section symbol of
1648// the output section to which input section SHNDX maps, on the first.
1649// The first got entry will have a value of zero, the second the
1650// value of the local symbol.
1651template<int got_size, bool big_endian>
1652void
1653Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1654    Relobj* object,
1655    unsigned int symndx,
1656    unsigned int shndx,
1657    unsigned int got_type,
1658    Output_data_reloc_generic* rel_dyn,
1659    unsigned int r_type, uint64_t addend)
1660{
1661  if (object->local_has_got_offset(symndx, got_type, addend))
1662    return;
1663
1664  unsigned int got_offset =
1665      this->add_got_entry_pair(Got_entry(),
1666			       Got_entry(object, symndx, false, addend));
1667  object->set_local_got_offset(symndx, got_type, got_offset, addend);
1668  Output_section* os = object->output_section(shndx);
1669  rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1670}
1671
1672// Add a pair of entries for a local symbol to the GOT, and add
1673// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1674// The first got entry will have a value of zero, the second the
1675// value of the local symbol offset by Target::tls_offset_for_local.
1676template<int got_size, bool big_endian>
1677void
1678Output_data_got<got_size, big_endian>::add_local_tls_pair(
1679    Relobj* object,
1680    unsigned int symndx,
1681    unsigned int got_type,
1682    Output_data_reloc_generic* rel_dyn,
1683    unsigned int r_type)
1684{
1685  if (object->local_has_got_offset(symndx, got_type))
1686    return;
1687
1688  unsigned int got_offset
1689    = this->add_got_entry_pair(Got_entry(),
1690			       Got_entry(object, symndx, true));
1691  object->set_local_got_offset(symndx, got_type, got_offset);
1692  rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1693}
1694
1695// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1696
1697template<int got_size, bool big_endian>
1698void
1699Output_data_got<got_size, big_endian>::reserve_local(
1700    unsigned int i,
1701    Relobj* object,
1702    unsigned int sym_index,
1703    unsigned int got_type)
1704{
1705  this->do_reserve_slot(i);
1706  object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1707}
1708
1709// Reserve a slot in the GOT for a global symbol.
1710
1711template<int got_size, bool big_endian>
1712void
1713Output_data_got<got_size, big_endian>::reserve_global(
1714    unsigned int i,
1715    Symbol* gsym,
1716    unsigned int got_type)
1717{
1718  this->do_reserve_slot(i);
1719  gsym->set_got_offset(got_type, this->got_offset(i));
1720}
1721
1722// Write out the GOT.
1723
1724template<int got_size, bool big_endian>
1725void
1726Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1727{
1728  const int add = got_size / 8;
1729
1730  const off_t off = this->offset();
1731  const off_t oview_size = this->data_size();
1732  unsigned char* const oview = of->get_output_view(off, oview_size);
1733
1734  unsigned char* pov = oview;
1735  for (unsigned int i = 0; i < this->entries_.size(); ++i)
1736    {
1737      this->entries_[i].write(i, pov);
1738      pov += add;
1739    }
1740
1741  gold_assert(pov - oview == oview_size);
1742
1743  of->write_output_view(off, oview_size, oview);
1744
1745  // We no longer need the GOT entries.
1746  this->entries_.clear();
1747}
1748
1749// Create a new GOT entry and return its offset.
1750
1751template<int got_size, bool big_endian>
1752unsigned int
1753Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1754{
1755  if (!this->is_data_size_valid())
1756    {
1757      this->entries_.push_back(got_entry);
1758      this->set_got_size();
1759      return this->last_got_offset();
1760    }
1761  else
1762    {
1763      // For an incremental update, find an available slot.
1764      off_t got_offset = this->free_list_.allocate(got_size / 8,
1765						   got_size / 8, 0);
1766      if (got_offset == -1)
1767	gold_fallback(_("out of patch space (GOT);"
1768			" relink with --incremental-full"));
1769      unsigned int got_index = got_offset / (got_size / 8);
1770      gold_assert(got_index < this->entries_.size());
1771      this->entries_[got_index] = got_entry;
1772      return static_cast<unsigned int>(got_offset);
1773    }
1774}
1775
1776// Create a pair of new GOT entries and return the offset of the first.
1777
1778template<int got_size, bool big_endian>
1779unsigned int
1780Output_data_got<got_size, big_endian>::add_got_entry_pair(
1781    Got_entry got_entry_1,
1782    Got_entry got_entry_2)
1783{
1784  if (!this->is_data_size_valid())
1785    {
1786      unsigned int got_offset;
1787      this->entries_.push_back(got_entry_1);
1788      got_offset = this->last_got_offset();
1789      this->entries_.push_back(got_entry_2);
1790      this->set_got_size();
1791      return got_offset;
1792    }
1793  else
1794    {
1795      // For an incremental update, find an available pair of slots.
1796      off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1797						   got_size / 8, 0);
1798      if (got_offset == -1)
1799	gold_fallback(_("out of patch space (GOT);"
1800			" relink with --incremental-full"));
1801      unsigned int got_index = got_offset / (got_size / 8);
1802      gold_assert(got_index < this->entries_.size());
1803      this->entries_[got_index] = got_entry_1;
1804      this->entries_[got_index + 1] = got_entry_2;
1805      return static_cast<unsigned int>(got_offset);
1806    }
1807}
1808
1809// Replace GOT entry I with a new value.
1810
1811template<int got_size, bool big_endian>
1812void
1813Output_data_got<got_size, big_endian>::replace_got_entry(
1814    unsigned int i,
1815    Got_entry got_entry)
1816{
1817  gold_assert(i < this->entries_.size());
1818  this->entries_[i] = got_entry;
1819}
1820
1821// Output_data_dynamic::Dynamic_entry methods.
1822
1823// Write out the entry.
1824
1825template<int size, bool big_endian>
1826void
1827Output_data_dynamic::Dynamic_entry::write(
1828    unsigned char* pov,
1829    const Stringpool* pool) const
1830{
1831  typename elfcpp::Elf_types<size>::Elf_WXword val;
1832  switch (this->offset_)
1833    {
1834    case DYNAMIC_NUMBER:
1835      val = this->u_.val;
1836      break;
1837
1838    case DYNAMIC_SECTION_SIZE:
1839      val = this->u_.od->data_size();
1840      if (this->od2 != NULL)
1841	val += this->od2->data_size();
1842      break;
1843
1844    case DYNAMIC_SYMBOL:
1845      {
1846	const Sized_symbol<size>* s =
1847	  static_cast<const Sized_symbol<size>*>(this->u_.sym);
1848	val = s->value();
1849      }
1850      break;
1851
1852    case DYNAMIC_STRING:
1853      val = pool->get_offset(this->u_.str);
1854      break;
1855
1856    case DYNAMIC_CUSTOM:
1857      val = parameters->target().dynamic_tag_custom_value(this->tag_);
1858      break;
1859
1860    default:
1861      val = this->u_.od->address() + this->offset_;
1862      break;
1863    }
1864
1865  elfcpp::Dyn_write<size, big_endian> dw(pov);
1866  dw.put_d_tag(this->tag_);
1867  dw.put_d_val(val);
1868}
1869
1870// Output_data_dynamic methods.
1871
1872// Adjust the output section to set the entry size.
1873
1874void
1875Output_data_dynamic::do_adjust_output_section(Output_section* os)
1876{
1877  if (parameters->target().get_size() == 32)
1878    os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1879  else if (parameters->target().get_size() == 64)
1880    os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1881  else
1882    gold_unreachable();
1883}
1884
1885// Get a dynamic entry offset.
1886
1887unsigned int
1888Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1889{
1890  int dyn_size;
1891
1892  if (parameters->target().get_size() == 32)
1893    dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1894  else if (parameters->target().get_size() == 64)
1895    dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1896  else
1897    gold_unreachable();
1898
1899  for (size_t i = 0; i < entries_.size(); ++i)
1900    if (entries_[i].tag() == tag)
1901      return i * dyn_size;
1902
1903  return -1U;
1904}
1905
1906// Set the final data size.
1907
1908void
1909Output_data_dynamic::set_final_data_size()
1910{
1911  // Add the terminating entry if it hasn't been added.
1912  // Because of relaxation, we can run this multiple times.
1913  if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1914    {
1915      int extra = parameters->options().spare_dynamic_tags();
1916      for (int i = 0; i < extra; ++i)
1917	this->add_constant(elfcpp::DT_NULL, 0);
1918      this->add_constant(elfcpp::DT_NULL, 0);
1919    }
1920
1921  int dyn_size;
1922  if (parameters->target().get_size() == 32)
1923    dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1924  else if (parameters->target().get_size() == 64)
1925    dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1926  else
1927    gold_unreachable();
1928  this->set_data_size(this->entries_.size() * dyn_size);
1929}
1930
1931// Write out the dynamic entries.
1932
1933void
1934Output_data_dynamic::do_write(Output_file* of)
1935{
1936  switch (parameters->size_and_endianness())
1937    {
1938#ifdef HAVE_TARGET_32_LITTLE
1939    case Parameters::TARGET_32_LITTLE:
1940      this->sized_write<32, false>(of);
1941      break;
1942#endif
1943#ifdef HAVE_TARGET_32_BIG
1944    case Parameters::TARGET_32_BIG:
1945      this->sized_write<32, true>(of);
1946      break;
1947#endif
1948#ifdef HAVE_TARGET_64_LITTLE
1949    case Parameters::TARGET_64_LITTLE:
1950      this->sized_write<64, false>(of);
1951      break;
1952#endif
1953#ifdef HAVE_TARGET_64_BIG
1954    case Parameters::TARGET_64_BIG:
1955      this->sized_write<64, true>(of);
1956      break;
1957#endif
1958    default:
1959      gold_unreachable();
1960    }
1961}
1962
1963template<int size, bool big_endian>
1964void
1965Output_data_dynamic::sized_write(Output_file* of)
1966{
1967  const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1968
1969  const off_t offset = this->offset();
1970  const off_t oview_size = this->data_size();
1971  unsigned char* const oview = of->get_output_view(offset, oview_size);
1972
1973  unsigned char* pov = oview;
1974  for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1975       p != this->entries_.end();
1976       ++p)
1977    {
1978      p->write<size, big_endian>(pov, this->pool_);
1979      pov += dyn_size;
1980    }
1981
1982  gold_assert(pov - oview == oview_size);
1983
1984  of->write_output_view(offset, oview_size, oview);
1985
1986  // We no longer need the dynamic entries.
1987  this->entries_.clear();
1988}
1989
1990// Class Output_symtab_xindex.
1991
1992void
1993Output_symtab_xindex::do_write(Output_file* of)
1994{
1995  const off_t offset = this->offset();
1996  const off_t oview_size = this->data_size();
1997  unsigned char* const oview = of->get_output_view(offset, oview_size);
1998
1999  memset(oview, 0, oview_size);
2000
2001  if (parameters->target().is_big_endian())
2002    this->endian_do_write<true>(oview);
2003  else
2004    this->endian_do_write<false>(oview);
2005
2006  of->write_output_view(offset, oview_size, oview);
2007
2008  // We no longer need the data.
2009  this->entries_.clear();
2010}
2011
2012template<bool big_endian>
2013void
2014Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2015{
2016  for (Xindex_entries::const_iterator p = this->entries_.begin();
2017       p != this->entries_.end();
2018       ++p)
2019    {
2020      unsigned int symndx = p->first;
2021      gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2022      elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2023    }
2024}
2025
2026// Output_fill_debug_info methods.
2027
2028// Return the minimum size needed for a dummy compilation unit header.
2029
2030size_t
2031Output_fill_debug_info::do_minimum_hole_size() const
2032{
2033  // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2034  // address_size.
2035  const size_t len = 4 + 2 + 4 + 1;
2036  // For type units, add type_signature, type_offset.
2037  if (this->is_debug_types_)
2038    return len + 8 + 4;
2039  return len;
2040}
2041
2042// Write a dummy compilation unit header to fill a hole in the
2043// .debug_info or .debug_types section.
2044
2045void
2046Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2047{
2048  gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2049	     static_cast<long>(off), static_cast<long>(len));
2050
2051  gold_assert(len >= this->do_minimum_hole_size());
2052
2053  unsigned char* const oview = of->get_output_view(off, len);
2054  unsigned char* pov = oview;
2055
2056  // Write header fields: unit_length, version, debug_abbrev_offset,
2057  // address_size.
2058  if (this->is_big_endian())
2059    {
2060      elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2061      elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2062      elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2063    }
2064  else
2065    {
2066      elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2067      elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2068      elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2069    }
2070  pov += 4 + 2 + 4;
2071  *pov++ = 4;
2072
2073  // For type units, the additional header fields -- type_signature,
2074  // type_offset -- can be filled with zeroes.
2075
2076  // Fill the remainder of the free space with zeroes.  The first
2077  // zero should tell the consumer there are no DIEs to read in this
2078  // compilation unit.
2079  if (pov < oview + len)
2080    memset(pov, 0, oview + len - pov);
2081
2082  of->write_output_view(off, len, oview);
2083}
2084
2085// Output_fill_debug_line methods.
2086
2087// Return the minimum size needed for a dummy line number program header.
2088
2089size_t
2090Output_fill_debug_line::do_minimum_hole_size() const
2091{
2092  // Line number program header fields: unit_length, version, header_length,
2093  // minimum_instruction_length, default_is_stmt, line_base, line_range,
2094  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2095  const size_t len = 4 + 2 + 4 + this->header_length;
2096  return len;
2097}
2098
2099// Write a dummy line number program header to fill a hole in the
2100// .debug_line section.
2101
2102void
2103Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2104{
2105  gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2106	     static_cast<long>(off), static_cast<long>(len));
2107
2108  gold_assert(len >= this->do_minimum_hole_size());
2109
2110  unsigned char* const oview = of->get_output_view(off, len);
2111  unsigned char* pov = oview;
2112
2113  // Write header fields: unit_length, version, header_length,
2114  // minimum_instruction_length, default_is_stmt, line_base, line_range,
2115  // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2116  // We set the header_length field to cover the entire hole, so the
2117  // line number program is empty.
2118  if (this->is_big_endian())
2119    {
2120      elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2121      elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2122      elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2123    }
2124  else
2125    {
2126      elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2127      elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2128      elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2129    }
2130  pov += 4 + 2 + 4;
2131  *pov++ = 1;	// minimum_instruction_length
2132  *pov++ = 0;	// default_is_stmt
2133  *pov++ = 0;	// line_base
2134  *pov++ = 5;	// line_range
2135  *pov++ = 13;	// opcode_base
2136  *pov++ = 0;	// standard_opcode_lengths[1]
2137  *pov++ = 1;	// standard_opcode_lengths[2]
2138  *pov++ = 1;	// standard_opcode_lengths[3]
2139  *pov++ = 1;	// standard_opcode_lengths[4]
2140  *pov++ = 1;	// standard_opcode_lengths[5]
2141  *pov++ = 0;	// standard_opcode_lengths[6]
2142  *pov++ = 0;	// standard_opcode_lengths[7]
2143  *pov++ = 0;	// standard_opcode_lengths[8]
2144  *pov++ = 1;	// standard_opcode_lengths[9]
2145  *pov++ = 0;	// standard_opcode_lengths[10]
2146  *pov++ = 0;	// standard_opcode_lengths[11]
2147  *pov++ = 1;	// standard_opcode_lengths[12]
2148  *pov++ = 0;	// include_directories (empty)
2149  *pov++ = 0;	// filenames (empty)
2150
2151  // Some consumers don't check the header_length field, and simply
2152  // start reading the line number program immediately following the
2153  // header.  For those consumers, we fill the remainder of the free
2154  // space with DW_LNS_set_basic_block opcodes.  These are effectively
2155  // no-ops: the resulting line table program will not create any rows.
