1// icf.cc -- Identical Code Folding.
2//
3// Copyright (C) 2009-2017 Free Software Foundation, Inc.
4// Written by Sriraman Tallam <tmsriram@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Identical Code Folding Algorithm
24// ----------------------------------
25// Detecting identical functions is done here and the basic algorithm
26// is as follows.  A checksum is computed on each foldable section using
27// its contents and relocations.  If the symbol name corresponding to
28// a relocation is known it is used to compute the checksum.  If the
29// symbol name is not known the stringified name of the object and the
30// section number pointed to by the relocation is used.  The checksums
31// are stored as keys in a hash map and a section is identical to some
32// other section if its checksum is already present in the hash map.
33// Checksum collisions are handled by using a multimap and explicitly
34// checking the contents when two sections have the same checksum.
35//
36// However, two functions A and B with identical text but with
37// relocations pointing to different foldable sections can be identical if
38// the corresponding foldable sections to which their relocations point to
39// turn out to be identical.  Hence, this checksumming process must be
40// done repeatedly until convergence is obtained.  Here is an example for
41// the following case :
42//
43// int funcA ()               int funcB ()
44// {                          {
45//   return foo();              return goo();
46// }                          }
47//
48// The functions funcA and funcB are identical if functions foo() and
49// goo() are identical.
50//
51// Hence, as described above, we repeatedly do the checksumming,
52// assigning identical functions to the same group, until convergence is
53// obtained.  Now, we have two different ways to do this depending on how
54// we initialize.
55//
56// Algorithm I :
57// -----------
58// We can start with marking all functions as different and repeatedly do
59// the checksumming.  This has the advantage that we do not need to wait
60// for convergence. We can stop at any point and correctness will be
61// guaranteed although not all cases would have been found.  However, this
62// has a problem that some cases can never be found even if it is run until
63// convergence.  Here is an example with mutually recursive functions :
64//
65// int funcA (int a)            int funcB (int a)
66// {                            {
67//   if (a == 1)                  if (a == 1)
68//     return 1;                    return 1;
69//   return 1 + funcB(a - 1);     return 1 + funcA(a - 1);
70// }                            }
71//
72// In this example funcA and funcB are identical and one of them could be
73// folded into the other.  However, if we start with assuming that funcA
74// and funcB are not identical, the algorithm, even after it is run to
75// convergence, cannot detect that they are identical.  It should be noted
76// that even if the functions were self-recursive, Algorithm I cannot catch
77// that they are identical, at least as is.
78//
79// Algorithm II :
80// ------------
81// Here we start with marking all functions as identical and then repeat
82// the checksumming until convergence.  This can detect the above case
83// mentioned above.  It can detect all cases that Algorithm I can and more.
84// However, the caveat is that it has to be run to convergence.  It cannot
85// be stopped arbitrarily like Algorithm I as correctness cannot be
86// guaranteed.  Algorithm II is not implemented.
87//
88// Algorithm I is used because experiments show that about three
89// iterations are more than enough to achieve convergence. Algorithm I can
90// handle recursive calls if it is changed to use a special common symbol
91// for recursive relocs.  This seems to be the most common case that
92// Algorithm I could not catch as is.  Mutually recursive calls are not
93// frequent and Algorithm I wins because of its ability to be stopped
94// arbitrarily.
95//
96// Caveat with using function pointers :
97// ------------------------------------
98//
99// Programs using function pointer comparisons/checks should use function
100// folding with caution as the result of such comparisons could be different
101// when folding takes place.  This could lead to unexpected run-time
102// behaviour.
103//
104// Safe Folding :
105// ------------
106//
107// ICF in safe mode folds only ctors and dtors if their function pointers can
108// never be taken.  Also, for X86-64, safe folding uses the relocation
109// type to determine if a function's pointer is taken or not and only folds
110// functions whose pointers are definitely not taken.
111//
112// Caveat with safe folding :
113// ------------------------
114//
115// This applies only to x86_64.
116//
117// Position independent executables are created from PIC objects (compiled
118// with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the
119// relocation types for function pointer taken and a call are the same.
120// Now, it is not always possible to tell if an object used in the link of
121// a pie executable is a PIC object or a PIE object.  Hence, for pie
122// executables, using relocation types to disambiguate function pointers is
123// currently disabled.
