1/*
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2016 Alexander Motin <mav@FreeBSD.org>
5 * Copyright (c) 2015 Peter Grehan <grehan@freebsd.org>
6 * Copyright (c) 2013 Jeremiah Lott, Avere Systems
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer
14 *    in this position and unchanged.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32#include <sys/types.h>
33#ifndef WITHOUT_CAPSICUM
34#include <sys/capsicum.h>
35#endif
36#include <sys/limits.h>
37#include <sys/ioctl.h>
38#include <sys/uio.h>
39#include <net/ethernet.h>
40#include <netinet/in.h>
41#include <netinet/tcp.h>
42
43#ifndef WITHOUT_CAPSICUM
44#include <capsicum_helpers.h>
45#endif
46
47#include <err.h>
48#include <errno.h>
49#include <fcntl.h>
50#include <md5.h>
51#include <stdio.h>
52#include <stdlib.h>
53#include <string.h>
54#include <sysexits.h>
55#include <unistd.h>
56#include <pthread.h>
57#include <pthread_np.h>
58
59#include "e1000_regs.h"
60#include "e1000_defines.h"
61#include "mii.h"
62
63#include "bhyverun.h"
64#include "config.h"
65#include "debug.h"
66#include "pci_emul.h"
67#ifdef BHYVE_SNAPSHOT
68#include "snapshot.h"
69#endif
70#include "mevent.h"
71#include "net_utils.h"
72#include "net_backends.h"
73
74/* Hardware/register definitions XXX: move some to common code. */
75#define E82545_VENDOR_ID_INTEL			0x8086
76#define E82545_DEV_ID_82545EM_COPPER		0x100F
77#define E82545_SUBDEV_ID			0x1008
78
79#define E82545_REVISION_4			4
80
81#define E82545_MDIC_DATA_MASK			0x0000FFFF
82#define E82545_MDIC_OP_MASK			0x0c000000
83#define E82545_MDIC_IE				0x20000000
84
85#define E82545_EECD_FWE_DIS	0x00000010 /* Flash writes disabled */
86#define E82545_EECD_FWE_EN	0x00000020 /* Flash writes enabled */
87#define E82545_EECD_FWE_MASK	0x00000030 /* Flash writes mask */
88
89#define E82545_BAR_REGISTER			0
90#define E82545_BAR_REGISTER_LEN			(128*1024)
91#define E82545_BAR_FLASH			1
92#define E82545_BAR_FLASH_LEN			(64*1024)
93#define E82545_BAR_IO				2
94#define E82545_BAR_IO_LEN			8
95
96#define E82545_IOADDR				0x00000000
97#define E82545_IODATA				0x00000004
98#define E82545_IO_REGISTER_MAX			0x0001FFFF
99#define E82545_IO_FLASH_BASE			0x00080000
100#define E82545_IO_FLASH_MAX			0x000FFFFF
101
102#define E82545_ARRAY_ENTRY(reg, offset)		(reg + (offset<<2))
103#define E82545_RAR_MAX				15
104#define E82545_MTA_MAX				127
105#define E82545_VFTA_MAX				127
106
107/* Slightly modified from the driver versions, hardcoded for 3 opcode bits,
108 * followed by 6 address bits.
109 * TODO: make opcode bits and addr bits configurable?