2156  if (pov < oview + len)
2157    memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2158
2159  of->write_output_view(off, len, oview);
2160}
2161
2162// Output_section::Input_section methods.
2163
2164// Return the current data size.  For an input section we store the size here.
2165// For an Output_section_data, we have to ask it for the size.
2166
2167off_t
2168Output_section::Input_section::current_data_size() const
2169{
2170  if (this->is_input_section())
2171    return this->u1_.data_size;
2172  else
2173    {
2174      this->u2_.posd->pre_finalize_data_size();
2175      return this->u2_.posd->current_data_size();
2176    }
2177}
2178
2179// Return the data size.  For an input section we store the size here.
2180// For an Output_section_data, we have to ask it for the size.
2181
2182off_t
2183Output_section::Input_section::data_size() const
2184{
2185  if (this->is_input_section())
2186    return this->u1_.data_size;
2187  else
2188    return this->u2_.posd->data_size();
2189}
2190
2191// Return the object for an input section.
2192
2193Relobj*
2194Output_section::Input_section::relobj() const
2195{
2196  if (this->is_input_section())
2197    return this->u2_.object;
2198  else if (this->is_merge_section())
2199    {
2200      gold_assert(this->u2_.pomb->first_relobj() != NULL);
2201      return this->u2_.pomb->first_relobj();
2202    }
2203  else if (this->is_relaxed_input_section())
2204    return this->u2_.poris->relobj();
2205  else
2206    gold_unreachable();
2207}
2208
2209// Return the input section index for an input section.
2210
2211unsigned int
2212Output_section::Input_section::shndx() const
2213{
2214  if (this->is_input_section())
2215    return this->shndx_;
2216  else if (this->is_merge_section())
2217    {
2218      gold_assert(this->u2_.pomb->first_relobj() != NULL);
2219      return this->u2_.pomb->first_shndx();
2220    }
2221  else if (this->is_relaxed_input_section())
2222    return this->u2_.poris->shndx();
2223  else
2224    gold_unreachable();
2225}
2226
2227// Set the address and file offset.
2228
2229void
2230Output_section::Input_section::set_address_and_file_offset(
2231    uint64_t address,
2232    off_t file_offset,
2233    off_t section_file_offset)
2234{
2235  if (this->is_input_section())
2236    this->u2_.object->set_section_offset(this->shndx_,
2237					 file_offset - section_file_offset);
2238  else
2239    this->u2_.posd->set_address_and_file_offset(address, file_offset);
2240}
2241
2242// Reset the address and file offset.
2243
2244void
2245Output_section::Input_section::reset_address_and_file_offset()
2246{
2247  if (!this->is_input_section())
2248    this->u2_.posd->reset_address_and_file_offset();
2249}
2250
2251// Finalize the data size.
2252
2253void
2254Output_section::Input_section::finalize_data_size()
2255{
2256  if (!this->is_input_section())
2257    this->u2_.posd->finalize_data_size();
2258}
2259
2260// Try to turn an input offset into an output offset.  We want to
2261// return the output offset relative to the start of this
2262// Input_section in the output section.
2263
2264inline bool
2265Output_section::Input_section::output_offset(
2266    const Relobj* object,
2267    unsigned int shndx,
2268    section_offset_type offset,
2269    section_offset_type* poutput) const
2270{
2271  if (!this->is_input_section())
2272    return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2273  else
2274    {
2275      if (this->shndx_ != shndx || this->u2_.object != object)
2276	return false;
2277      *poutput = offset;
2278      return true;
2279    }
2280}
2281
2282// Write out the data.  We don't have to do anything for an input
2283// section--they are handled via Object::relocate--but this is where
2284// we write out the data for an Output_section_data.
2285
2286void
2287Output_section::Input_section::write(Output_file* of)
2288{
2289  if (!this->is_input_section())
2290    this->u2_.posd->write(of);
2291}
2292
2293// Write the data to a buffer.  As for write(), we don't have to do
2294// anything for an input section.
2295
2296void
2297Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2298{
2299  if (!this->is_input_section())
2300    this->u2_.posd->write_to_buffer(buffer);
2301}
2302
2303// Print to a map file.
2304
2305void
2306Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2307{
2308  switch (this->shndx_)
2309    {
2310    case OUTPUT_SECTION_CODE:
2311    case MERGE_DATA_SECTION_CODE:
2312    case MERGE_STRING_SECTION_CODE:
2313      this->u2_.posd->print_to_mapfile(mapfile);
2314      break;
2315
2316    case RELAXED_INPUT_SECTION_CODE:
2317      {
2318	Output_relaxed_input_section* relaxed_section =
2319	  this->relaxed_input_section();
2320	mapfile->print_input_section(relaxed_section->relobj(),
2321				     relaxed_section->shndx());
2322      }
2323      break;
2324    default:
2325      mapfile->print_input_section(this->u2_.object, this->shndx_);
2326      break;
2327    }
2328}
2329
2330// Output_section methods.
2331
2332// Construct an Output_section.  NAME will point into a Stringpool.
2333
2334Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2335			       elfcpp::Elf_Xword flags)
2336  : name_(name),
2337    addralign_(0),
2338    entsize_(0),
2339    load_address_(0),
2340    link_section_(NULL),
2341    link_(0),
2342    info_section_(NULL),
2343    info_symndx_(NULL),
2344    info_(0),
2345    type_(type),
2346    flags_(flags),
2347    order_(ORDER_INVALID),
2348    out_shndx_(-1U),
2349    symtab_index_(0),
2350    dynsym_index_(0),
2351    input_sections_(),
2352    first_input_offset_(0),
2353    fills_(),
2354    postprocessing_buffer_(NULL),
2355    needs_symtab_index_(false),
2356    needs_dynsym_index_(false),
2357    should_link_to_symtab_(false),
2358    should_link_to_dynsym_(false),
2359    after_input_sections_(false),
2360    requires_postprocessing_(false),
2361    found_in_sections_clause_(false),
2362    has_load_address_(false),
2363    info_uses_section_index_(false),
2364    input_section_order_specified_(false),
2365    may_sort_attached_input_sections_(false),
2366    must_sort_attached_input_sections_(false),
2367    attached_input_sections_are_sorted_(false),
2368    is_relro_(false),
2369    is_small_section_(false),
2370    is_large_section_(false),
2371    generate_code_fills_at_write_(false),
2372    is_entsize_zero_(false),
2373    section_offsets_need_adjustment_(false),
2374    is_noload_(false),
2375    always_keeps_input_sections_(false),
2376    has_fixed_layout_(false),
2377    is_patch_space_allowed_(false),
2378    is_unique_segment_(false),
2379    tls_offset_(0),
2380    extra_segment_flags_(0),
2381    segment_alignment_(0),
2382    checkpoint_(NULL),
2383    lookup_maps_(new Output_section_lookup_maps),
2384    free_list_(),
2385    free_space_fill_(NULL),
2386    patch_space_(0)
2387{
2388  // An unallocated section has no address.  Forcing this means that
2389  // we don't need special treatment for symbols defined in debug
2390  // sections.
2391  if ((flags & elfcpp::SHF_ALLOC) == 0)
2392    this->set_address(0);
2393}
2394
2395Output_section::~Output_section()
2396{
2397  delete this->checkpoint_;
2398}
2399
2400// Set the entry size.
2401
2402void
2403Output_section::set_entsize(uint64_t v)
2404{
2405  if (this->is_entsize_zero_)
2406    ;
2407  else if (this->entsize_ == 0)
2408    this->entsize_ = v;
2409  else if (this->entsize_ != v)
2410    {
2411      this->entsize_ = 0;
2412      this->is_entsize_zero_ = 1;
2413    }
2414}
2415
2416// Add the input section SHNDX, with header SHDR, named SECNAME, in
2417// OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2418// relocation section which applies to this section, or 0 if none, or
2419// -1U if more than one.  Return the offset of the input section
2420// within the output section.  Return -1 if the input section will
2421// receive special handling.  In the normal case we don't always keep
2422// track of input sections for an Output_section.  Instead, each
2423// Object keeps track of the Output_section for each of its input
2424// sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2425// track of input sections here; this is used when SECTIONS appears in
2426// a linker script.
2427
2428template<int size, bool big_endian>
2429off_t
2430Output_section::add_input_section(Layout* layout,
2431				  Sized_relobj_file<size, big_endian>* object,
2432				  unsigned int shndx,
2433				  const char* secname,
2434				  const elfcpp::Shdr<size, big_endian>& shdr,
2435				  unsigned int reloc_shndx,
2436				  bool have_sections_script)
2437{
2438  elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2439  if ((addralign & (addralign - 1)) != 0)
2440    {
2441      object->error(_("invalid alignment %lu for section \"%s\""),
2442		    static_cast<unsigned long>(addralign), secname);
2443      addralign = 1;
2444    }
2445
2446  if (addralign > this->addralign_)
2447    this->addralign_ = addralign;
2448
2449  typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2450  uint64_t entsize = shdr.get_sh_entsize();
2451
2452  // .debug_str is a mergeable string section, but is not always so
2453  // marked by compilers.  Mark manually here so we can optimize.
2454  if (strcmp(secname, ".debug_str") == 0)
2455    {
2456      sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2457      entsize = 1;
2458    }
2459
2460  this->update_flags_for_input_section(sh_flags);
2461  this->set_entsize(entsize);
2462
2463  // If this is a SHF_MERGE section, we pass all the input sections to
2464  // a Output_data_merge.  We don't try to handle relocations for such
2465  // a section.  We don't try to handle empty merge sections--they
2466  // mess up the mappings, and are useless anyhow.
2467  // FIXME: Need to handle merge sections during incremental update.
2468  if ((sh_flags & elfcpp::SHF_MERGE) != 0
2469      && reloc_shndx == 0
2470      && shdr.get_sh_size() > 0
2471      && !parameters->incremental())
2472    {
2473      // Keep information about merged input sections for rebuilding fast
2474      // lookup maps if we have sections-script or we do relaxation.
2475      bool keeps_input_sections = (this->always_keeps_input_sections_
2476				   || have_sections_script
2477				   || parameters->target().may_relax());
2478
2479      if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2480					addralign, keeps_input_sections))
2481	{
2482	  // Tell the relocation routines that they need to call the
2483	  // output_offset method to determine the final address.
2484	  return -1;
2485	}
2486    }
2487
2488  section_size_type input_section_size = shdr.get_sh_size();
2489  section_size_type uncompressed_size;
2490  if (object->section_is_compressed(shndx, &uncompressed_size))
2491    input_section_size = uncompressed_size;
2492
2493  off_t offset_in_section;
2494
2495  if (this->has_fixed_layout())
2496    {
2497      // For incremental updates, find a chunk of unused space in the section.
2498      offset_in_section = this->free_list_.allocate(input_section_size,
2499						    addralign, 0);
2500      if (offset_in_section == -1)
2501	gold_fallback(_("out of patch space in section %s; "
2502			"relink with --incremental-full"),
2503		      this->name());
2504      return offset_in_section;
2505    }
2506
2507  offset_in_section = this->current_data_size_for_child();
2508  off_t aligned_offset_in_section = align_address(offset_in_section,
2509						  addralign);
2510  this->set_current_data_size_for_child(aligned_offset_in_section
2511					+ input_section_size);
2512
2513  // Determine if we want to delay code-fill generation until the output
2514  // section is written.  When the target is relaxing, we want to delay fill
2515  // generating to avoid adjusting them during relaxation.  Also, if we are
2516  // sorting input sections we must delay fill generation.
2517  if (!this->generate_code_fills_at_write_
2518      && !have_sections_script
2519      && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2520      && parameters->target().has_code_fill()
2521      && (parameters->target().may_relax()
2522	  || layout->is_section_ordering_specified()))
2523    {
2524      gold_assert(this->fills_.empty());
2525      this->generate_code_fills_at_write_ = true;
2526    }
2527
2528  if (aligned_offset_in_section > offset_in_section
2529      && !this->generate_code_fills_at_write_
2530      && !have_sections_script
2531      && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2532      && parameters->target().has_code_fill())
2533    {
2534      // We need to add some fill data.  Using fill_list_ when
2535      // possible is an optimization, since we will often have fill
2536      // sections without input sections.
2537      off_t fill_len = aligned_offset_in_section - offset_in_section;
2538      if (this->input_sections_.empty())
2539	this->fills_.push_back(Fill(offset_in_section, fill_len));
2540      else
2541	{
2542	  std::string fill_data(parameters->target().code_fill(fill_len));
2543	  Output_data_const* odc = new Output_data_const(fill_data, 1);
2544	  this->input_sections_.push_back(Input_section(odc));
2545	}
2546    }
2547
2548  // We need to keep track of this section if we are already keeping
2549  // track of sections, or if we are relaxing.  Also, if this is a
2550  // section which requires sorting, or which may require sorting in
2551  // the future, we keep track of the sections.  If the
2552  // --section-ordering-file option is used to specify the order of
2553  // sections, we need to keep track of sections.
2554  if (this->always_keeps_input_sections_
2555      || have_sections_script
2556      || !this->input_sections_.empty()
2557      || this->may_sort_attached_input_sections()
2558      || this->must_sort_attached_input_sections()
2559      || parameters->options().user_set_Map()
2560      || parameters->target().may_relax()
2561      || layout->is_section_ordering_specified())
2562    {
2563      Input_section isecn(object, shndx, input_section_size, addralign);
2564      /* If section ordering is requested by specifying a ordering file,
2565	 using --section-ordering-file, match the section name with
2566	 a pattern.  */
2567      if (parameters->options().section_ordering_file())
2568	{
2569	  unsigned int section_order_index =
2570	    layout->find_section_order_index(std::string(secname));
2571	  if (section_order_index != 0)
2572	    {
2573	      isecn.set_section_order_index(section_order_index);
2574	      this->set_input_section_order_specified();
2575	    }
2576	}
2577      this->input_sections_.push_back(isecn);
2578    }
2579
2580  return aligned_offset_in_section;
2581}
2582
2583// Add arbitrary data to an output section.
2584
2585void
2586Output_section::add_output_section_data(Output_section_data* posd)
2587{
2588  Input_section inp(posd);
2589  this->add_output_section_data(&inp);
2590
2591  if (posd->is_data_size_valid())
2592    {
2593      off_t offset_in_section;
2594      if (this->has_fixed_layout())
2595	{
2596	  // For incremental updates, find a chunk of unused space.
2597	  offset_in_section = this->free_list_.allocate(posd->data_size(),
2598							posd->addralign(), 0);
2599	  if (offset_in_section == -1)
2600	    gold_fallback(_("out of patch space in section %s; "
2601			    "relink with --incremental-full"),
2602			  this->name());
2603	  // Finalize the address and offset now.
2604	  uint64_t addr = this->address();
2605	  off_t offset = this->offset();
2606	  posd->set_address_and_file_offset(addr + offset_in_section,
2607					    offset + offset_in_section);
2608	}
2609      else
2610	{
2611	  offset_in_section = this->current_data_size_for_child();
2612	  off_t aligned_offset_in_section = align_address(offset_in_section,
2613							  posd->addralign());
2614	  this->set_current_data_size_for_child(aligned_offset_in_section
2615						+ posd->data_size());
2616	}
2617    }
2618  else if (this->has_fixed_layout())
2619    {
2620      // For incremental updates, arrange for the data to have a fixed layout.
2621      // This will mean that additions to the data must be allocated from
2622      // free space within the containing output section.
2623      uint64_t addr = this->address();
2624      posd->set_address(addr);
2625      posd->set_file_offset(0);
2626      // FIXME: This should eventually be unreachable.
