1/* Generic symbol-table support for the BFD library.
2   Copyright (C) 1990-2017 Free Software Foundation, Inc.
3   Written by Cygnus Support.
4
5   This file is part of BFD, the Binary File Descriptor library.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 3 of the License, or
10   (at your option) any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20   MA 02110-1301, USA.  */
21
22/*
23SECTION
24	Symbols
25
26	BFD tries to maintain as much symbol information as it can when
27	it moves information from file to file. BFD passes information
28	to applications though the <<asymbol>> structure. When the
29	application requests the symbol table, BFD reads the table in
30	the native form and translates parts of it into the internal
31	format. To maintain more than the information passed to
32	applications, some targets keep some information ``behind the
33	scenes'' in a structure only the particular back end knows
34	about. For example, the coff back end keeps the original
35	symbol table structure as well as the canonical structure when
36	a BFD is read in. On output, the coff back end can reconstruct
37	the output symbol table so that no information is lost, even
38	information unique to coff which BFD doesn't know or
39	understand. If a coff symbol table were read, but were written
40	through an a.out back end, all the coff specific information
41	would be lost. The symbol table of a BFD
42	is not necessarily read in until a canonicalize request is
43	made. Then the BFD back end fills in a table provided by the
44	application with pointers to the canonical information.  To
45	output symbols, the application provides BFD with a table of
46	pointers to pointers to <<asymbol>>s. This allows applications
47	like the linker to output a symbol as it was read, since the ``behind
48	the scenes'' information will be still available.
49@menu
50@* Reading Symbols::
51@* Writing Symbols::
52@* Mini Symbols::
53@* typedef asymbol::
54@* symbol handling functions::
55@end menu
56
57INODE
58Reading Symbols, Writing Symbols, Symbols, Symbols
59SUBSECTION
60	Reading symbols
61
62	There are two stages to reading a symbol table from a BFD:
63	allocating storage, and the actual reading process. This is an
64	excerpt from an application which reads the symbol table:
65
66|	  long storage_needed;
67|	  asymbol **symbol_table;
68|	  long number_of_symbols;
69|	  long i;
70|
71|	  storage_needed = bfd_get_symtab_upper_bound (abfd);
72|
73|         if (storage_needed < 0)
74|           FAIL
75|
76|	  if (storage_needed == 0)
77|	    return;
78|
79|	  symbol_table = xmalloc (storage_needed);
80|	    ...
81|	  number_of_symbols =
82|	     bfd_canonicalize_symtab (abfd, symbol_table);
83|
84|         if (number_of_symbols < 0)
85|           FAIL
86|
87|	  for (i = 0; i < number_of_symbols; i++)
88|	    process_symbol (symbol_table[i]);
89
90	All storage for the symbols themselves is in an objalloc
91	connected to the BFD; it is freed when the BFD is closed.
92
93INODE
94Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95SUBSECTION
96	Writing symbols
97
98	Writing of a symbol table is automatic when a BFD open for
99	writing is closed. The application attaches a vector of
100	pointers to pointers to symbols to the BFD being written, and
101	fills in the symbol count. The close and cleanup code reads
102	through the table provided and performs all the necessary
103	operations. The BFD output code must always be provided with an
104	``owned'' symbol: one which has come from another BFD, or one
105	which has been created using <<bfd_make_empty_symbol>>.  Here is an
106	example showing the creation of a symbol table with only one element:
107
108|	#include "sysdep.h"
109|	#include "bfd.h"
110|	int main (void)
111|	{
112|	  bfd *abfd;
113|	  asymbol *ptrs[2];
114|	  asymbol *new;
115|
116|	  abfd = bfd_openw ("foo","a.out-sunos-big");
117|	  bfd_set_format (abfd, bfd_object);
118|	  new = bfd_make_empty_symbol (abfd);
119|	  new->name = "dummy_symbol";
120|	  new->section = bfd_make_section_old_way (abfd, ".text");
121|	  new->flags = BSF_GLOBAL;
122|	  new->value = 0x12345;
123|
124|	  ptrs[0] = new;
125|	  ptrs[1] = 0;
126|
127|	  bfd_set_symtab (abfd, ptrs, 1);
128|	  bfd_close (abfd);
129|	  return 0;
130|	}
131|
132|	./makesym
133|	nm foo
134|	00012345 A dummy_symbol
135
136	Many formats cannot represent arbitrary symbol information; for
137 	instance, the <<a.out>> object format does not allow an
138	arbitrary number of sections. A symbol pointing to a section
139	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
140	be described.
141
142INODE
143Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144SUBSECTION
145	Mini Symbols
146
147	Mini symbols provide read-only access to the symbol table.
148	They use less memory space, but require more time to access.
149	They can be useful for tools like nm or objdump, which may
150	have to handle symbol tables of extremely large executables.
151
152	The <<bfd_read_minisymbols>> function will read the symbols
153	into memory in an internal form.  It will return a <<void *>>
154	pointer to a block of memory, a symbol count, and the size of
155	each symbol.  The pointer is allocated using <<malloc>>, and
156	should be freed by the caller when it is no longer needed.
157
158	The function <<bfd_minisymbol_to_symbol>> will take a pointer
159	to a minisymbol, and a pointer to a structure returned by
160	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161	The return value may or may not be the same as the value from
162	<<bfd_make_empty_symbol>> which was passed in.