110 * NVM Commands - Microwire */
111#define E82545_NVM_OPCODE_BITS	3
112#define E82545_NVM_ADDR_BITS	6
113#define E82545_NVM_DATA_BITS	16
114#define E82545_NVM_OPADDR_BITS	(E82545_NVM_OPCODE_BITS + E82545_NVM_ADDR_BITS)
115#define E82545_NVM_ADDR_MASK	((1 << E82545_NVM_ADDR_BITS)-1)
116#define E82545_NVM_OPCODE_MASK	\
117    (((1 << E82545_NVM_OPCODE_BITS) - 1) << E82545_NVM_ADDR_BITS)
118#define E82545_NVM_OPCODE_READ	(0x6 << E82545_NVM_ADDR_BITS)	/* read */
119#define E82545_NVM_OPCODE_WRITE	(0x5 << E82545_NVM_ADDR_BITS)	/* write */
120#define E82545_NVM_OPCODE_ERASE	(0x7 << E82545_NVM_ADDR_BITS)	/* erase */
121#define	E82545_NVM_OPCODE_EWEN	(0x4 << E82545_NVM_ADDR_BITS)	/* wr-enable */
122
123#define	E82545_NVM_EEPROM_SIZE	64 /* 64 * 16-bit values == 128K */
124
125#define E1000_ICR_SRPD		0x00010000
126
127/* This is an arbitrary number.  There is no hard limit on the chip. */
128#define I82545_MAX_TXSEGS	64
129
130/* Legacy receive descriptor */
131struct e1000_rx_desc {
132	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */
133	uint16_t length;	/* Length of data DMAed into data buffer */
134	uint16_t csum;		/* Packet checksum */
135	uint8_t	 status;       	/* Descriptor status */
136	uint8_t  errors;	/* Descriptor Errors */
137	uint16_t special;
138};
139
140/* Transmit descriptor types */
141#define	E1000_TXD_MASK		(E1000_TXD_CMD_DEXT | 0x00F00000)
142#define E1000_TXD_TYP_L		(0)
143#define E1000_TXD_TYP_C		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C)
144#define E1000_TXD_TYP_D		(E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)
145
146/* Legacy transmit descriptor */
147struct e1000_tx_desc {
148	uint64_t buffer_addr;   /* Address of the descriptor's data buffer */
149	union {
150		uint32_t data;
151		struct {
152			uint16_t length;  /* Data buffer length */
153			uint8_t  cso;  /* Checksum offset */
154			uint8_t  cmd;  /* Descriptor control */
155		} flags;
156	} lower;
157	union {
158		uint32_t data;
159		struct {
160			uint8_t status; /* Descriptor status */
161			uint8_t css;  /* Checksum start */
162			uint16_t special;
163		} fields;
164	} upper;
165};
166
167/* Context descriptor */
168struct e1000_context_desc {
169	union {
170		uint32_t ip_config;
171		struct {
172			uint8_t ipcss;  /* IP checksum start */
173			uint8_t ipcso;  /* IP checksum offset */
174			uint16_t ipcse;  /* IP checksum end */
175		} ip_fields;
176	} lower_setup;
177	union {
178		uint32_t tcp_config;
179		struct {
180			uint8_t tucss;  /* TCP checksum start */
181			uint8_t tucso;  /* TCP checksum offset */
182			uint16_t tucse;  /* TCP checksum end */
183		} tcp_fields;
184	} upper_setup;
185	uint32_t cmd_and_length;
186	union {
187		uint32_t data;
188		struct {
189			uint8_t status;  /* Descriptor status */
190			uint8_t hdr_len;  /* Header length */
191			uint16_t mss;  /* Maximum segment size */
192		} fields;
193	} tcp_seg_setup;
194};
195
