1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2017 Shunsuke Mie
5 * Copyright (c) 2018 Leon Dang
6 * Copyright (c) 2020 Chuck Tuffli
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * bhyve PCIe-NVMe device emulation.
32 *
33 * options:
34 *  -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm=<opt>
35 *
36 *  accepted devpath:
37 *    /dev/blockdev
38 *    /path/to/image
39 *    ram=size_in_MiB
40 *
41 *  maxq    = max number of queues
42 *  qsz     = max elements in each queue
43 *  ioslots = max number of concurrent io requests
44 *  sectsz  = sector size (defaults to blockif sector size)
45 *  ser     = serial number (20-chars max)
46 *  eui64   = IEEE Extended Unique Identifier (8 byte value)
47 *  dsm     = DataSet Management support. Option is one of auto, enable,disable
48 *
49 */
50
51/* TODO:
52    - create async event for smart and log
53    - intr coalesce
54 */
55
56#include <sys/cdefs.h>
57#include <sys/errno.h>
58#include <sys/types.h>
59#include <sys/crc16.h>
60#include <net/ieee_oui.h>
61
62#include <assert.h>
63#include <pthread.h>
64#include <pthread_np.h>
65#include <semaphore.h>
66#include <stdbool.h>
67#include <stddef.h>
68#include <stdint.h>
69#include <stdio.h>
70#include <stdlib.h>
71#include <string.h>
72
73#include <machine/atomic.h>
74#include <machine/vmm.h>
75#include <vmmapi.h>
76
77#include <dev/nvme/nvme.h>
78
79#include "bhyverun.h"
80#include "block_if.h"
81#include "config.h"
82#include "debug.h"
83#include "pci_emul.h"
84
85
86static int nvme_debug = 0;
87#define	DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args)
88#define	WPRINTF(fmt, args...) PRINTLN(fmt, ##args)
89
90/* defaults; can be overridden */
91#define	NVME_MSIX_BAR		4
92
93#define	NVME_IOSLOTS		8
94
95/* The NVMe spec defines bits 13:4 in BAR0 as reserved */
96#define NVME_MMIO_SPACE_MIN	(1 << 14)
97
98#define	NVME_QUEUES		16
99#define	NVME_MAX_QENTRIES	2048
100/* Memory Page size Minimum reported in CAP register */
101#define	NVME_MPSMIN		0
102/* MPSMIN converted to bytes */
103#define	NVME_MPSMIN_BYTES	(1 << (12 + NVME_MPSMIN))
104
105#define	NVME_PRP2_ITEMS		(PAGE_SIZE/sizeof(uint64_t))
106#define	NVME_MDTS		9
107/* Note the + 1 allows for the initial descriptor to not be page aligned */
108#define	NVME_MAX_IOVEC		((1 << NVME_MDTS) + 1)
109#define	NVME_MAX_DATA_SIZE	((1 << NVME_MDTS) * NVME_MPSMIN_BYTES)
110
111/* This is a synthetic status code to indicate there is no status */
112#define NVME_NO_STATUS		0xffff
113#define NVME_COMPLETION_VALID(c)	((c).status != NVME_NO_STATUS)
114
115/* Reported temperature in Kelvin (i.e. room temperature) */
116#define NVME_TEMPERATURE 296
117
118/* helpers */
119
120/* Convert a zero-based value into a one-based value */
121#define ONE_BASED(zero)		((zero) + 1)
122/* Convert a one-based value into a zero-based value */
123#define ZERO_BASED(one)		((one)  - 1)
124
125/* Encode number of SQ's and CQ's for Set/Get Features */
126#define NVME_FEATURE_NUM_QUEUES(sc) \
127	(ZERO_BASED((sc)->num_squeues) & 0xffff) | \
128	(ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16
129
130#define	NVME_DOORBELL_OFFSET	offsetof(struct nvme_registers, doorbell)
131
132enum nvme_controller_register_offsets {
133	NVME_CR_CAP_LOW = 0x00,
134	NVME_CR_CAP_HI  = 0x04,
135	NVME_CR_VS      = 0x08,
136	NVME_CR_INTMS   = 0x0c,
137	NVME_CR_INTMC   = 0x10,
138	NVME_CR_CC      = 0x14,
139	NVME_CR_CSTS    = 0x1c,
140	NVME_CR_NSSR    = 0x20,
141	NVME_CR_AQA     = 0x24,
142	NVME_CR_ASQ_LOW = 0x28,
143	NVME_CR_ASQ_HI  = 0x2c,
144	NVME_CR_ACQ_LOW = 0x30,
145	NVME_CR_ACQ_HI  = 0x34,
146};
147
148enum nvme_cmd_cdw11 {
149	NVME_CMD_CDW11_PC  = 0x0001,
150	NVME_CMD_CDW11_IEN = 0x0002,
151	NVME_CMD_CDW11_IV  = 0xFFFF0000,
152};
153
154enum nvme_copy_dir {
155	NVME_COPY_TO_PRP,
156	NVME_COPY_FROM_PRP,
157};
158
159#define	NVME_CQ_INTEN	0x01
160#define	NVME_CQ_INTCOAL	0x02
161
162struct nvme_completion_queue {
163	struct nvme_completion *qbase;
164	pthread_mutex_t	mtx;
165	uint32_t	size;
166	uint16_t	tail; /* nvme progress */
167	uint16_t	head; /* guest progress */
168	uint16_t	intr_vec;
169	uint32_t	intr_en;
170};
171
172struct nvme_submission_queue {
173	struct nvme_command *qbase;
174	pthread_mutex_t	mtx;
175	uint32_t	size;
176	uint16_t	head; /* nvme progress */
177	uint16_t	tail; /* guest progress */
178	uint16_t	cqid; /* completion queue id */
179	int		qpriority;
180};
181
182enum nvme_storage_type {
183	NVME_STOR_BLOCKIF = 0,
184	NVME_STOR_RAM = 1,
185};
186
187struct pci_nvme_blockstore {
188	enum nvme_storage_type type;
189	void		*ctx;
190	uint64_t	size;
191	uint32_t	sectsz;
192	uint32_t	sectsz_bits;
193	uint64_t	eui64;
194	uint32_t	deallocate:1;
195};
196
197/*
198 * Calculate the number of additional page descriptors for guest IO requests
199 * based on the advertised Max Data Transfer (MDTS) and given the number of
200 * default iovec's in a struct blockif_req.
201 */
202#define MDTS_PAD_SIZE \
203	( NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \
204	  NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \
205	  0 )
206
207struct pci_nvme_ioreq {
208	struct pci_nvme_softc *sc;
209	STAILQ_ENTRY(pci_nvme_ioreq) link;
210	struct nvme_submission_queue *nvme_sq;
211	uint16_t	sqid;
212
213	/* command information */
214	uint16_t	opc;
215	uint16_t	cid;
216	uint32_t	nsid;
217
218	uint64_t	prev_gpaddr;
219	size_t		prev_size;
220	size_t		bytes;
221
222	struct blockif_req io_req;
223
224	struct iovec	iovpadding[MDTS_PAD_SIZE];
225};
226
227enum nvme_dsm_type {
228	/* Dataset Management bit in ONCS reflects backing storage capability */
229	NVME_DATASET_MANAGEMENT_AUTO,
230	/* Unconditionally set Dataset Management bit in ONCS */
231	NVME_DATASET_MANAGEMENT_ENABLE,
232	/* Unconditionally clear Dataset Management bit in ONCS */
233	NVME_DATASET_MANAGEMENT_DISABLE,
234};
235
236struct pci_nvme_softc;
237struct nvme_feature_obj;
238
239typedef void (*nvme_feature_cb)(struct pci_nvme_softc *,
240    struct nvme_feature_obj *,
241    struct nvme_command *,
242    struct nvme_completion *);
243
244struct nvme_feature_obj {
245	uint32_t	cdw11;
246	nvme_feature_cb	set;
247	nvme_feature_cb	get;
248	bool namespace_specific;
249};
250
251#define NVME_FID_MAX		(NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1)
252
253typedef enum {
254	PCI_NVME_AE_TYPE_ERROR = 0,
255	PCI_NVME_AE_TYPE_SMART,
256	PCI_NVME_AE_TYPE_NOTICE,
257	PCI_NVME_AE_TYPE_IO_CMD = 6,
258	PCI_NVME_AE_TYPE_VENDOR = 7,
259	PCI_NVME_AE_TYPE_MAX		/* Must be last */
260} pci_nvme_async_type;
261
262/* Asynchronous Event Requests */
263struct pci_nvme_aer {
264	STAILQ_ENTRY(pci_nvme_aer) link;
265	uint16_t	cid;	/* Command ID of the submitted AER */
266};
267
268/** Asynchronous Event Information - Notice */
269typedef enum {
270	PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED = 0,
271	PCI_NVME_AEI_NOTICE_FW_ACTIVATION,
272	PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE,
273	PCI_NVME_AEI_NOTICE_ANA_CHANGE,
274	PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE,
275	PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT,
276	PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE,
277	PCI_NVME_AEI_NOTICE_MAX,
278} pci_nvme_async_event_info_notice;
279
280#define PCI_NVME_AEI_NOTICE_SHIFT		8
281#define PCI_NVME_AEI_NOTICE_MASK(event)	(1 << (event + PCI_NVME_AEI_NOTICE_SHIFT))
282
283/* Asynchronous Event Notifications */
284struct pci_nvme_aen {
285	pci_nvme_async_type atype;
286	uint32_t	event_data;
287	bool		posted;
288};
289
290/*
291 * By default, enable all Asynchrnous Event Notifications:
292 *     SMART / Health Critical Warnings
293 *     Namespace Attribute Notices
294 */
295#define PCI_NVME_AEN_DEFAULT_MASK	0x11f
296
297typedef enum {
298	NVME_CNTRLTYPE_IO = 1,
299	NVME_CNTRLTYPE_DISCOVERY = 2,
300	NVME_CNTRLTYPE_ADMIN = 3,
301} pci_nvme_cntrl_type;
302
303struct pci_nvme_softc {
304	struct pci_devinst *nsc_pi;
305
306	pthread_mutex_t	mtx;
307
308	struct nvme_registers regs;
309
310	struct nvme_namespace_data  nsdata;
311	struct nvme_controller_data ctrldata;
312	struct nvme_error_information_entry err_log;
313	struct nvme_health_information_page health_log;
314	struct nvme_firmware_page fw_log;
315	struct nvme_ns_list ns_log;
316
317	struct pci_nvme_blockstore nvstore;
318
319	uint16_t	max_qentries;	/* max entries per queue */
320	uint32_t	max_queues;	/* max number of IO SQ's or CQ's */
321	uint32_t	num_cqueues;
322	uint32_t	num_squeues;
323	bool		num_q_is_set; /* Has host set Number of Queues */
324
325	struct pci_nvme_ioreq *ioreqs;
326	STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */
327	uint32_t	pending_ios;
328	uint32_t	ioslots;
329	sem_t		iosemlock;
330
331	/*
332	 * Memory mapped Submission and Completion queues
333	 * Each array includes both Admin and IO queues
334	 */
335	struct nvme_completion_queue *compl_queues;
336	struct nvme_submission_queue *submit_queues;
337
338	struct nvme_feature_obj feat[NVME_FID_MAX];
339
340	enum nvme_dsm_type dataset_management;
341
342	/* Accounting for SMART data */
343	__uint128_t	read_data_units;
344	__uint128_t	write_data_units;
345	__uint128_t	read_commands;
346	__uint128_t	write_commands;
347	uint32_t	read_dunits_remainder;
348	uint32_t	write_dunits_remainder;
349
350	STAILQ_HEAD(, pci_nvme_aer) aer_list;
351	pthread_mutex_t	aer_mtx;
352	uint32_t	aer_count;
353	struct pci_nvme_aen aen[PCI_NVME_AE_TYPE_MAX];
354	pthread_t	aen_tid;
355	pthread_mutex_t	aen_mtx;
356	pthread_cond_t	aen_cond;
357};
358
359
360static void pci_nvme_cq_update(struct pci_nvme_softc *sc,
361    struct nvme_completion_queue *cq,
362    uint32_t cdw0,
363    uint16_t cid,
364    uint16_t sqid,
365    uint16_t status);
366static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *);
367static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *);
368static void pci_nvme_io_done(struct blockif_req *, int);
369
370/* Controller Configuration utils */
371#define	NVME_CC_GET_EN(cc) \
372	NVMEV(NVME_CC_REG_EN, cc)
373#define	NVME_CC_GET_CSS(cc) \
374	NVMEV(NVME_CC_REG_CSS, cc)
375#define	NVME_CC_GET_SHN(cc) \
376	NVMEV(NVME_CC_REG_SHN, cc)
377#define	NVME_CC_GET_IOSQES(cc) \
378	NVMEV(NVME_CC_REG_IOSQES, cc)
379#define	NVME_CC_GET_IOCQES(cc) \
380	NVMEV(NVME_CC_REG_IOCQES, cc)
381
382#define	NVME_CC_WRITE_MASK \
383	(NVMEM(NVME_CC_REG_EN) | \
384	 NVMEM(NVME_CC_REG_IOSQES) | \
385	 NVMEM(NVME_CC_REG_IOCQES))
386
387#define	NVME_CC_NEN_WRITE_MASK \
388	(NVMEM(NVME_CC_REG_CSS) | \
389	 NVMEM(NVME_CC_REG_MPS) | \
390	 NVMEM(NVME_CC_REG_AMS))
391
392/* Controller Status utils */
393#define	NVME_CSTS_GET_RDY(sts) \
394	NVMEV(NVME_CSTS_REG_RDY, sts)
395
396#define	NVME_CSTS_RDY	(NVMEF(NVME_CSTS_REG_RDY, 1))
397#define	NVME_CSTS_CFS	(NVMEF(NVME_CSTS_REG_CFS, 1))
398
399/* Completion Queue status word utils */
400#define	NVME_STATUS_P	(NVMEF(NVME_STATUS_P, 1))
401#define	NVME_STATUS_MASK \
402	(NVMEM(NVME_STATUS_SCT) | \
403	 NVMEM(NVME_STATUS_SC))
404
405#define NVME_ONCS_DSM	NVMEM(NVME_CTRLR_DATA_ONCS_DSM)
406
407static void nvme_feature_invalid_cb(struct pci_nvme_softc *,
408    struct nvme_feature_obj *,
409    struct nvme_command *,
410    struct nvme_completion *);
411static void nvme_feature_temperature(struct pci_nvme_softc *,
412    struct nvme_feature_obj *,
413    struct nvme_command *,
414    struct nvme_completion *);
415static void nvme_feature_num_queues(struct pci_nvme_softc *,
416    struct nvme_feature_obj *,
417    struct nvme_command *,
418    struct nvme_completion *);
419static void nvme_feature_iv_config(struct pci_nvme_softc *,
420    struct nvme_feature_obj *,
421    struct nvme_command *,
422    struct nvme_completion *);
423static void nvme_feature_async_event(struct pci_nvme_softc *,
424    struct nvme_feature_obj *,
425    struct nvme_command *,
426    struct nvme_completion *);
427
428static void *aen_thr(void *arg);
429
430static __inline void
431cpywithpad(char *dst, size_t dst_size, const char *src, char pad)
432{
433	size_t len;
434
435	len = strnlen(src, dst_size);
436	memset(dst, pad, dst_size);
437	memcpy(dst, src, len);
438}
439
440static __inline void
441pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
442{
443
444	*status &= ~NVME_STATUS_MASK;
445	*status |= NVMEF(NVME_STATUS_SCT, type) | NVMEF(NVME_STATUS_SC, code);
446}
447
448static __inline void
449pci_nvme_status_genc(uint16_t *status, uint16_t code)
450{
451
452	pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
453}
454
455/*
456 * Initialize the requested number or IO Submission and Completion Queues.