124//
125// Further, it is not correct to use safe folding to build non-pie
126// executables using PIC/PIE objects.  PIC/PIE objects have different
127// relocation types for function pointers than non-PIC objects, and the
128// current implementation of safe folding does not handle those relocation
129// types.  Hence, if used, functions whose pointers are taken could still be
130// folded causing unpredictable run-time behaviour if the pointers were used
131// in comparisons.
132//
133//
134//
135// How to run  : --icf=[safe|all|none]
136// Optional parameters : --icf-iterations <num> --print-icf-sections
137//
138// Performance : Less than 20 % link-time overhead on industry strength
139// applications.  Up to 6 %  text size reductions.
140
141#include "gold.h"
142#include "object.h"
143#include "gc.h"
144#include "icf.h"
145#include "symtab.h"
146#include "libiberty.h"
147#include "demangle.h"
148#include "elfcpp.h"
149#include "int_encoding.h"
150
151namespace gold
152{
153
154// This function determines if a section or a group of identical
155// sections has unique contents.  Such unique sections or groups can be
156// declared final and need not be processed any further.
157// Parameters :
158// ID_SECTION : Vector mapping a section index to a Section_id pair.
159// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
160//                            sections is already known to be unique.
161// SECTION_CONTENTS : Contains the section's text and relocs to sections
162//                    that cannot be folded.   SECTION_CONTENTS are NULL
163//                    implies that this function is being called for the
164//                    first time before the first iteration of icf.
165
166static void
167preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
168                               std::vector<bool>* is_secn_or_group_unique,
169                               std::vector<std::string>* section_contents)
170{
171  Unordered_map<uint32_t, unsigned int> uniq_map;
172  std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
173    uniq_map_insert;
174
175  for (unsigned int i = 0; i < id_section.size(); i++)
176    {
177      if ((*is_secn_or_group_unique)[i])
178        continue;
179
180      uint32_t cksum;
181      Section_id secn = id_section[i];
182      section_size_type plen;
183      if (section_contents == NULL)
184        {
185          // Lock the object so we can read from it.  This is only called
186          // single-threaded from queue_middle_tasks, so it is OK to lock.
187          // Unfortunately we have no way to pass in a Task token.
188          const Task* dummy_task = reinterpret_cast<const Task*>(-1);
189          Task_lock_obj<Object> tl(dummy_task, secn.first);
190          const unsigned char* contents;
191          contents = secn.first->section_contents(secn.second,
192                                                  &plen,
193                                                  false);
194          cksum = xcrc32(contents, plen, 0xffffffff);
195        }
196      else
197        {
198          const unsigned char* contents_array = reinterpret_cast
199            <const unsigned char*>((*section_contents)[i].c_str());
200          cksum = xcrc32(contents_array, (*section_contents)[i].length(),
201                         0xffffffff);
202        }
203      uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
204      if (uniq_map_insert.second)
205        {
206          (*is_secn_or_group_unique)[i] = true;
207        }
208      else
209        {
210          (*is_secn_or_group_unique)[i] = false;
211          (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
212        }
213    }
214}
215
216// For SHF_MERGE sections that use REL relocations, the addend is stored in
217// the text section at the relocation offset.  Read  the addend value given
218// the pointer to the addend in the text section and the addend size.
219// Update the addend value if a valid addend is found.
220// Parameters:
221// RELOC_ADDEND_PTR   : Pointer to the addend in the text section.
222// ADDEND_SIZE        : The size of the addend.
223// RELOC_ADDEND_VALUE : Pointer to the addend that is updated.
224
225inline void
226get_rel_addend(const unsigned char* reloc_addend_ptr,
227	       const unsigned int addend_size,
228	       uint64_t* reloc_addend_value)
229{
230  switch (addend_size)
231    {
232    case 0:
233      break;
234    case 1:
235      *reloc_addend_value =
236        read_from_pointer<8>(reloc_addend_ptr);
237      break;
238    case 2:
239      *reloc_addend_value =
240          read_from_pointer<16>(reloc_addend_ptr);
241      break;
242    case 4:
243      *reloc_addend_value =
244        read_from_pointer<32>(reloc_addend_ptr);
245      break;
246    case 8:
247      *reloc_addend_value =
248        read_from_pointer<64>(reloc_addend_ptr);
249      break;
250    default:
251      gold_unreachable();
252    }
253}
254
255// This returns the buffer containing the section's contents, both
256// text and relocs.  Relocs are differentiated as those pointing to
257// sections that could be folded and those that cannot.  Only relocs
258// pointing to sections that could be folded are recomputed on
259// subsequent invocations of this function.