2627      // gold_unreachable();
2628    }
2629}
2630
2631// Add a relaxed input section.
2632
2633void
2634Output_section::add_relaxed_input_section(Layout* layout,
2635					  Output_relaxed_input_section* poris,
2636					  const std::string& name)
2637{
2638  Input_section inp(poris);
2639
2640  // If the --section-ordering-file option is used to specify the order of
2641  // sections, we need to keep track of sections.
2642  if (layout->is_section_ordering_specified())
2643    {
2644      unsigned int section_order_index =
2645	layout->find_section_order_index(name);
2646      if (section_order_index != 0)
2647	{
2648	  inp.set_section_order_index(section_order_index);
2649	  this->set_input_section_order_specified();
2650	}
2651    }
2652
2653  this->add_output_section_data(&inp);
2654  if (this->lookup_maps_->is_valid())
2655    this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2656						  poris->shndx(), poris);
2657
2658  // For a relaxed section, we use the current data size.  Linker scripts
2659  // get all the input sections, including relaxed one from an output
2660  // section and add them back to the same output section to compute the
2661  // output section size.  If we do not account for sizes of relaxed input
2662  // sections, an output section would be incorrectly sized.
2663  off_t offset_in_section = this->current_data_size_for_child();
2664  off_t aligned_offset_in_section = align_address(offset_in_section,
2665						  poris->addralign());
2666  this->set_current_data_size_for_child(aligned_offset_in_section
2667					+ poris->current_data_size());
2668}
2669
2670// Add arbitrary data to an output section by Input_section.
2671
2672void
2673Output_section::add_output_section_data(Input_section* inp)
2674{
2675  if (this->input_sections_.empty())
2676    this->first_input_offset_ = this->current_data_size_for_child();
2677
2678  this->input_sections_.push_back(*inp);
2679
2680  uint64_t addralign = inp->addralign();
2681  if (addralign > this->addralign_)
2682    this->addralign_ = addralign;
2683
2684  inp->set_output_section(this);
2685}
2686
2687// Add a merge section to an output section.
2688
2689void
2690Output_section::add_output_merge_section(Output_section_data* posd,
2691					 bool is_string, uint64_t entsize)
2692{
2693  Input_section inp(posd, is_string, entsize);
2694  this->add_output_section_data(&inp);
2695}
2696
2697// Add an input section to a SHF_MERGE section.
2698
2699bool
2700Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2701					uint64_t flags, uint64_t entsize,
2702					uint64_t addralign,
2703					bool keeps_input_sections)
2704{
2705  // We cannot merge sections with entsize == 0.
2706  if (entsize == 0)
2707    return false;
2708
2709  bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2710
2711  // We cannot restore merged input section states.
2712  gold_assert(this->checkpoint_ == NULL);
2713
2714  // Look up merge sections by required properties.
2715  // Currently, we only invalidate the lookup maps in script processing
2716  // and relaxation.  We should not have done either when we reach here.
2717  // So we assume that the lookup maps are valid to simply code.
2718  gold_assert(this->lookup_maps_->is_valid());
2719  Merge_section_properties msp(is_string, entsize, addralign);
2720  Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2721  bool is_new = false;
2722  if (pomb != NULL)
2723    {
2724      gold_assert(pomb->is_string() == is_string
2725		  && pomb->entsize() == entsize
2726		  && pomb->addralign() == addralign);
2727    }
2728  else
2729    {
2730      // Create a new Output_merge_data or Output_merge_string_data.
2731      if (!is_string)
2732	pomb = new Output_merge_data(entsize, addralign);
2733      else
2734	{
2735	  switch (entsize)
2736	    {
2737	    case 1:
2738	      pomb = new Output_merge_string<char>(addralign);
2739	      break;
2740	    case 2:
2741	      pomb = new Output_merge_string<uint16_t>(addralign);
2742	      break;
2743	    case 4:
2744	      pomb = new Output_merge_string<uint32_t>(addralign);
2745	      break;
2746	    default:
2747	      return false;
2748	    }
2749	}
2750      // If we need to do script processing or relaxation, we need to keep
2751      // the original input sections to rebuild the fast lookup maps.
2752      if (keeps_input_sections)
2753	pomb->set_keeps_input_sections();
2754      is_new = true;
2755    }
2756
2757  if (pomb->add_input_section(object, shndx))
2758    {
2759      // Add new merge section to this output section and link merge
2760      // section properties to new merge section in map.
2761      if (is_new)
2762	{
2763	  this->add_output_merge_section(pomb, is_string, entsize);
2764	  this->lookup_maps_->add_merge_section(msp, pomb);
2765	}
2766
2767      return true;
2768    }
2769  else
2770    {
2771      // If add_input_section failed, delete new merge section to avoid
2772      // exporting empty merge sections in Output_section::get_input_section.
2773      if (is_new)
2774	delete pomb;
2775      return false;
2776    }
2777}
2778
2779// Build a relaxation map to speed up relaxation of existing input sections.
2780// Look up to the first LIMIT elements in INPUT_SECTIONS.
2781
2782void
2783Output_section::build_relaxation_map(
2784  const Input_section_list& input_sections,
2785  size_t limit,
2786  Relaxation_map* relaxation_map) const
2787{
2788  for (size_t i = 0; i < limit; ++i)
2789    {
2790      const Input_section& is(input_sections[i]);
2791      if (is.is_input_section() || is.is_relaxed_input_section())
2792	{
2793	  Section_id sid(is.relobj(), is.shndx());
2794	  (*relaxation_map)[sid] = i;
2795	}
2796    }
2797}
2798
2799// Convert regular input sections in INPUT_SECTIONS into relaxed input
2800// sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2801// indices of INPUT_SECTIONS.
2802
2803void
2804Output_section::convert_input_sections_in_list_to_relaxed_sections(
2805  const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2806  const Relaxation_map& map,
2807  Input_section_list* input_sections)
2808{
2809  for (size_t i = 0; i < relaxed_sections.size(); ++i)
2810    {
2811      Output_relaxed_input_section* poris = relaxed_sections[i];
2812      Section_id sid(poris->relobj(), poris->shndx());
2813      Relaxation_map::const_iterator p = map.find(sid);
2814      gold_assert(p != map.end());
2815      gold_assert((*input_sections)[p->second].is_input_section());
2816
2817      // Remember section order index of original input section
2818      // if it is set.  Copy it to the relaxed input section.
2819      unsigned int soi =
2820	(*input_sections)[p->second].section_order_index();
2821      (*input_sections)[p->second] = Input_section(poris);
2822      (*input_sections)[p->second].set_section_order_index(soi);
2823    }
2824}
2825
2826// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2827// is a vector of pointers to Output_relaxed_input_section or its derived
2828// classes.  The relaxed sections must correspond to existing input sections.
2829
2830void
2831Output_section::convert_input_sections_to_relaxed_sections(
2832  const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2833{
2834  gold_assert(parameters->target().may_relax());
2835
2836  // We want to make sure that restore_states does not undo the effect of
2837  // this.  If there is no checkpoint active, just search the current
2838  // input section list and replace the sections there.  If there is
2839  // a checkpoint, also replace the sections there.
2840
2841  // By default, we look at the whole list.
2842  size_t limit = this->input_sections_.size();
2843
2844  if (this->checkpoint_ != NULL)
2845    {
2846      // Replace input sections with relaxed input section in the saved
2847      // copy of the input section list.
2848      if (this->checkpoint_->input_sections_saved())
2849	{
2850	  Relaxation_map map;
2851	  this->build_relaxation_map(
2852		    *(this->checkpoint_->input_sections()),
2853		    this->checkpoint_->input_sections()->size(),
2854		    &map);
2855	  this->convert_input_sections_in_list_to_relaxed_sections(
2856		    relaxed_sections,
2857		    map,
2858		    this->checkpoint_->input_sections());
2859	}
2860      else
2861	{
2862	  // We have not copied the input section list yet.  Instead, just
2863	  // look at the portion that would be saved.
2864	  limit = this->checkpoint_->input_sections_size();
2865	}
2866    }
2867
2868  // Convert input sections in input_section_list.
2869  Relaxation_map map;
2870  this->build_relaxation_map(this->input_sections_, limit, &map);
2871  this->convert_input_sections_in_list_to_relaxed_sections(
2872	    relaxed_sections,
2873	    map,
2874	    &this->input_sections_);
2875
2876  // Update fast look-up map.
2877  if (this->lookup_maps_->is_valid())
2878    for (size_t i = 0; i < relaxed_sections.size(); ++i)
2879      {
2880	Output_relaxed_input_section* poris = relaxed_sections[i];
2881	this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2882						      poris->shndx(), poris);
2883      }
2884}
2885
2886// Update the output section flags based on input section flags.
2887
2888void
2889Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2890{
2891  // If we created the section with SHF_ALLOC clear, we set the
2892  // address.  If we are now setting the SHF_ALLOC flag, we need to
2893  // undo that.
2894  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2895      && (flags & elfcpp::SHF_ALLOC) != 0)
2896    this->mark_address_invalid();
2897
2898  this->flags_ |= (flags
2899		   & (elfcpp::SHF_WRITE
2900		      | elfcpp::SHF_ALLOC
2901		      | elfcpp::SHF_EXECINSTR));
2902
2903  if ((flags & elfcpp::SHF_MERGE) == 0)
2904    this->flags_ &=~ elfcpp::SHF_MERGE;
2905  else
2906    {
2907      if (this->current_data_size_for_child() == 0)
2908	this->flags_ |= elfcpp::SHF_MERGE;
2909    }
2910
2911  if ((flags & elfcpp::SHF_STRINGS) == 0)
2912    this->flags_ &=~ elfcpp::SHF_STRINGS;
2913  else
2914    {
2915      if (this->current_data_size_for_child() == 0)
2916	this->flags_ |= elfcpp::SHF_STRINGS;
2917    }
2918}
2919
2920// Find the merge section into which an input section with index SHNDX in
2921// OBJECT has been added.  Return NULL if none found.
2922
2923const Output_section_data*
2924Output_section::find_merge_section(const Relobj* object,
2925				   unsigned int shndx) const
2926{
2927  return object->find_merge_section(shndx);
2928}
2929
2930// Build the lookup maps for relaxed sections.  This needs
2931// to be declared as a const method so that it is callable with a const
2932// Output_section pointer.  The method only updates states of the maps.
2933
2934void
2935Output_section::build_lookup_maps() const
2936{
2937  this->lookup_maps_->clear();
2938  for (Input_section_list::const_iterator p = this->input_sections_.begin();
2939       p != this->input_sections_.end();
2940       ++p)
2941    {
2942      if (p->is_relaxed_input_section())
2943	{
2944	  Output_relaxed_input_section* poris = p->relaxed_input_section();
2945	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2946							poris->shndx(), poris);
2947	}
2948    }
2949}
2950
2951// Find an relaxed input section corresponding to an input section
2952// in OBJECT with index SHNDX.
2953
2954const Output_relaxed_input_section*
2955Output_section::find_relaxed_input_section(const Relobj* object,
2956					   unsigned int shndx) const
2957{
2958  if (!this->lookup_maps_->is_valid())
2959    this->build_lookup_maps();
2960  return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2961}
2962
2963// Given an address OFFSET relative to the start of input section
2964// SHNDX in OBJECT, return whether this address is being included in
2965// the final link.  This should only be called if SHNDX in OBJECT has
2966// a special mapping.
2967
2968bool
2969Output_section::is_input_address_mapped(const Relobj* object,
2970					unsigned int shndx,
2971					off_t offset) const
2972{
2973  // Look at the Output_section_data_maps first.
2974  const Output_section_data* posd = this->find_merge_section(object, shndx);
2975  if (posd == NULL)
2976    posd = this->find_relaxed_input_section(object, shndx);
2977
2978  if (posd != NULL)
2979    {
2980      section_offset_type output_offset;
2981      bool found = posd->output_offset(object, shndx, offset, &output_offset);
2982      // By default we assume that the address is mapped. See comment at the
2983      // end.
2984      if (!found)
2985        return true;
2986      return output_offset != -1;
2987    }
2988
2989  // Fall back to the slow look-up.
2990  for (Input_section_list::const_iterator p = this->input_sections_.begin();
2991       p != this->input_sections_.end();
2992       ++p)
2993    {
2994      section_offset_type output_offset;
2995      if (p->output_offset(object, shndx, offset, &output_offset))
2996	return output_offset != -1;
2997    }
2998
2999  // By default we assume that the address is mapped.  This should
3000  // only be called after we have passed all sections to Layout.  At
3001  // that point we should know what we are discarding.
3002  return true;
3003}
3004
3005// Given an address OFFSET relative to the start of input section
3006// SHNDX in object OBJECT, return the output offset relative to the
3007// start of the input section in the output section.  This should only
3008// be called if SHNDX in OBJECT has a special mapping.
3009
3010section_offset_type
3011Output_section::output_offset(const Relobj* object, unsigned int shndx,
3012			      section_offset_type offset) const
3013{
3014  // This can only be called meaningfully when we know the data size
3015  // of this.
3016  gold_assert(this->is_data_size_valid());
3017
3018  // Look at the Output_section_data_maps first.
3019  const Output_section_data* posd = this->find_merge_section(object, shndx);
3020  if (posd == NULL)
3021    posd = this->find_relaxed_input_section(object, shndx);
3022  if (posd != NULL)
3023    {
3024      section_offset_type output_offset;
3025      bool found = posd->output_offset(object, shndx, offset, &output_offset);
3026      gold_assert(found);
3027      return output_offset;
3028    }
3029
3030  // Fall back to the slow look-up.
3031  for (Input_section_list::const_iterator p = this->input_sections_.begin();
3032       p != this->input_sections_.end();
3033       ++p)
3034    {
3035      section_offset_type output_offset;
3036      if (p->output_offset(object, shndx, offset, &output_offset))
3037	return output_offset;
3038    }
3039  gold_unreachable();
3040}
3041
3042// Return the output virtual address of OFFSET relative to the start
3043// of input section SHNDX in object OBJECT.
3044
3045uint64_t
3046Output_section::output_address(const Relobj* object, unsigned int shndx,
3047			       off_t offset) const
3048{
3049  uint64_t addr = this->address() + this->first_input_offset_;
3050
3051  // Look at the Output_section_data_maps first.
3052  const Output_section_data* posd = this->find_merge_section(object, shndx);
3053  if (posd == NULL)
3054    posd = this->find_relaxed_input_section(object, shndx);
3055  if (posd != NULL && posd->is_address_valid())
3056    {
3057      section_offset_type output_offset;
3058      bool found = posd->output_offset(object, shndx, offset, &output_offset);
3059      gold_assert(found);
3060      return posd->address() + output_offset;
3061    }
3062
3063  // Fall back to the slow look-up.
3064  for (Input_section_list::const_iterator p = this->input_sections_.begin();
3065       p != this->input_sections_.end();
3066       ++p)
3067    {
3068      addr = align_address(addr, p->addralign());
3069      section_offset_type output_offset;
3070      if (p->output_offset(object, shndx, offset, &output_offset))
3071	{
3072	  if (output_offset == -1)
3073	    return -1ULL;
3074	  return addr + output_offset;
3075	}
3076      addr += p->data_size();
3077    }
3078
3079  // If we get here, it means that we don't know the mapping for this
3080  // input section.  This might happen in principle if
3081  // add_input_section were called before add_output_section_data.
3082  // But it should never actually happen.
3083
3084  gold_unreachable();
3085}
3086
3087// Find the output address of the start of the merged section for
3088// input section SHNDX in object OBJECT.