457 * Admin queues are allocated implicitly.
458 */
459static void
460pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq)
461{
462	uint32_t i;
463
464	/*
465	 * Allocate and initialize the Submission Queues
466	 */
467	if (nsq > NVME_QUEUES) {
468		WPRINTF("%s: clamping number of SQ from %u to %u",
469					__func__, nsq, NVME_QUEUES);
470		nsq = NVME_QUEUES;
471	}
472
473	sc->num_squeues = nsq;
474
475	sc->submit_queues = calloc(sc->num_squeues + 1,
476				sizeof(struct nvme_submission_queue));
477	if (sc->submit_queues == NULL) {
478		WPRINTF("%s: SQ allocation failed", __func__);
479		sc->num_squeues = 0;
480	} else {
481		struct nvme_submission_queue *sq = sc->submit_queues;
482
483		for (i = 0; i < sc->num_squeues + 1; i++)
484			pthread_mutex_init(&sq[i].mtx, NULL);
485	}
486
487	/*
488	 * Allocate and initialize the Completion Queues
489	 */
490	if (ncq > NVME_QUEUES) {
491		WPRINTF("%s: clamping number of CQ from %u to %u",
492					__func__, ncq, NVME_QUEUES);
493		ncq = NVME_QUEUES;
494	}
495
496	sc->num_cqueues = ncq;
497
498	sc->compl_queues = calloc(sc->num_cqueues + 1,
499				sizeof(struct nvme_completion_queue));
500	if (sc->compl_queues == NULL) {
501		WPRINTF("%s: CQ allocation failed", __func__);
502		sc->num_cqueues = 0;
503	} else {
504		struct nvme_completion_queue *cq = sc->compl_queues;
505
506		for (i = 0; i < sc->num_cqueues + 1; i++)
507			pthread_mutex_init(&cq[i].mtx, NULL);
508	}
509}
510
511static void
512pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
513{
514	struct nvme_controller_data *cd = &sc->ctrldata;
515	int ret;
516
517	cd->vid = 0xFB5D;
518	cd->ssvid = 0x0000;
519
520	cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' ');
521	cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' ');
522
523	/* Num of submission commands that we can handle at a time (2^rab) */
524	cd->rab   = 4;
525
526	/* FreeBSD OUI */
527	cd->ieee[0] = 0xfc;
528	cd->ieee[1] = 0x9c;
529	cd->ieee[2] = 0x58;
530
531	cd->mic = 0;
532
533	cd->mdts = NVME_MDTS;	/* max data transfer size (2^mdts * CAP.MPSMIN) */
534
535	cd->ver = NVME_REV(1,4);
536
537	cd->cntrltype = NVME_CNTRLTYPE_IO;
538	cd->oacs = NVMEF(NVME_CTRLR_DATA_OACS_FORMAT, 1);
539	cd->oaes = NVMEM(NVME_CTRLR_DATA_OAES_NS_ATTR);
540	cd->acl = 2;
541	cd->aerl = 4;
542
543	/* Advertise 1, Read-only firmware slot */
544	cd->frmw = NVMEM(NVME_CTRLR_DATA_FRMW_SLOT1_RO) |
545	    NVMEF(NVME_CTRLR_DATA_FRMW_NUM_SLOTS, 1);
546	cd->lpa = 0;	/* TODO: support some simple things like SMART */
547	cd->elpe = 0;	/* max error log page entries */
548	/*
549	 * Report a single power state (zero-based value)
550	 * power_state[] values are left as zero to indicate "Not reported"
551	 */
552	cd->npss = 0;
553
554	/* Warning Composite Temperature Threshold */
555	cd->wctemp = 0x0157;
556	cd->cctemp = 0x0157;
557
558	/* SANICAP must not be 0 for Revision 1.4 and later NVMe Controllers */
559	cd->sanicap = NVMEF(NVME_CTRLR_DATA_SANICAP_NODMMAS,
560	    NVME_CTRLR_DATA_SANICAP_NODMMAS_NO);
561
562	cd->sqes = NVMEF(NVME_CTRLR_DATA_SQES_MAX, 6) |
563	    NVMEF(NVME_CTRLR_DATA_SQES_MIN, 6);
564	cd->cqes = NVMEF(NVME_CTRLR_DATA_CQES_MAX, 4) |
565	    NVMEF(NVME_CTRLR_DATA_CQES_MIN, 4);
566	cd->nn = 1;	/* number of namespaces */
567
568	cd->oncs = 0;
569	switch (sc->dataset_management) {
570	case NVME_DATASET_MANAGEMENT_AUTO:
571		if (sc->nvstore.deallocate)
572			cd->oncs |= NVME_ONCS_DSM;
573		break;
574	case NVME_DATASET_MANAGEMENT_ENABLE:
575		cd->oncs |= NVME_ONCS_DSM;
576		break;
577	default:
578		break;
579	}
580
581	cd->fna = NVMEM(NVME_CTRLR_DATA_FNA_FORMAT_ALL);
582
583	cd->vwc = NVMEF(NVME_CTRLR_DATA_VWC_ALL, NVME_CTRLR_DATA_VWC_ALL_NO);
584
585	ret = snprintf(cd->subnqn, sizeof(cd->subnqn),
586	    "nqn.2013-12.org.freebsd:bhyve-%s-%u-%u-%u",
587	    get_config_value("name"), sc->nsc_pi->pi_bus,
588	    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
589	if ((ret < 0) || ((unsigned)ret > sizeof(cd->subnqn)))
590		EPRINTLN("%s: error setting subnqn (%d)", __func__, ret);
591}
592
593static void
594pci_nvme_init_nsdata_size(struct pci_nvme_blockstore *nvstore,
595    struct nvme_namespace_data *nd)
596{
597
598	/* Get capacity and block size information from backing store */
599	nd->nsze = nvstore->size / nvstore->sectsz;
600	nd->ncap = nd->nsze;
601	nd->nuse = nd->nsze;
602}
603
604static void
605pci_nvme_init_nsdata(struct pci_nvme_softc *sc,
606    struct nvme_namespace_data *nd, uint32_t nsid,
607    struct pci_nvme_blockstore *nvstore)
608{
609
610	pci_nvme_init_nsdata_size(nvstore, nd);
611
612	if (nvstore->type == NVME_STOR_BLOCKIF)
613		nvstore->deallocate = blockif_candelete(nvstore->ctx);
614
615	nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */
616	nd->flbas = 0;
617
618	/* Create an EUI-64 if user did not provide one */
619	if (nvstore->eui64 == 0) {
620		char *data = NULL;
621		uint64_t eui64 = nvstore->eui64;
622
623		asprintf(&data, "%s%u%u%u", get_config_value("name"),
624		    sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot,
625		    sc->nsc_pi->pi_func);
626
627		if (data != NULL) {
628			eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data));
629			free(data);
630		}
631		nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff);
632	}
633	be64enc(nd->eui64, nvstore->eui64);
634
635	/* LBA data-sz = 2^lbads */
636	nd->lbaf[0] = NVMEF(NVME_NS_DATA_LBAF_LBADS, nvstore->sectsz_bits);
637}
638
639static void
640pci_nvme_init_logpages(struct pci_nvme_softc *sc)
641{
642	__uint128_t power_cycles = 1;
643
644	memset(&sc->err_log, 0, sizeof(sc->err_log));
645	memset(&sc->health_log, 0, sizeof(sc->health_log));
646	memset(&sc->fw_log, 0, sizeof(sc->fw_log));
647	memset(&sc->ns_log, 0, sizeof(sc->ns_log));
648
649	/* Set read/write remainder to round up according to spec */
650	sc->read_dunits_remainder = 999;
651	sc->write_dunits_remainder = 999;
652
653	/* Set nominal Health values checked by implementations */
654	sc->health_log.temperature = NVME_TEMPERATURE;
655	sc->health_log.available_spare = 100;
656	sc->health_log.available_spare_threshold = 10;
657
658	/* Set Active Firmware Info to slot 1 */
659	sc->fw_log.afi = NVMEF(NVME_FIRMWARE_PAGE_AFI_SLOT, 1);
660	memcpy(&sc->fw_log.revision[0], sc->ctrldata.fr,
661	    sizeof(sc->fw_log.revision[0]));
662
663	memcpy(&sc->health_log.power_cycles, &power_cycles,
664	    sizeof(sc->health_log.power_cycles));
665}
666
667static void
668pci_nvme_init_features(struct pci_nvme_softc *sc)
669{
670	enum nvme_feature	fid;
671
672	for (fid = 0; fid < NVME_FID_MAX; fid++) {
673		switch (fid) {
674		case NVME_FEAT_ARBITRATION:
675		case NVME_FEAT_POWER_MANAGEMENT:
676		case NVME_FEAT_INTERRUPT_COALESCING: //XXX
677		case NVME_FEAT_WRITE_ATOMICITY:
678			/* Mandatory but no special handling required */
679		//XXX hang - case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
680		//XXX hang - case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
681		//		  this returns a data buffer
682			break;
683		case NVME_FEAT_TEMPERATURE_THRESHOLD:
684			sc->feat[fid].set = nvme_feature_temperature;
685			break;
686		case NVME_FEAT_ERROR_RECOVERY:
687			sc->feat[fid].namespace_specific = true;
688			break;
689		case NVME_FEAT_NUMBER_OF_QUEUES:
690			sc->feat[fid].set = nvme_feature_num_queues;
691			break;
692		case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
693			sc->feat[fid].set = nvme_feature_iv_config;
694			break;
695		case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
696			sc->feat[fid].set = nvme_feature_async_event;
697			/* Enable all AENs by default */
698			sc->feat[fid].cdw11 = PCI_NVME_AEN_DEFAULT_MASK;
699			break;
700		default:
701			sc->feat[fid].set = nvme_feature_invalid_cb;
702			sc->feat[fid].get = nvme_feature_invalid_cb;
703		}
704	}
705}
706
707static void
708pci_nvme_aer_reset(struct pci_nvme_softc *sc)
709{
710
711	STAILQ_INIT(&sc->aer_list);
712	sc->aer_count = 0;
713}
714
715static void
716pci_nvme_aer_init(struct pci_nvme_softc *sc)
717{
718
719	pthread_mutex_init(&sc->aer_mtx, NULL);
720	pci_nvme_aer_reset(sc);
721}
722
723static void
724pci_nvme_aer_destroy(struct pci_nvme_softc *sc)
725{
726	struct pci_nvme_aer *aer = NULL;
727
728	pthread_mutex_lock(&sc->aer_mtx);
729	while (!STAILQ_EMPTY(&sc->aer_list)) {
730		aer = STAILQ_FIRST(&sc->aer_list);
731		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
732		free(aer);
733	}
734	pthread_mutex_unlock(&sc->aer_mtx);
735
736	pci_nvme_aer_reset(sc);
737}
738
739static bool
740pci_nvme_aer_available(struct pci_nvme_softc *sc)
741{
742
743	return (sc->aer_count != 0);
744}
745
746static bool
747pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc)
748{
749	struct nvme_controller_data *cd = &sc->ctrldata;
750
751	/* AERL is a zero based value while aer_count is one's based */
752	return (sc->aer_count == (cd->aerl + 1U));
753}
754
755/*
756 * Add an Async Event Request
757 *
758 * Stores an AER to be returned later if the Controller needs to notify the
759 * host of an event.
760 * Note that while the NVMe spec doesn't require Controllers to return AER's
761 * in order, this implementation does preserve the order.
762 */
763static int
764pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid)
765{
766	struct pci_nvme_aer *aer = NULL;
767
768	aer = calloc(1, sizeof(struct pci_nvme_aer));
769	if (aer == NULL)
770		return (-1);
771
772	/* Save the Command ID for use in the completion message */
773	aer->cid = cid;
774
775	pthread_mutex_lock(&sc->aer_mtx);
776	sc->aer_count++;
777	STAILQ_INSERT_TAIL(&sc->aer_list, aer, link);
778	pthread_mutex_unlock(&sc->aer_mtx);
779
780	return (0);
781}
782
783/*
784 * Get an Async Event Request structure
785 *
786 * Returns a pointer to an AER previously submitted by the host or NULL if
787 * no AER's exist. Caller is responsible for freeing the returned struct.