260// Parameters  :
261// FIRST_ITERATION    : true if it is the first invocation.
262// SECN               : Section for which contents are desired.
263// SECTION_NUM        : Unique section number of this section.
264// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
265//                      to ICF sections.
266// KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
267// SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
268//                      sections.
269
270static std::string
271get_section_contents(bool first_iteration,
272                     const Section_id& secn,
273                     unsigned int section_num,
274                     unsigned int* num_tracked_relocs,
275                     Symbol_table* symtab,
276                     const std::vector<unsigned int>& kept_section_id,
277                     std::vector<std::string>* section_contents)
278{
279  // Lock the object so we can read from it.  This is only called
280  // single-threaded from queue_middle_tasks, so it is OK to lock.
281  // Unfortunately we have no way to pass in a Task token.
282  const Task* dummy_task = reinterpret_cast<const Task*>(-1);
283  Task_lock_obj<Object> tl(dummy_task, secn.first);
284
285  section_size_type plen;
286  const unsigned char* contents = NULL;
287  if (first_iteration)
288    contents = secn.first->section_contents(secn.second, &plen, false);
289
290  // The buffer to hold all the contents including relocs.  A checksum
291  // is then computed on this buffer.
292  std::string buffer;
293  std::string icf_reloc_buffer;
294
295  if (num_tracked_relocs)
296    *num_tracked_relocs = 0;
297
298  Icf::Reloc_info_list& reloc_info_list =
299    symtab->icf()->reloc_info_list();
300
301  Icf::Reloc_info_list::iterator it_reloc_info_list =
302    reloc_info_list.find(secn);
303
304  buffer.clear();
305  icf_reloc_buffer.clear();
306
307  // Process relocs and put them into the buffer.
308
309  if (it_reloc_info_list != reloc_info_list.end())
310    {
311      Icf::Sections_reachable_info &v =
312        (it_reloc_info_list->second).section_info;
313      // Stores the information of the symbol pointed to by the reloc.
314      const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
315      // Stores the addend and the symbol value.
316      Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
317      // Stores the offset of the reloc.
318      const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
319      const Icf::Reloc_addend_size_info &reloc_addend_size_info =
320        (it_reloc_info_list->second).reloc_addend_size_info;
321      Icf::Sections_reachable_info::iterator it_v = v.begin();
322      Icf::Symbol_info::const_iterator it_s = s.begin();
323      Icf::Addend_info::iterator it_a = a.begin();
324      Icf::Offset_info::const_iterator it_o = o.begin();
325      Icf::Reloc_addend_size_info::const_iterator it_addend_size =
326        reloc_addend_size_info.begin();
327
328      for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
329        {
330	  if (first_iteration
331	      && it_v->first != NULL)
332	    {
333	      Symbol_location loc;
334	      loc.object = it_v->first;
335	      loc.shndx = it_v->second;
336	      loc.offset = convert_types<off_t, long long>(it_a->first
337							   + it_a->second);
338	      // Look through function descriptors
339	      parameters->target().function_location(&loc);
340	      if (loc.shndx != it_v->second)
341		{
342		  it_v->second = loc.shndx;
343		  // Modify symvalue/addend to the code entry.
344		  it_a->first = loc.offset;
345		  it_a->second = 0;
346		}
347	    }
348
349          // ADDEND_STR stores the symbol value and addend and offset,
350          // each at most 16 hex digits long.  it_a points to a pair
351          // where first is the symbol value and second is the
352          // addend.
353          char addend_str[50];
354
355	  // It would be nice if we could use format macros in inttypes.h
356	  // here but there are not in ISO/IEC C++ 1998.
357          snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
358                   static_cast<long long>((*it_a).first),
359		   static_cast<long long>((*it_a).second),
360		   static_cast<unsigned long long>(*it_o));
361
362	  // If the symbol pointed to by the reloc is not in an ordinary
363	  // section or if the symbol type is not FROM_OBJECT, then the
364	  // object is NULL.
365	  if (it_v->first == NULL)
366            {
367	      if (first_iteration)
368                {
369		  // If the symbol name is available, use it.
370                  if ((*it_s) != NULL)
371                      buffer.append((*it_s)->name());
372                  // Append the addend.