3089
3090bool
3091Output_section::find_starting_output_address(const Relobj* object,
3092					     unsigned int shndx,
3093					     uint64_t* paddr) const
3094{
3095  const Output_section_data* data = this->find_merge_section(object, shndx);
3096  if (data == NULL)
3097    return false;
3098
3099  // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3100  // Looking up the merge section map does not always work as we sometimes
3101  // find a merge section without its address set.
3102  uint64_t addr = this->address() + this->first_input_offset_;
3103  for (Input_section_list::const_iterator p = this->input_sections_.begin();
3104       p != this->input_sections_.end();
3105       ++p)
3106    {
3107      addr = align_address(addr, p->addralign());
3108
3109      // It would be nice if we could use the existing output_offset
3110      // method to get the output offset of input offset 0.
3111      // Unfortunately we don't know for sure that input offset 0 is
3112      // mapped at all.
3113      if (!p->is_input_section() && p->output_section_data() == data)
3114	{
3115	  *paddr = addr;
3116	  return true;
3117	}
3118
3119      addr += p->data_size();
3120    }
3121
3122  // We couldn't find a merge output section for this input section.
3123  return false;
3124}
3125
3126// Update the data size of an Output_section.
3127
3128void
3129Output_section::update_data_size()
3130{
3131  if (this->input_sections_.empty())
3132      return;
3133
3134  if (this->must_sort_attached_input_sections()
3135      || this->input_section_order_specified())
3136    this->sort_attached_input_sections();
3137
3138  off_t off = this->first_input_offset_;
3139  for (Input_section_list::iterator p = this->input_sections_.begin();
3140       p != this->input_sections_.end();
3141       ++p)
3142    {
3143      off = align_address(off, p->addralign());
3144      off += p->current_data_size();
3145    }
3146
3147  this->set_current_data_size_for_child(off);
3148}
3149
3150// Set the data size of an Output_section.  This is where we handle
3151// setting the addresses of any Output_section_data objects.
3152
3153void
3154Output_section::set_final_data_size()
3155{
3156  off_t data_size;
3157
3158  if (this->input_sections_.empty())
3159    data_size = this->current_data_size_for_child();
3160  else
3161    {
3162      if (this->must_sort_attached_input_sections()
3163	  || this->input_section_order_specified())
3164	this->sort_attached_input_sections();
3165
3166      uint64_t address = this->address();
3167      off_t startoff = this->offset();
3168      off_t off = this->first_input_offset_;
3169      for (Input_section_list::iterator p = this->input_sections_.begin();
3170	   p != this->input_sections_.end();
3171	   ++p)
3172	{
3173	  off = align_address(off, p->addralign());
3174	  p->set_address_and_file_offset(address + off, startoff + off,
3175					 startoff);
3176	  off += p->data_size();
3177	}
3178      data_size = off;
3179    }
3180
3181  // For full incremental links, we want to allocate some patch space
3182  // in most sections for subsequent incremental updates.
3183  if (this->is_patch_space_allowed_ && parameters->incremental_full())
3184    {
3185      double pct = parameters->options().incremental_patch();
3186      size_t extra = static_cast<size_t>(data_size * pct);
3187      if (this->free_space_fill_ != NULL
3188	  && this->free_space_fill_->minimum_hole_size() > extra)
3189	extra = this->free_space_fill_->minimum_hole_size();
3190      off_t new_size = align_address(data_size + extra, this->addralign());
3191      this->patch_space_ = new_size - data_size;
3192      gold_debug(DEBUG_INCREMENTAL,
3193		 "set_final_data_size: %08lx + %08lx: section %s",
3194		 static_cast<long>(data_size),
3195		 static_cast<long>(this->patch_space_),
3196		 this->name());
3197      data_size = new_size;
3198    }
3199
3200  this->set_data_size(data_size);
3201}
3202
3203// Reset the address and file offset.
3204
3205void
3206Output_section::do_reset_address_and_file_offset()
3207{
3208  // An unallocated section has no address.  Forcing this means that
3209  // we don't need special treatment for symbols defined in debug
3210  // sections.  We do the same in the constructor.  This does not
3211  // apply to NOLOAD sections though.
3212  if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3213     this->set_address(0);
3214
3215  for (Input_section_list::iterator p = this->input_sections_.begin();
3216       p != this->input_sections_.end();
3217       ++p)
3218    p->reset_address_and_file_offset();
3219
3220  // Remove any patch space that was added in set_final_data_size.
3221  if (this->patch_space_ > 0)
3222    {
3223      this->set_current_data_size_for_child(this->current_data_size_for_child()
3224					    - this->patch_space_);
3225      this->patch_space_ = 0;
3226    }
3227}
3228
3229// Return true if address and file offset have the values after reset.
3230
3231bool
3232Output_section::do_address_and_file_offset_have_reset_values() const
3233{
3234  if (this->is_offset_valid())
3235    return false;
3236
3237  // An unallocated section has address 0 after its construction or a reset.
3238  if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3239    return this->is_address_valid() && this->address() == 0;
3240  else
3241    return !this->is_address_valid();
3242}
3243
3244// Set the TLS offset.  Called only for SHT_TLS sections.
3245
3246void
3247Output_section::do_set_tls_offset(uint64_t tls_base)
3248{
3249  this->tls_offset_ = this->address() - tls_base;
3250}
3251
3252// In a few cases we need to sort the input sections attached to an
3253// output section.  This is used to implement the type of constructor
3254// priority ordering implemented by the GNU linker, in which the
3255// priority becomes part of the section name and the sections are
3256// sorted by name.  We only do this for an output section if we see an
3257// attached input section matching ".ctors.*", ".dtors.*",
3258// ".init_array.*" or ".fini_array.*".
3259
3260class Output_section::Input_section_sort_entry
3261{
3262 public:
3263  Input_section_sort_entry()
3264    : input_section_(), index_(-1U), section_name_()
3265  { }
3266
3267  Input_section_sort_entry(const Input_section& input_section,
3268			   unsigned int index,
3269			   bool must_sort_attached_input_sections,
3270			   const char* output_section_name)
3271    : input_section_(input_section), index_(index), section_name_()
3272  {
3273    if ((input_section.is_input_section()
3274	 || input_section.is_relaxed_input_section())
3275	&& must_sort_attached_input_sections)
3276      {
3277	// This is only called single-threaded from Layout::finalize,
3278	// so it is OK to lock.  Unfortunately we have no way to pass
3279	// in a Task token.
3280	const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3281	Object* obj = (input_section.is_input_section()
3282		       ? input_section.relobj()
3283		       : input_section.relaxed_input_section()->relobj());
3284	Task_lock_obj<Object> tl(dummy_task, obj);
3285
3286	// This is a slow operation, which should be cached in
3287	// Layout::layout if this becomes a speed problem.
3288	this->section_name_ = obj->section_name(input_section.shndx());
3289      }
3290    else if (input_section.is_output_section_data()
3291    	     && must_sort_attached_input_sections)
3292      {
3293	// For linker-generated sections, use the output section name.
3294	this->section_name_.assign(output_section_name);
3295      }
3296  }
3297
3298  // Return the Input_section.
3299  const Input_section&
3300  input_section() const
3301  {
3302    gold_assert(this->index_ != -1U);
3303    return this->input_section_;
3304  }
3305
3306  // The index of this entry in the original list.  This is used to
3307  // make the sort stable.
3308  unsigned int
3309  index() const
3310  {
3311    gold_assert(this->index_ != -1U);
3312    return this->index_;
3313  }
3314
3315  // The section name.
3316  const std::string&
3317  section_name() const
3318  {
3319    return this->section_name_;
3320  }
3321
3322  // Return true if the section name has a priority.  This is assumed
3323  // to be true if it has a dot after the initial dot.
3324  bool
3325  has_priority() const
3326  {
3327    return this->section_name_.find('.', 1) != std::string::npos;
3328  }
3329
3330  // Return the priority.  Believe it or not, gcc encodes the priority
3331  // differently for .ctors/.dtors and .init_array/.fini_array
3332  // sections.
3333  unsigned int
3334  get_priority() const
3335  {
3336    bool is_ctors;
3337    if (is_prefix_of(".ctors.", this->section_name_.c_str())
3338	|| is_prefix_of(".dtors.", this->section_name_.c_str()))
3339      is_ctors = true;
3340    else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3341	     || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3342      is_ctors = false;
3343    else
3344      return 0;
3345    char* end;
3346    unsigned long prio = strtoul((this->section_name_.c_str()
3347				  + (is_ctors ? 7 : 12)),
3348				 &end, 10);
3349    if (*end != '\0')
3350      return 0;
3351    else if (is_ctors)
3352      return 65535 - prio;
3353    else
3354      return prio;
3355  }
3356
3357  // Return true if this an input file whose base name matches
3358  // FILE_NAME.  The base name must have an extension of ".o", and
3359  // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3360  // This is to match crtbegin.o as well as crtbeginS.o without
3361  // getting confused by other possibilities.  Overall matching the
3362  // file name this way is a dreadful hack, but the GNU linker does it
3363  // in order to better support gcc, and we need to be compatible.
3364  bool
3365  match_file_name(const char* file_name) const
3366  {
3367    if (this->input_section_.is_output_section_data())
3368      return false;
3369    return Layout::match_file_name(this->input_section_.relobj(), file_name);
3370  }
3371
3372  // Returns 1 if THIS should appear before S in section order, -1 if S
3373  // appears before THIS and 0 if they are not comparable.
3374  int
3375  compare_section_ordering(const Input_section_sort_entry& s) const
3376  {
3377    unsigned int this_secn_index = this->input_section_.section_order_index();
3378    unsigned int s_secn_index = s.input_section().section_order_index();
3379    if (this_secn_index > 0 && s_secn_index > 0)
3380      {
3381	if (this_secn_index < s_secn_index)
3382	  return 1;
3383	else if (this_secn_index > s_secn_index)
3384	  return -1;
3385      }
3386    return 0;
3387  }
3388
3389 private:
3390  // The Input_section we are sorting.
3391  Input_section input_section_;
3392  // The index of this Input_section in the original list.
3393  unsigned int index_;
3394  // The section name if there is one.
3395  std::string section_name_;
3396};
3397
3398// Return true if S1 should come before S2 in the output section.
3399
3400bool
3401Output_section::Input_section_sort_compare::operator()(
3402    const Output_section::Input_section_sort_entry& s1,
3403    const Output_section::Input_section_sort_entry& s2) const
3404{
3405  // crtbegin.o must come first.
3406  bool s1_begin = s1.match_file_name("crtbegin");
3407  bool s2_begin = s2.match_file_name("crtbegin");
3408  if (s1_begin || s2_begin)
3409    {
3410      if (!s1_begin)
3411	return false;
3412      if (!s2_begin)
3413	return true;
3414      return s1.index() < s2.index();
3415    }
3416
3417  // crtend.o must come last.
3418  bool s1_end = s1.match_file_name("crtend");
3419  bool s2_end = s2.match_file_name("crtend");
3420  if (s1_end || s2_end)
3421    {
3422      if (!s1_end)
3423	return true;
3424      if (!s2_end)
3425	return false;
3426      return s1.index() < s2.index();
3427    }
3428
3429  // A section with a priority follows a section without a priority.
3430  bool s1_has_priority = s1.has_priority();
3431  bool s2_has_priority = s2.has_priority();
3432  if (s1_has_priority && !s2_has_priority)
3433    return false;
3434  if (!s1_has_priority && s2_has_priority)
3435    return true;
3436
3437  // Check if a section order exists for these sections through a section
3438  // ordering file.  If sequence_num is 0, an order does not exist.
3439  int sequence_num = s1.compare_section_ordering(s2);
3440  if (sequence_num != 0)
3441    return sequence_num == 1;
3442
3443  // Otherwise we sort by name.
3444  int compare = s1.section_name().compare(s2.section_name());
3445  if (compare != 0)
3446    return compare < 0;
3447
3448  // Otherwise we keep the input order.
3449  return s1.index() < s2.index();
3450}
3451
3452// Return true if S1 should come before S2 in an .init_array or .fini_array
3453// output section.
3454
3455bool
3456Output_section::Input_section_sort_init_fini_compare::operator()(
3457    const Output_section::Input_section_sort_entry& s1,
3458    const Output_section::Input_section_sort_entry& s2) const
3459{
3460  // A section without a priority follows a section with a priority.
3461  // This is the reverse of .ctors and .dtors sections.
3462  bool s1_has_priority = s1.has_priority();
3463  bool s2_has_priority = s2.has_priority();
3464  if (s1_has_priority && !s2_has_priority)
3465    return true;
3466  if (!s1_has_priority && s2_has_priority)
3467    return false;
3468
3469  // .ctors and .dtors sections without priority come after
3470  // .init_array and .fini_array sections without priority.
3471  if (!s1_has_priority
3472      && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3473      && s1.section_name() != s2.section_name())
3474    return false;
3475  if (!s2_has_priority
3476      && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3477      && s2.section_name() != s1.section_name())
3478    return true;
3479
3480  // Sort by priority if we can.
3481  if (s1_has_priority)
3482    {
3483      unsigned int s1_prio = s1.get_priority();
3484      unsigned int s2_prio = s2.get_priority();
3485      if (s1_prio < s2_prio)
3486	return true;
3487      else if (s1_prio > s2_prio)
3488	return false;
3489    }
3490
3491  // Check if a section order exists for these sections through a section
3492  // ordering file.  If sequence_num is 0, an order does not exist.
3493  int sequence_num = s1.compare_section_ordering(s2);
3494  if (sequence_num != 0)
3495    return sequence_num == 1;
3496
3497  // Otherwise we sort by name.
3498  int compare = s1.section_name().compare(s2.section_name());
3499  if (compare != 0)
3500    return compare < 0;
3501
3502  // Otherwise we keep the input order.
3503  return s1.index() < s2.index();
3504}
3505
3506// Return true if S1 should come before S2.  Sections that do not match
3507// any pattern in the section ordering file are placed ahead of the sections
3508// that match some pattern.
3509
3510bool
3511Output_section::Input_section_sort_section_order_index_compare::operator()(
3512    const Output_section::Input_section_sort_entry& s1,
3513    const Output_section::Input_section_sort_entry& s2) const
3514{
3515  unsigned int s1_secn_index = s1.input_section().section_order_index();
3516  unsigned int s2_secn_index = s2.input_section().section_order_index();
3517
3518  // Keep input order if section ordering cannot determine order.
3519  if (s1_secn_index == s2_secn_index)
3520    return s1.index() < s2.index();
3521
3522  return s1_secn_index < s2_secn_index;
3523}
3524
3525// Return true if S1 should come before S2.  This is the sort comparison
3526// function for .text to sort sections with prefixes
3527// .text.{unlikely,exit,startup,hot} before other sections.
3528
3529bool
3530Output_section::Input_section_sort_section_prefix_special_ordering_compare
3531  ::operator()(
3532    const Output_section::Input_section_sort_entry& s1,
3533    const Output_section::Input_section_sort_entry& s2) const
3534{
3535  // Some input section names have special ordering requirements.
3536  int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3537  int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3538  if (o1 != o2)
3539    {
3540      if (o1 < 0)
3541	return false;
3542      else if (o2 < 0)
3543	return true;
3544      else
3545	return o1 < o2;
3546    }
3547
3548  // Keep input order otherwise.
3549  return s1.index() < s2.index();
3550}
3551
3552// Return true if S1 should come before S2.  This is the sort comparison
3553// function for sections to sort them by name.
3554
3555bool
3556Output_section::Input_section_sort_section_name_compare
3557  ::operator()(
3558    const Output_section::Input_section_sort_entry& s1,
3559    const Output_section::Input_section_sort_entry& s2) const
3560{
3561  // We sort by name.