196/* Data descriptor */
197struct e1000_data_desc {
198	uint64_t buffer_addr;  /* Address of the descriptor's buffer address */
199	union {
200		uint32_t data;
201		struct {
202			uint16_t length;  /* Data buffer length */
203			uint8_t typ_len_ext;
204			uint8_t cmd;
205		} flags;
206	} lower;
207	union {
208		uint32_t data;
209		struct {
210			uint8_t status;  /* Descriptor status */
211			uint8_t popts;  /* Packet Options */
212			uint16_t special;
213		} fields;
214	} upper;
215};
216
217union e1000_tx_udesc {
218	struct e1000_tx_desc td;
219	struct e1000_context_desc cd;
220	struct e1000_data_desc dd;
221};
222
223/* Tx checksum info for a packet. */
224struct ck_info {
225	int	ck_valid;	/* ck_info is valid */
226	uint8_t	ck_start;	/* start byte of cksum calcuation */
227	uint8_t	ck_off;		/* offset of cksum insertion */
228	uint16_t ck_len;	/* length of cksum calc: 0 is to packet-end */
229};
230
231/*
232 * Debug printf
233 */
234static int e82545_debug = 0;
235#define WPRINTF(msg,params...) PRINTLN("e82545: " msg, ##params)
236#define DPRINTF(msg,params...) if (e82545_debug) WPRINTF(msg, params)
237
238#define	MIN(a,b) (((a)<(b))?(a):(b))
239#define	MAX(a,b) (((a)>(b))?(a):(b))
240
241/* s/w representation of the RAL/RAH regs */
242struct  eth_uni {
243	int		eu_valid;
244	int		eu_addrsel;
245	struct ether_addr eu_eth;
246};
247
248
249struct e82545_softc {
250	struct pci_devinst *esc_pi;
251	struct vmctx	*esc_ctx;
252	struct mevent   *esc_mevpitr;
253	pthread_mutex_t	esc_mtx;
254	struct ether_addr esc_mac;
255	net_backend_t	*esc_be;
256
257	/* General */
258	uint32_t	esc_CTRL;	/* x0000 device ctl */
259	uint32_t	esc_FCAL;	/* x0028 flow ctl addr lo */
260	uint32_t	esc_FCAH;	/* x002C flow ctl addr hi */
261	uint32_t	esc_FCT;	/* x0030 flow ctl type */
262	uint32_t	esc_VET;	/* x0038 VLAN eth type */
263	uint32_t	esc_FCTTV;	/* x0170 flow ctl tx timer */
264	uint32_t	esc_LEDCTL;	/* x0E00 LED control */
265	uint32_t	esc_PBA;	/* x1000 pkt buffer allocation */
266
267	/* Interrupt control */
268	int		esc_irq_asserted;
269	uint32_t	esc_ICR;	/* x00C0 cause read/clear */
270	uint32_t	esc_ITR;	/* x00C4 intr throttling */
271	uint32_t	esc_ICS;	/* x00C8 cause set */
272	uint32_t	esc_IMS;	/* x00D0 mask set/read */
273	uint32_t	esc_IMC;	/* x00D8 mask clear */
274
275	/* Transmit */
276	union e1000_tx_udesc *esc_txdesc;
277	struct e1000_context_desc esc_txctx;
278	pthread_t	esc_tx_tid;
279	pthread_cond_t	esc_tx_cond;
280	int		esc_tx_enabled;
281	int		esc_tx_active;
282	uint32_t	esc_TXCW;	/* x0178 transmit config */
283	uint32_t	esc_TCTL;	/* x0400 transmit ctl */
284	uint32_t	esc_TIPG;	/* x0410 inter-packet gap */
285	uint16_t	esc_AIT;	/* x0458 Adaptive Interframe Throttle */
286	uint64_t	esc_tdba;      	/* verified 64-bit desc table addr */
287	uint32_t	esc_TDBAL;	/* x3800 desc table addr, low bits */
288	uint32_t	esc_TDBAH;	/* x3804 desc table addr, hi 32-bits */