163
164*/
165
166/*
167DOCDD
168INODE
169typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171*/
172/*
173SUBSECTION
174	typedef asymbol
175
176	An <<asymbol>> has the form:
177
178*/
179
180/*
181CODE_FRAGMENT
182
183.
184.typedef struct bfd_symbol
185.{
186.  {* A pointer to the BFD which owns the symbol. This information
187.     is necessary so that a back end can work out what additional
188.     information (invisible to the application writer) is carried
189.     with the symbol.
190.
191.     This field is *almost* redundant, since you can use section->owner
192.     instead, except that some symbols point to the global sections
193.     bfd_{abs,com,und}_section.  This could be fixed by making
194.     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
195.  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
196.
197.  {* The text of the symbol. The name is left alone, and not copied; the
198.     application may not alter it.  *}
199.  const char *name;
200.
201.  {* The value of the symbol.  This really should be a union of a
202.     numeric value with a pointer, since some flags indicate that
203.     a pointer to another symbol is stored here.  *}
204.  symvalue value;
205.
206.  {* Attributes of a symbol.  *}
207.#define BSF_NO_FLAGS    	0x00
208.
209.  {* The symbol has local scope; <<static>> in <<C>>. The value
210.     is the offset into the section of the data.  *}
211.#define BSF_LOCAL		(1 << 0)
212.
213.  {* The symbol has global scope; initialized data in <<C>>. The
214.     value is the offset into the section of the data.  *}
215.#define BSF_GLOBAL		(1 << 1)
216.
217.  {* The symbol has global scope and is exported. The value is
218.     the offset into the section of the data.  *}
219.#define BSF_EXPORT	BSF_GLOBAL {* No real difference.  *}
220.
221.  {* A normal C symbol would be one of:
222.     <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>.  *}
223.
224.  {* The symbol is a debugging record. The value has an arbitrary
225.     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
226.#define BSF_DEBUGGING		(1 << 2)
227.
228.  {* The symbol denotes a function entry point.  Used in ELF,
229.     perhaps others someday.  *}
230.#define BSF_FUNCTION		(1 << 3)
231.
232.  {* Used by the linker.  *}
233.#define BSF_KEEP		(1 << 5)
234.
235.  {* An ELF common symbol.  *}
236.#define BSF_ELF_COMMON		(1 << 6)
237.
238.  {* A weak global symbol, overridable without warnings by
239.     a regular global symbol of the same name.  *}
240.#define BSF_WEAK		(1 << 7)
241.
242.  {* This symbol was created to point to a section, e.g. ELF's
243.     STT_SECTION symbols.  *}
244.#define BSF_SECTION_SYM	(1 << 8)
245.
246.  {* The symbol used to be a common symbol, but now it is
247.     allocated.  *}
248.#define BSF_OLD_COMMON		(1 << 9)
249.
250.  {* In some files the type of a symbol sometimes alters its
251.     location in an output file - ie in coff a <<ISFCN>> symbol
252.     which is also <<C_EXT>> symbol appears where it was
253.     declared and not at the end of a section.  This bit is set
254.     by the target BFD part to convey this information.  *}
255.#define BSF_NOT_AT_END		(1 << 10)
256.
257.  {* Signal that the symbol is the label of constructor section.  *}
258.#define BSF_CONSTRUCTOR	(1 << 11)
259.
260.  {* Signal that the symbol is a warning symbol.  The name is a
261.     warning.  The name of the next symbol is the one to warn about;
262.     if a reference is made to a symbol with the same name as the next
263.     symbol, a warning is issued by the linker.  *}
264.#define BSF_WARNING		(1 << 12)
265.
266.  {* Signal that the symbol is indirect.  This symbol is an indirect
267.     pointer to the symbol with the same name as the next symbol.  *}
268.#define BSF_INDIRECT		(1 << 13)
269.
270.  {* BSF_FILE marks symbols that contain a file name.  This is used
271.     for ELF STT_FILE symbols.  *}
272.#define BSF_FILE		(1 << 14)
273.
274.  {* Symbol is from dynamic linking information.  *}
275.#define BSF_DYNAMIC		(1 << 15)
276.
277.  {* The symbol denotes a data object.  Used in ELF, and perhaps
278.     others someday.  *}
279.#define BSF_OBJECT		(1 << 16)
280.
281.  {* This symbol is a debugging symbol.  The value is the offset
282.     into the section of the data.  BSF_DEBUGGING should be set
283.     as well.  *}
284.#define BSF_DEBUGGING_RELOC	(1 << 17)
285.
286.  {* This symbol is thread local.  Used in ELF.  *}
287.#define BSF_THREAD_LOCAL	(1 << 18)
288.
289.  {* This symbol represents a complex relocation expression,
290.     with the expression tree serialized in the symbol name.  *}
291.#define BSF_RELC		(1 << 19)
292.
293.  {* This symbol represents a signed complex relocation expression,
294.     with the expression tree serialized in the symbol name.  *}
295.#define BSF_SRELC		(1 << 20)
296.
297.  {* This symbol was created by bfd_get_synthetic_symtab.  *}
298.#define BSF_SYNTHETIC		(1 << 21)
299.
300.  {* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
301.     The dynamic linker will compute the value of this symbol by
302.     calling the function that it points to.  BSF_FUNCTION must
303.     also be also set.  *}
304.#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305.  {* This symbol is a globally unique data object.  The dynamic linker
306.     will make sure that in the entire process there is just one symbol
307.     with this name and type in use.  BSF_OBJECT must also be set.  *}
308.#define BSF_GNU_UNIQUE		(1 << 23)
309.