3562  int compare = s1.section_name().compare(s2.section_name());
3563  if (compare != 0)
3564    return compare < 0;
3565
3566  // Keep input order otherwise.
3567  return s1.index() < s2.index();
3568}
3569
3570// This updates the section order index of input sections according to the
3571// the order specified in the mapping from Section id to order index.
3572
3573void
3574Output_section::update_section_layout(
3575  const Section_layout_order* order_map)
3576{
3577  for (Input_section_list::iterator p = this->input_sections_.begin();
3578       p != this->input_sections_.end();
3579       ++p)
3580    {
3581      if (p->is_input_section()
3582	  || p->is_relaxed_input_section())
3583	{
3584	  Relobj* obj = (p->is_input_section()
3585			 ? p->relobj()
3586			 : p->relaxed_input_section()->relobj());
3587	  unsigned int shndx = p->shndx();
3588	  Section_layout_order::const_iterator it
3589	    = order_map->find(Section_id(obj, shndx));
3590	  if (it == order_map->end())
3591	    continue;
3592	  unsigned int section_order_index = it->second;
3593	  if (section_order_index != 0)
3594	    {
3595	      p->set_section_order_index(section_order_index);
3596	      this->set_input_section_order_specified();
3597	    }
3598	}
3599    }
3600}
3601
3602// Sort the input sections attached to an output section.
3603
3604void
3605Output_section::sort_attached_input_sections()
3606{
3607  if (this->attached_input_sections_are_sorted_)
3608    return;
3609
3610  if (this->checkpoint_ != NULL
3611      && !this->checkpoint_->input_sections_saved())
3612    this->checkpoint_->save_input_sections();
3613
3614  // The only thing we know about an input section is the object and
3615  // the section index.  We need the section name.  Recomputing this
3616  // is slow but this is an unusual case.  If this becomes a speed
3617  // problem we can cache the names as required in Layout::layout.
3618
3619  // We start by building a larger vector holding a copy of each
3620  // Input_section, plus its current index in the list and its name.
3621  std::vector<Input_section_sort_entry> sort_list;
3622
3623  unsigned int i = 0;
3624  for (Input_section_list::iterator p = this->input_sections_.begin();
3625       p != this->input_sections_.end();
3626       ++p, ++i)
3627      sort_list.push_back(Input_section_sort_entry(*p, i,
3628			    this->must_sort_attached_input_sections(),
3629			    this->name()));
3630
3631  // Sort the input sections.
3632  if (this->must_sort_attached_input_sections())
3633    {
3634      if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3635	  || this->type() == elfcpp::SHT_INIT_ARRAY
3636	  || this->type() == elfcpp::SHT_FINI_ARRAY)
3637	std::sort(sort_list.begin(), sort_list.end(),
3638		  Input_section_sort_init_fini_compare());
3639      else if (strcmp(parameters->options().sort_section(), "name") == 0)
3640	std::sort(sort_list.begin(), sort_list.end(),
3641		  Input_section_sort_section_name_compare());
3642      else if (strcmp(this->name(), ".text") == 0)
3643	std::sort(sort_list.begin(), sort_list.end(),
3644		  Input_section_sort_section_prefix_special_ordering_compare());
3645      else
3646	std::sort(sort_list.begin(), sort_list.end(),
3647		  Input_section_sort_compare());
3648    }
3649  else
3650    {
3651      gold_assert(this->input_section_order_specified());
3652      std::sort(sort_list.begin(), sort_list.end(),
3653		Input_section_sort_section_order_index_compare());
3654    }
3655
3656  // Copy the sorted input sections back to our list.
3657  this->input_sections_.clear();
3658  for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3659       p != sort_list.end();
3660       ++p)
3661    this->input_sections_.push_back(p->input_section());
3662  sort_list.clear();
3663
3664  // Remember that we sorted the input sections, since we might get
3665  // called again.
3666  this->attached_input_sections_are_sorted_ = true;
3667}
3668
3669// Write the section header to *OSHDR.
3670
3671template<int size, bool big_endian>
3672void
3673Output_section::write_header(const Layout* layout,
3674			     const Stringpool* secnamepool,
3675			     elfcpp::Shdr_write<size, big_endian>* oshdr) const
3676{
3677  oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3678  oshdr->put_sh_type(this->type_);
3679
3680  elfcpp::Elf_Xword flags = this->flags_;
3681  if (this->info_section_ != NULL && this->info_uses_section_index_)
3682    flags |= elfcpp::SHF_INFO_LINK;
3683  oshdr->put_sh_flags(flags);
3684
3685  oshdr->put_sh_addr(this->address());
3686  oshdr->put_sh_offset(this->offset());
3687  oshdr->put_sh_size(this->data_size());
3688  if (this->link_section_ != NULL)
3689    oshdr->put_sh_link(this->link_section_->out_shndx());
3690  else if (this->should_link_to_symtab_)
3691    oshdr->put_sh_link(layout->symtab_section_shndx());
3692  else if (this->should_link_to_dynsym_)
3693    oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3694  else
3695    oshdr->put_sh_link(this->link_);
3696
3697  elfcpp::Elf_Word info;
3698  if (this->info_section_ != NULL)
3699    {
3700      if (this->info_uses_section_index_)
3701	info = this->info_section_->out_shndx();
3702      else
3703	info = this->info_section_->symtab_index();
3704    }
3705  else if (this->info_symndx_ != NULL)
3706    info = this->info_symndx_->symtab_index();
3707  else
3708    info = this->info_;
3709  oshdr->put_sh_info(info);
3710
3711  oshdr->put_sh_addralign(this->addralign_);
3712  oshdr->put_sh_entsize(this->entsize_);
3713}
3714
3715// Write out the data.  For input sections the data is written out by
3716// Object::relocate, but we have to handle Output_section_data objects
3717// here.
3718
3719void
3720Output_section::do_write(Output_file* of)
3721{
3722  gold_assert(!this->requires_postprocessing());
3723
3724  // If the target performs relaxation, we delay filler generation until now.
3725  gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3726
3727  off_t output_section_file_offset = this->offset();
3728  for (Fill_list::iterator p = this->fills_.begin();
3729       p != this->fills_.end();
3730       ++p)
3731    {
3732      std::string fill_data(parameters->target().code_fill(p->length()));
3733      of->write(output_section_file_offset + p->section_offset(),
3734		fill_data.data(), fill_data.size());
3735    }
3736
3737  off_t off = this->offset() + this->first_input_offset_;
3738  for (Input_section_list::iterator p = this->input_sections_.begin();
3739       p != this->input_sections_.end();
3740       ++p)
3741    {
3742      off_t aligned_off = align_address(off, p->addralign());
3743      if (this->generate_code_fills_at_write_ && (off != aligned_off))
3744	{
3745	  size_t fill_len = aligned_off - off;
3746	  std::string fill_data(parameters->target().code_fill(fill_len));
3747	  of->write(off, fill_data.data(), fill_data.size());
3748	}
3749
3750      p->write(of);
3751      off = aligned_off + p->data_size();
3752    }
3753
3754  // For incremental links, fill in unused chunks in debug sections
3755  // with dummy compilation unit headers.
3756  if (this->free_space_fill_ != NULL)
3757    {
3758      for (Free_list::Const_iterator p = this->free_list_.begin();
3759	   p != this->free_list_.end();
3760	   ++p)
3761	{
3762	  off_t off = p->start_;
3763	  size_t len = p->end_ - off;
3764	  this->free_space_fill_->write(of, this->offset() + off, len);
3765	}
3766      if (this->patch_space_ > 0)
3767	{
3768	  off_t off = this->current_data_size_for_child() - this->patch_space_;
3769	  this->free_space_fill_->write(of, this->offset() + off,
3770					this->patch_space_);
3771	}
3772    }
3773}
3774
3775// If a section requires postprocessing, create the buffer to use.
3776
3777void
3778Output_section::create_postprocessing_buffer()
3779{
3780  gold_assert(this->requires_postprocessing());
3781
3782  if (this->postprocessing_buffer_ != NULL)
3783    return;
3784
3785  if (!this->input_sections_.empty())
3786    {
3787      off_t off = this->first_input_offset_;
3788      for (Input_section_list::iterator p = this->input_sections_.begin();
3789	   p != this->input_sections_.end();
3790	   ++p)
3791	{
3792	  off = align_address(off, p->addralign());
3793	  p->finalize_data_size();
3794	  off += p->data_size();
3795	}
3796      this->set_current_data_size_for_child(off);
3797    }
3798
3799  off_t buffer_size = this->current_data_size_for_child();
3800  this->postprocessing_buffer_ = new unsigned char[buffer_size];
3801}
3802
3803// Write all the data of an Output_section into the postprocessing
3804// buffer.  This is used for sections which require postprocessing,
3805// such as compression.  Input sections are handled by
3806// Object::Relocate.
3807
3808void
3809Output_section::write_to_postprocessing_buffer()
3810{
3811  gold_assert(this->requires_postprocessing());
3812
3813  // If the target performs relaxation, we delay filler generation until now.
3814  gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3815
3816  unsigned char* buffer = this->postprocessing_buffer();
3817  for (Fill_list::iterator p = this->fills_.begin();
3818       p != this->fills_.end();
3819       ++p)
3820    {
3821      std::string fill_data(parameters->target().code_fill(p->length()));
3822      memcpy(buffer + p->section_offset(), fill_data.data(),
3823	     fill_data.size());
3824    }
3825
3826  off_t off = this->first_input_offset_;
3827  for (Input_section_list::iterator p = this->input_sections_.begin();
3828       p != this->input_sections_.end();
3829       ++p)
3830    {
3831      off_t aligned_off = align_address(off, p->addralign());
3832      if (this->generate_code_fills_at_write_ && (off != aligned_off))
3833	{
3834	  size_t fill_len = aligned_off - off;
3835	  std::string fill_data(parameters->target().code_fill(fill_len));
3836	  memcpy(buffer + off, fill_data.data(), fill_data.size());
3837	}
3838
3839      p->write_to_buffer(buffer + aligned_off);
3840      off = aligned_off + p->data_size();
3841    }
3842}
3843
3844// Get the input sections for linker script processing.  We leave
3845// behind the Output_section_data entries.  Note that this may be
3846// slightly incorrect for merge sections.  We will leave them behind,
3847// but it is possible that the script says that they should follow
3848// some other input sections, as in:
3849//    .rodata { *(.rodata) *(.rodata.cst*) }
3850// For that matter, we don't handle this correctly:
3851//    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3852// With luck this will never matter.
3853
3854uint64_t
3855Output_section::get_input_sections(
3856    uint64_t address,
3857    const std::string& fill,
3858    std::list<Input_section>* input_sections)
3859{
3860  if (this->checkpoint_ != NULL
3861      && !this->checkpoint_->input_sections_saved())
3862    this->checkpoint_->save_input_sections();
3863
3864  // Invalidate fast look-up maps.
3865  this->lookup_maps_->invalidate();
3866
3867  uint64_t orig_address = address;
3868
3869  address = align_address(address, this->addralign());
3870
3871  Input_section_list remaining;
3872  for (Input_section_list::iterator p = this->input_sections_.begin();
3873       p != this->input_sections_.end();
3874       ++p)
3875    {
3876      if (p->is_input_section()
3877	  || p->is_relaxed_input_section()
3878	  || p->is_merge_section())
3879	input_sections->push_back(*p);
3880      else
3881	{
3882	  uint64_t aligned_address = align_address(address, p->addralign());
3883	  if (aligned_address != address && !fill.empty())
3884	    {
3885	      section_size_type length =
3886		convert_to_section_size_type(aligned_address - address);
3887	      std::string this_fill;
3888	      this_fill.reserve(length);
3889	      while (this_fill.length() + fill.length() <= length)
3890		this_fill += fill;
3891	      if (this_fill.length() < length)
3892		this_fill.append(fill, 0, length - this_fill.length());
3893
3894	      Output_section_data* posd = new Output_data_const(this_fill, 0);
3895	      remaining.push_back(Input_section(posd));
3896	    }
3897	  address = aligned_address;
3898
3899	  remaining.push_back(*p);
3900
3901	  p->finalize_data_size();
3902	  address += p->data_size();
3903	}
3904    }
3905
3906  this->input_sections_.swap(remaining);
3907  this->first_input_offset_ = 0;
3908
3909  uint64_t data_size = address - orig_address;
3910  this->set_current_data_size_for_child(data_size);
3911  return data_size;
3912}
3913
3914// Add a script input section.  SIS is an Output_section::Input_section,
3915// which can be either a plain input section or a special input section like
3916// a relaxed input section.  For a special input section, its size must be
3917// finalized.
3918
3919void
3920Output_section::add_script_input_section(const Input_section& sis)
3921{
3922  uint64_t data_size = sis.data_size();
3923  uint64_t addralign = sis.addralign();
3924  if (addralign > this->addralign_)
3925    this->addralign_ = addralign;
3926
3927  off_t offset_in_section = this->current_data_size_for_child();
3928  off_t aligned_offset_in_section = align_address(offset_in_section,
3929						  addralign);
3930
3931  this->set_current_data_size_for_child(aligned_offset_in_section
3932					+ data_size);
3933
3934  this->input_sections_.push_back(sis);
3935
3936  // Update fast lookup maps if necessary.
3937  if (this->lookup_maps_->is_valid())
3938    {
3939      if (sis.is_relaxed_input_section())
3940	{
3941	  Output_relaxed_input_section* poris = sis.relaxed_input_section();
3942	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3943							poris->shndx(), poris);
3944	}
3945    }
3946}
3947
3948// Save states for relaxation.
3949
3950void
3951Output_section::save_states()
3952{
3953  gold_assert(this->checkpoint_ == NULL);
3954  Checkpoint_output_section* checkpoint =
3955    new Checkpoint_output_section(this->addralign_, this->flags_,
3956				  this->input_sections_,
3957				  this->first_input_offset_,
3958				  this->attached_input_sections_are_sorted_);
3959  this->checkpoint_ = checkpoint;
3960  gold_assert(this->fills_.empty());
3961}
3962
3963void
3964Output_section::discard_states()
3965{
3966  gold_assert(this->checkpoint_ != NULL);
3967  delete this->checkpoint_;
3968  this->checkpoint_ = NULL;
3969  gold_assert(this->fills_.empty());
3970
3971  // Simply invalidate the fast lookup maps since we do not keep
3972  // track of them.
3973  this->lookup_maps_->invalidate();
3974}
3975
3976void
3977Output_section::restore_states()
3978{
3979  gold_assert(this->checkpoint_ != NULL);
3980  Checkpoint_output_section* checkpoint = this->checkpoint_;
3981
3982  this->addralign_ = checkpoint->addralign();
3983  this->flags_ = checkpoint->flags();
3984  this->first_input_offset_ = checkpoint->first_input_offset();
3985
3986  if (!checkpoint->input_sections_saved())
3987    {
3988      // If we have not copied the input sections, just resize it.
3989      size_t old_size = checkpoint->input_sections_size();
3990      gold_assert(this->input_sections_.size() >= old_size);
3991      this->input_sections_.resize(old_size);
3992    }
3993  else
3994    {
3995      // We need to copy the whole list.  This is not efficient for
3996      // extremely large output with hundreads of thousands of input
3997      // objects.  We may need to re-think how we should pass sections
3998      // to scripts.
3999      this->input_sections_ = *checkpoint->input_sections();
4000    }
4001
4002  this->attached_input_sections_are_sorted_ =
4003    checkpoint->attached_input_sections_are_sorted();
4004
4005  // Simply invalidate the fast lookup maps since we do not keep
4006  // track of them.