289	uint32_t	esc_TDLEN;	/* x3808 # descriptors in bytes */
290	uint16_t	esc_TDH;	/* x3810 desc table head idx */
291	uint16_t	esc_TDHr;	/* internal read version of TDH */
292	uint16_t	esc_TDT;	/* x3818 desc table tail idx */
293	uint32_t	esc_TIDV;	/* x3820 intr delay */
294	uint32_t	esc_TXDCTL;	/* x3828 desc control */
295	uint32_t	esc_TADV;	/* x382C intr absolute delay */
296
297	/* L2 frame acceptance */
298	struct eth_uni	esc_uni[16];	/* 16 x unicast MAC addresses */
299	uint32_t	esc_fmcast[128]; /* Multicast filter bit-match */
300	uint32_t	esc_fvlan[128]; /* VLAN 4096-bit filter */
301
302	/* Receive */
303	struct e1000_rx_desc *esc_rxdesc;
304	pthread_cond_t	esc_rx_cond;
305	int		esc_rx_enabled;
306	int		esc_rx_active;
307	int		esc_rx_loopback;
308	uint32_t	esc_RCTL;	/* x0100 receive ctl */
309	uint32_t	esc_FCRTL;	/* x2160 flow cntl thresh, low */
310	uint32_t	esc_FCRTH;	/* x2168 flow cntl thresh, hi */
311	uint64_t	esc_rdba;	/* verified 64-bit desc table addr */
312	uint32_t	esc_RDBAL;	/* x2800 desc table addr, low bits */
313	uint32_t	esc_RDBAH;	/* x2804 desc table addr, hi 32-bits*/
314	uint32_t	esc_RDLEN;	/* x2808 #descriptors */
315	uint16_t	esc_RDH;	/* x2810 desc table head idx */
316	uint16_t	esc_RDT;	/* x2818 desc table tail idx */
317	uint32_t	esc_RDTR;	/* x2820 intr delay */
318	uint32_t	esc_RXDCTL;	/* x2828 desc control */
319	uint32_t	esc_RADV;	/* x282C intr absolute delay */
320	uint32_t	esc_RSRPD;	/* x2C00 recv small packet detect */
321	uint32_t	esc_RXCSUM;     /* x5000 receive cksum ctl */
322
323	/* IO Port register access */
324	uint32_t io_addr;
325
326	/* Shadow copy of MDIC */
327	uint32_t mdi_control;
328	/* Shadow copy of EECD */
329	uint32_t eeprom_control;
330	/* Latest NVM in/out */
331	uint16_t nvm_data;
332	uint16_t nvm_opaddr;
333	/* stats */
334	uint32_t missed_pkt_count; /* dropped for no room in rx queue */
335	uint32_t pkt_rx_by_size[6];
336	uint32_t pkt_tx_by_size[6];
337	uint32_t good_pkt_rx_count;
338	uint32_t bcast_pkt_rx_count;
339	uint32_t mcast_pkt_rx_count;
340	uint32_t good_pkt_tx_count;
341	uint32_t bcast_pkt_tx_count;
342	uint32_t mcast_pkt_tx_count;
343	uint32_t oversize_rx_count;
344	uint32_t tso_tx_count;
345	uint64_t good_octets_rx;
346	uint64_t good_octets_tx;
347	uint64_t missed_octets; /* counts missed and oversized */
348
349	uint8_t nvm_bits:6; /* number of bits remaining in/out */
350	uint8_t nvm_mode:2;
351#define E82545_NVM_MODE_OPADDR  0x0
352#define E82545_NVM_MODE_DATAIN  0x1
353#define E82545_NVM_MODE_DATAOUT 0x2
354	/* EEPROM data */
355	uint16_t eeprom_data[E82545_NVM_EEPROM_SIZE];
356};
357
358static void e82545_reset(struct e82545_softc *sc, int dev);
359static void e82545_rx_enable(struct e82545_softc *sc);
360static void e82545_rx_disable(struct e82545_softc *sc);
361static void e82545_rx_callback(int fd, enum ev_type type, void *param);
362static void e82545_tx_start(struct e82545_softc *sc);