310.  flagword flags;
311.
312.  {* A pointer to the section to which this symbol is
313.     relative.  This will always be non NULL, there are special
314.     sections for undefined and absolute symbols.  *}
315.  struct bfd_section *section;
316.
317.  {* Back end special data.  *}
318.  union
319.    {
320.      void *p;
321.      bfd_vma i;
322.    }
323.  udata;
324.}
325.asymbol;
326.
327*/
328
329#include "sysdep.h"
330#include "bfd.h"
331#include "libbfd.h"
332#include "safe-ctype.h"
333#include "bfdlink.h"
334#include "aout/stab_gnu.h"
335
336/*
337DOCDD
338INODE
339symbol handling functions,  , typedef asymbol, Symbols
340SUBSECTION
341	Symbol handling functions
342*/
343
344/*
345FUNCTION
346	bfd_get_symtab_upper_bound
347
348DESCRIPTION
349	Return the number of bytes required to store a vector of pointers
350	to <<asymbols>> for all the symbols in the BFD @var{abfd},
351	including a terminal NULL pointer. If there are no symbols in
352	the BFD, then return 0.  If an error occurs, return -1.
353
354.#define bfd_get_symtab_upper_bound(abfd) \
355.     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356.
357*/
358
359/*
360FUNCTION
361	bfd_is_local_label
362
363SYNOPSIS
364        bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365
366DESCRIPTION
367	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368	a compiler generated local label, else return FALSE.
369*/
370
371bfd_boolean
372bfd_is_local_label (bfd *abfd, asymbol *sym)
373{
374  /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375     starts with '.' is local.  This would accidentally catch section names
376     if we didn't reject them here.  */
377  if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378    return FALSE;
379  if (sym->name == NULL)
380    return FALSE;
381  return bfd_is_local_label_name (abfd, sym->name);
382}
383
384/*
385FUNCTION
386	bfd_is_local_label_name
387
388SYNOPSIS
389        bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390
391DESCRIPTION
392	Return TRUE if a symbol with the name @var{name} in the BFD
393	@var{abfd} is a compiler generated local label, else return
394	FALSE.  This just checks whether the name has the form of a
395	local label.
396
397.#define bfd_is_local_label_name(abfd, name) \
398.  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399.
400*/
401
402/*
403FUNCTION
404	bfd_is_target_special_symbol
405
406SYNOPSIS
407        bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408
409DESCRIPTION
410	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411	special to the particular target represented by the BFD.  Such symbols
412	should normally not be mentioned to the user.
413
414.#define bfd_is_target_special_symbol(abfd, sym) \
415.  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416.
417*/
418
419/*
420FUNCTION
421	bfd_canonicalize_symtab
422
423DESCRIPTION
424	Read the symbols from the BFD @var{abfd}, and fills in
425	the vector @var{location} with pointers to the symbols and
426	a trailing NULL.
427	Return the actual number of symbol pointers, not
428	including the NULL.
429
430.#define bfd_canonicalize_symtab(abfd, location) \
431.  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432.
433*/
434
435/*
436FUNCTION
437	bfd_set_symtab
438
439SYNOPSIS
440	bfd_boolean bfd_set_symtab
441	  (bfd *abfd, asymbol **location, unsigned int count);
442
443DESCRIPTION
444	Arrange that when the output BFD @var{abfd} is closed,
445	the table @var{location} of @var{count} pointers to symbols
446	will be written.
447*/
448
449bfd_boolean
450bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451{
452  if (abfd->format != bfd_object || bfd_read_p (abfd))
453    {
454      bfd_set_error (bfd_error_invalid_operation);
455      return FALSE;
456    }
457
458  bfd_get_outsymbols (abfd) = location;
459  bfd_get_symcount (abfd) = symcount;
460  return TRUE;
461}
462
463/*
464FUNCTION
465	bfd_print_symbol_vandf
466
467SYNOPSIS
468	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469
470DESCRIPTION
471	Print the value and flags of the @var{symbol} supplied to the
472	stream @var{file}.
473*/
474void
475bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476{
477  FILE *file = (FILE *) arg;
478
479  flagword type = symbol->flags;
480
481  if (symbol->section != NULL)
482    bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483  else
484    bfd_fprintf_vma (abfd, file, symbol->value);
485
486  /* This presumes that a symbol can not be both BSF_DEBUGGING and
487     BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488     BSF_OBJECT.  */
489  fprintf (file, " %c%c%c%c%c%c%c",
490	   ((type & BSF_LOCAL)
491	    ? (type & BSF_GLOBAL) ? '!' : 'l'
492	    : (type & BSF_GLOBAL) ? 'g'
493	    : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494	   (type & BSF_WEAK) ? 'w' : ' ',
495	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496	   (type & BSF_WARNING) ? 'W' : ' ',
497	   (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499	   ((type & BSF_FUNCTION)
500	    ? 'F'
501	    : ((type & BSF_FILE)
502	       ? 'f'
503	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
504}
505
506/*
507FUNCTION
508	bfd_make_empty_symbol
509
510DESCRIPTION
511	Create a new <<asymbol>> structure for the BFD @var{abfd}
512	and return a pointer to it.
513
514	This routine is necessary because each back end has private
515	information surrounding the <<asymbol>>. Building your own
516	<<asymbol>> and pointing to it will not create the private
517	information, and will cause problems later on.