788 */
789static struct pci_nvme_aer *
790pci_nvme_aer_get(struct pci_nvme_softc *sc)
791{
792	struct pci_nvme_aer *aer = NULL;
793
794	pthread_mutex_lock(&sc->aer_mtx);
795	aer = STAILQ_FIRST(&sc->aer_list);
796	if (aer != NULL) {
797		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
798		sc->aer_count--;
799	}
800	pthread_mutex_unlock(&sc->aer_mtx);
801
802	return (aer);
803}
804
805static void
806pci_nvme_aen_reset(struct pci_nvme_softc *sc)
807{
808	uint32_t	atype;
809
810	memset(sc->aen, 0, PCI_NVME_AE_TYPE_MAX * sizeof(struct pci_nvme_aen));
811
812	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
813		sc->aen[atype].atype = atype;
814	}
815}
816
817static void
818pci_nvme_aen_init(struct pci_nvme_softc *sc)
819{
820	char nstr[80];
821
822	pci_nvme_aen_reset(sc);
823
824	pthread_mutex_init(&sc->aen_mtx, NULL);
825	pthread_create(&sc->aen_tid, NULL, aen_thr, sc);
826	snprintf(nstr, sizeof(nstr), "nvme-aen-%d:%d", sc->nsc_pi->pi_slot,
827	    sc->nsc_pi->pi_func);
828	pthread_set_name_np(sc->aen_tid, nstr);
829}
830
831static void
832pci_nvme_aen_destroy(struct pci_nvme_softc *sc)
833{
834
835	pci_nvme_aen_reset(sc);
836}
837
838/* Notify the AEN thread of pending work */
839static void
840pci_nvme_aen_notify(struct pci_nvme_softc *sc)
841{
842
843	pthread_cond_signal(&sc->aen_cond);
844}
845
846/*
847 * Post an Asynchronous Event Notification
848 */
849static int32_t
850pci_nvme_aen_post(struct pci_nvme_softc *sc, pci_nvme_async_type atype,
851		uint32_t event_data)
852{
853	struct pci_nvme_aen *aen;
854
855	if (atype >= PCI_NVME_AE_TYPE_MAX) {
856		return(EINVAL);
857	}
858
859	pthread_mutex_lock(&sc->aen_mtx);
860	aen = &sc->aen[atype];
861
862	/* Has the controller already posted an event of this type? */
863	if (aen->posted) {
864		pthread_mutex_unlock(&sc->aen_mtx);
865		return(EALREADY);
866	}
867
868	aen->event_data = event_data;
869	aen->posted = true;
870	pthread_mutex_unlock(&sc->aen_mtx);
871
872	pci_nvme_aen_notify(sc);
873
874	return(0);
875}
876
877static void
878pci_nvme_aen_process(struct pci_nvme_softc *sc)
879{
880	struct pci_nvme_aer *aer;
881	struct pci_nvme_aen *aen;
882	pci_nvme_async_type atype;
883	uint32_t mask;
884	uint16_t status;
885	uint8_t lid;
886
887	assert(pthread_mutex_isowned_np(&sc->aen_mtx));
888	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
889		aen = &sc->aen[atype];
890		/* Previous iterations may have depleted the available AER's */
891		if (!pci_nvme_aer_available(sc)) {
892			DPRINTF("%s: no AER", __func__);
893			break;
894		}
895
896		if (!aen->posted) {
897			DPRINTF("%s: no AEN posted for atype=%#x", __func__, atype);
898			continue;
899		}
900
901		status = NVME_SC_SUCCESS;
902
903		/* Is the event masked? */
904		mask =
905		    sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11;
906
907		DPRINTF("%s: atype=%#x mask=%#x event_data=%#x", __func__, atype, mask, aen->event_data);
908		switch (atype) {
909		case PCI_NVME_AE_TYPE_ERROR:
910			lid = NVME_LOG_ERROR;
911			break;
912		case PCI_NVME_AE_TYPE_SMART:
913			mask &= 0xff;
914			if ((mask & aen->event_data) == 0)
915				continue;
916			lid = NVME_LOG_HEALTH_INFORMATION;
917			break;
918		case PCI_NVME_AE_TYPE_NOTICE:
919			if (aen->event_data >= PCI_NVME_AEI_NOTICE_MAX) {
920				EPRINTLN("%s unknown AEN notice type %u",
921				    __func__, aen->event_data);
922				status = NVME_SC_INTERNAL_DEVICE_ERROR;
923				lid = 0;
924				break;
925			}
926			if ((PCI_NVME_AEI_NOTICE_MASK(aen->event_data) & mask) == 0)
927				continue;
928			switch (aen->event_data) {
929			case PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED:
930				lid = NVME_LOG_CHANGED_NAMESPACE;
931				break;
932			case PCI_NVME_AEI_NOTICE_FW_ACTIVATION:
933				lid = NVME_LOG_FIRMWARE_SLOT;
934				break;
935			case PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE:
936				lid = NVME_LOG_TELEMETRY_CONTROLLER_INITIATED;
937				break;
938			case PCI_NVME_AEI_NOTICE_ANA_CHANGE:
939				lid = NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS;
940				break;
941			case PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE:
942				lid = NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE;
943				break;
944			case PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT:
945				lid = NVME_LOG_LBA_STATUS_INFORMATION;
946				break;
947			case PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE:
948				lid = NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE;
949				break;
950			default:
951				lid = 0;
952			}
953			break;
954		default:
955			/* bad type?!? */
956			EPRINTLN("%s unknown AEN type %u", __func__, atype);
957			status = NVME_SC_INTERNAL_DEVICE_ERROR;
958			lid = 0;
959			break;
960		}
961
962		aer = pci_nvme_aer_get(sc);
963		assert(aer != NULL);
964
965		DPRINTF("%s: CID=%#x CDW0=%#x", __func__, aer->cid, (lid << 16) | (aen->event_data << 8) | atype);
966		pci_nvme_cq_update(sc, &sc->compl_queues[0],
967		    (lid << 16) | (aen->event_data << 8) | atype, /* cdw0 */
968		    aer->cid,
969		    0,		/* SQID */
970		    status);
971
972		aen->event_data = 0;
973		aen->posted = false;
974
975		pci_generate_msix(sc->nsc_pi, 0);
976	}
977}
978
979static void *
980aen_thr(void *arg)
981{
982	struct pci_nvme_softc *sc;
983
984	sc = arg;
985
986	pthread_mutex_lock(&sc->aen_mtx);
987	for (;;) {
988		pci_nvme_aen_process(sc);
989		pthread_cond_wait(&sc->aen_cond, &sc->aen_mtx);
990	}
991	pthread_mutex_unlock(&sc->aen_mtx);
992
993	pthread_exit(NULL);
994	return (NULL);
995}
996
997static void
998pci_nvme_reset_locked(struct pci_nvme_softc *sc)
999{
1000	uint32_t i;
1001
1002	DPRINTF("%s", __func__);
1003
1004	sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) |
1005	    NVMEF(NVME_CAP_LO_REG_CQR, 1) |
1006	    NVMEF(NVME_CAP_LO_REG_TO, 60);
1007
1008	sc->regs.cap_hi = NVMEF(NVME_CAP_HI_REG_CSS_NVM, 1);
1009
1010	sc->regs.vs = NVME_REV(1,4);	/* NVMe v1.4 */
1011
1012	sc->regs.cc = 0;
1013
1014	assert(sc->submit_queues != NULL);
1015
1016	for (i = 0; i < sc->num_squeues + 1; i++) {
1017		sc->submit_queues[i].qbase = NULL;
1018		sc->submit_queues[i].size = 0;
1019		sc->submit_queues[i].cqid = 0;
1020		sc->submit_queues[i].tail = 0;
1021		sc->submit_queues[i].head = 0;
1022	}
1023
1024	assert(sc->compl_queues != NULL);
1025
1026	for (i = 0; i < sc->num_cqueues + 1; i++) {
1027		sc->compl_queues[i].qbase = NULL;
1028		sc->compl_queues[i].size = 0;
1029		sc->compl_queues[i].tail = 0;
1030		sc->compl_queues[i].head = 0;
1031	}
1032
1033	sc->num_q_is_set = false;
1034
1035	pci_nvme_aer_destroy(sc);
1036	pci_nvme_aen_destroy(sc);
1037
1038	/*
1039	 * Clear CSTS.RDY last to prevent the host from enabling Controller
1040	 * before cleanup completes
1041	 */
1042	sc->regs.csts = 0;
1043}
1044
1045static void
1046pci_nvme_reset(struct pci_nvme_softc *sc)
1047{
1048	pthread_mutex_lock(&sc->mtx);
1049	pci_nvme_reset_locked(sc);
1050	pthread_mutex_unlock(&sc->mtx);
1051}
1052
1053static int
1054pci_nvme_init_controller(struct pci_nvme_softc *sc)
1055{
1056	uint16_t acqs, asqs;
1057
1058	DPRINTF("%s", __func__);
1059
1060	/*
1061	 * NVMe 2.0 states that "enabling a controller while this field is
1062	 * cleared to 0h produces undefined results" for both ACQS and
1063	 * ASQS. If zero, set CFS and do not become ready.
1064	 */
1065	asqs = ONE_BASED(NVMEV(NVME_AQA_REG_ASQS, sc->regs.aqa));
1066	if (asqs < 2) {
1067		EPRINTLN("%s: illegal ASQS value %#x (aqa=%#x)", __func__,
1068		    asqs - 1, sc->regs.aqa);
1069		sc->regs.csts |= NVME_CSTS_CFS;
1070		return (-1);
1071	}
1072	sc->submit_queues[0].size = asqs;
1073	sc->submit_queues[0].qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1074	    sc->regs.asq, sizeof(struct nvme_command) * asqs);
1075	if (sc->submit_queues[0].qbase == NULL) {
1076		EPRINTLN("%s: ASQ vm_map_gpa(%lx) failed", __func__,
1077		    sc->regs.asq);
1078		sc->regs.csts |= NVME_CSTS_CFS;
1079		return (-1);
1080	}
1081
1082	DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p",
1083	        __func__, sc->regs.asq, sc->submit_queues[0].qbase);
1084
1085	acqs = ONE_BASED(NVMEV(NVME_AQA_REG_ACQS, sc->regs.aqa));
1086	if (acqs < 2) {
1087		EPRINTLN("%s: illegal ACQS value %#x (aqa=%#x)", __func__,
1088		    acqs - 1, sc->regs.aqa);
1089		sc->regs.csts |= NVME_CSTS_CFS;
1090		return (-1);
1091	}
1092	sc->compl_queues[0].size = acqs;
1093	sc->compl_queues[0].qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1094	    sc->regs.acq, sizeof(struct nvme_completion) * acqs);
1095	if (sc->compl_queues[0].qbase == NULL) {
1096		EPRINTLN("%s: ACQ vm_map_gpa(%lx) failed", __func__,
1097		    sc->regs.acq);
1098		sc->regs.csts |= NVME_CSTS_CFS;
1099		return (-1);
1100	}
1101	sc->compl_queues[0].intr_en = NVME_CQ_INTEN;
1102
1103	DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p",
1104	        __func__, sc->regs.acq, sc->compl_queues[0].qbase);
1105
1106	return (0);
1107}
1108
1109static int
1110nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b,
1111	size_t len, enum nvme_copy_dir dir)
1112{
1113	uint8_t *p;
1114	size_t bytes;
1115
1116	if (len > (8 * 1024)) {
1117		return (-1);
1118	}
1119
1120	/* Copy from the start of prp1 to the end of the physical page */
1121	bytes = PAGE_SIZE - (prp1 & PAGE_MASK);
1122	bytes = MIN(bytes, len);
1123
1124	p = vm_map_gpa(ctx, prp1, bytes);
1125	if (p == NULL) {
1126		return (-1);
1127	}
1128
1129	if (dir == NVME_COPY_TO_PRP)
1130		memcpy(p, b, bytes);
1131	else
1132		memcpy(b, p, bytes);
1133
1134	b += bytes;
1135
1136	len -= bytes;
1137	if (len == 0) {
1138		return (0);
1139	}
1140
1141	len = MIN(len, PAGE_SIZE);
1142
1143	p = vm_map_gpa(ctx, prp2, len);
1144	if (p == NULL) {
1145		return (-1);
1146	}
1147
1148	if (dir == NVME_COPY_TO_PRP)
1149		memcpy(p, b, len);
1150	else
1151		memcpy(b, p, len);
1152
1153	return (0);
1154}
1155
1156/*
1157 * Write a Completion Queue Entry update
1158 *
1159 * Write the completion and update the doorbell value
1160 */
1161static void
1162pci_nvme_cq_update(struct pci_nvme_softc *sc,
1163		struct nvme_completion_queue *cq,
1164		uint32_t cdw0,
1165		uint16_t cid,
1166		uint16_t sqid,
1167		uint16_t status)
1168{
1169	struct nvme_submission_queue *sq = &sc->submit_queues[sqid];
1170	struct nvme_completion *cqe;
1171
1172	assert(cq->qbase != NULL);
1173
1174	pthread_mutex_lock(&cq->mtx);
1175
1176	cqe = &cq->qbase[cq->tail];
1177
1178	/* Flip the phase bit */
1179	status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK;
1180
1181	cqe->cdw0 = cdw0;
1182	cqe->sqhd = sq->head;
1183	cqe->sqid = sqid;
1184	cqe->cid = cid;
1185	cqe->status = status;
1186
1187	cq->tail++;
1188	if (cq->tail >= cq->size) {
1189		cq->tail = 0;
1190	}
1191
1192	pthread_mutex_unlock(&cq->mtx);
1193}
1194
1195static int
1196nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1197	struct nvme_completion* compl)
1198{
1199	uint16_t qid = command->cdw10 & 0xffff;
1200
1201	DPRINTF("%s DELETE_IO_SQ %u", __func__, qid);
1202	if (qid == 0 || qid > sc->num_squeues ||
1203	    (sc->submit_queues[qid].qbase == NULL)) {
1204		WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u",
1205		        __func__, qid, sc->num_squeues);
1206		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1207		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1208		return (1);
1209	}
1210
1211	sc->submit_queues[qid].qbase = NULL;
1212	sc->submit_queues[qid].cqid = 0;
1213	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1214	return (1);
1215}
1216
1217static int
1218nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1219	struct nvme_completion* compl)
1220{
1221	if (command->cdw11 & NVME_CMD_CDW11_PC) {
1222		uint16_t qid = command->cdw10 & 0xffff;
1223		struct nvme_submission_queue *nsq;
1224
1225		if ((qid == 0) || (qid > sc->num_squeues) ||
1226		    (sc->submit_queues[qid].qbase != NULL)) {
1227			WPRINTF("%s queue index %u > num_squeues %u",
1228			        __func__, qid, sc->num_squeues);
1229			pci_nvme_status_tc(&compl->status,
1230			    NVME_SCT_COMMAND_SPECIFIC,
1231			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1232			return (1);
1233		}
1234
1235		nsq = &sc->submit_queues[qid];
1236		nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1237		DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries);
1238		if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) {
1239			/*
1240			 * Queues must specify at least two entries
1241			 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1242			 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1243			 */
1244			pci_nvme_status_tc(&compl->status,
1245			    NVME_SCT_COMMAND_SPECIFIC,
1246			    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1247			return (1);
1248		}
1249		nsq->head = nsq->tail = 0;
1250
1251		nsq->cqid = (command->cdw11 >> 16) & 0xffff;
1252		if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) {
1253			pci_nvme_status_tc(&compl->status,
1254			    NVME_SCT_COMMAND_SPECIFIC,
1255			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1256			return (1);
1257		}
1258
1259		if (sc->compl_queues[nsq->cqid].qbase == NULL) {
1260			pci_nvme_status_tc(&compl->status,
1261			    NVME_SCT_COMMAND_SPECIFIC,
1262			    NVME_SC_COMPLETION_QUEUE_INVALID);
1263			return (1);
1264		}
1265
1266		nsq->qpriority = (command->cdw11 >> 1) & 0x03;
1267
1268		nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1269		              sizeof(struct nvme_command) * (size_t)nsq->size);
1270
1271		DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__,
1272		        qid, nsq->size, nsq->qbase, nsq->cqid);
1273
1274		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1275
1276		DPRINTF("%s completed creating IOSQ qid %u",
1277		         __func__, qid);
1278	} else {
1279		/*
1280		 * Guest sent non-cont submission queue request.