363static void e82545_tx_enable(struct e82545_softc *sc);
364static void e82545_tx_disable(struct e82545_softc *sc);
365
366static inline int __unused
367e82545_size_stat_index(uint32_t size)
368{
369	if (size <= 64) {
370		return 0;
371	} else if (size >= 1024) {
372		return 5;
373	} else {
374		/* should be 1-4 */
375		return (ffs(size) - 6);
376	}
377}
378
379static void
380e82545_init_eeprom(struct e82545_softc *sc)
381{
382	uint16_t checksum, i;
383
384        /* mac addr */
385	sc->eeprom_data[NVM_MAC_ADDR] = ((uint16_t)sc->esc_mac.octet[0]) |
386		(((uint16_t)sc->esc_mac.octet[1]) << 8);
387	sc->eeprom_data[NVM_MAC_ADDR+1] = ((uint16_t)sc->esc_mac.octet[2]) |
388		(((uint16_t)sc->esc_mac.octet[3]) << 8);
389	sc->eeprom_data[NVM_MAC_ADDR+2] = ((uint16_t)sc->esc_mac.octet[4]) |
390		(((uint16_t)sc->esc_mac.octet[5]) << 8);
391
392	/* pci ids */
393	sc->eeprom_data[NVM_SUB_DEV_ID] = E82545_SUBDEV_ID;
394	sc->eeprom_data[NVM_SUB_VEN_ID] = E82545_VENDOR_ID_INTEL;
395	sc->eeprom_data[NVM_DEV_ID] = E82545_DEV_ID_82545EM_COPPER;
396	sc->eeprom_data[NVM_VEN_ID] = E82545_VENDOR_ID_INTEL;
397
398	/* fill in the checksum */
399        checksum = 0;
400	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
401		checksum += sc->eeprom_data[i];
402	}
403	checksum = NVM_SUM - checksum;
404	sc->eeprom_data[NVM_CHECKSUM_REG] = checksum;
405	DPRINTF("eeprom checksum: 0x%x", checksum);
406}
407
408static void
409e82545_write_mdi(struct e82545_softc *sc __unused, uint8_t reg_addr,
410    uint8_t phy_addr, uint32_t data)
411{
412	DPRINTF("Write mdi reg:0x%x phy:0x%x data: 0x%x", reg_addr, phy_addr, data);
413}
414
415static uint32_t
416e82545_read_mdi(struct e82545_softc *sc __unused, uint8_t reg_addr,
417    uint8_t phy_addr)
418{
419	//DPRINTF("Read mdi reg:0x%x phy:0x%x", reg_addr, phy_addr);
420	switch (reg_addr) {
421	case PHY_STATUS:
422		return (MII_SR_LINK_STATUS | MII_SR_AUTONEG_CAPS |
423			MII_SR_AUTONEG_COMPLETE);
424	case PHY_AUTONEG_ADV:
425		return NWAY_AR_SELECTOR_FIELD;
426	case PHY_LP_ABILITY:
427		return 0;
428	case PHY_1000T_STATUS:
429		return (SR_1000T_LP_FD_CAPS | SR_1000T_REMOTE_RX_STATUS |
430			SR_1000T_LOCAL_RX_STATUS);
431	case PHY_ID1:
432		return (M88E1011_I_PHY_ID >> 16) & 0xFFFF;
433	case PHY_ID2:
434		return (M88E1011_I_PHY_ID | E82545_REVISION_4) & 0xFFFF;
435	default:
436		DPRINTF("Unknown mdi read reg:0x%x phy:0x%x", reg_addr, phy_addr);
437		return 0;
438	}
439	/* not reached */
440}
441
442static void
443e82545_eecd_strobe(struct e82545_softc *sc)
444{
445	/* Microwire state machine */
446	/*
447	DPRINTF("eeprom state machine srtobe "
448		"0x%x 0x%x 0x%x 0x%x",
449		sc->nvm_mode, sc->nvm_bits,
450		sc->nvm_opaddr, sc->nvm_data);*/
451
452	if (sc->nvm_bits == 0) {
453		DPRINTF("eeprom state machine not expecting data! "
454			"0x%x 0x%x 0x%x 0x%x",
455			sc->nvm_mode, sc->nvm_bits,
456			sc->nvm_opaddr, sc->nvm_data);
457		return;
458	}
459	sc->nvm_bits--;