518
519.#define bfd_make_empty_symbol(abfd) \
520.  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521.
522*/
523
524/*
525FUNCTION
526	_bfd_generic_make_empty_symbol
527
528SYNOPSIS
529	asymbol *_bfd_generic_make_empty_symbol (bfd *);
530
531DESCRIPTION
532	Create a new <<asymbol>> structure for the BFD @var{abfd}
533	and return a pointer to it.  Used by core file routines,
534	binary back-end and anywhere else where no private info
535	is needed.
536*/
537
538asymbol *
539_bfd_generic_make_empty_symbol (bfd *abfd)
540{
541  bfd_size_type amt = sizeof (asymbol);
542  asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543  if (new_symbol)
544    new_symbol->the_bfd = abfd;
545  return new_symbol;
546}
547
548/*
549FUNCTION
550	bfd_make_debug_symbol
551
552DESCRIPTION
553	Create a new <<asymbol>> structure for the BFD @var{abfd},
554	to be used as a debugging symbol.  Further details of its use have
555	yet to be worked out.
556
557.#define bfd_make_debug_symbol(abfd,ptr,size) \
558.  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559.
560*/
561
562struct section_to_type
563{
564  const char *section;
565  char type;
566};
567
568/* Map section names to POSIX/BSD single-character symbol types.
569   This table is probably incomplete.  It is sorted for convenience of
570   adding entries.  Since it is so short, a linear search is used.  */
571static const struct section_to_type stt[] =
572{
573  {".bss", 'b'},
574  {"code", 't'},		/* MRI .text */
575  {".data", 'd'},
576  {"*DEBUG*", 'N'},
577  {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
578  {".drectve", 'i'},            /* MSVC's .drective section */
579  {".edata", 'e'},              /* MSVC's .edata (export) section */
580  {".fini", 't'},		/* ELF fini section */
581  {".idata", 'i'},              /* MSVC's .idata (import) section */
582  {".init", 't'},		/* ELF init section */
583  {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
584  {".rdata", 'r'},		/* Read only data.  */
585  {".rodata", 'r'},		/* Read only data.  */
586  {".sbss", 's'},		/* Small BSS (uninitialized data).  */
587  {".scommon", 'c'},		/* Small common.  */
588  {".sdata", 'g'},		/* Small initialized data.  */
589  {".text", 't'},
590  {"vars", 'd'},		/* MRI .data */
591  {"zerovars", 'b'},		/* MRI .bss */
592  {0, 0}
593};
594
595/* Return the single-character symbol type corresponding to
596   section S, or '?' for an unknown COFF section.
597
598   Check for any leading string which matches, so .text5 returns
599   't' as well as .text */
600
601static char
602coff_section_type (const char *s)
603{
604  const struct section_to_type *t;
605
606  for (t = &stt[0]; t->section; t++)
607    if (!strncmp (s, t->section, strlen (t->section)))
608      return t->type;
609
610  return '?';
611}
612
613/* Return the single-character symbol type corresponding to section
614   SECTION, or '?' for an unknown section.  This uses section flags to
615   identify sections.
616
617   FIXME These types are unhandled: c, i, e, p.  If we handled these also,
618   we could perhaps obsolete coff_section_type.  */
619
620static char
621decode_section_type (const struct bfd_section *section)
622{
623  if (section->flags & SEC_CODE)
624    return 't';
625  if (section->flags & SEC_DATA)
626    {
627      if (section->flags & SEC_READONLY)
628	return 'r';
629      else if (section->flags & SEC_SMALL_DATA)
630	return 'g';
631      else
632	return 'd';
633    }
634  if ((section->flags & SEC_HAS_CONTENTS) == 0)
635    {
636      if (section->flags & SEC_SMALL_DATA)
637	return 's';
638      else
639	return 'b';
640    }
641  if (section->flags & SEC_DEBUGGING)
642    return 'N';
643  if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
644    return 'n';
645
646  return '?';
647}
648
649/*
650FUNCTION
651	bfd_decode_symclass
652
653DESCRIPTION
654	Return a character corresponding to the symbol
655	class of @var{symbol}, or '?' for an unknown class.
656
657SYNOPSIS
658	int bfd_decode_symclass (asymbol *symbol);
659*/
660int
661bfd_decode_symclass (asymbol *symbol)
662{
663  char c;
664
665  if (symbol->section && bfd_is_com_section (symbol->section))
666    return 'C';
667  if (bfd_is_und_section (symbol->section))
668    {
669      if (symbol->flags & BSF_WEAK)
670	{
671	  /* If weak, determine if it's specifically an object
672	     or non-object weak.  */
673	  if (symbol->flags & BSF_OBJECT)
674	    return 'v';
675	  else
676	    return 'w';
677	}
678      else
679	return 'U';
680    }
681  if (bfd_is_ind_section (symbol->section))
682    return 'I';
683  if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
684    return 'i';
685  if (symbol->flags & BSF_WEAK)
686    {
687      /* If weak, determine if it's specifically an object
688	 or non-object weak.  */
689      if (symbol->flags & BSF_OBJECT)
690	return 'V';
691      else
692	return 'W';
693    }
694  if (symbol->flags & BSF_GNU_UNIQUE)
695    return 'u';
696  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
697    return '?';
698
699  if (bfd_is_abs_section (symbol->section))
700    c = 'a';
701  else if (symbol->section)
702    {
703      c = coff_section_type (symbol->section->name);
704      if (c == '?')