1281		 * This setting is unsupported by this emulation.
1282		 */
1283		WPRINTF("%s unsupported non-contig (list-based) "
1284		         "create i/o submission queue", __func__);
1285
1286		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1287	}
1288	return (1);
1289}
1290
1291static int
1292nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1293	struct nvme_completion* compl)
1294{
1295	uint16_t qid = command->cdw10 & 0xffff;
1296	uint16_t sqid;
1297
1298	DPRINTF("%s DELETE_IO_CQ %u", __func__, qid);
1299	if (qid == 0 || qid > sc->num_cqueues ||
1300	    (sc->compl_queues[qid].qbase == NULL)) {
1301		WPRINTF("%s queue index %u / num_cqueues %u",
1302		        __func__, qid, sc->num_cqueues);
1303		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1304		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1305		return (1);
1306	}
1307
1308	/* Deleting an Active CQ is an error */
1309	for (sqid = 1; sqid < sc->num_squeues + 1; sqid++)
1310		if (sc->submit_queues[sqid].cqid == qid) {
1311			pci_nvme_status_tc(&compl->status,
1312			    NVME_SCT_COMMAND_SPECIFIC,
1313			    NVME_SC_INVALID_QUEUE_DELETION);
1314			return (1);
1315		}
1316
1317	sc->compl_queues[qid].qbase = NULL;
1318	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1319	return (1);
1320}
1321
1322static int
1323nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1324	struct nvme_completion* compl)
1325{
1326	struct nvme_completion_queue *ncq;
1327	uint16_t qid = command->cdw10 & 0xffff;
1328
1329	/* Only support Physically Contiguous queues */
1330	if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) {
1331		WPRINTF("%s unsupported non-contig (list-based) "
1332		         "create i/o completion queue",
1333		         __func__);
1334
1335		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1336		return (1);
1337	}
1338
1339	if ((qid == 0) || (qid > sc->num_cqueues) ||
1340	    (sc->compl_queues[qid].qbase != NULL)) {
1341		WPRINTF("%s queue index %u > num_cqueues %u",
1342			__func__, qid, sc->num_cqueues);
1343		pci_nvme_status_tc(&compl->status,
1344		    NVME_SCT_COMMAND_SPECIFIC,
1345		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1346		return (1);
1347 	}
1348
1349	ncq = &sc->compl_queues[qid];
1350	ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
1351	ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
1352	if (ncq->intr_vec > (sc->max_queues + 1)) {
1353		pci_nvme_status_tc(&compl->status,
1354		    NVME_SCT_COMMAND_SPECIFIC,
1355		    NVME_SC_INVALID_INTERRUPT_VECTOR);
1356		return (1);
1357	}
1358
1359	ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1360	if ((ncq->size < 2) || (ncq->size > sc->max_qentries))  {
1361		/*
1362		 * Queues must specify at least two entries
1363		 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1364		 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1365		 */
1366		pci_nvme_status_tc(&compl->status,
1367		    NVME_SCT_COMMAND_SPECIFIC,
1368		    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1369		return (1);
1370	}
1371	ncq->head = ncq->tail = 0;
1372	ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1373		     command->prp1,
1374		     sizeof(struct nvme_command) * (size_t)ncq->size);
1375
1376	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1377
1378
1379	return (1);
1380}
1381
1382static int
1383nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
1384	struct nvme_completion* compl)
1385{
1386	uint64_t logoff;
1387	uint32_t logsize;
1388	uint8_t logpage;
1389
1390	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1391
1392	/*
1393	 * Command specifies the number of dwords to return in fields NUMDU
1394	 * and NUMDL. This is a zero-based value.
1395	 */
1396	logpage = command->cdw10 & 0xFF;
1397	logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1;
1398	logsize *= sizeof(uint32_t);
1399	logoff  = ((uint64_t)(command->cdw13) << 32) | command->cdw12;
1400
1401	DPRINTF("%s log page %u len %u", __func__, logpage, logsize);
1402
1403	switch (logpage) {
1404	case NVME_LOG_ERROR:
1405		if (logoff >= sizeof(sc->err_log)) {
1406			pci_nvme_status_genc(&compl->status,
1407			    NVME_SC_INVALID_FIELD);
1408			break;
1409		}
1410
1411		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1412		    command->prp2, (uint8_t *)&sc->err_log + logoff,
1413		    MIN(logsize - logoff, sizeof(sc->err_log)),
1414		    NVME_COPY_TO_PRP);
1415		break;
1416	case NVME_LOG_HEALTH_INFORMATION:
1417		if (logoff >= sizeof(sc->health_log)) {
1418			pci_nvme_status_genc(&compl->status,
1419			    NVME_SC_INVALID_FIELD);
1420			break;
1421		}
1422
1423		pthread_mutex_lock(&sc->mtx);
1424		memcpy(&sc->health_log.data_units_read, &sc->read_data_units,
1425		    sizeof(sc->health_log.data_units_read));
1426		memcpy(&sc->health_log.data_units_written, &sc->write_data_units,
1427		    sizeof(sc->health_log.data_units_written));
1428		memcpy(&sc->health_log.host_read_commands, &sc->read_commands,
1429		    sizeof(sc->health_log.host_read_commands));
1430		memcpy(&sc->health_log.host_write_commands, &sc->write_commands,
1431		    sizeof(sc->health_log.host_write_commands));
1432		pthread_mutex_unlock(&sc->mtx);
1433
1434		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1435		    command->prp2, (uint8_t *)&sc->health_log + logoff,
1436		    MIN(logsize - logoff, sizeof(sc->health_log)),
1437		    NVME_COPY_TO_PRP);
1438		break;
1439	case NVME_LOG_FIRMWARE_SLOT:
1440		if (logoff >= sizeof(sc->fw_log)) {
1441			pci_nvme_status_genc(&compl->status,
1442			    NVME_SC_INVALID_FIELD);
1443			break;
1444		}
1445
1446		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1447		    command->prp2, (uint8_t *)&sc->fw_log + logoff,
1448		    MIN(logsize - logoff, sizeof(sc->fw_log)),
1449		    NVME_COPY_TO_PRP);
1450		break;
1451	case NVME_LOG_CHANGED_NAMESPACE:
1452		if (logoff >= sizeof(sc->ns_log)) {
1453			pci_nvme_status_genc(&compl->status,
1454			    NVME_SC_INVALID_FIELD);
1455			break;
1456		}
1457
1458		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1459		    command->prp2, (uint8_t *)&sc->ns_log + logoff,
1460		    MIN(logsize - logoff, sizeof(sc->ns_log)),
1461		    NVME_COPY_TO_PRP);
1462		memset(&sc->ns_log, 0, sizeof(sc->ns_log));
1463		break;
1464	default:
1465		DPRINTF("%s get log page %x command not supported",
1466		        __func__, logpage);
1467
1468		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1469		    NVME_SC_INVALID_LOG_PAGE);
1470	}
1471
1472	return (1);
1473}
1474
1475static int
1476nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
1477	struct nvme_completion* compl)
1478{
1479	void *dest;
1480	uint16_t status;
1481
1482	DPRINTF("%s identify 0x%x nsid 0x%x", __func__,
1483	        command->cdw10 & 0xFF, command->nsid);
1484
1485	status = 0;
1486	pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
1487
1488	switch (command->cdw10 & 0xFF) {
1489	case 0x00: /* return Identify Namespace data structure */
1490		/* Global NS only valid with NS Management */
1491		if (command->nsid == NVME_GLOBAL_NAMESPACE_TAG) {
1492			pci_nvme_status_genc(&status,
1493			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1494			break;
1495		}
1496		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1497		    command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata),
1498		    NVME_COPY_TO_PRP);
1499		break;
1500	case 0x01: /* return Identify Controller data structure */
1501		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1502		    command->prp2, (uint8_t *)&sc->ctrldata,
1503		    sizeof(sc->ctrldata),
1504		    NVME_COPY_TO_PRP);
1505		break;
1506	case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
1507		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1508		                  sizeof(uint32_t) * 1024);
1509		/* All unused entries shall be zero */
1510		memset(dest, 0, sizeof(uint32_t) * 1024);
1511		((uint32_t *)dest)[0] = 1;
1512		break;
1513	case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
1514		if (command->nsid != 1) {
1515			pci_nvme_status_genc(&status,
1516			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1517			break;
1518		}
1519		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1520		                  sizeof(uint32_t) * 1024);
1521		/* All bytes after the descriptor shall be zero */
1522		memset(dest, 0, sizeof(uint32_t) * 1024);
1523
1524		/* Return NIDT=1 (i.e. EUI64) descriptor */
1525		((uint8_t *)dest)[0] = 1;
1526		((uint8_t *)dest)[1] = sizeof(uint64_t);
1527		memcpy(((uint8_t *)dest) + 4, sc->nsdata.eui64, sizeof(uint64_t));
1528		break;
1529	case 0x13:
1530		/*
1531		 * Controller list is optional but used by UNH tests. Return
1532		 * a valid but empty list.