4007  this->lookup_maps_->invalidate();
4008}
4009
4010// Update the section offsets of input sections in this.  This is required if
4011// relaxation causes some input sections to change sizes.
4012
4013void
4014Output_section::adjust_section_offsets()
4015{
4016  if (!this->section_offsets_need_adjustment_)
4017    return;
4018
4019  off_t off = 0;
4020  for (Input_section_list::iterator p = this->input_sections_.begin();
4021       p != this->input_sections_.end();
4022       ++p)
4023    {
4024      off = align_address(off, p->addralign());
4025      if (p->is_input_section())
4026	p->relobj()->set_section_offset(p->shndx(), off);
4027      off += p->data_size();
4028    }
4029
4030  this->section_offsets_need_adjustment_ = false;
4031}
4032
4033// Print to the map file.
4034
4035void
4036Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4037{
4038  mapfile->print_output_section(this);
4039
4040  for (Input_section_list::const_iterator p = this->input_sections_.begin();
4041       p != this->input_sections_.end();
4042       ++p)
4043    p->print_to_mapfile(mapfile);
4044}
4045
4046// Print stats for merge sections to stderr.
4047
4048void
4049Output_section::print_merge_stats()
4050{
4051  Input_section_list::iterator p;
4052  for (p = this->input_sections_.begin();
4053       p != this->input_sections_.end();
4054       ++p)
4055    p->print_merge_stats(this->name_);
4056}
4057
4058// Set a fixed layout for the section.  Used for incremental update links.
4059
4060void
4061Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4062				 off_t sh_size, uint64_t sh_addralign)
4063{
4064  this->addralign_ = sh_addralign;
4065  this->set_current_data_size(sh_size);
4066  if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4067    this->set_address(sh_addr);
4068  this->set_file_offset(sh_offset);
4069  this->finalize_data_size();
4070  this->free_list_.init(sh_size, false);
4071  this->has_fixed_layout_ = true;
4072}
4073
4074// Reserve space within the fixed layout for the section.  Used for
4075// incremental update links.
4076
4077void
4078Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4079{
4080  this->free_list_.remove(sh_offset, sh_offset + sh_size);
4081}
4082
4083// Allocate space from the free list for the section.  Used for
4084// incremental update links.
4085
4086off_t
4087Output_section::allocate(off_t len, uint64_t addralign)
4088{
4089  return this->free_list_.allocate(len, addralign, 0);
4090}
4091
4092// Output segment methods.
4093
4094Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4095  : vaddr_(0),
4096    paddr_(0),
4097    memsz_(0),
4098    max_align_(0),
4099    min_p_align_(0),
4100    offset_(0),
4101    filesz_(0),
4102    type_(type),
4103    flags_(flags),
4104    is_max_align_known_(false),
4105    are_addresses_set_(false),
4106    is_large_data_segment_(false),
4107    is_unique_segment_(false)
4108{
4109  // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4110  // the flags.
4111  if (type == elfcpp::PT_TLS)
4112    this->flags_ = elfcpp::PF_R;
4113}
4114
4115// Add an Output_section to a PT_LOAD Output_segment.
4116
4117void
4118Output_segment::add_output_section_to_load(Layout* layout,
4119					   Output_section* os,
4120					   elfcpp::Elf_Word seg_flags)
4121{
4122  gold_assert(this->type() == elfcpp::PT_LOAD);
4123  gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4124  gold_assert(!this->is_max_align_known_);
4125  gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4126
4127  this->update_flags_for_output_section(seg_flags);
4128
4129  // We don't want to change the ordering if we have a linker script
4130  // with a SECTIONS clause.
4131  Output_section_order order = os->order();
4132  if (layout->script_options()->saw_sections_clause())
4133    order = static_cast<Output_section_order>(0);
4134  else
4135    gold_assert(order != ORDER_INVALID);
4136
4137  this->output_lists_[order].push_back(os);
4138}
4139
4140// Add an Output_section to a non-PT_LOAD Output_segment.
4141
4142void
4143Output_segment::add_output_section_to_nonload(Output_section* os,
4144					      elfcpp::Elf_Word seg_flags)
4145{
4146  gold_assert(this->type() != elfcpp::PT_LOAD);
4147  gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4148  gold_assert(!this->is_max_align_known_);
4149
4150  this->update_flags_for_output_section(seg_flags);
4151
4152  this->output_lists_[0].push_back(os);
4153}
4154
4155// Remove an Output_section from this segment.  It is an error if it
4156// is not present.
4157
4158void
4159Output_segment::remove_output_section(Output_section* os)
4160{
4161  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4162    {
4163      Output_data_list* pdl = &this->output_lists_[i];
4164      for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4165	{
4166	  if (*p == os)
4167	    {
4168	      pdl->erase(p);
4169	      return;
4170	    }
4171	}
4172    }
4173  gold_unreachable();
4174}
4175
4176// Add an Output_data (which need not be an Output_section) to the
4177// start of a segment.
4178
4179void
4180Output_segment::add_initial_output_data(Output_data* od)
4181{
4182  gold_assert(!this->is_max_align_known_);
4183  Output_data_list::iterator p = this->output_lists_[0].begin();
4184  this->output_lists_[0].insert(p, od);
4185}
4186
4187// Return true if this segment has any sections which hold actual
4188// data, rather than being a BSS section.
4189
4190bool
4191Output_segment::has_any_data_sections() const
4192{
4193  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4194    {
4195      const Output_data_list* pdl = &this->output_lists_[i];
4196      for (Output_data_list::const_iterator p = pdl->begin();
4197	   p != pdl->end();
4198	   ++p)
4199	{
4200	  if (!(*p)->is_section())
4201	    return true;
4202	  if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4203	    return true;
4204	}
4205    }
4206  return false;
4207}
4208
4209// Return whether the first data section (not counting TLS sections)
4210// is a relro section.
4211
4212bool
4213Output_segment::is_first_section_relro() const
4214{
4215  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4216    {
4217      if (i == static_cast<int>(ORDER_TLS_BSS))
4218	continue;
4219      const Output_data_list* pdl = &this->output_lists_[i];
4220      if (!pdl->empty())
4221	{
4222	  Output_data* p = pdl->front();
4223	  return p->is_section() && p->output_section()->is_relro();
4224	}
4225    }
4226  return false;
4227}
4228
4229// Return the maximum alignment of the Output_data in Output_segment.
4230
4231uint64_t
4232Output_segment::maximum_alignment()
4233{
4234  if (!this->is_max_align_known_)
4235    {
4236      for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4237	{
4238	  const Output_data_list* pdl = &this->output_lists_[i];
4239	  uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4240	  if (addralign > this->max_align_)
4241	    this->max_align_ = addralign;
4242	}
4243      this->is_max_align_known_ = true;
4244    }
4245
4246  return this->max_align_;
4247}
4248
4249// Return the maximum alignment of a list of Output_data.
4250
4251uint64_t
4252Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4253{
4254  uint64_t ret = 0;
4255  for (Output_data_list::const_iterator p = pdl->begin();
4256       p != pdl->end();
4257       ++p)
4258    {
4259      uint64_t addralign = (*p)->addralign();
4260      if (addralign > ret)
4261	ret = addralign;
4262    }
4263  return ret;
4264}
4265
4266// Return whether this segment has any dynamic relocs.
4267
4268bool
4269Output_segment::has_dynamic_reloc() const
4270{
4271  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4272    if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4273      return true;
4274  return false;
4275}
4276
4277// Return whether this Output_data_list has any dynamic relocs.
4278
4279bool
4280Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4281{
4282  for (Output_data_list::const_iterator p = pdl->begin();
4283       p != pdl->end();
4284       ++p)
4285    if ((*p)->has_dynamic_reloc())
4286      return true;
4287  return false;
4288}
4289
4290// Set the section addresses for an Output_segment.  If RESET is true,
4291// reset the addresses first.  ADDR is the address and *POFF is the
4292// file offset.  Set the section indexes starting with *PSHNDX.
4293// INCREASE_RELRO is the size of the portion of the first non-relro
4294// section that should be included in the PT_GNU_RELRO segment.
4295// If this segment has relro sections, and has been aligned for
4296// that purpose, set *HAS_RELRO to TRUE.  Return the address of
4297// the immediately following segment.  Update *HAS_RELRO, *POFF,
4298// and *PSHNDX.
4299
4300uint64_t
4301Output_segment::set_section_addresses(const Target* target,
4302				      Layout* layout, bool reset,
4303				      uint64_t addr,
4304				      unsigned int* increase_relro,
4305				      bool* has_relro,
4306				      off_t* poff,
4307				      unsigned int* pshndx)
4308{
4309  gold_assert(this->type_ == elfcpp::PT_LOAD);
4310
4311  uint64_t last_relro_pad = 0;
4312  off_t orig_off = *poff;
4313
4314  bool in_tls = false;
4315
4316  // If we have relro sections, we need to pad forward now so that the
4317  // relro sections plus INCREASE_RELRO end on an abi page boundary.
4318  if (parameters->options().relro()
4319      && this->is_first_section_relro()
4320      && (!this->are_addresses_set_ || reset))
4321    {
4322      uint64_t relro_size = 0;
4323      off_t off = *poff;
4324      uint64_t max_align = 0;
4325      for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4326	{
4327	  Output_data_list* pdl = &this->output_lists_[i];
4328	  Output_data_list::iterator p;
4329	  for (p = pdl->begin(); p != pdl->end(); ++p)
4330	    {
4331	      if (!(*p)->is_section())
4332		break;
4333	      uint64_t align = (*p)->addralign();
4334	      if (align > max_align)
4335		max_align = align;
4336	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4337		in_tls = true;
4338	      else if (in_tls)
4339		{
4340		  // Align the first non-TLS section to the alignment
4341		  // of the TLS segment.
4342		  align = max_align;
4343		  in_tls = false;
4344		}
4345	      // Ignore the size of the .tbss section.
4346	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4347		  && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4348		continue;
4349	      relro_size = align_address(relro_size, align);
4350	      if ((*p)->is_address_valid())
4351		relro_size += (*p)->data_size();
4352	      else
4353		{
4354		  // FIXME: This could be faster.
4355		  (*p)->set_address_and_file_offset(relro_size,
4356						    relro_size);
4357		  relro_size += (*p)->data_size();
4358		  (*p)->reset_address_and_file_offset();
4359		}
4360	    }
4361	  if (p != pdl->end())
4362	    break;
4363	}
4364      relro_size += *increase_relro;
4365      // Pad the total relro size to a multiple of the maximum
4366      // section alignment seen.
4367      uint64_t aligned_size = align_address(relro_size, max_align);
4368      // Note the amount of padding added after the last relro section.
4369      last_relro_pad = aligned_size - relro_size;
4370      *has_relro = true;
4371
4372      uint64_t page_align = parameters->target().abi_pagesize();
4373
4374      // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4375      uint64_t desired_align = page_align - (aligned_size % page_align);
4376      if (desired_align < off % page_align)
4377	off += page_align;
4378      off += desired_align - off % page_align;
4379      addr += off - orig_off;
4380      orig_off = off;
4381      *poff = off;
4382    }
4383
4384  if (!reset && this->are_addresses_set_)
4385    {
4386      gold_assert(this->paddr_ == addr);
4387      addr = this->vaddr_;
4388    }
4389  else
4390    {
4391      this->vaddr_ = addr;
4392      this->paddr_ = addr;
4393      this->are_addresses_set_ = true;
4394    }
4395
4396  in_tls = false;
4397
4398  this->offset_ = orig_off;
4399
4400  off_t off = 0;
4401  off_t foff = *poff;
4402  uint64_t ret = 0;
4403  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4404    {
4405      if (i == static_cast<int>(ORDER_RELRO_LAST))
4406	{
4407	  *poff += last_relro_pad;
4408	  foff += last_relro_pad;
4409	  addr += last_relro_pad;
4410	  if (this->output_lists_[i].empty())
4411	    {
4412	      // If there is nothing in the ORDER_RELRO_LAST list,
4413	      // the padding will occur at the end of the relro
4414	      // segment, and we need to add it to *INCREASE_RELRO.
4415	      *increase_relro += last_relro_pad;
4416	    }
4417	}
4418      addr = this->set_section_list_addresses(layout, reset,
4419					      &this->output_lists_[i],
4420					      addr, poff, &foff, pshndx,
4421					      &in_tls);
4422
4423      // FOFF tracks the last offset used for the file image,
4424      // and *POFF tracks the last offset used for the memory image.
4425      // When not using a linker script, bss sections should all
4426      // be processed in the ORDER_SMALL_BSS and later buckets.
4427      gold_assert(*poff == foff
4428		  || i == static_cast<int>(ORDER_TLS_BSS)
4429		  || i >= static_cast<int>(ORDER_SMALL_BSS)
4430		  || layout->script_options()->saw_sections_clause());
4431
4432      this->filesz_ = foff - orig_off;
4433      off = foff;
4434
4435      ret = addr;
4436    }
4437
4438  // If the last section was a TLS section, align upward to the
4439  // alignment of the TLS segment, so that the overall size of the TLS
4440  // segment is aligned.
4441  if (in_tls)
4442    {
4443      uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4444      *poff = align_address(*poff, segment_align);
4445    }
4446
4447  this->memsz_ = *poff - orig_off;
4448
4449  // Ignore the file offset adjustments made by the BSS Output_data
4450  // objects.
4451  *poff = off;
4452
4453  // If code segments must contain only code, and this code segment is
4454  // page-aligned in the file, then fill it out to a whole page with
4455  // code fill (the tail of the segment will not be within any section).
4456  // Thus the entire code segment can be mapped from the file as whole
4457  // pages and that mapping will contain only valid instructions.
4458  if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4459    {
4460      uint64_t abi_pagesize = target->abi_pagesize();
4461      if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4462	{
4463	  size_t fill_size = abi_pagesize - (off % abi_pagesize);
4464
4465	  std::string fill_data;
4466	  if (target->has_code_fill())
4467	    fill_data = target->code_fill(fill_size);
4468	  else
4469	    fill_data.resize(fill_size); // Zero fill.
4470
4471	  Output_data_const* fill = new Output_data_const(fill_data, 0);
4472	  fill->set_address(this->vaddr_ + this->memsz_);
4473	  fill->set_file_offset(off);
4474	  layout->add_relax_output(fill);
4475
4476	  off += fill_size;
4477	  gold_assert(off % abi_pagesize == 0);
4478	  ret += fill_size;
4479	  gold_assert(ret % abi_pagesize == 0);
4480
4481	  gold_assert((uint64_t) this->filesz_ == this->memsz_);
4482	  this->memsz_ = this->filesz_ += fill_size;
4483
4484	  *poff = off;
4485	}
4486    }
4487
4488  return ret;
4489}
4490
4491// Set the addresses and file offsets in a list of Output_data
4492// structures.
4493
4494uint64_t
4495Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4496					   Output_data_list* pdl,
4497					   uint64_t addr, off_t* poff,
4498					   off_t* pfoff,
4499					   unsigned int* pshndx,
4500					   bool* in_tls)
4501{
4502  off_t startoff = *poff;
4503  // For incremental updates, we may allocate non-fixed sections from
4504  // free space in the file.  This keeps track of the high-water mark.
4505  off_t maxoff = startoff;
4506
4507  off_t off = startoff;
4508  off_t foff = *pfoff;
4509  for (Output_data_list::iterator p = pdl->begin();
4510       p != pdl->end();
4511       ++p)
4512    {
4513      bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4514      bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4515
4516      if (reset)
4517	(*p)->reset_address_and_file_offset();
4518
4519      // When doing an incremental update or when using a linker script,
4520      // the section will most likely already have an address.