705	c = decode_section_type (symbol->section);
706    }
707  else
708    return '?';
709  if (symbol->flags & BSF_GLOBAL)
710    c = TOUPPER (c);
711  return c;
712
713  /* We don't have to handle these cases just yet, but we will soon:
714     N_SETV: 'v';
715     N_SETA: 'l';
716     N_SETT: 'x';
717     N_SETD: 'z';
718     N_SETB: 's';
719     N_INDR: 'i';
720     */
721}
722
723/*
724FUNCTION
725	bfd_is_undefined_symclass
726
727DESCRIPTION
728	Returns non-zero if the class symbol returned by
729	bfd_decode_symclass represents an undefined symbol.
730	Returns zero otherwise.
731
732SYNOPSIS
733	bfd_boolean bfd_is_undefined_symclass (int symclass);
734*/
735
736bfd_boolean
737bfd_is_undefined_symclass (int symclass)
738{
739  return symclass == 'U' || symclass == 'w' || symclass == 'v';
740}
741
742/*
743FUNCTION
744	bfd_symbol_info
745
746DESCRIPTION
747	Fill in the basic info about symbol that nm needs.
748	Additional info may be added by the back-ends after
749	calling this function.
750
751SYNOPSIS
752	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
753*/
754
755void
756bfd_symbol_info (asymbol *symbol, symbol_info *ret)
757{
758  ret->type = bfd_decode_symclass (symbol);
759
760  if (bfd_is_undefined_symclass (ret->type))
761    ret->value = 0;
762  else
763    ret->value = symbol->value + symbol->section->vma;
764
765  ret->name = symbol->name;
766}
767
768/*
769FUNCTION
770	bfd_copy_private_symbol_data
771
772SYNOPSIS
773	bfd_boolean bfd_copy_private_symbol_data
774	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
775
776DESCRIPTION
777	Copy private symbol information from @var{isym} in the BFD
778	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
779	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
780	returns are:
781
782	o <<bfd_error_no_memory>> -
783	Not enough memory exists to create private data for @var{osec}.
784
785.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
786.  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
787.            (ibfd, isymbol, obfd, osymbol))
788.
789*/
790
791/* The generic version of the function which returns mini symbols.
792   This is used when the backend does not provide a more efficient
793   version.  It just uses BFD asymbol structures as mini symbols.  */
794
795long
796_bfd_generic_read_minisymbols (bfd *abfd,
797			       bfd_boolean dynamic,
798			       void **minisymsp,
799			       unsigned int *sizep)
800{
801  long storage;
802  asymbol **syms = NULL;
803  long symcount;
804
805  if (dynamic)
806    storage = bfd_get_dynamic_symtab_upper_bound (abfd);
807  else
808    storage = bfd_get_symtab_upper_bound (abfd);
809  if (storage < 0)
810    goto error_return;
811  if (storage == 0)
812    return 0;
813
814  syms = (asymbol **) bfd_malloc (storage);
815  if (syms == NULL)
816    goto error_return;
817
818  if (dynamic)
819    symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
820  else
821    symcount = bfd_canonicalize_symtab (abfd, syms);
822  if (symcount < 0)
823    goto error_return;
824
825  *minisymsp = syms;
826  *sizep = sizeof (asymbol *);
827
828  return symcount;
829
830 error_return:
831  bfd_set_error (bfd_error_no_symbols);
832  if (syms != NULL)
833    free (syms);
834  return -1;
835}
836
837/* The generic version of the function which converts a minisymbol to
838   an asymbol.  We don't worry about the sym argument we are passed;
839   we just return the asymbol the minisymbol points to.  */
840
841asymbol *
842_bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
843				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
844				   const void *minisym,
845				   asymbol *sym ATTRIBUTE_UNUSED)
846{
847  return *(asymbol **) minisym;
848}
849
850/* Look through stabs debugging information in .stab and .stabstr
851   sections to find the source file and line closest to a desired
852   location.  This is used by COFF and ELF targets.  It sets *pfound
853   to TRUE if it finds some information.  The *pinfo field is used to
854   pass cached information in and out of this routine; this first time
855   the routine is called for a BFD, *pinfo should be NULL.  The value
856   placed in *pinfo should be saved with the BFD, and passed back each
857   time this function is called.  */
858
859/* We use a cache by default.  */
860
861#define ENABLE_CACHING
862
863/* We keep an array of indexentry structures to record where in the
864   stabs section we should look to find line number information for a
865   particular address.  */
866
867struct indexentry
868{
869  bfd_vma val;
870  bfd_byte *stab;
871  bfd_byte *str;
872  char *directory_name;
873  char *file_name;
874  char *function_name;
875};
876
877/* Compare two indexentry structures.  This is called via qsort.  */
878
879static int
880cmpindexentry (const void *a, const void *b)
881{
882  const struct indexentry *contestantA = (const struct indexentry *) a;
883  const struct indexentry *contestantB = (const struct indexentry *) b;
884
885  if (contestantA->val < contestantB->val)
886    return -1;
887  else if (contestantA->val > contestantB->val)
888    return 1;
889  else
890    return 0;
891}
892
893/* A pointer to this structure is stored in *pinfo.  */
894
895struct stab_find_info
896{
897  /* The .stab section.  */
898  asection *stabsec;
899  /* The .stabstr section.  */
900  asection *strsec;
901  /* The contents of the .stab section.  */
902  bfd_byte *stabs;
903  /* The contents of the .stabstr section.  */