373                  buffer.append(addend_str);
374                  buffer.append("@");
375		}
376	      continue;
377	    }
378
379          Section_id reloc_secn(it_v->first, it_v->second);
380
381          // If this reloc turns back and points to the same section,
382          // like a recursive call, use a special symbol to mark this.
383          if (reloc_secn.first == secn.first
384              && reloc_secn.second == secn.second)
385            {
386              if (first_iteration)
387                {
388                  buffer.append("R");
389                  buffer.append(addend_str);
390                  buffer.append("@");
391                }
392              continue;
393            }
394          Icf::Uniq_secn_id_map& section_id_map =
395            symtab->icf()->section_to_int_map();
396          Icf::Uniq_secn_id_map::iterator section_id_map_it =
397            section_id_map.find(reloc_secn);
398          bool is_sym_preemptible = (*it_s != NULL
399				     && !(*it_s)->is_from_dynobj()
400				     && !(*it_s)->is_undefined()
401				     && (*it_s)->is_preemptible());
402          if (!is_sym_preemptible
403              && section_id_map_it != section_id_map.end())
404            {
405              // This is a reloc to a section that might be folded.
406              if (num_tracked_relocs)
407                (*num_tracked_relocs)++;
408
409              char kept_section_str[10];
410              unsigned int secn_id = section_id_map_it->second;
411              snprintf(kept_section_str, sizeof(kept_section_str), "%u",
412                       kept_section_id[secn_id]);
413              if (first_iteration)
414                {
415                  buffer.append("ICF_R");
416                  buffer.append(addend_str);
417                }
418              icf_reloc_buffer.append(kept_section_str);
419              // Append the addend.
420              icf_reloc_buffer.append(addend_str);
421              icf_reloc_buffer.append("@");
422            }
423          else
424            {
425              // This is a reloc to a section that cannot be folded.
426              // Process it only in the first iteration.
427              if (!first_iteration)
428                continue;
429
430              uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
431              // This reloc points to a merge section.  Hash the
432              // contents of this section.
433              if ((secn_flags & elfcpp::SHF_MERGE) != 0
434		  && parameters->target().can_icf_inline_merge_sections())
435                {
436                  uint64_t entsize =
437                    (it_v->first)->section_entsize(it_v->second);
438		  long long offset = it_a->first;
439		  // Handle SHT_RELA and SHT_REL addends, only one of these
440		  // addends exists.
441		  // Get the SHT_RELA addend.  For RELA relocations, we have
442		  // the addend from the relocation.
443		  uint64_t reloc_addend_value = it_a->second;
444
445		  // Handle SHT_REL addends.
446		  // For REL relocations, we need to fetch the addend from the
447		  // section contents.
448                  const unsigned char* reloc_addend_ptr =
449		    contents + static_cast<unsigned long long>(*it_o);
450
451		  // Update the addend value with the SHT_REL addend if
452		  // available.
453		  get_rel_addend(reloc_addend_ptr, *it_addend_size,
454				 &reloc_addend_value);
455
456		  // Ignore the addend when it is a negative value.  See the
457		  // comments in Merged_symbol_value::value in object.h.
458		  if (reloc_addend_value < 0xffffff00)
459		    offset = offset + reloc_addend_value;
460
461                  section_size_type secn_len;
462
463                  const unsigned char* str_contents =
464                  (it_v->first)->section_contents(it_v->second,
465                                                  &secn_len,
466                                                  false) + offset;
467		  gold_assert (offset < (long long) secn_len);
468
469                  if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
470                    {
471                      // String merge section.
472                      const char* str_char =
473                        reinterpret_cast<const char*>(str_contents);
474                      switch(entsize)
475                        {
476                        case 1:
477                          {
478                            buffer.append(str_char);
479                            break;
480                          }
481                        case 2:
482                          {
483                            const uint16_t* ptr_16 =
484                              reinterpret_cast<const uint16_t*>(str_char);
485                            unsigned int strlen_16 = 0;
486                            // Find the NULL character.
487                            while(*(ptr_16 + strlen_16) != 0)
488                                strlen_16++;
489                            buffer.append(str_char, strlen_16 * 2);
490                          }
491                          break;
492                        case 4:
493                          {
494                            const uint32_t* ptr_32 =
495                              reinterpret_cast<const uint32_t*>(str_char);
496                            unsigned int strlen_32 = 0;
497                            // Find the NULL character.