4521      if (!(*p)->is_address_valid())
4522	{
4523	  uint64_t align = (*p)->addralign();
4524
4525	  if (is_tls)
4526	    {
4527	      // Give the first TLS section the alignment of the
4528	      // entire TLS segment.  Otherwise the TLS segment as a
4529	      // whole may be misaligned.
4530	      if (!*in_tls)
4531		{
4532		  Output_segment* tls_segment = layout->tls_segment();
4533		  gold_assert(tls_segment != NULL);
4534		  uint64_t segment_align = tls_segment->maximum_alignment();
4535		  gold_assert(segment_align >= align);
4536		  align = segment_align;
4537
4538		  *in_tls = true;
4539		}
4540	    }
4541	  else
4542	    {
4543	      // If this is the first section after the TLS segment,
4544	      // align it to at least the alignment of the TLS
4545	      // segment, so that the size of the overall TLS segment
4546	      // is aligned.
4547	      if (*in_tls)
4548		{
4549		  uint64_t segment_align =
4550		      layout->tls_segment()->maximum_alignment();
4551		  if (segment_align > align)
4552		    align = segment_align;
4553
4554		  *in_tls = false;
4555		}
4556	    }
4557
4558	  if (!parameters->incremental_update())
4559	    {
4560	      gold_assert(off == foff || is_bss);
4561	      off = align_address(off, align);
4562	      if (is_tls || !is_bss)
4563		foff = off;
4564	      (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4565	    }
4566	  else
4567	    {
4568	      // Incremental update: allocate file space from free list.
4569	      (*p)->pre_finalize_data_size();
4570	      off_t current_size = (*p)->current_data_size();
4571	      off = layout->allocate(current_size, align, startoff);
4572	      foff = off;
4573	      if (off == -1)
4574		{
4575		  gold_assert((*p)->output_section() != NULL);
4576		  gold_fallback(_("out of patch space for section %s; "
4577				  "relink with --incremental-full"),
4578				(*p)->output_section()->name());
4579		}
4580	      (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4581	      if ((*p)->data_size() > current_size)
4582		{
4583		  gold_assert((*p)->output_section() != NULL);
4584		  gold_fallback(_("%s: section changed size; "
4585				  "relink with --incremental-full"),
4586				(*p)->output_section()->name());
4587		}
4588	    }
4589	}
4590      else if (parameters->incremental_update())
4591	{
4592	  // For incremental updates, use the fixed offset for the
4593	  // high-water mark computation.
4594	  off = (*p)->offset();
4595	  foff = off;
4596	}
4597      else
4598	{
4599	  // The script may have inserted a skip forward, but it
4600	  // better not have moved backward.
4601	  if ((*p)->address() >= addr + (off - startoff))
4602	    {
4603	      if (!is_bss && off > foff)
4604	        gold_warning(_("script places BSS section in the middle "
4605			       "of a LOAD segment; space will be allocated "
4606			       "in the file"));
4607	      off += (*p)->address() - (addr + (off - startoff));
4608	      if (is_tls || !is_bss)
4609		foff = off;
4610	    }
4611	  else
4612	    {
4613	      if (!layout->script_options()->saw_sections_clause())
4614		gold_unreachable();
4615	      else
4616		{
4617		  Output_section* os = (*p)->output_section();
4618
4619		  // Cast to unsigned long long to avoid format warnings.
4620		  unsigned long long previous_dot =
4621		    static_cast<unsigned long long>(addr + (off - startoff));
4622		  unsigned long long dot =
4623		    static_cast<unsigned long long>((*p)->address());
4624
4625		  if (os == NULL)
4626		    gold_error(_("dot moves backward in linker script "
4627				 "from 0x%llx to 0x%llx"), previous_dot, dot);
4628		  else
4629		    gold_error(_("address of section '%s' moves backward "
4630				 "from 0x%llx to 0x%llx"),
4631			       os->name(), previous_dot, dot);
4632		}
4633	    }
4634	  (*p)->set_file_offset(foff);
4635	  (*p)->finalize_data_size();
4636	}
4637
4638      if (parameters->incremental_update())
4639	gold_debug(DEBUG_INCREMENTAL,
4640		   "set_section_list_addresses: %08lx %08lx %s",
4641		   static_cast<long>(off),
4642		   static_cast<long>((*p)->data_size()),
4643		   ((*p)->output_section() != NULL
4644		    ? (*p)->output_section()->name() : "(special)"));
4645
4646      // We want to ignore the size of a SHF_TLS SHT_NOBITS
4647      // section.  Such a section does not affect the size of a
4648      // PT_LOAD segment.
4649      if (!is_tls || !is_bss)
4650	off += (*p)->data_size();
4651
4652      // We don't allocate space in the file for SHT_NOBITS sections,
4653      // unless a script has force-placed one in the middle of a segment.
4654      if (!is_bss)
4655	foff = off;
4656
4657      if (off > maxoff)
4658	maxoff = off;
4659
4660      if ((*p)->is_section())
4661	{
4662	  (*p)->set_out_shndx(*pshndx);
4663	  ++*pshndx;
4664	}
4665    }
4666
4667  *poff = maxoff;
4668  *pfoff = foff;
4669  return addr + (maxoff - startoff);
4670}
4671
4672// For a non-PT_LOAD segment, set the offset from the sections, if
4673// any.  Add INCREASE to the file size and the memory size.
4674
4675void
4676Output_segment::set_offset(unsigned int increase)
4677{
4678  gold_assert(this->type_ != elfcpp::PT_LOAD);
4679
4680  gold_assert(!this->are_addresses_set_);
4681
4682  // A non-load section only uses output_lists_[0].
4683
4684  Output_data_list* pdl = &this->output_lists_[0];
4685
4686  if (pdl->empty())
4687    {
4688      gold_assert(increase == 0);
4689      this->vaddr_ = 0;
4690      this->paddr_ = 0;
4691      this->are_addresses_set_ = true;
4692      this->memsz_ = 0;
4693      this->min_p_align_ = 0;
4694      this->offset_ = 0;
4695      this->filesz_ = 0;
4696      return;
4697    }
4698
4699  // Find the first and last section by address.
4700  const Output_data* first = NULL;
4701  const Output_data* last_data = NULL;
4702  const Output_data* last_bss = NULL;
4703  for (Output_data_list::const_iterator p = pdl->begin();
4704       p != pdl->end();
4705       ++p)
4706    {
4707      if (first == NULL
4708	  || (*p)->address() < first->address()
4709	  || ((*p)->address() == first->address()
4710	      && (*p)->data_size() < first->data_size()))
4711	first = *p;
4712      const Output_data** plast;
4713      if ((*p)->is_section()
4714	  && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4715	plast = &last_bss;
4716      else
4717	plast = &last_data;
4718      if (*plast == NULL
4719	  || (*p)->address() > (*plast)->address()
4720	  || ((*p)->address() == (*plast)->address()
4721	      && (*p)->data_size() > (*plast)->data_size()))
4722	*plast = *p;
4723    }
4724
4725  this->vaddr_ = first->address();
4726  this->paddr_ = (first->has_load_address()
4727		  ? first->load_address()
4728		  : this->vaddr_);
4729  this->are_addresses_set_ = true;
4730  this->offset_ = first->offset();
4731
4732  if (last_data == NULL)
4733    this->filesz_ = 0;
4734  else
4735    this->filesz_ = (last_data->address()
4736		     + last_data->data_size()
4737		     - this->vaddr_);
4738
4739  const Output_data* last = last_bss != NULL ? last_bss : last_data;
4740  this->memsz_ = (last->address()
4741		  + last->data_size()
4742		  - this->vaddr_);
4743
4744  this->filesz_ += increase;
4745  this->memsz_ += increase;
4746
4747  // If this is a RELRO segment, verify that the segment ends at a
4748  // page boundary.
4749  if (this->type_ == elfcpp::PT_GNU_RELRO)
4750    {
4751      uint64_t page_align = parameters->target().abi_pagesize();
4752      uint64_t segment_end = this->vaddr_ + this->memsz_;
4753      if (parameters->incremental_update())
4754	{
4755	  // The INCREASE_RELRO calculation is bypassed for an incremental
4756	  // update, so we need to adjust the segment size manually here.
4757	  segment_end = align_address(segment_end, page_align);
4758	  this->memsz_ = segment_end - this->vaddr_;
4759	}
4760      else
4761	gold_assert(segment_end == align_address(segment_end, page_align));
4762    }
4763
4764  // If this is a TLS segment, align the memory size.  The code in
4765  // set_section_list ensures that the section after the TLS segment
4766  // is aligned to give us room.
4767  if (this->type_ == elfcpp::PT_TLS)
4768    {
4769      uint64_t segment_align = this->maximum_alignment();
4770      gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4771      this->memsz_ = align_address(this->memsz_, segment_align);
4772    }
4773}
4774
4775// Set the TLS offsets of the sections in the PT_TLS segment.
4776
4777void
4778Output_segment::set_tls_offsets()
4779{
4780  gold_assert(this->type_ == elfcpp::PT_TLS);
4781
4782  for (Output_data_list::iterator p = this->output_lists_[0].begin();
4783       p != this->output_lists_[0].end();
4784       ++p)
4785    (*p)->set_tls_offset(this->vaddr_);
4786}
4787
4788// Return the first section.
4789
4790Output_section*
4791Output_segment::first_section() const
4792{
4793  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4794    {
4795      const Output_data_list* pdl = &this->output_lists_[i];
4796      for (Output_data_list::const_iterator p = pdl->begin();
4797	   p != pdl->end();
4798	   ++p)
4799	{
4800	  if ((*p)->is_section())
4801	    return (*p)->output_section();
4802	}
4803    }
4804  return NULL;
4805}
4806
4807// Return the number of Output_sections in an Output_segment.
4808
4809unsigned int
4810Output_segment::output_section_count() const
4811{
4812  unsigned int ret = 0;
4813  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4814    ret += this->output_section_count_list(&this->output_lists_[i]);
4815  return ret;
4816}
4817
4818// Return the number of Output_sections in an Output_data_list.
4819
4820unsigned int
4821Output_segment::output_section_count_list(const Output_data_list* pdl) const
4822{
4823  unsigned int count = 0;
4824  for (Output_data_list::const_iterator p = pdl->begin();
4825       p != pdl->end();
4826       ++p)
4827    {
4828      if ((*p)->is_section())
4829	++count;
4830    }
4831  return count;
4832}
4833
4834// Return the section attached to the list segment with the lowest
4835// load address.  This is used when handling a PHDRS clause in a
4836// linker script.
4837
4838Output_section*
4839Output_segment::section_with_lowest_load_address() const
4840{
4841  Output_section* found = NULL;
4842  uint64_t found_lma = 0;
4843  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4844    this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4845				      &found_lma);
4846  return found;
4847}
4848
4849// Look through a list for a section with a lower load address.
4850
4851void
4852Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4853					    Output_section** found,
4854					    uint64_t* found_lma) const
4855{
4856  for (Output_data_list::const_iterator p = pdl->begin();
4857       p != pdl->end();
4858       ++p)
4859    {
4860      if (!(*p)->is_section())
4861	continue;
4862      Output_section* os = static_cast<Output_section*>(*p);
4863      uint64_t lma = (os->has_load_address()
4864		      ? os->load_address()
4865		      : os->address());
4866      if (*found == NULL || lma < *found_lma)
4867	{
4868	  *found = os;
4869	  *found_lma = lma;
4870	}
4871    }
4872}
4873
4874// Write the segment data into *OPHDR.
4875
4876template<int size, bool big_endian>
4877void
4878Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4879{
4880  ophdr->put_p_type(this->type_);
4881  ophdr->put_p_offset(this->offset_);
4882  ophdr->put_p_vaddr(this->vaddr_);
4883  ophdr->put_p_paddr(this->paddr_);
4884  ophdr->put_p_filesz(this->filesz_);
4885  ophdr->put_p_memsz(this->memsz_);
4886  ophdr->put_p_flags(this->flags_);
4887  ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4888}
4889
4890// Write the section headers into V.
4891
4892template<int size, bool big_endian>
4893unsigned char*
4894Output_segment::write_section_headers(const Layout* layout,
4895				      const Stringpool* secnamepool,
4896				      unsigned char* v,
4897				      unsigned int* pshndx) const
4898{
4899  // Every section that is attached to a segment must be attached to a
4900  // PT_LOAD segment, so we only write out section headers for PT_LOAD
4901  // segments.
4902  if (this->type_ != elfcpp::PT_LOAD)
4903    return v;
4904
4905  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4906    {
4907      const Output_data_list* pdl = &this->output_lists_[i];
4908      v = this->write_section_headers_list<size, big_endian>(layout,
4909							     secnamepool,
4910							     pdl,
4911							     v, pshndx);
4912    }
4913
4914  return v;
4915}
4916
4917template<int size, bool big_endian>
4918unsigned char*
4919Output_segment::write_section_headers_list(const Layout* layout,
4920					   const Stringpool* secnamepool,
4921					   const Output_data_list* pdl,
4922					   unsigned char* v,
4923					   unsigned int* pshndx) const
4924{
4925  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4926  for (Output_data_list::const_iterator p = pdl->begin();
4927       p != pdl->end();
4928       ++p)
4929    {
4930      if ((*p)->is_section())
4931	{
4932	  const Output_section* ps = static_cast<const Output_section*>(*p);
4933	  gold_assert(*pshndx == ps->out_shndx());
4934	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
4935	  ps->write_header(layout, secnamepool, &oshdr);
4936	  v += shdr_size;
4937	  ++*pshndx;
4938	}
4939    }
4940  return v;
4941}
4942
4943// Print the output sections to the map file.
4944
4945void
4946Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4947{
4948  if (this->type() != elfcpp::PT_LOAD)
4949    return;
4950  for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4951    this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4952}
4953
4954// Print an output section list to the map file.
4955
4956void
4957Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4958					      const Output_data_list* pdl) const
4959{
4960  for (Output_data_list::const_iterator p = pdl->begin();
4961       p != pdl->end();
4962       ++p)
4963    (*p)->print_to_mapfile(mapfile);
4964}
4965
4966// Output_file methods.
4967
4968Output_file::Output_file(const char* name)
4969  : name_(name),
4970    o_(-1),
4971    file_size_(0),
4972    base_(NULL),
4973    map_is_anonymous_(false),
4974    map_is_allocated_(false),
4975    is_temporary_(false)
4976{
4977}
4978
4979// Try to open an existing file.  Returns false if the file doesn't
4980// exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4981// NULL, open that file as the base for incremental linking, and
4982// copy its contents to the new output file.  This routine can
4983// be called for incremental updates, in which case WRITABLE should
4984// be true, or by the incremental-dump utility, in which case
4985// WRITABLE should be false.
4986
4987bool
4988Output_file::open_base_file(const char* base_name, bool writable)
4989{
4990  // The name "-" means "stdout".
4991  if (strcmp(this->name_, "-") == 0)
4992    return false;
4993
4994  bool use_base_file = base_name != NULL;
4995  if (!use_base_file)
4996    base_name = this->name_;
4997  else if (strcmp(base_name, this->name_) == 0)
4998    gold_fatal(_("%s: incremental base and output file name are the same"),
4999	       base_name);
5000
5001  // Don't bother opening files with a size of zero.
5002  struct stat s;
5003  if (::stat(base_name, &s) != 0)
5004    {
5005      gold_info(_("%s: stat: %s"), base_name, strerror(errno));
5006      return false;
5007    }
5008  if (s.st_size == 0)
5009    {
5010      gold_info(_("%s: incremental base file is empty"), base_name);
5011      return false;
5012    }
5013
5014  // If we're using a base file, we want to open it read-only.