904  bfd_byte *strs;
905
906  /* A table that indexes stabs by memory address.  */
907  struct indexentry *indextable;
908  /* The number of entries in indextable.  */
909  int indextablesize;
910
911#ifdef ENABLE_CACHING
912  /* Cached values to restart quickly.  */
913  struct indexentry *cached_indexentry;
914  bfd_vma cached_offset;
915  bfd_byte *cached_stab;
916  char *cached_file_name;
917#endif
918
919  /* Saved ptr to malloc'ed filename.  */
920  char *filename;
921};
922
923bfd_boolean
924_bfd_stab_section_find_nearest_line (bfd *abfd,
925				     asymbol **symbols,
926				     asection *section,
927				     bfd_vma offset,
928				     bfd_boolean *pfound,
929				     const char **pfilename,
930				     const char **pfnname,
931				     unsigned int *pline,
932				     void **pinfo)
933{
934  struct stab_find_info *info;
935  bfd_size_type stabsize, strsize;
936  bfd_byte *stab, *str;
937  bfd_byte *nul_fun, *nul_str;
938  bfd_size_type stroff;
939  struct indexentry *indexentry;
940  char *file_name;
941  char *directory_name;
942  bfd_boolean saw_line, saw_func;
943
944  *pfound = FALSE;
945  *pfilename = bfd_get_filename (abfd);
946  *pfnname = NULL;
947  *pline = 0;
948
949  /* Stabs entries use a 12 byte format:
950       4 byte string table index
951       1 byte stab type
952       1 byte stab other field
953       2 byte stab desc field
954       4 byte stab value
955     FIXME: This will have to change for a 64 bit object format.
956
957     The stabs symbols are divided into compilation units.  For the
958     first entry in each unit, the type of 0, the value is the length
959     of the string table for this unit, and the desc field is the
960     number of stabs symbols for this unit.  */
961
962#define STRDXOFF (0)
963#define TYPEOFF (4)
964#define OTHEROFF (5)
965#define DESCOFF (6)
966#define VALOFF (8)
967#define STABSIZE (12)
968
969  info = (struct stab_find_info *) *pinfo;
970  if (info != NULL)
971    {
972      if (info->stabsec == NULL || info->strsec == NULL)
973	{
974	  /* No stabs debugging information.  */
975	  return TRUE;
976	}
977
978      stabsize = (info->stabsec->rawsize
979		  ? info->stabsec->rawsize
980		  : info->stabsec->size);
981      strsize = (info->strsec->rawsize
982		 ? info->strsec->rawsize
983		 : info->strsec->size);
984    }
985  else
986    {
987      long reloc_size, reloc_count;
988      arelent **reloc_vector;
989      int i;
990      char *function_name;
991      bfd_size_type amt = sizeof *info;
992
993      info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
994      if (info == NULL)
995	return FALSE;
996
997      /* FIXME: When using the linker --split-by-file or
998	 --split-by-reloc options, it is possible for the .stab and
999	 .stabstr sections to be split.  We should handle that.  */
1000
1001      info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1002      info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1003
1004      if (info->stabsec == NULL || info->strsec == NULL)
1005	{
1006	  /* Try SOM section names.  */
1007	  info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1008	  info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1009
1010	  if (info->stabsec == NULL || info->strsec == NULL)
1011	    {
1012	      /* No stabs debugging information.  Set *pinfo so that we
1013		 can return quickly in the info != NULL case above.  */
1014	      *pinfo = info;
1015	      return TRUE;
1016	    }
1017	}
1018
1019      stabsize = (info->stabsec->rawsize
1020		  ? info->stabsec->rawsize
1021		  : info->stabsec->size);
1022      stabsize = (stabsize / STABSIZE) * STABSIZE;
1023      strsize = (info->strsec->rawsize
1024		 ? info->strsec->rawsize
1025		 : info->strsec->size);
1026
1027      info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1028      info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1029      if (info->stabs == NULL || info->strs == NULL)
1030	return FALSE;
1031
1032      if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1033				      0, stabsize)
1034	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1035					 0, strsize))
1036	return FALSE;
1037
1038      /* If this is a relocatable object file, we have to relocate
1039	 the entries in .stab.  This should always be simple 32 bit
1040	 relocations against symbols defined in this object file, so
1041	 this should be no big deal.  */
1042      reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1043      if (reloc_size < 0)
1044	return FALSE;
1045      reloc_vector = (arelent **) bfd_malloc (reloc_size);
1046      if (reloc_vector == NULL && reloc_size != 0)
1047	return FALSE;
1048      reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1049					    symbols);
1050      if (reloc_count < 0)
1051	{
1052	  if (reloc_vector != NULL)
1053	    free (reloc_vector);
1054	  return FALSE;
1055	}
1056      if (reloc_count > 0)
1057	{
1058	  arelent **pr;
1059
1060	  for (pr = reloc_vector; *pr != NULL; pr++)
1061	    {
1062	      arelent *r;
1063	      unsigned long val;
1064	      asymbol *sym;
1065
1066	      r = *pr;
1067	      /* Ignore R_*_NONE relocs.  */
1068	      if (r->howto->dst_mask == 0)
1069		continue;
1070
1071	      if (r->howto->rightshift != 0
1072		  || r->howto->size != 2
1073		  || r->howto->bitsize != 32
1074		  || r->howto->pc_relative
1075		  || r->howto->bitpos != 0
1076		  || r->howto->dst_mask != 0xffffffff)
1077		{
1078		  _bfd_error_handler