498                            while(*(ptr_32 + strlen_32) != 0)
499                                strlen_32++;
500                            buffer.append(str_char, strlen_32 * 4);
501                          }
502                          break;
503                        default:
504                          gold_unreachable();
505                        }
506                    }
507                  else
508                    {
509                      // Use the entsize to determine the length to copy.
510		      uint64_t bufsize = entsize;
511		      // If entsize is too big, copy all the remaining bytes.
512		      if ((offset + entsize) > secn_len)
513			bufsize = secn_len - offset;
514                      buffer.append(reinterpret_cast<const
515                                                     char*>(str_contents),
516                                    bufsize);
517                    }
518		  buffer.append("@");
519                }
520              else if ((*it_s) != NULL)
521                {
522                  // If symbol name is available use that.
523                  buffer.append((*it_s)->name());
524                  // Append the addend.
525                  buffer.append(addend_str);
526                  buffer.append("@");
527                }
528              else
529                {
530                  // Symbol name is not available, like for a local symbol,
531                  // use object and section id.
532                  buffer.append(it_v->first->name());
533                  char secn_id[10];
534                  snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
535                  buffer.append(secn_id);
536                  // Append the addend.
537                  buffer.append(addend_str);
538                  buffer.append("@");
539                }
540            }
541        }
542    }
543
544  if (first_iteration)
545    {
546      buffer.append("Contents = ");
547      buffer.append(reinterpret_cast<const char*>(contents), plen);
548      // Store the section contents that don't change to avoid recomputing
549      // during the next call to this function.
550      (*section_contents)[section_num] = buffer;
551    }
552  else
553    {
554      gold_assert(buffer.empty());
555      // Reuse the contents computed in the previous iteration.
556      buffer.append((*section_contents)[section_num]);
557    }
558
559  buffer.append(icf_reloc_buffer);
560  return buffer;
561}
562
563// This function computes a checksum on each section to detect and form
564// groups of identical sections.  The first iteration does this for all
565// sections.
566// Further iterations do this only for the kept sections from each group to
567// determine if larger groups of identical sections could be formed.  The
568// first section in each group is the kept section for that group.
569//
570// CRC32 is the checksumming algorithm and can have collisions.  That is,
571// two sections with different contents can have the same checksum. Hence,
572// a multimap is used to maintain more than one group of checksum
573// identical sections.  A section is added to a group only after its
574// contents are explicitly compared with the kept section of the group.
575//
576// Parameters  :
577// ITERATION_NUM           : Invocation instance of this function.
578// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
579//                      to ICF sections.
580// KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
581// ID_SECTION         : Vector mapping a section to an unique integer.
582// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
583//                            sections is already known to be unique.
584// SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
585//                      sections.
586
587static bool
588match_sections(unsigned int iteration_num,
589               Symbol_table* symtab,
590               std::vector<unsigned int>* num_tracked_relocs,
591               std::vector<unsigned int>* kept_section_id,
592               const std::vector<Section_id>& id_section,
593	       const std::vector<uint64_t>& section_addraligns,
594               std::vector<bool>* is_secn_or_group_unique,
595               std::vector<std::string>* section_contents)
596{
597  Unordered_multimap<uint32_t, unsigned int> section_cksum;
598  std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
599            Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
600  bool converged = true;
601
602  if (iteration_num == 1)
603    preprocess_for_unique_sections(id_section,
604                                   is_secn_or_group_unique,
605                                   NULL);
606  else
607    preprocess_for_unique_sections(id_section,
608                                   is_secn_or_group_unique,
609                                   section_contents);
610
611  std::vector<std::string> full_section_contents;
612
613  for (unsigned int i = 0; i < id_section.size(); i++)
614    {
615      full_section_contents.push_back("");
616      if ((*is_secn_or_group_unique)[i])
617        continue;
618
619      Section_id secn = id_section[i];
620      std::string this_secn_contents;
621      uint32_t cksum;
622      if (iteration_num == 1)
623        {
624          unsigned int num_relocs = 0;
625          this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
626                                                    symtab, (*kept_section_id),
627                                                    section_contents);
628          (*num_tracked_relocs)[i] = num_relocs;
629        }
630      else
631        {
632          if ((*kept_section_id)[i] != i)
633            {
634              // This section is already folded into something.