1533		 */
1534		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1535		                  sizeof(uint16_t) * 2048);
1536		memset(dest, 0, sizeof(uint16_t) * 2048);
1537		break;
1538	default:
1539		DPRINTF("%s unsupported identify command requested 0x%x",
1540		         __func__, command->cdw10 & 0xFF);
1541		pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD);
1542		break;
1543	}
1544
1545	compl->status = status;
1546	return (1);
1547}
1548
1549static const char *
1550nvme_fid_to_name(uint8_t fid)
1551{
1552	const char *name;
1553
1554	switch (fid) {
1555	case NVME_FEAT_ARBITRATION:
1556		name = "Arbitration";
1557		break;
1558	case NVME_FEAT_POWER_MANAGEMENT:
1559		name = "Power Management";
1560		break;
1561	case NVME_FEAT_LBA_RANGE_TYPE:
1562		name = "LBA Range Type";
1563		break;
1564	case NVME_FEAT_TEMPERATURE_THRESHOLD:
1565		name = "Temperature Threshold";
1566		break;
1567	case NVME_FEAT_ERROR_RECOVERY:
1568		name = "Error Recovery";
1569		break;
1570	case NVME_FEAT_VOLATILE_WRITE_CACHE:
1571		name = "Volatile Write Cache";
1572		break;
1573	case NVME_FEAT_NUMBER_OF_QUEUES:
1574		name = "Number of Queues";
1575		break;
1576	case NVME_FEAT_INTERRUPT_COALESCING:
1577		name = "Interrupt Coalescing";
1578		break;
1579	case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
1580		name = "Interrupt Vector Configuration";
1581		break;
1582	case NVME_FEAT_WRITE_ATOMICITY:
1583		name = "Write Atomicity Normal";
1584		break;
1585	case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
1586		name = "Asynchronous Event Configuration";
1587		break;
1588	case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1589		name = "Autonomous Power State Transition";
1590		break;
1591	case NVME_FEAT_HOST_MEMORY_BUFFER:
1592		name = "Host Memory Buffer";
1593		break;
1594	case NVME_FEAT_TIMESTAMP:
1595		name = "Timestamp";
1596		break;
1597	case NVME_FEAT_KEEP_ALIVE_TIMER:
1598		name = "Keep Alive Timer";
1599		break;
1600	case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT:
1601		name = "Host Controlled Thermal Management";
1602		break;
1603	case NVME_FEAT_NON_OP_POWER_STATE_CONFIG:
1604		name = "Non-Operation Power State Config";
1605		break;
1606	case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG:
1607		name = "Read Recovery Level Config";
1608		break;
1609	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
1610		name = "Predictable Latency Mode Config";
1611		break;
1612	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW:
1613		name = "Predictable Latency Mode Window";
1614		break;
1615	case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES:
1616		name = "LBA Status Information Report Interval";
1617		break;
1618	case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
1619		name = "Host Behavior Support";
1620		break;
1621	case NVME_FEAT_SANITIZE_CONFIG:
1622		name = "Sanitize Config";
1623		break;
1624	case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION:
1625		name = "Endurance Group Event Configuration";
1626		break;
1627	case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
1628		name = "Software Progress Marker";
1629		break;
1630	case NVME_FEAT_HOST_IDENTIFIER:
1631		name = "Host Identifier";
1632		break;
1633	case NVME_FEAT_RESERVATION_NOTIFICATION_MASK:
1634		name = "Reservation Notification Mask";
1635		break;
1636	case NVME_FEAT_RESERVATION_PERSISTENCE:
1637		name = "Reservation Persistence";
1638		break;
1639	case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG:
1640		name = "Namespace Write Protection Config";
1641		break;
1642	default:
1643		name = "Unknown";
1644		break;
1645	}
1646
1647	return (name);
1648}
1649
1650static void
1651nvme_feature_invalid_cb(struct pci_nvme_softc *sc __unused,
1652    struct nvme_feature_obj *feat __unused,
1653    struct nvme_command *command __unused,
1654    struct nvme_completion *compl)
1655{
1656	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1657}
1658
1659static void
1660nvme_feature_iv_config(struct pci_nvme_softc *sc,
1661    struct nvme_feature_obj *feat __unused,
1662    struct nvme_command *command,
1663    struct nvme_completion *compl)
1664{
1665	uint32_t i;
1666	uint32_t cdw11 = command->cdw11;
1667	uint16_t iv;
1668	bool cd;
1669
1670	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1671
1672	iv = cdw11 & 0xffff;
1673	cd = cdw11 & (1 << 16);
1674
1675	if (iv > (sc->max_queues + 1)) {
1676		return;
1677	}
1678
1679	/* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */
1680	if ((iv == 0) && !cd)
1681		return;
1682
1683	/* Requested Interrupt Vector must be used by a CQ */
1684	for (i = 0; i < sc->num_cqueues + 1; i++) {
1685		if (sc->compl_queues[i].intr_vec == iv) {
1686			pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1687		}
1688	}
1689}
1690
1691#define NVME_ASYNC_EVENT_ENDURANCE_GROUP		(0x4000)
1692static void
1693nvme_feature_async_event(struct pci_nvme_softc *sc __unused,
1694    struct nvme_feature_obj *feat __unused,
1695    struct nvme_command *command,
1696    struct nvme_completion *compl)
1697{
1698	if (command->cdw11 & NVME_ASYNC_EVENT_ENDURANCE_GROUP)
1699		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1700}
1701
1702#define NVME_TEMP_THRESH_OVER	0
1703#define NVME_TEMP_THRESH_UNDER	1
1704static void
1705nvme_feature_temperature(struct pci_nvme_softc *sc,
1706    struct nvme_feature_obj *feat __unused,
1707    struct nvme_command *command,
1708    struct nvme_completion *compl)
1709{
1710	uint16_t	tmpth;	/* Temperature Threshold */
1711	uint8_t		tmpsel; /* Threshold Temperature Select */
1712	uint8_t		thsel;  /* Threshold Type Select */
1713	bool		set_crit = false;
1714	bool		report_crit;
1715
1716	tmpth  = command->cdw11 & 0xffff;
1717	tmpsel = (command->cdw11 >> 16) & 0xf;
1718	thsel  = (command->cdw11 >> 20) & 0x3;
1719
1720	DPRINTF("%s: tmpth=%#x tmpsel=%#x thsel=%#x", __func__, tmpth, tmpsel, thsel);
1721
1722	/* Check for unsupported values */
1723	if (((tmpsel != 0) && (tmpsel != 0xf)) ||
1724	    (thsel > NVME_TEMP_THRESH_UNDER)) {
1725		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1726		return;
1727	}
1728
1729	if (((thsel == NVME_TEMP_THRESH_OVER)  && (NVME_TEMPERATURE >= tmpth)) ||
1730	    ((thsel == NVME_TEMP_THRESH_UNDER) && (NVME_TEMPERATURE <= tmpth)))
1731		set_crit = true;
1732
1733	pthread_mutex_lock(&sc->mtx);
1734	if (set_crit)
1735		sc->health_log.critical_warning |=
1736		    NVME_CRIT_WARN_ST_TEMPERATURE;
1737	else
1738		sc->health_log.critical_warning &=
1739		    ~NVME_CRIT_WARN_ST_TEMPERATURE;
1740	pthread_mutex_unlock(&sc->mtx);
1741
1742	report_crit = sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11 &
1743	    NVME_CRIT_WARN_ST_TEMPERATURE;
1744
1745	if (set_crit && report_crit)
1746		pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_SMART,
1747		    sc->health_log.critical_warning);
1748
1749	DPRINTF("%s: set_crit=%c critical_warning=%#x status=%#x", __func__, set_crit ? 'T':'F', sc->health_log.critical_warning, compl->status);
1750}
1751
1752static void
1753nvme_feature_num_queues(struct pci_nvme_softc *sc,
1754    struct nvme_feature_obj *feat __unused,
1755    struct nvme_command *command,
1756    struct nvme_completion *compl)
1757{
1758	uint16_t nqr;	/* Number of Queues Requested */
1759
1760	if (sc->num_q_is_set) {
1761		WPRINTF("%s: Number of Queues already set", __func__);
1762		pci_nvme_status_genc(&compl->status,
1763		    NVME_SC_COMMAND_SEQUENCE_ERROR);
1764		return;
1765	}
1766
1767	nqr = command->cdw11 & 0xFFFF;
1768	if (nqr == 0xffff) {
1769		WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr);
1770		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1771		return;
1772	}
1773
1774	sc->num_squeues = ONE_BASED(nqr);
1775	if (sc->num_squeues > sc->max_queues) {
1776		DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues,
1777					sc->max_queues);
1778		sc->num_squeues = sc->max_queues;
1779	}
1780
1781	nqr = (command->cdw11 >> 16) & 0xFFFF;
1782	if (nqr == 0xffff) {
1783		WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr);
1784		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1785		return;
1786	}
1787
1788	sc->num_cqueues = ONE_BASED(nqr);
1789	if (sc->num_cqueues > sc->max_queues) {
1790		DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues,
1791					sc->max_queues);
1792		sc->num_cqueues = sc->max_queues;
1793	}
1794
1795	/* Patch the command value which will be saved on callback's return */
1796	command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc);
1797	compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc);
1798
1799	sc->num_q_is_set = true;
1800}
1801
1802static int
1803nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command,
1804	struct nvme_completion *compl)
1805{
1806	struct nvme_feature_obj *feat;
1807	uint32_t nsid = command->nsid;
1808	uint8_t fid = NVMEV(NVME_FEAT_SET_FID, command->cdw10);
1809	bool sv = NVMEV(NVME_FEAT_SET_SV, command->cdw10);
1810
1811	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1812
1813	if (fid >= NVME_FID_MAX) {
1814		DPRINTF("%s invalid feature 0x%x", __func__, fid);
1815		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1816		return (1);
1817	}
1818
1819	if (sv) {
1820		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1821		    NVME_SC_FEATURE_NOT_SAVEABLE);
1822		return (1);
1823	}
1824
1825	feat = &sc->feat[fid];
1826
1827	if (feat->namespace_specific && (nsid == NVME_GLOBAL_NAMESPACE_TAG)) {
1828		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1829		return (1);
1830	}
1831
1832	if (!feat->namespace_specific &&
1833	    !((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) {
1834		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1835		    NVME_SC_FEATURE_NOT_NS_SPECIFIC);
1836		return (1);
1837	}
1838
1839	compl->cdw0 = 0;
1840	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1841
1842	if (feat->set)
1843		feat->set(sc, feat, command, compl);
1844	else {
1845		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1846		    NVME_SC_FEATURE_NOT_CHANGEABLE);
1847		return (1);
1848	}
1849
1850	DPRINTF("%s: status=%#x cdw11=%#x", __func__, compl->status, command->cdw11);
1851	if (compl->status == NVME_SC_SUCCESS) {
1852		feat->cdw11 = command->cdw11;
1853		if ((fid == NVME_FEAT_ASYNC_EVENT_CONFIGURATION) &&
1854		    (command->cdw11 != 0))
1855			pci_nvme_aen_notify(sc);
1856	}
1857
1858	return (0);
1859}
1860
1861#define NVME_FEATURES_SEL_SUPPORTED	0x3
1862#define NVME_FEATURES_NS_SPECIFIC	(1 << 1)
1863
1864static int
1865nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
1866	struct nvme_completion* compl)
1867{
1868	struct nvme_feature_obj *feat;
1869	uint8_t fid = command->cdw10 & 0xFF;
1870	uint8_t sel = (command->cdw10 >> 8) & 0x7;
1871
1872	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1873
1874	if (fid >= NVME_FID_MAX) {
1875		DPRINTF("%s invalid feature 0x%x", __func__, fid);
1876		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1877		return (1);
1878	}
1879
1880	compl->cdw0 = 0;
1881	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1882
1883	feat = &sc->feat[fid];
1884	if (feat->get) {
1885		feat->get(sc, feat, command, compl);
1886	}
1887
1888	if (compl->status == NVME_SC_SUCCESS) {
1889		if ((sel == NVME_FEATURES_SEL_SUPPORTED) && feat->namespace_specific)
1890			compl->cdw0 = NVME_FEATURES_NS_SPECIFIC;
1891		else
1892			compl->cdw0 = feat->cdw11;
1893	}
1894
1895	return (0);
1896}
1897
1898static int
1899nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command,
1900	struct nvme_completion* compl)
1901{
1902	uint8_t	ses, lbaf, pi;
1903
1904	/* Only supports Secure Erase Setting - User Data Erase */
1905	ses = (command->cdw10 >> 9) & 0x7;
1906	if (ses > 0x1) {
1907		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1908		return (1);
1909	}
1910
1911	/* Only supports a single LBA Format */
1912	lbaf = command->cdw10 & 0xf;
1913	if (lbaf != 0) {
1914		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1915		    NVME_SC_INVALID_FORMAT);
1916		return (1);
1917	}
1918
1919	/* Doesn't support Protection Information */
1920	pi = (command->cdw10 >> 5) & 0x7;
1921	if (pi != 0) {
1922		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1923		return (1);
1924	}
1925
1926	if (sc->nvstore.type == NVME_STOR_RAM) {
1927		if (sc->nvstore.ctx)
1928			free(sc->nvstore.ctx);
1929		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
1930		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1931	} else {
1932		struct pci_nvme_ioreq *req;
1933		int err;
1934
1935		req = pci_nvme_get_ioreq(sc);
1936		if (req == NULL) {
1937			pci_nvme_status_genc(&compl->status,
1938			    NVME_SC_INTERNAL_DEVICE_ERROR);
1939			WPRINTF("%s: unable to allocate IO req", __func__);
1940			return (1);
1941		}
1942		req->nvme_sq = &sc->submit_queues[0];
1943		req->sqid = 0;
1944		req->opc = command->opc;
1945		req->cid = command->cid;
1946		req->nsid = command->nsid;
1947
1948		req->io_req.br_offset = 0;
1949		req->io_req.br_resid = sc->nvstore.size;
1950		req->io_req.br_callback = pci_nvme_io_done;
1951
1952		err = blockif_delete(sc->nvstore.ctx, &req->io_req);
1953		if (err) {
1954			pci_nvme_status_genc(&compl->status,
1955			    NVME_SC_INTERNAL_DEVICE_ERROR);
1956			pci_nvme_release_ioreq(sc, req);
1957		} else
1958			compl->status = NVME_NO_STATUS;
1959	}
1960
1961	return (1);
1962}
1963
1964static int
1965nvme_opc_abort(struct pci_nvme_softc *sc __unused, struct nvme_command *command,
1966    struct nvme_completion *compl)
1967{
1968	DPRINTF("%s submission queue %u, command ID 0x%x", __func__,
1969	        command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF);
1970
1971	/* TODO: search for the command ID and abort it */
1972
1973	compl->cdw0 = 1;
1974	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1975	return (1);
1976}
1977
1978static int
1979nvme_opc_async_event_req(struct pci_nvme_softc* sc,
1980	struct nvme_command* command, struct nvme_completion* compl)
1981{
1982	DPRINTF("%s async event request count=%u aerl=%u cid=%#x", __func__,
1983	    sc->aer_count, sc->ctrldata.aerl, command->cid);
1984
1985	/* Don't exceed the Async Event Request Limit (AERL). */
1986	if (pci_nvme_aer_limit_reached(sc)) {
1987		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1988				NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
1989		return (1);
1990	}
1991
1992	if (pci_nvme_aer_add(sc, command->cid)) {
1993		pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC,
1994				NVME_SC_INTERNAL_DEVICE_ERROR);
1995		return (1);
1996	}
1997
1998	/*
1999	 * Raise events when they happen based on the Set Features cmd.
2000	 * These events happen async, so only set completion successful if
2001	 * there is an event reflective of the request to get event.