1079		    (_("Unsupported .stab relocation"));
1080		  bfd_set_error (bfd_error_invalid_operation);
1081		  if (reloc_vector != NULL)
1082		    free (reloc_vector);
1083		  return FALSE;
1084		}
1085
1086	      val = bfd_get_32 (abfd, info->stabs
1087				+ r->address * bfd_octets_per_byte (abfd));
1088	      val &= r->howto->src_mask;
1089	      sym = *r->sym_ptr_ptr;
1090	      val += sym->value + sym->section->vma + r->addend;
1091	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs
1092			  + r->address * bfd_octets_per_byte (abfd));
1093	    }
1094	}
1095
1096      if (reloc_vector != NULL)
1097	free (reloc_vector);
1098
1099      /* First time through this function, build a table matching
1100	 function VM addresses to stabs, then sort based on starting
1101	 VM address.  Do this in two passes: once to count how many
1102	 table entries we'll need, and a second to actually build the
1103	 table.  */
1104
1105      info->indextablesize = 0;
1106      nul_fun = NULL;
1107      for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1108	{
1109	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1110	    {
1111	      /* if we did not see a function def, leave space for one.  */
1112	      if (nul_fun != NULL)
1113		++info->indextablesize;
1114
1115	      /* N_SO with null name indicates EOF */
1116	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1117		nul_fun = NULL;
1118	      else
1119		{
1120		  nul_fun = stab;
1121
1122		  /* two N_SO's in a row is a filename and directory. Skip */
1123		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1124		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1125		    stab += STABSIZE;
1126		}
1127	    }
1128	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1129		   && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1130	    {
1131	      nul_fun = NULL;
1132	      ++info->indextablesize;
1133	    }
1134	}
1135
1136      if (nul_fun != NULL)
1137	++info->indextablesize;
1138
1139      if (info->indextablesize == 0)
1140	return TRUE;
1141      ++info->indextablesize;
1142
1143      amt = info->indextablesize;
1144      amt *= sizeof (struct indexentry);
1145      info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1146      if (info->indextable == NULL)
1147	return FALSE;
1148
1149      file_name = NULL;
1150      directory_name = NULL;
1151      nul_fun = NULL;
1152      stroff = 0;
1153
1154      for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1155	   i < info->indextablesize && stab < info->stabs + stabsize;
1156	   stab += STABSIZE)
1157	{
1158	  switch (stab[TYPEOFF])
1159	    {
1160	    case 0:
1161	      /* This is the first entry in a compilation unit.  */
1162	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1163		break;
1164	      str += stroff;
1165	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1166	      break;
1167
1168	    case N_SO:
1169	      /* The main file name.  */
1170
1171	      /* The following code creates a new indextable entry with
1172	         a NULL function name if there were no N_FUNs in a file.
1173	         Note that a N_SO without a file name is an EOF and
1174	         there could be 2 N_SO following it with the new filename
1175	         and directory.  */
1176	      if (nul_fun != NULL)
1177		{
1178		  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1179		  info->indextable[i].stab = nul_fun;
1180		  info->indextable[i].str = nul_str;
1181		  info->indextable[i].directory_name = directory_name;
1182		  info->indextable[i].file_name = file_name;
1183		  info->indextable[i].function_name = NULL;
1184		  ++i;
1185		}
1186
1187	      directory_name = NULL;
1188	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1189	      if (file_name == (char *) str)
1190		{
1191		  file_name = NULL;
1192		  nul_fun = NULL;
1193		}
1194	      else
1195		{
1196		  nul_fun = stab;
1197		  nul_str = str;
1198		  if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1199		    file_name = NULL;
1200		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1201		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1202		    {
1203		      /* Two consecutive N_SOs are a directory and a
1204			 file name.  */
1205		      stab += STABSIZE;
1206		      directory_name = file_name;
1207		      file_name = ((char *) str
1208				   + bfd_get_32 (abfd, stab + STRDXOFF));
1209		      if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1210			file_name = NULL;
1211		    }
1212		}
1213	      break;
1214
1215	    case N_SOL:
1216	      /* The name of an include file.  */
1217	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1218	      /* PR 17512: file: 0c680a1f.  */
1219	      /* PR 17512: file: 5da8aec4.  */
1220	      if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1221		file_name = NULL;
1222	      break;
1223
1224	    case N_FUN:
1225	      /* A function name.  */
1226	      function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1227	      if (function_name == (char *) str)
1228		continue;
1229	      if (function_name >= (char *) info->strs + strsize)
1230		function_name = NULL;
1231
1232	      nul_fun = NULL;
1233	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1234	      info->indextable[i].stab = stab;
1235	      info->indextable[i].str = str;
1236	      info->indextable[i].directory_name = directory_name;
1237	      info->indextable[i].file_name = file_name;
1238	      info->indextable[i].function_name = function_name;
1239	      ++i;
1240	      break;
1241	    }
1242	}