635              continue;
636            }
637          this_secn_contents = get_section_contents(false, secn, i, NULL,
638                                                    symtab, (*kept_section_id),
639                                                    section_contents);
640        }
641
642      const unsigned char* this_secn_contents_array =
643            reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
644      cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
645                     0xffffffff);
646      size_t count = section_cksum.count(cksum);
647
648      if (count == 0)
649        {
650          // Start a group with this cksum.
651          section_cksum.insert(std::make_pair(cksum, i));
652          full_section_contents[i] = this_secn_contents;
653        }
654      else
655        {
656          key_range = section_cksum.equal_range(cksum);
657          Unordered_multimap<uint32_t, unsigned int>::iterator it;
658          // Search all the groups with this cksum for a match.
659          for (it = key_range.first; it != key_range.second; ++it)
660            {
661              unsigned int kept_section = it->second;
662              if (full_section_contents[kept_section].length()
663                  != this_secn_contents.length())
664                  continue;
665              if (memcmp(full_section_contents[kept_section].c_str(),
666                         this_secn_contents.c_str(),
667                         this_secn_contents.length()) != 0)
668                  continue;
669
670	      // Check section alignment here.
671	      // The section with the larger alignment requirement
672	      // should be kept.  We assume alignment can only be
673	      // zero or positive integral powers of two.
674	      uint64_t align_i = section_addraligns[i];
675	      uint64_t align_kept = section_addraligns[kept_section];
676	      if (align_i <= align_kept)
677		{
678		  (*kept_section_id)[i] = kept_section;
679		}
680	      else
681		{
682		  (*kept_section_id)[kept_section] = i;
683		  it->second = i;
684		  full_section_contents[kept_section].swap(
685		      full_section_contents[i]);
686		}
687
688              converged = false;
689              break;
690            }
691          if (it == key_range.second)
692            {
693              // Create a new group for this cksum.
694              section_cksum.insert(std::make_pair(cksum, i));
695              full_section_contents[i] = this_secn_contents;
696            }
697        }
698      // If there are no relocs to foldable sections do not process
699      // this section any further.
700      if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
701        (*is_secn_or_group_unique)[i] = true;
702    }
703
704  // If a section was folded into another section that was later folded
705  // again then the former has to be updated.
706  for (unsigned int i = 0; i < id_section.size(); i++)
707    {
708      // Find the end of the folding chain
709      unsigned int kept = i;
710      while ((*kept_section_id)[kept] != kept)
711        {
712          kept = (*kept_section_id)[kept];
713        }
714      // Update every element of the chain
715      unsigned int current = i;
716      while ((*kept_section_id)[current] != kept)
717        {
718          unsigned int next = (*kept_section_id)[current];
719          (*kept_section_id)[current] = kept;
720          current = next;
721        }
722    }
723
724  return converged;
725}
726
727// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
728// This function returns true if the section name is that of a ctor or a dtor.
729
730static bool
731is_function_ctor_or_dtor(const std::string& section_name)
732{
733  const char* mangled_func_name = strrchr(section_name.c_str(), '.');
734  gold_assert(mangled_func_name != NULL);
735  if ((is_prefix_of("._ZN", mangled_func_name)
736       || is_prefix_of("._ZZ", mangled_func_name))
737      && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
738          || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
739    {
740      return true;
741    }
742  return false;
743}
744
745// This is the main ICF function called in gold.cc.  This does the
746// initialization and calls match_sections repeatedly (twice by default)
747// which computes the crc checksums and detects identical functions.
748
749void
750Icf::find_identical_sections(const Input_objects* input_objects,
751                             Symbol_table* symtab)
752{
753  unsigned int section_num = 0;
754  std::vector<unsigned int> num_tracked_relocs;
755  std::vector<uint64_t> section_addraligns;
756  std::vector<bool> is_secn_or_group_unique;
757  std::vector<std::string> section_contents;
758  const Target& target = parameters->target();
759
760  // Decide which sections are possible candidates first.
761
762  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
763       p != input_objects->relobj_end();
764       ++p)
765    {
766      // Lock the object so we can read from it.  This is only called
767      // single-threaded from queue_middle_tasks, so it is OK to lock.
768      // Unfortunately we have no way to pass in a Task token.