2002	 */
2003	compl->status = NVME_NO_STATUS;
2004	pci_nvme_aen_notify(sc);
2005
2006	return (0);
2007}
2008
2009static void
2010pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
2011{
2012	struct nvme_completion compl;
2013	struct nvme_command *cmd;
2014	struct nvme_submission_queue *sq;
2015	struct nvme_completion_queue *cq;
2016	uint16_t sqhead;
2017
2018	DPRINTF("%s index %u", __func__, (uint32_t)value);
2019
2020	sq = &sc->submit_queues[0];
2021	cq = &sc->compl_queues[0];
2022
2023	pthread_mutex_lock(&sq->mtx);
2024
2025	sqhead = sq->head;
2026	DPRINTF("sqhead %u, tail %u", sqhead, sq->tail);
2027
2028	while (sqhead != atomic_load_acq_short(&sq->tail)) {
2029		cmd = &(sq->qbase)[sqhead];
2030		compl.cdw0 = 0;
2031		compl.status = 0;
2032
2033		switch (cmd->opc) {
2034		case NVME_OPC_DELETE_IO_SQ:
2035			DPRINTF("%s command DELETE_IO_SQ", __func__);
2036			nvme_opc_delete_io_sq(sc, cmd, &compl);
2037			break;
2038		case NVME_OPC_CREATE_IO_SQ:
2039			DPRINTF("%s command CREATE_IO_SQ", __func__);
2040			nvme_opc_create_io_sq(sc, cmd, &compl);
2041			break;
2042		case NVME_OPC_DELETE_IO_CQ:
2043			DPRINTF("%s command DELETE_IO_CQ", __func__);
2044			nvme_opc_delete_io_cq(sc, cmd, &compl);
2045			break;
2046		case NVME_OPC_CREATE_IO_CQ:
2047			DPRINTF("%s command CREATE_IO_CQ", __func__);
2048			nvme_opc_create_io_cq(sc, cmd, &compl);
2049			break;
2050		case NVME_OPC_GET_LOG_PAGE:
2051			DPRINTF("%s command GET_LOG_PAGE", __func__);
2052			nvme_opc_get_log_page(sc, cmd, &compl);
2053			break;
2054		case NVME_OPC_IDENTIFY:
2055			DPRINTF("%s command IDENTIFY", __func__);
2056			nvme_opc_identify(sc, cmd, &compl);
2057			break;
2058		case NVME_OPC_ABORT:
2059			DPRINTF("%s command ABORT", __func__);
2060			nvme_opc_abort(sc, cmd, &compl);
2061			break;
2062		case NVME_OPC_SET_FEATURES:
2063			DPRINTF("%s command SET_FEATURES", __func__);
2064			nvme_opc_set_features(sc, cmd, &compl);
2065			break;
2066		case NVME_OPC_GET_FEATURES:
2067			DPRINTF("%s command GET_FEATURES", __func__);
2068			nvme_opc_get_features(sc, cmd, &compl);
2069			break;
2070		case NVME_OPC_FIRMWARE_ACTIVATE:
2071			DPRINTF("%s command FIRMWARE_ACTIVATE", __func__);
2072			pci_nvme_status_tc(&compl.status,
2073			    NVME_SCT_COMMAND_SPECIFIC,
2074			    NVME_SC_INVALID_FIRMWARE_SLOT);
2075			break;
2076		case NVME_OPC_ASYNC_EVENT_REQUEST:
2077			DPRINTF("%s command ASYNC_EVENT_REQ", __func__);
2078			nvme_opc_async_event_req(sc, cmd, &compl);
2079			break;
2080		case NVME_OPC_FORMAT_NVM:
2081			DPRINTF("%s command FORMAT_NVM", __func__);
2082			if (NVMEV(NVME_CTRLR_DATA_OACS_FORMAT,
2083			    sc->ctrldata.oacs) == 0) {
2084				pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2085				break;
2086			}
2087			nvme_opc_format_nvm(sc, cmd, &compl);
2088			break;
2089		case NVME_OPC_SECURITY_SEND:
2090		case NVME_OPC_SECURITY_RECEIVE:
2091		case NVME_OPC_SANITIZE:
2092		case NVME_OPC_GET_LBA_STATUS:
2093			DPRINTF("%s command OPC=%#x (unsupported)", __func__,
2094			    cmd->opc);
2095			/* Valid but unsupported opcodes */
2096			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_FIELD);
2097			break;
2098		default:
2099			DPRINTF("%s command OPC=%#X (not implemented)",
2100			    __func__,
2101			    cmd->opc);
2102			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2103		}
2104		sqhead = (sqhead + 1) % sq->size;
2105
2106		if (NVME_COMPLETION_VALID(compl)) {
2107			pci_nvme_cq_update(sc, &sc->compl_queues[0],
2108			    compl.cdw0,
2109			    cmd->cid,
2110			    0,		/* SQID */
2111			    compl.status);
2112		}
2113	}
2114
2115	DPRINTF("setting sqhead %u", sqhead);
2116	sq->head = sqhead;
2117
2118	if (cq->head != cq->tail)
2119		pci_generate_msix(sc->nsc_pi, 0);
2120
2121	pthread_mutex_unlock(&sq->mtx);
2122}
2123
2124/*
2125 * Update the Write and Read statistics reported in SMART data
2126 *
2127 * NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up.
2128 * E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000
2129 * 512 byte blocks. Rounding up is achieved by initializing the remainder to 999.
2130 */
2131static void
2132pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc,
2133    size_t bytes, uint16_t status)
2134{
2135
2136	pthread_mutex_lock(&sc->mtx);
2137	switch (opc) {
2138	case NVME_OPC_WRITE:
2139		sc->write_commands++;
2140		if (status != NVME_SC_SUCCESS)
2141			break;
2142		sc->write_dunits_remainder += (bytes / 512);
2143		while (sc->write_dunits_remainder >= 1000) {
2144			sc->write_data_units++;
2145			sc->write_dunits_remainder -= 1000;
2146		}
2147		break;
2148	case NVME_OPC_READ:
2149		sc->read_commands++;
2150		if (status != NVME_SC_SUCCESS)
2151			break;
2152		sc->read_dunits_remainder += (bytes / 512);
2153		while (sc->read_dunits_remainder >= 1000) {
2154			sc->read_data_units++;
2155			sc->read_dunits_remainder -= 1000;
2156		}
2157		break;
2158	default:
2159		DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc);
2160		break;
2161	}
2162	pthread_mutex_unlock(&sc->mtx);
2163}
2164
2165/*
2166 * Check if the combination of Starting LBA (slba) and number of blocks
2167 * exceeds the range of the underlying storage.
2168 *
2169 * Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores
2170 * the capacity in bytes as a uint64_t, care must be taken to avoid integer
2171 * overflow.
2172 */
2173static bool
2174pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba,
2175    uint32_t nblocks)
2176{
2177	size_t	offset, bytes;
2178
2179	/* Overflow check of multiplying Starting LBA by the sector size */
2180	if (slba >> (64 - nvstore->sectsz_bits))
2181		return (true);
2182
2183	offset = slba << nvstore->sectsz_bits;
2184	bytes = nblocks << nvstore->sectsz_bits;
2185
2186	/* Overflow check of Number of Logical Blocks */
2187	if ((nvstore->size <= offset) || ((nvstore->size - offset) < bytes))
2188		return (true);
2189
2190	return (false);
2191}
2192
2193static int
2194pci_nvme_append_iov_req(struct pci_nvme_softc *sc __unused,
2195    struct pci_nvme_ioreq *req, uint64_t gpaddr, size_t size, uint64_t offset)
2196{
2197	int iovidx;
2198	bool range_is_contiguous;
2199
2200	if (req == NULL)
2201		return (-1);
2202
2203	if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) {
2204		return (-1);
2205	}
2206
2207	/*
2208	 * Minimize the number of IOVs by concatenating contiguous address
2209	 * ranges. If the IOV count is zero, there is no previous range to
2210	 * concatenate.
2211	 */
2212	if (req->io_req.br_iovcnt == 0)
2213		range_is_contiguous = false;
2214	else
2215		range_is_contiguous = (req->prev_gpaddr + req->prev_size) == gpaddr;
2216
2217	if (range_is_contiguous) {
2218		iovidx = req->io_req.br_iovcnt - 1;
2219
2220		req->io_req.br_iov[iovidx].iov_base =
2221		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2222				     req->prev_gpaddr, size);
2223		if (req->io_req.br_iov[iovidx].iov_base == NULL)
2224			return (-1);
2225
2226		req->prev_size += size;
2227		req->io_req.br_resid += size;
2228
2229		req->io_req.br_iov[iovidx].iov_len = req->prev_size;
2230	} else {
2231		iovidx = req->io_req.br_iovcnt;
2232		if (iovidx == 0) {
2233			req->io_req.br_offset = offset;
2234			req->io_req.br_resid = 0;
2235			req->io_req.br_param = req;
2236		}
2237
2238		req->io_req.br_iov[iovidx].iov_base =
2239		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2240				     gpaddr, size);
2241		if (req->io_req.br_iov[iovidx].iov_base == NULL)
2242			return (-1);
2243
2244		req->io_req.br_iov[iovidx].iov_len = size;
2245
2246		req->prev_gpaddr = gpaddr;
2247		req->prev_size = size;
2248		req->io_req.br_resid += size;
2249
2250		req->io_req.br_iovcnt++;
2251	}
2252
2253	return (0);
2254}
2255
2256static void
2257pci_nvme_set_completion(struct pci_nvme_softc *sc,
2258    struct nvme_submission_queue *sq, int sqid, uint16_t cid, uint16_t status)
2259{
2260	struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
2261
2262	DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x",
2263		 __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
2264		 NVME_STATUS_GET_SC(status));
2265
2266	pci_nvme_cq_update(sc, cq, 0, cid, sqid, status);
2267
2268	if (cq->head != cq->tail) {
2269		if (cq->intr_en & NVME_CQ_INTEN) {
2270			pci_generate_msix(sc->nsc_pi, cq->intr_vec);
2271		} else {
2272			DPRINTF("%s: CQ%u interrupt disabled",
2273						__func__, sq->cqid);
2274		}
2275	}
2276}
2277
2278static void
2279pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
2280{
2281	req->sc = NULL;
2282	req->nvme_sq = NULL;
2283	req->sqid = 0;
2284
2285	pthread_mutex_lock(&sc->mtx);
2286
2287	STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link);
2288	sc->pending_ios--;
2289
2290	/* when no more IO pending, can set to ready if device reset/enabled */
2291	if (sc->pending_ios == 0 &&
2292	    NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
2293		sc->regs.csts |= NVME_CSTS_RDY;
2294
2295	pthread_mutex_unlock(&sc->mtx);
2296
2297	sem_post(&sc->iosemlock);
2298}
2299
2300static struct pci_nvme_ioreq *
2301pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
2302{
2303	struct pci_nvme_ioreq *req = NULL;
2304
2305	sem_wait(&sc->iosemlock);
2306	pthread_mutex_lock(&sc->mtx);
2307
2308	req = STAILQ_FIRST(&sc->ioreqs_free);
2309	assert(req != NULL);
2310	STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link);
2311
2312	req->sc = sc;
2313
2314	sc->pending_ios++;
2315
2316	pthread_mutex_unlock(&sc->mtx);
2317
2318	req->io_req.br_iovcnt = 0;
2319	req->io_req.br_offset = 0;
2320	req->io_req.br_resid = 0;
2321	req->io_req.br_param = req;
2322	req->prev_gpaddr = 0;
2323	req->prev_size = 0;
2324
2325	return req;
2326}
2327
2328static void
2329pci_nvme_io_done(struct blockif_req *br, int err)
2330{
2331	struct pci_nvme_ioreq *req = br->br_param;
2332	struct nvme_submission_queue *sq = req->nvme_sq;
2333	uint16_t code, status;
2334
2335	DPRINTF("%s error %d %s", __func__, err, strerror(err));
2336
2337	/* TODO return correct error */
2338	code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
2339	status = 0;
2340	pci_nvme_status_genc(&status, code);
2341
2342	pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, status);
2343	pci_nvme_stats_write_read_update(req->sc, req->opc,
2344	    req->bytes, status);
2345	pci_nvme_release_ioreq(req->sc, req);
2346}
2347
2348/*
2349 * Implements the Flush command. The specification states:
2350 *    If a volatile write cache is not present, Flush commands complete
2351 *    successfully and have no effect
2352 * in the description of the Volatile Write Cache (VWC) field of the Identify
2353 * Controller data. Therefore, set status to Success if the command is
2354 * not supported (i.e. RAM or as indicated by the blockif).
2355 */
2356static bool
2357nvme_opc_flush(struct pci_nvme_softc *sc __unused,
2358    struct nvme_command *cmd __unused,
2359    struct pci_nvme_blockstore *nvstore,
2360    struct pci_nvme_ioreq *req,
2361    uint16_t *status)
2362{
2363	bool pending = false;
2364
2365	if (nvstore->type == NVME_STOR_RAM) {
2366		pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2367	} else {
2368		int err;
2369
2370		req->io_req.br_callback = pci_nvme_io_done;
2371
2372		err = blockif_flush(nvstore->ctx, &req->io_req);
2373		switch (err) {
2374		case 0:
2375			pending = true;
2376			break;
2377		case EOPNOTSUPP:
2378			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2379			break;
2380		default:
2381			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2382		}
2383	}
2384
2385	return (pending);
2386}
2387
2388static uint16_t
2389nvme_write_read_ram(struct pci_nvme_softc *sc,
2390    struct pci_nvme_blockstore *nvstore,
2391    uint64_t prp1, uint64_t prp2,
2392    size_t offset, uint64_t bytes,
2393    bool is_write)
2394{
2395	uint8_t *buf = nvstore->ctx;
2396	enum nvme_copy_dir dir;
2397	uint16_t status;
2398
2399	if (is_write)
2400		dir = NVME_COPY_TO_PRP;
2401	else
2402		dir = NVME_COPY_FROM_PRP;
2403
2404	status = 0;
2405	if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2,
2406	    buf + offset, bytes, dir))
2407		pci_nvme_status_genc(&status,
2408		    NVME_SC_DATA_TRANSFER_ERROR);
2409	else
2410		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2411
2412	return (status);
2413}
2414
2415static uint16_t
2416nvme_write_read_blockif(struct pci_nvme_softc *sc,
2417    struct pci_nvme_blockstore *nvstore,
2418    struct pci_nvme_ioreq *req,
2419    uint64_t prp1, uint64_t prp2,
2420    size_t offset, uint64_t bytes,
2421    bool is_write)
2422{
2423	uint64_t size;
2424	int err;
2425	uint16_t status = NVME_NO_STATUS;
2426
2427	size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes);
2428	if (pci_nvme_append_iov_req(sc, req, prp1, size, offset)) {
2429		err = -1;
2430		goto out;
2431	}
2432
2433	offset += size;
2434	bytes  -= size;
2435
2436	if (bytes == 0) {
2437		;
2438	} else if (bytes <= PAGE_SIZE) {
2439		size = bytes;
2440		if (pci_nvme_append_iov_req(sc, req, prp2, size, offset)) {
2441			err = -1;
2442			goto out;
2443		}
2444	} else {
2445		void *vmctx = sc->nsc_pi->pi_vmctx;
2446		uint64_t *prp_list = &prp2;
2447		uint64_t *last = prp_list;
2448
2449		/* PRP2 is pointer to a physical region page list */
2450		while (bytes) {
2451			/* Last entry in list points to the next list */