1243
1244      if (nul_fun != NULL)
1245	{
1246	  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1247	  info->indextable[i].stab = nul_fun;
1248	  info->indextable[i].str = nul_str;
1249	  info->indextable[i].directory_name = directory_name;
1250	  info->indextable[i].file_name = file_name;
1251	  info->indextable[i].function_name = NULL;
1252	  ++i;
1253	}
1254
1255      info->indextable[i].val = (bfd_vma) -1;
1256      info->indextable[i].stab = info->stabs + stabsize;
1257      info->indextable[i].str = str;
1258      info->indextable[i].directory_name = NULL;
1259      info->indextable[i].file_name = NULL;
1260      info->indextable[i].function_name = NULL;
1261      ++i;
1262
1263      info->indextablesize = i;
1264      qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1265	     cmpindexentry);
1266
1267      *pinfo = info;
1268    }
1269
1270  /* We are passed a section relative offset.  The offsets in the
1271     stabs information are absolute.  */
1272  offset += bfd_get_section_vma (abfd, section);
1273
1274#ifdef ENABLE_CACHING
1275  if (info->cached_indexentry != NULL
1276      && offset >= info->cached_offset
1277      && offset < (info->cached_indexentry + 1)->val)
1278    {
1279      stab = info->cached_stab;
1280      indexentry = info->cached_indexentry;
1281      file_name = info->cached_file_name;
1282    }
1283  else
1284#endif
1285    {
1286      long low, high;
1287      long mid = -1;
1288
1289      /* Cache non-existent or invalid.  Do binary search on
1290         indextable.  */
1291      indexentry = NULL;
1292
1293      low = 0;
1294      high = info->indextablesize - 1;
1295      while (low != high)
1296	{
1297	  mid = (high + low) / 2;
1298	  if (offset >= info->indextable[mid].val
1299	      && offset < info->indextable[mid + 1].val)
1300	    {
1301	      indexentry = &info->indextable[mid];
1302	      break;
1303	    }
1304
1305	  if (info->indextable[mid].val > offset)
1306	    high = mid;
1307	  else
1308	    low = mid + 1;
1309	}
1310
1311      if (indexentry == NULL)
1312	return TRUE;
1313
1314      stab = indexentry->stab + STABSIZE;
1315      file_name = indexentry->file_name;
1316    }
1317
1318  directory_name = indexentry->directory_name;
1319  str = indexentry->str;
1320
1321  saw_line = FALSE;
1322  saw_func = FALSE;
1323  for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1324    {
1325      bfd_boolean done;
1326      bfd_vma val;
1327
1328      done = FALSE;
1329
1330      switch (stab[TYPEOFF])
1331	{
1332	case N_SOL:
1333	  /* The name of an include file.  */
1334	  val = bfd_get_32 (abfd, stab + VALOFF);
1335	  if (val <= offset)
1336	    {
1337	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1338	      if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1339		file_name = NULL;
1340	      *pline = 0;
1341	    }
1342	  break;
1343
1344	case N_SLINE:
1345	case N_DSLINE:
1346	case N_BSLINE:
1347	  /* A line number.  If the function was specified, then the value
1348	     is relative to the start of the function.  Otherwise, the
1349	     value is an absolute address.  */
1350	  val = ((indexentry->function_name ? indexentry->val : 0)
1351		 + bfd_get_32 (abfd, stab + VALOFF));
1352	  /* If this line starts before our desired offset, or if it's
1353	     the first line we've been able to find, use it.  The
1354	     !saw_line check works around a bug in GCC 2.95.3, which emits
1355	     the first N_SLINE late.  */
1356	  if (!saw_line || val <= offset)
1357	    {
1358	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1359
1360#ifdef ENABLE_CACHING
1361	      info->cached_stab = stab;
1362	      info->cached_offset = val;
1363	      info->cached_file_name = file_name;
1364	      info->cached_indexentry = indexentry;
1365#endif
1366	    }
1367	  if (val > offset)
1368	    done = TRUE;
1369	  saw_line = TRUE;
1370	  break;
1371
1372	case N_FUN:
1373	case N_SO:
1374	  if (saw_func || saw_line)
1375	    done = TRUE;
1376	  saw_func = TRUE;
1377	  break;
1378	}
1379
1380      if (done)
1381	break;
1382    }
1383
1384  *pfound = TRUE;
1385
1386  if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1387      || directory_name == NULL)
1388    *pfilename = file_name;
1389  else
1390    {
1391      size_t dirlen;
1392
1393      dirlen = strlen (directory_name);
1394      if (info->filename == NULL
1395	  || filename_ncmp (info->filename, directory_name, dirlen) != 0
1396	  || filename_cmp (info->filename + dirlen, file_name) != 0)
1397	{
1398	  size_t len;
1399
1400	  /* Don't free info->filename here.  objdump and other
1401	     apps keep a copy of a previously returned file name
1402	     pointer.  */
1403	  len = strlen (file_name) + 1;
1404	  info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1405	  if (info->filename == NULL)
1406	    return FALSE;
1407	  memcpy (info->filename, directory_name, dirlen);
1408	  memcpy (info->filename + dirlen, file_name, len);
1409	}
1410
1411      *pfilename = info->filename;
1412    }
1413
1414  if (indexentry->function_name != NULL)
1415    {
1416      char *s;
1417
1418      /* This will typically be something like main:F(0,1), so we want
1419         to clobber the colon.  It's OK to change the name, since the
1420         string is in our own local storage anyhow.  */
1421      s = strchr (indexentry->function_name, ':');
1422      if (s != NULL)
1423	*s = '\0';
1424
1425      *pfnname = indexentry->function_name;
1426    }
1427
1428  return TRUE;
1429}
1430