769      const Task* dummy_task = reinterpret_cast<const Task*>(-1);
770      Task_lock_obj<Object> tl(dummy_task, *p);
771
772      for (unsigned int i = 0;i < (*p)->shnum(); ++i)
773        {
774	  const std::string section_name = (*p)->section_name(i);
775          if (!is_section_foldable_candidate(section_name))
776            continue;
777          if (!(*p)->is_section_included(i))
778            continue;
779          if (parameters->options().gc_sections()
780              && symtab->gc()->is_section_garbage(*p, i))
781              continue;
782	  // With --icf=safe, check if the mangled function name is a ctor
783	  // or a dtor.  The mangled function name can be obtained from the
784	  // section name by stripping the section prefix.
785	  if (parameters->options().icf_safe_folding()
786              && !is_function_ctor_or_dtor(section_name)
787	      && (!target.can_check_for_function_pointers()
788                  || section_has_function_pointers(*p, i)))
789            {
790	      continue;
791            }
792          this->id_section_.push_back(Section_id(*p, i));
793          this->section_id_[Section_id(*p, i)] = section_num;
794          this->kept_section_id_.push_back(section_num);
795          num_tracked_relocs.push_back(0);
796	  section_addraligns.push_back((*p)->section_addralign(i));
797          is_secn_or_group_unique.push_back(false);
798          section_contents.push_back("");
799          section_num++;
800        }
801    }
802
803  unsigned int num_iterations = 0;
804
805  // Default number of iterations to run ICF is 2.
806  unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
807                            ? parameters->options().icf_iterations()
808                            : 2;
809
810  bool converged = false;
811
812  while (!converged && (num_iterations < max_iterations))
813    {
814      num_iterations++;
815      converged = match_sections(num_iterations, symtab,
816                                 &num_tracked_relocs, &this->kept_section_id_,
817                                 this->id_section_, section_addraligns,
818                                 &is_secn_or_group_unique, &section_contents);
819    }
820
821  if (parameters->options().print_icf_sections())
822    {
823      if (converged)
824        gold_info(_("%s: ICF Converged after %u iteration(s)"),
825                  program_name, num_iterations);
826      else
827        gold_info(_("%s: ICF stopped after %u iteration(s)"),
828                  program_name, num_iterations);
829    }
830
831  // Unfold --keep-unique symbols.
832  for (options::String_set::const_iterator p =
833	 parameters->options().keep_unique_begin();
834       p != parameters->options().keep_unique_end();
835       ++p)
836    {
837      const char* name = p->c_str();
838      Symbol* sym = symtab->lookup(name);
839      if (sym == NULL)
840	{
841	  gold_warning(_("Could not find symbol %s to unfold\n"), name);
842	}
843      else if (sym->source() == Symbol::FROM_OBJECT
844               && !sym->object()->is_dynamic())
845        {
846          Relobj* obj = static_cast<Relobj*>(sym->object());
847          bool is_ordinary;
848          unsigned int shndx = sym->shndx(&is_ordinary);
849          if (is_ordinary)
850            {
851	      this->unfold_section(obj, shndx);
852            }
853        }
854
855    }
856
857  this->icf_ready();
858}
859
860// Unfolds the section denoted by OBJ and SHNDX if folded.
861
862void
863Icf::unfold_section(Relobj* obj, unsigned int shndx)
864{
865  Section_id secn(obj, shndx);
866  Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
867  if (it == this->section_id_.end())
868    return;
869  unsigned int section_num = it->second;
870  unsigned int kept_section_id = this->kept_section_id_[section_num];
871  if (kept_section_id != section_num)
872    this->kept_section_id_[section_num] = section_num;
873}
874
875// This function determines if the section corresponding to the
876// given object and index is folded based on if the kept section
877// is different from this section.
878
879bool
880Icf::is_section_folded(Relobj* obj, unsigned int shndx)
881{
882  Section_id secn(obj, shndx);
883  Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
884  if (it == this->section_id_.end())
885    return false;
886  unsigned int section_num = it->second;
887  unsigned int kept_section_id = this->kept_section_id_[section_num];
888  return kept_section_id != section_num;
889}
890
891// This function returns the folded section for the given section.
892
893Section_id
894Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
895{
896  Section_id dup_secn(dup_obj, dup_shndx);
897  Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
898  gold_assert(it != this->section_id_.end());
899  unsigned int section_num = it->second;
900  unsigned int kept_section_id = this->kept_section_id_[section_num];
901  Section_id folded_section = this->id_section_[kept_section_id];
902  return folded_section;
903}
904
905} // End of namespace gold.
906