5015  if (use_base_file)
5016    writable = false;
5017
5018  int oflags = writable ? O_RDWR : O_RDONLY;
5019  int o = open_descriptor(-1, base_name, oflags, 0);
5020  if (o < 0)
5021    {
5022      gold_info(_("%s: open: %s"), base_name, strerror(errno));
5023      return false;
5024    }
5025
5026  // If the base file and the output file are different, open a
5027  // new output file and read the contents from the base file into
5028  // the newly-mapped region.
5029  if (use_base_file)
5030    {
5031      this->open(s.st_size);
5032      ssize_t bytes_to_read = s.st_size;
5033      unsigned char* p = this->base_;
5034      while (bytes_to_read > 0)
5035	{
5036	  ssize_t len = ::read(o, p, bytes_to_read);
5037	  if (len < 0)
5038	    {
5039	      gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5040	      return false;
5041	    }
5042	  if (len == 0)
5043	    {
5044	      gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5045			base_name,
5046			static_cast<long long>(s.st_size - bytes_to_read),
5047			static_cast<long long>(s.st_size));
5048	      return false;
5049	    }
5050	  p += len;
5051	  bytes_to_read -= len;
5052	}
5053      ::close(o);
5054      return true;
5055    }
5056
5057  this->o_ = o;
5058  this->file_size_ = s.st_size;
5059
5060  if (!this->map_no_anonymous(writable))
5061    {
5062      release_descriptor(o, true);
5063      this->o_ = -1;
5064      this->file_size_ = 0;
5065      return false;
5066    }
5067
5068  return true;
5069}
5070
5071// Open the output file.
5072
5073void
5074Output_file::open(off_t file_size)
5075{
5076  this->file_size_ = file_size;
5077
5078  // Unlink the file first; otherwise the open() may fail if the file
5079  // is busy (e.g. it's an executable that's currently being executed).
5080  //
5081  // However, the linker may be part of a system where a zero-length
5082  // file is created for it to write to, with tight permissions (gcc
5083  // 2.95 did something like this).  Unlinking the file would work
5084  // around those permission controls, so we only unlink if the file
5085  // has a non-zero size.  We also unlink only regular files to avoid
5086  // trouble with directories/etc.
5087  //
5088  // If we fail, continue; this command is merely a best-effort attempt
5089  // to improve the odds for open().
5090
5091  // We let the name "-" mean "stdout"
5092  if (!this->is_temporary_)
5093    {
5094      if (strcmp(this->name_, "-") == 0)
5095	this->o_ = STDOUT_FILENO;
5096      else
5097	{
5098	  struct stat s;
5099	  if (::stat(this->name_, &s) == 0
5100	      && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5101	    {
5102	      if (s.st_size != 0)
5103		::unlink(this->name_);
5104	      else if (!parameters->options().relocatable())
5105		{
5106		  // If we don't unlink the existing file, add execute
5107		  // permission where read permissions already exist
5108		  // and where the umask permits.
5109		  int mask = ::umask(0);
5110		  ::umask(mask);
5111		  s.st_mode |= (s.st_mode & 0444) >> 2;
5112		  ::chmod(this->name_, s.st_mode & ~mask);
5113		}
5114	    }
5115
5116	  int mode = parameters->options().relocatable() ? 0666 : 0777;
5117	  int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5118				  mode);
5119	  if (o < 0)
5120	    gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5121	  this->o_ = o;
5122	}
5123    }
5124
5125  this->map();
5126}
5127
5128// Resize the output file.
5129
5130void
5131Output_file::resize(off_t file_size)
5132{
5133  // If the mmap is mapping an anonymous memory buffer, this is easy:
5134  // just mremap to the new size.  If it's mapping to a file, we want
5135  // to unmap to flush to the file, then remap after growing the file.
5136  if (this->map_is_anonymous_)
5137    {
5138      void* base;
5139      if (!this->map_is_allocated_)
5140	{
5141	  base = ::mremap(this->base_, this->file_size_, file_size,
5142			  MREMAP_MAYMOVE);
5143	  if (base == MAP_FAILED)
5144	    gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5145	}
5146      else
5147	{
5148	  base = realloc(this->base_, file_size);
5149	  if (base == NULL)
5150	    gold_nomem();
5151	  if (file_size > this->file_size_)
5152	    memset(static_cast<char*>(base) + this->file_size_, 0,
5153		   file_size - this->file_size_);
5154	}
5155      this->base_ = static_cast<unsigned char*>(base);
5156      this->file_size_ = file_size;
5157    }
5158  else
5159    {
5160      this->unmap();
5161      this->file_size_ = file_size;
5162      if (!this->map_no_anonymous(true))
5163	gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5164    }
5165}
5166
5167// Map an anonymous block of memory which will later be written to the
5168// file.  Return whether the map succeeded.
5169
5170bool
5171Output_file::map_anonymous()
5172{
5173  void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5174		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5175  if (base == MAP_FAILED)
5176    {
5177      base = malloc(this->file_size_);
5178      if (base == NULL)
5179	return false;
5180      memset(base, 0, this->file_size_);
5181      this->map_is_allocated_ = true;
5182    }
5183  this->base_ = static_cast<unsigned char*>(base);
5184  this->map_is_anonymous_ = true;
5185  return true;
5186}
5187
5188// Map the file into memory.  Return whether the mapping succeeded.
5189// If WRITABLE is true, map with write access.
5190
5191bool
5192Output_file::map_no_anonymous(bool writable)
5193{
5194  const int o = this->o_;
5195
5196  // If the output file is not a regular file, don't try to mmap it;
5197  // instead, we'll mmap a block of memory (an anonymous buffer), and
5198  // then later write the buffer to the file.
5199  void* base;
5200  struct stat statbuf;
5201  if (o == STDOUT_FILENO || o == STDERR_FILENO
5202      || ::fstat(o, &statbuf) != 0
5203      || !S_ISREG(statbuf.st_mode)
5204      || this->is_temporary_)
5205    return false;
5206
5207  // Ensure that we have disk space available for the file.  If we
5208  // don't do this, it is possible that we will call munmap, close,
5209  // and exit with dirty buffers still in the cache with no assigned
5210  // disk blocks.  If the disk is out of space at that point, the
5211  // output file will wind up incomplete, but we will have already
5212  // exited.  The alternative to fallocate would be to use fdatasync,
5213  // but that would be a more significant performance hit.
5214  if (writable)
5215    {
5216      int err = gold_fallocate(o, 0, this->file_size_);
5217      if (err != 0)
5218       gold_fatal(_("%s: %s"), this->name_, strerror(err));
5219    }
5220
5221  // Map the file into memory.
5222  int prot = PROT_READ;
5223  if (writable)
5224    prot |= PROT_WRITE;
5225  base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5226
5227  // The mmap call might fail because of file system issues: the file
5228  // system might not support mmap at all, or it might not support
5229  // mmap with PROT_WRITE.
5230  if (base == MAP_FAILED)
5231    return false;
5232
5233  this->map_is_anonymous_ = false;
5234  this->base_ = static_cast<unsigned char*>(base);
5235  return true;
5236}
5237
5238// Map the file into memory.
5239
5240void
5241Output_file::map()
5242{
5243  if (parameters->options().mmap_output_file()
5244      && this->map_no_anonymous(true))
5245    return;
5246
5247  // The mmap call might fail because of file system issues: the file
5248  // system might not support mmap at all, or it might not support
5249  // mmap with PROT_WRITE.  I'm not sure which errno values we will
5250  // see in all cases, so if the mmap fails for any reason and we
5251  // don't care about file contents, try for an anonymous map.
5252  if (this->map_anonymous())
5253    return;
5254
5255  gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5256	     this->name_, static_cast<unsigned long>(this->file_size_),
5257	     strerror(errno));
5258}
5259
5260// Unmap the file from memory.
5261
5262void
5263Output_file::unmap()
5264{
5265  if (this->map_is_anonymous_)
5266    {
5267      // We've already written out the data, so there is no reason to
5268      // waste time unmapping or freeing the memory.
5269    }
5270  else
5271    {
5272      if (::munmap(this->base_, this->file_size_) < 0)
5273	gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5274    }
5275  this->base_ = NULL;
5276}
5277
5278// Close the output file.
5279
5280void
5281Output_file::close()
5282{
5283  // If the map isn't file-backed, we need to write it now.
5284  if (this->map_is_anonymous_ && !this->is_temporary_)
5285    {
5286      size_t bytes_to_write = this->file_size_;
5287      size_t offset = 0;
5288      while (bytes_to_write > 0)
5289	{
5290	  ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5291					  bytes_to_write);
5292	  if (bytes_written == 0)
5293	    gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5294	  else if (bytes_written < 0)
5295	    gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5296	  else
5297	    {
5298	      bytes_to_write -= bytes_written;
5299	      offset += bytes_written;
5300	    }
5301	}
5302    }
5303  this->unmap();
5304
5305  // We don't close stdout or stderr
5306  if (this->o_ != STDOUT_FILENO
5307      && this->o_ != STDERR_FILENO
5308      && !this->is_temporary_)
5309    if (::close(this->o_) < 0)
5310      gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5311  this->o_ = -1;
5312}
5313
5314// Instantiate the templates we need.  We could use the configure
5315// script to restrict this to only the ones for implemented targets.
5316
5317#ifdef HAVE_TARGET_32_LITTLE
5318template
5319off_t
5320Output_section::add_input_section<32, false>(
5321    Layout* layout,
5322    Sized_relobj_file<32, false>* object,
5323    unsigned int shndx,
5324    const char* secname,
5325    const elfcpp::Shdr<32, false>& shdr,
5326    unsigned int reloc_shndx,
5327    bool have_sections_script);
5328#endif
5329
5330#ifdef HAVE_TARGET_32_BIG
5331template
5332off_t
5333Output_section::add_input_section<32, true>(
5334    Layout* layout,
5335    Sized_relobj_file<32, true>* object,
5336    unsigned int shndx,
5337    const char* secname,
5338    const elfcpp::Shdr<32, true>& shdr,
5339    unsigned int reloc_shndx,
5340    bool have_sections_script);
5341#endif
5342
5343#ifdef HAVE_TARGET_64_LITTLE
5344template
5345off_t
5346Output_section::add_input_section<64, false>(
5347    Layout* layout,
5348    Sized_relobj_file<64, false>* object,
5349    unsigned int shndx,
5350    const char* secname,
5351    const elfcpp::Shdr<64, false>& shdr,
5352    unsigned int reloc_shndx,
5353    bool have_sections_script);
5354#endif
5355
5356#ifdef HAVE_TARGET_64_BIG
5357template
5358off_t
5359Output_section::add_input_section<64, true>(
5360    Layout* layout,
5361    Sized_relobj_file<64, true>* object,
5362    unsigned int shndx,
5363    const char* secname,
5364    const elfcpp::Shdr<64, true>& shdr,
5365    unsigned int reloc_shndx,
5366    bool have_sections_script);
5367#endif
5368
5369#ifdef HAVE_TARGET_32_LITTLE
5370template
5371class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5372#endif
5373
5374#ifdef HAVE_TARGET_32_BIG
5375template
5376class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5377#endif
5378
5379#ifdef HAVE_TARGET_64_LITTLE
5380template
5381class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5382#endif
5383
5384#ifdef HAVE_TARGET_64_BIG
5385template
5386class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5387#endif
5388
5389#ifdef HAVE_TARGET_32_LITTLE
5390template
5391class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5392#endif
5393
5394#ifdef HAVE_TARGET_32_BIG
5395template
5396class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5397#endif
5398
5399#ifdef HAVE_TARGET_64_LITTLE
5400template
5401class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5402#endif
5403
5404#ifdef HAVE_TARGET_64_BIG
5405template
5406class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5407#endif
5408
5409#ifdef HAVE_TARGET_32_LITTLE
5410template
5411class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5412#endif
5413
5414#ifdef HAVE_TARGET_32_BIG
5415template
5416class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5417#endif
5418
5419#ifdef HAVE_TARGET_64_LITTLE
5420template
5421class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5422#endif
5423
5424#ifdef HAVE_TARGET_64_BIG
5425template
5426class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5427#endif
5428
5429#ifdef HAVE_TARGET_32_LITTLE
5430template
5431class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5432#endif
5433
5434#ifdef HAVE_TARGET_32_BIG
5435template
5436class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5437#endif
5438
5439#ifdef HAVE_TARGET_64_LITTLE
5440template
5441class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5442#endif
5443
5444#ifdef HAVE_TARGET_64_BIG
5445template
5446class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5447#endif
5448
5449#ifdef HAVE_TARGET_32_LITTLE
5450template
5451class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5452#endif
5453
5454#ifdef HAVE_TARGET_32_BIG
5455template
5456class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5457#endif
5458
5459#ifdef HAVE_TARGET_64_LITTLE
5460template
5461class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5462#endif
5463
5464#ifdef HAVE_TARGET_64_BIG
5465template
5466class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5467#endif
5468
5469#ifdef HAVE_TARGET_32_LITTLE
5470template
5471class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5472#endif
5473
5474#ifdef HAVE_TARGET_32_BIG
5475template
5476class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5477#endif
5478
5479#ifdef HAVE_TARGET_64_LITTLE
5480template
5481class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5482#endif
5483
5484#ifdef HAVE_TARGET_64_BIG
5485template
5486class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5487#endif
5488
5489#ifdef HAVE_TARGET_32_LITTLE
5490template
5491class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5492#endif
5493
5494#ifdef HAVE_TARGET_32_BIG
5495template
5496class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5497#endif
5498
5499#ifdef HAVE_TARGET_64_LITTLE
5500template
5501class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5502#endif
5503
5504#ifdef HAVE_TARGET_64_BIG
5505template
5506class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5507#endif
5508
5509#ifdef HAVE_TARGET_32_LITTLE
5510template
5511class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5512#endif
5513
5514#ifdef HAVE_TARGET_32_BIG
5515template
5516class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5517#endif
5518
5519#ifdef HAVE_TARGET_64_LITTLE
5520template
5521class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5522#endif
5523
5524#ifdef HAVE_TARGET_64_BIG
5525template
5526class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5527#endif
5528
5529#ifdef HAVE_TARGET_32_LITTLE
5530template
5531class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5532#endif
5533
5534#ifdef HAVE_TARGET_32_BIG
5535template
5536class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5537#endif
5538
5539#ifdef HAVE_TARGET_64_LITTLE
5540template
5541class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5542#endif
5543
5544#ifdef HAVE_TARGET_64_BIG
5545template
5546class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5547#endif
5548
5549#ifdef HAVE_TARGET_32_LITTLE
5550template
5551class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5552#endif
5553
5554#ifdef HAVE_TARGET_32_BIG
5555template
5556class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5557#endif
5558
5559#ifdef HAVE_TARGET_64_LITTLE
5560template
5561class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5562#endif
5563
5564#ifdef HAVE_TARGET_64_BIG
5565template
5566class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5567#endif
5568
5569#ifdef HAVE_TARGET_32_LITTLE
5570template
5571class Output_data_group<32, false>;
5572#endif
5573
5574#ifdef HAVE_TARGET_32_BIG
5575template
5576class Output_data_group<32, true>;
5577#endif
5578
5579#ifdef HAVE_TARGET_64_LITTLE
5580template
5581class Output_data_group<64, false>;
5582#endif
5583
5584#ifdef HAVE_TARGET_64_BIG
5585template
5586class Output_data_group<64, true>;
5587#endif
5588
5589template
5590class Output_data_got<32, false>;
5591
5592template
5593class Output_data_got<32, true>;
5594
5595template
5596class Output_data_got<64, false>;
5597
5598template
5599class Output_data_got<64, true>;
5600
5601} // End namespace gold.
5602