2452			if ((prp_list == last) && (bytes > PAGE_SIZE)) {
2453				uint64_t prp = *prp_list;
2454
2455				prp_list = paddr_guest2host(vmctx, prp,
2456				    PAGE_SIZE - (prp % PAGE_SIZE));
2457				if (prp_list == NULL) {
2458					err = -1;
2459					goto out;
2460				}
2461				last = prp_list + (NVME_PRP2_ITEMS - 1);
2462			}
2463
2464			size = MIN(bytes, PAGE_SIZE);
2465
2466			if (pci_nvme_append_iov_req(sc, req, *prp_list, size,
2467			    offset)) {
2468				err = -1;
2469				goto out;
2470			}
2471
2472			offset += size;
2473			bytes  -= size;
2474
2475			prp_list++;
2476		}
2477	}
2478	req->io_req.br_callback = pci_nvme_io_done;
2479	if (is_write)
2480		err = blockif_write(nvstore->ctx, &req->io_req);
2481	else
2482		err = blockif_read(nvstore->ctx, &req->io_req);
2483out:
2484	if (err)
2485		pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR);
2486
2487	return (status);
2488}
2489
2490static bool
2491nvme_opc_write_read(struct pci_nvme_softc *sc,
2492    struct nvme_command *cmd,
2493    struct pci_nvme_blockstore *nvstore,
2494    struct pci_nvme_ioreq *req,
2495    uint16_t *status)
2496{
2497	uint64_t lba, nblocks, bytes;
2498	size_t offset;
2499	bool is_write = cmd->opc == NVME_OPC_WRITE;
2500	bool pending = false;
2501
2502	lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
2503	nblocks = (cmd->cdw12 & 0xFFFF) + 1;
2504	bytes = nblocks << nvstore->sectsz_bits;
2505	if (bytes > NVME_MAX_DATA_SIZE) {
2506		WPRINTF("%s command would exceed MDTS", __func__);
2507		pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD);
2508		goto out;
2509	}
2510
2511	if (pci_nvme_out_of_range(nvstore, lba, nblocks)) {
2512		WPRINTF("%s command would exceed LBA range(slba=%#lx nblocks=%#lx)",
2513		    __func__, lba, nblocks);
2514		pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2515		goto out;
2516	}
2517
2518	offset = lba << nvstore->sectsz_bits;
2519
2520	req->bytes = bytes;
2521	req->io_req.br_offset = lba;
2522
2523	/* PRP bits 1:0 must be zero */
2524	cmd->prp1 &= ~0x3UL;
2525	cmd->prp2 &= ~0x3UL;
2526
2527	if (nvstore->type == NVME_STOR_RAM) {
2528		*status = nvme_write_read_ram(sc, nvstore, cmd->prp1,
2529		    cmd->prp2, offset, bytes, is_write);
2530	} else {
2531		*status = nvme_write_read_blockif(sc, nvstore, req,
2532		    cmd->prp1, cmd->prp2, offset, bytes, is_write);
2533
2534		if (*status == NVME_NO_STATUS)
2535			pending = true;
2536	}
2537out:
2538	if (!pending)
2539		pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status);
2540
2541	return (pending);
2542}
2543
2544static void
2545pci_nvme_dealloc_sm(struct blockif_req *br, int err)
2546{
2547	struct pci_nvme_ioreq *req = br->br_param;
2548	struct pci_nvme_softc *sc = req->sc;
2549	bool done = true;
2550	uint16_t status;
2551
2552	status = 0;
2553	if (err) {
2554		pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR);
2555	} else if ((req->prev_gpaddr + 1) == (req->prev_size)) {
2556		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2557	} else {
2558		struct iovec *iov = req->io_req.br_iov;
2559
2560		req->prev_gpaddr++;
2561		iov += req->prev_gpaddr;
2562
2563		/* The iov_* values already include the sector size */
2564		req->io_req.br_offset = (off_t)iov->iov_base;
2565		req->io_req.br_resid = iov->iov_len;
2566		if (blockif_delete(sc->nvstore.ctx, &req->io_req)) {
2567			pci_nvme_status_genc(&status,
2568			    NVME_SC_INTERNAL_DEVICE_ERROR);
2569		} else
2570			done = false;
2571	}
2572
2573	if (done) {
2574		pci_nvme_set_completion(sc, req->nvme_sq, req->sqid, req->cid,
2575		    status);
2576		pci_nvme_release_ioreq(sc, req);
2577	}
2578}
2579
2580static bool
2581nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc,
2582    struct nvme_command *cmd,
2583    struct pci_nvme_blockstore *nvstore,
2584    struct pci_nvme_ioreq *req,
2585    uint16_t *status)
2586{
2587	struct nvme_dsm_range *range = NULL;
2588	uint32_t nr, r, non_zero, dr;
2589	int err;
2590	bool pending = false;
2591
2592	if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) {
2593		pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE);
2594		goto out;
2595	}
2596
2597	nr = cmd->cdw10 & 0xff;
2598
2599	/* copy locally because a range entry could straddle PRPs */
2600	range = calloc(1, NVME_MAX_DSM_TRIM);
2601	if (range == NULL) {
2602		pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2603		goto out;
2604	}
2605	nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2,
2606	    (uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP);
2607
2608	/* Check for invalid ranges and the number of non-zero lengths */
2609	non_zero = 0;
2610	for (r = 0; r <= nr; r++) {
2611		if (pci_nvme_out_of_range(nvstore,
2612		    range[r].starting_lba, range[r].length)) {
2613			pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2614			goto out;
2615		}
2616		if (range[r].length != 0)
2617			non_zero++;
2618	}
2619
2620	if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) {
2621		size_t offset, bytes;
2622		int sectsz_bits = sc->nvstore.sectsz_bits;
2623
2624		/*
2625		 * DSM calls are advisory only, and compliant controllers
2626		 * may choose to take no actions (i.e. return Success).
2627		 */
2628		if (!nvstore->deallocate) {
2629			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2630			goto out;
2631		}
2632
2633		/* If all ranges have a zero length, return Success */
2634		if (non_zero == 0) {
2635			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2636			goto out;
2637		}
2638
2639		if (req == NULL) {
2640			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2641			goto out;
2642		}
2643
2644		offset = range[0].starting_lba << sectsz_bits;
2645		bytes = range[0].length << sectsz_bits;
2646
2647		/*
2648		 * If the request is for more than a single range, store
2649		 * the ranges in the br_iov. Optimize for the common case
2650		 * of a single range.
2651		 *
2652		 * Note that NVMe Number of Ranges is a zero based value
2653		 */
2654		req->io_req.br_iovcnt = 0;
2655		req->io_req.br_offset = offset;
2656		req->io_req.br_resid = bytes;
2657
2658		if (nr == 0) {
2659			req->io_req.br_callback = pci_nvme_io_done;
2660		} else {
2661			struct iovec *iov = req->io_req.br_iov;
2662
2663			for (r = 0, dr = 0; r <= nr; r++) {
2664				offset = range[r].starting_lba << sectsz_bits;
2665				bytes = range[r].length << sectsz_bits;
2666				if (bytes == 0)
2667					continue;
2668
2669				if ((nvstore->size - offset) < bytes) {
2670					pci_nvme_status_genc(status,
2671					    NVME_SC_LBA_OUT_OF_RANGE);
2672					goto out;
2673				}
2674				iov[dr].iov_base = (void *)offset;
2675				iov[dr].iov_len = bytes;
2676				dr++;
2677			}
2678			req->io_req.br_callback = pci_nvme_dealloc_sm;
2679
2680			/*
2681			 * Use prev_gpaddr to track the current entry and
2682			 * prev_size to track the number of entries
2683			 */
2684			req->prev_gpaddr = 0;
2685			req->prev_size = dr;
2686		}
2687
2688		err = blockif_delete(nvstore->ctx, &req->io_req);
2689		if (err)
2690			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2691		else
2692			pending = true;
2693	}
2694out:
2695	free(range);
2696	return (pending);
2697}
2698
2699static void
2700pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
2701{
2702	struct nvme_submission_queue *sq;
2703	uint16_t status;
2704	uint16_t sqhead;
2705
2706	/* handle all submissions up to sq->tail index */
2707	sq = &sc->submit_queues[idx];
2708
2709	pthread_mutex_lock(&sq->mtx);
2710
2711	sqhead = sq->head;
2712	DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p",
2713	         idx, sqhead, sq->tail, sq->qbase);
2714
2715	while (sqhead != atomic_load_acq_short(&sq->tail)) {
2716		struct nvme_command *cmd;
2717		struct pci_nvme_ioreq *req;
2718		uint32_t nsid;
2719		bool pending;
2720
2721		pending = false;
2722		req = NULL;
2723		status = 0;
2724
2725		cmd = &sq->qbase[sqhead];
2726		sqhead = (sqhead + 1) % sq->size;
2727
2728		nsid = le32toh(cmd->nsid);
2729		if ((nsid == 0) || (nsid > sc->ctrldata.nn)) {
2730			pci_nvme_status_genc(&status,
2731			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
2732			status |= NVMEM(NVME_STATUS_DNR);
2733			goto complete;
2734 		}
2735
2736		req = pci_nvme_get_ioreq(sc);
2737		if (req == NULL) {
2738			pci_nvme_status_genc(&status,
2739			    NVME_SC_INTERNAL_DEVICE_ERROR);
2740			WPRINTF("%s: unable to allocate IO req", __func__);
2741			goto complete;
2742		}
2743		req->nvme_sq = sq;
2744		req->sqid = idx;
2745		req->opc = cmd->opc;
2746		req->cid = cmd->cid;
2747		req->nsid = cmd->nsid;
2748
2749		switch (cmd->opc) {
2750		case NVME_OPC_FLUSH:
2751			pending = nvme_opc_flush(sc, cmd, &sc->nvstore,
2752			    req, &status);
2753 			break;
2754		case NVME_OPC_WRITE:
2755		case NVME_OPC_READ:
2756			pending = nvme_opc_write_read(sc, cmd, &sc->nvstore,
2757			    req, &status);
2758			break;
2759		case NVME_OPC_WRITE_ZEROES:
2760			/* TODO: write zeroes
2761			WPRINTF("%s write zeroes lba 0x%lx blocks %u",
2762			        __func__, lba, cmd->cdw12 & 0xFFFF); */
2763			pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2764			break;
2765		case NVME_OPC_DATASET_MANAGEMENT:
2766 			pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore,
2767			    req, &status);
2768			break;
2769 		default:
2770 			WPRINTF("%s unhandled io command 0x%x",
2771			    __func__, cmd->opc);
2772			pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE);
2773		}
2774complete:
2775		if (!pending) {
2776			pci_nvme_set_completion(sc, sq, idx, cmd->cid, status);
2777			if (req != NULL)
2778				pci_nvme_release_ioreq(sc, req);
2779		}
2780	}
2781
2782	sq->head = sqhead;
2783
2784	pthread_mutex_unlock(&sq->mtx);
2785}
2786
2787static void
2788pci_nvme_handle_doorbell(struct pci_nvme_softc* sc,
2789	uint64_t idx, int is_sq, uint64_t value)
2790{
2791	DPRINTF("nvme doorbell %lu, %s, val 0x%lx",
2792	        idx, is_sq ? "SQ" : "CQ", value & 0xFFFF);
2793
2794	if (is_sq) {
2795		if (idx > sc->num_squeues) {
2796			WPRINTF("%s queue index %lu overflow from "
2797			         "guest (max %u)",
2798			         __func__, idx, sc->num_squeues);
2799			return;
2800		}
2801
2802		atomic_store_short(&sc->submit_queues[idx].tail,
2803		                   (uint16_t)value);
2804
2805		if (idx == 0) {
2806			pci_nvme_handle_admin_cmd(sc, value);
2807		} else {
2808			/* submission queue; handle new entries in SQ */
2809			if (idx > sc->num_squeues) {
2810				WPRINTF("%s SQ index %lu overflow from "
2811				         "guest (max %u)",
2812				         __func__, idx, sc->num_squeues);
2813				return;
2814			}
2815			pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
2816		}
2817	} else {
2818		if (idx > sc->num_cqueues) {
2819			WPRINTF("%s queue index %lu overflow from "
2820			         "guest (max %u)",
2821			         __func__, idx, sc->num_cqueues);
2822			return;
2823		}
2824
2825		atomic_store_short(&sc->compl_queues[idx].head,
2826				(uint16_t)value);
2827	}
2828}
2829
2830static void
2831pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
2832{
2833	const char *s = iswrite ? "WRITE" : "READ";
2834
2835	switch (offset) {
2836	case NVME_CR_CAP_LOW:
2837		DPRINTF("%s %s NVME_CR_CAP_LOW", func, s);
2838		break;
2839	case NVME_CR_CAP_HI:
2840		DPRINTF("%s %s NVME_CR_CAP_HI", func, s);
2841		break;
2842	case NVME_CR_VS:
2843		DPRINTF("%s %s NVME_CR_VS", func, s);
2844		break;
2845	case NVME_CR_INTMS:
2846		DPRINTF("%s %s NVME_CR_INTMS", func, s);
2847		break;
2848	case NVME_CR_INTMC:
2849		DPRINTF("%s %s NVME_CR_INTMC", func, s);
2850		break;
2851	case NVME_CR_CC:
2852		DPRINTF("%s %s NVME_CR_CC", func, s);
2853		break;
2854	case NVME_CR_CSTS:
2855		DPRINTF("%s %s NVME_CR_CSTS", func, s);
2856		break;
2857	case NVME_CR_NSSR:
2858		DPRINTF("%s %s NVME_CR_NSSR", func, s);
2859		break;
2860	case NVME_CR_AQA:
2861		DPRINTF("%s %s NVME_CR_AQA", func, s);
2862		break;
2863	case NVME_CR_ASQ_LOW:
2864		DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s);
2865		break;
2866	case NVME_CR_ASQ_HI:
2867		DPRINTF("%s %s NVME_CR_ASQ_HI", func, s);
2868		break;
2869	case NVME_CR_ACQ_LOW:
2870		DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s);
2871		break;
2872	case NVME_CR_ACQ_HI:
2873		DPRINTF("%s %s NVME_CR_ACQ_HI", func, s);
2874		break;
2875	default:
2876		DPRINTF("unknown nvme bar-0 offset 0x%lx", offset);
2877	}
2878
2879}
2880
2881static void
2882pci_nvme_write_bar_0(struct pci_nvme_softc *sc, uint64_t offset, int size,
2883    uint64_t value)
2884{
2885	uint32_t ccreg;
2886
2887	if (offset >= NVME_DOORBELL_OFFSET) {
2888		uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
2889		uint64_t idx = belloffset / 8; /* door bell size = 2*int */
2890		int is_sq = (belloffset % 8) < 4;
2891
2892		if ((sc->regs.csts & NVME_CSTS_RDY) == 0) {
2893			WPRINTF("doorbell write prior to RDY (offset=%#lx)\n",
2894			    offset);
2895			return;
2896		}
2897
2898		if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
2899			WPRINTF("guest attempted an overflow write offset "
2900			         "0x%lx, val 0x%lx in %s",
2901			         offset, value, __func__);
2902			return;
2903		}
2904
2905		if (is_sq) {
2906			if (sc->submit_queues[idx].qbase == NULL)
2907				return;
2908		} else if (sc->compl_queues[idx].qbase == NULL)
2909			return;
2910
2911		pci_nvme_handle_doorbell(sc, idx, is_sq, value);
2912		return;
2913	}
2914
2915	DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx",
2916	        offset, size, value);
2917
2918	if (size != 4) {
2919		WPRINTF("guest wrote invalid size %d (offset 0x%lx, "
2920		         "val 0x%lx) to bar0 in %s",
2921		         size, offset, value, __func__);
2922		/* TODO: shutdown device */
2923		return;
2924	}
2925
2926	pci_nvme_bar0_reg_dumps(__func__, offset, 1);
2927
2928	pthread_mutex_lock(&sc->mtx);
2929
2930	switch (offset) {
2931	case NVME_CR_CAP_LOW:
2932	case NVME_CR_CAP_HI:
2933		/* readonly */
2934		break;
2935	case NVME_CR_VS:
2936		/* readonly */
2937		break;
2938	case NVME_CR_INTMS:
2939		/* MSI-X, so ignore */
2940		break;
2941	case NVME_CR_INTMC:
2942		/* MSI-X, so ignore */
2943		break;
2944	case NVME_CR_CC:
2945		ccreg = (uint32_t)value;
2946
2947		DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
2948		         "iocqes %u",
2949		        __func__,
2950			 NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
2951			 NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
2952			 NVME_CC_GET_IOCQES(ccreg));
2953
2954		if (NVME_CC_GET_SHN(ccreg)) {
2955			/* perform shutdown - flush out data to backend */
2956			sc->regs.csts &= ~NVMEM(NVME_CSTS_REG_SHST);
2957			sc->regs.csts |= NVMEF(NVME_CSTS_REG_SHST,
2958			    NVME_SHST_COMPLETE);
2959		}
2960		if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
2961			if (NVME_CC_GET_EN(ccreg) == 0)
2962				/* transition 1-> causes controller reset */
2963				pci_nvme_reset_locked(sc);
2964			else
2965				pci_nvme_init_controller(sc);
2966		}
2967
2968		/* Insert the iocqes, iosqes and en bits from the write */
2969		sc->regs.cc &= ~NVME_CC_WRITE_MASK;
2970		sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
2971		if (NVME_CC_GET_EN(ccreg) == 0) {
2972			/* Insert the ams, mps and css bit fields */
2973			sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
2974			sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
2975			sc->regs.csts &= ~NVME_CSTS_RDY;
2976		} else if ((sc->pending_ios == 0) &&
2977		    !(sc->regs.csts & NVME_CSTS_CFS)) {
2978			sc->regs.csts |= NVME_CSTS_RDY;
2979		}
2980		break;
2981	case NVME_CR_CSTS:
2982		break;
2983	case NVME_CR_NSSR:
2984		/* ignore writes; don't support subsystem reset */
2985		break;
2986	case NVME_CR_AQA:
2987		sc->regs.aqa = (uint32_t)value;
2988		break;
2989	case NVME_CR_ASQ_LOW:
2990		sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
2991		               (0xFFFFF000 & value);
2992		break;
2993	case NVME_CR_ASQ_HI:
2994		sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
2995		               (value << 32);
2996		break;
2997	case NVME_CR_ACQ_LOW:
2998		sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
2999		               (0xFFFFF000 & value);
3000		break;
3001	case NVME_CR_ACQ_HI:
3002		sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
3003		               (value << 32);
3004		break;
3005	default:
3006		DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d",
3007		         __func__, offset, value, size);
3008	}
3009	pthread_mutex_unlock(&sc->mtx);
3010}
3011
3012static void
3013pci_nvme_write(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
3014    uint64_t value)
3015{
3016	struct pci_nvme_softc* sc = pi->pi_arg;
3017
3018	if (baridx == pci_msix_table_bar(pi) ||
3019	    baridx == pci_msix_pba_bar(pi)) {
3020		DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, "
3021		         " value 0x%lx", baridx, offset, size, value);
3022
3023		pci_emul_msix_twrite(pi, offset, size, value);
3024		return;
3025	}
3026
3027	switch (baridx) {
3028	case 0:
3029		pci_nvme_write_bar_0(sc, offset, size, value);
3030		break;
3031
3032	default:
3033		DPRINTF("%s unknown baridx %d, val 0x%lx",
3034		         __func__, baridx, value);
3035	}
3036}
3037
3038static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
3039	uint64_t offset, int size)
3040{
3041	uint64_t value;
3042
3043	pci_nvme_bar0_reg_dumps(__func__, offset, 0);
3044
3045	if (offset < NVME_DOORBELL_OFFSET) {
3046		void *p = &(sc->regs);
3047		pthread_mutex_lock(&sc->mtx);
3048		memcpy(&value, (void *)((uintptr_t)p + offset), size);
3049		pthread_mutex_unlock(&sc->mtx);
3050	} else {
3051		value = 0;
3052                WPRINTF("pci_nvme: read invalid offset %ld", offset);
3053	}
3054
3055	switch (size) {
3056	case 1:
3057		value &= 0xFF;
3058		break;
3059	case 2:
3060		value &= 0xFFFF;
3061		break;
3062	case 4:
3063		value &= 0xFFFFFFFF;
3064		break;
3065	}
3066
3067	DPRINTF("   nvme-read offset 0x%lx, size %d -> value 0x%x",
3068	         offset, size, (uint32_t)value);
3069
3070	return (value);
3071}
3072
3073
3074
3075static uint64_t
3076pci_nvme_read(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
3077{
3078	struct pci_nvme_softc* sc = pi->pi_arg;
3079
3080	if (baridx == pci_msix_table_bar(pi) ||
3081	    baridx == pci_msix_pba_bar(pi)) {
3082		DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d",
3083		        baridx, offset, size);
3084
3085		return pci_emul_msix_tread(pi, offset, size);
3086	}
3087
3088	switch (baridx) {
3089	case 0:
3090       		return pci_nvme_read_bar_0(sc, offset, size);
3091
3092	default:
3093		DPRINTF("unknown bar %d, 0x%lx", baridx, offset);
3094	}
3095
3096	return (0);
3097}
3098
3099static int
3100pci_nvme_parse_config(struct pci_nvme_softc *sc, nvlist_t *nvl)
3101{
3102	char bident[sizeof("XXX:XXX")];
3103	const char *value;
3104	uint32_t sectsz;
3105
3106	sc->max_queues = NVME_QUEUES;
3107	sc->max_qentries = NVME_MAX_QENTRIES;
3108	sc->ioslots = NVME_IOSLOTS;
3109	sc->num_squeues = sc->max_queues;
3110	sc->num_cqueues = sc->max_queues;
3111	sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3112	sectsz = 0;
3113	snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
3114	         "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3115
3116	value = get_config_value_node(nvl, "maxq");
3117	if (value != NULL)
3118		sc->max_queues = atoi(value);
3119	value = get_config_value_node(nvl, "qsz");
3120	if (value != NULL) {
3121		sc->max_qentries = atoi(value);
3122		if (sc->max_qentries <= 0) {
3123			EPRINTLN("nvme: Invalid qsz option %d",
3124			    sc->max_qentries);
3125			return (-1);
3126		}
3127	}
3128	value = get_config_value_node(nvl, "ioslots");
3129	if (value != NULL) {
3130		sc->ioslots = atoi(value);
3131		if (sc->ioslots <= 0) {
3132			EPRINTLN("Invalid ioslots option %d", sc->ioslots);
3133			return (-1);
3134		}
3135	}
3136	value = get_config_value_node(nvl, "sectsz");
3137	if (value != NULL)
3138		sectsz = atoi(value);
3139	value = get_config_value_node(nvl, "ser");
3140	if (value != NULL) {
3141		/*
3142		 * This field indicates the Product Serial Number in
3143		 * 7-bit ASCII, unused bytes should be space characters.
3144		 * Ref: NVMe v1.3c.
3145		 */
3146		cpywithpad((char *)sc->ctrldata.sn,
3147		    sizeof(sc->ctrldata.sn), value, ' ');
3148	}
3149	value = get_config_value_node(nvl, "eui64");
3150	if (value != NULL)
3151		sc->nvstore.eui64 = htobe64(strtoull(value, NULL, 0));
3152	value = get_config_value_node(nvl, "dsm");
3153	if (value != NULL) {
3154		if (strcmp(value, "auto") == 0)
3155			sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3156		else if (strcmp(value, "enable") == 0)
3157			sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE;
3158		else if (strcmp(value, "disable") == 0)
3159			sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE;
3160	}
3161
3162	value = get_config_value_node(nvl, "bootindex");
3163	if (value != NULL) {
3164		if (pci_emul_add_boot_device(sc->nsc_pi, atoi(value))) {
3165			EPRINTLN("Invalid bootindex %d", atoi(value));
3166			return (-1);
3167		}
3168	}
3169
3170	value = get_config_value_node(nvl, "ram");
3171	if (value != NULL) {
3172		uint64_t sz = strtoull(value, NULL, 10);
3173
3174		sc->nvstore.type = NVME_STOR_RAM;
3175		sc->nvstore.size = sz * 1024 * 1024;
3176		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
3177		sc->nvstore.sectsz = 4096;
3178		sc->nvstore.sectsz_bits = 12;
3179		if (sc->nvstore.ctx == NULL) {
3180			EPRINTLN("nvme: Unable to allocate RAM");
3181			return (-1);
3182		}
3183	} else {
3184		snprintf(bident, sizeof(bident), "%u:%u",
3185		    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3186		sc->nvstore.ctx = blockif_open(nvl, bident);
3187		if (sc->nvstore.ctx == NULL) {
3188			EPRINTLN("nvme: Could not open backing file: %s",
3189			    strerror(errno));
3190			return (-1);
3191		}
3192		sc->nvstore.type = NVME_STOR_BLOCKIF;
3193		sc->nvstore.size = blockif_size(sc->nvstore.ctx);
3194	}
3195
3196	if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
3197		sc->nvstore.sectsz = sectsz;
3198	else if (sc->nvstore.type != NVME_STOR_RAM)
3199		sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
3200	for (sc->nvstore.sectsz_bits = 9;
3201	     (1U << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
3202	     sc->nvstore.sectsz_bits++);
3203
3204	if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES)
3205		sc->max_queues = NVME_QUEUES;
3206
3207	return (0);
3208}
3209
3210static void
3211pci_nvme_resized(struct blockif_ctxt *bctxt __unused, void *arg,
3212    size_t new_size)
3213{
3214	struct pci_nvme_softc *sc;
3215	struct pci_nvme_blockstore *nvstore;
3216	struct nvme_namespace_data *nd;
3217
3218	sc = arg;
3219	nvstore = &sc->nvstore;
3220	nd = &sc->nsdata;
3221
3222	nvstore->size = new_size;
3223	pci_nvme_init_nsdata_size(nvstore, nd);
3224
3225	/* Add changed NSID to list */
3226	sc->ns_log.ns[0] = 1;
3227	sc->ns_log.ns[1] = 0;
3228
3229	pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_NOTICE,
3230	    PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED);
3231}
3232
3233static int
3234pci_nvme_init(struct pci_devinst *pi, nvlist_t *nvl)
3235{
3236	struct pci_nvme_softc *sc;
3237	uint32_t pci_membar_sz;
3238	int	error;
3239
3240	error = 0;
3241
3242	sc = calloc(1, sizeof(struct pci_nvme_softc));
3243	pi->pi_arg = sc;
3244	sc->nsc_pi = pi;
3245
3246	error = pci_nvme_parse_config(sc, nvl);
3247	if (error < 0)
3248		goto done;
3249	else
3250		error = 0;
3251
3252	STAILQ_INIT(&sc->ioreqs_free);
3253	sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
3254	for (uint32_t i = 0; i < sc->ioslots; i++) {
3255		STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link);
3256	}
3257
3258	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
3259	pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
3260	pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
3261	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
3262	pci_set_cfgdata8(pi, PCIR_PROGIF,
3263	                 PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
3264
3265	/*
3266	 * Allocate size of NVMe registers + doorbell space for all queues.
3267	 *
3268	 * The specification requires a minimum memory I/O window size of 16K.
3269	 * The Windows driver will refuse to start a device with a smaller
3270	 * window.
3271	 */
3272	pci_membar_sz = sizeof(struct nvme_registers) +
3273	    2 * sizeof(uint32_t) * (sc->max_queues + 1);
3274	pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN);
3275
3276	DPRINTF("nvme membar size: %u", pci_membar_sz);
3277
3278	error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
3279	if (error) {
3280		WPRINTF("%s pci alloc mem bar failed", __func__);
3281		goto done;
3282	}
3283
3284	error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR);
3285	if (error) {
3286		WPRINTF("%s pci add msixcap failed", __func__);
3287		goto done;
3288	}
3289
3290	error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP);
3291	if (error) {
3292		WPRINTF("%s pci add Express capability failed", __func__);
3293		goto done;
3294	}
3295
3296	pthread_mutex_init(&sc->mtx, NULL);
3297	sem_init(&sc->iosemlock, 0, sc->ioslots);
3298	blockif_register_resize_callback(sc->nvstore.ctx, pci_nvme_resized, sc);
3299
3300	pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues);
3301	/*
3302	 * Controller data depends on Namespace data so initialize Namespace
3303	 * data first.
3304	 */
3305	pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore);
3306	pci_nvme_init_ctrldata(sc);
3307	pci_nvme_init_logpages(sc);
3308	pci_nvme_init_features(sc);
3309
3310	pci_nvme_aer_init(sc);
3311	pci_nvme_aen_init(sc);
3312
3313	pci_nvme_reset(sc);
3314done:
3315	return (error);
3316}
3317
3318static int
3319pci_nvme_legacy_config(nvlist_t *nvl, const char *opts)
3320{
3321	char *cp, *ram;
3322
3323	if (opts == NULL)
3324		return (0);
3325
3326	if (strncmp(opts, "ram=", 4) == 0) {
3327		cp = strchr(opts, ',');
3328		if (cp == NULL) {
3329			set_config_value_node(nvl, "ram", opts + 4);
3330			return (0);
3331		}
3332		ram = strndup(opts + 4, cp - opts - 4);
3333		set_config_value_node(nvl, "ram", ram);
3334		free(ram);
3335		return (pci_parse_legacy_config(nvl, cp + 1));
3336	} else
3337		return (blockif_legacy_config(nvl, opts));
3338}
3339
3340static const struct pci_devemu pci_de_nvme = {
3341	.pe_emu =	"nvme",
3342	.pe_init =	pci_nvme_init,
3343	.pe_legacy_config = pci_nvme_legacy_config,
3344	.pe_barwrite =	pci_nvme_write,
3345	.pe_barread =	pci_nvme_read
3346};
3347PCI_EMUL_SET(pci_de_nvme);
3348