460	if (sc->nvm_mode == E82545_NVM_MODE_DATAOUT) {
461		/* shifting out */
462		if (sc->nvm_data & 0x8000) {
463			sc->eeprom_control |= E1000_EECD_DO;
464		} else {
465			sc->eeprom_control &= ~E1000_EECD_DO;
466		}
467		sc->nvm_data <<= 1;
468		if (sc->nvm_bits == 0) {
469			/* read done, back to opcode mode. */
470			sc->nvm_opaddr = 0;
471			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
472			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
473		}
474	} else if (sc->nvm_mode == E82545_NVM_MODE_DATAIN) {
475		/* shifting in */
476		sc->nvm_data <<= 1;
477		if (sc->eeprom_control & E1000_EECD_DI) {
478			sc->nvm_data |= 1;
479		}
480		if (sc->nvm_bits == 0) {
481			/* eeprom write */
482			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
483			uint16_t addr = sc->nvm_opaddr & E82545_NVM_ADDR_MASK;
484			if (op != E82545_NVM_OPCODE_WRITE) {
485				DPRINTF("Illegal eeprom write op 0x%x",
486					sc->nvm_opaddr);
487			} else if (addr >= E82545_NVM_EEPROM_SIZE) {
488				DPRINTF("Illegal eeprom write addr 0x%x",
489					sc->nvm_opaddr);
490			} else {
491				DPRINTF("eeprom write eeprom[0x%x] = 0x%x",
492				addr, sc->nvm_data);
493				sc->eeprom_data[addr] = sc->nvm_data;
494			}
495			/* back to opcode mode */
496			sc->nvm_opaddr = 0;
497			sc->nvm_mode = E82545_NVM_MODE_OPADDR;
498			sc->nvm_bits = E82545_NVM_OPADDR_BITS;
499		}
500	} else if (sc->nvm_mode == E82545_NVM_MODE_OPADDR) {
501		sc->nvm_opaddr <<= 1;
502		if (sc->eeprom_control & E1000_EECD_DI) {
503			sc->nvm_opaddr |= 1;
504		}
505		if (sc->nvm_bits == 0) {
506			uint16_t op = sc->nvm_opaddr & E82545_NVM_OPCODE_MASK;
507			switch (op) {
508			case E82545_NVM_OPCODE_EWEN:
509				DPRINTF("eeprom write enable: 0x%x",
510					sc->nvm_opaddr);
511				/* back to opcode mode */
512				sc->nvm_opaddr = 0;
513				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
514				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
515				break;
516			case E82545_NVM_OPCODE_READ:
517			{
518				uint16_t addr = sc->nvm_opaddr &
519					E82545_NVM_ADDR_MASK;
520				sc->nvm_mode = E82545_NVM_MODE_DATAOUT;
521				sc->nvm_bits = E82545_NVM_DATA_BITS;
522				if (addr < E82545_NVM_EEPROM_SIZE) {
523					sc->nvm_data = sc->eeprom_data[addr];
524					DPRINTF("eeprom read: eeprom[0x%x] = 0x%x",
525						addr, sc->nvm_data);
526				} else {
527					DPRINTF("eeprom illegal read: 0x%x",
528						sc->nvm_opaddr);
529					sc->nvm_data = 0;
530				}
531				break;
532			}
533			case E82545_NVM_OPCODE_WRITE:
534				sc->nvm_mode = E82545_NVM_MODE_DATAIN;
535				sc->nvm_bits = E82545_NVM_DATA_BITS;
536				sc->nvm_data = 0;
537				break;
538			default:
539				DPRINTF("eeprom unknown op: 0x%x",
540					sc->nvm_opaddr);
541				/* back to opcode mode */
542				sc->nvm_opaddr = 0;
543				sc->nvm_mode = E82545_NVM_MODE_OPADDR;
544				sc->nvm_bits = E82545_NVM_OPADDR_BITS;
545			}
546		}
547	} else {
548		DPRINTF("eeprom state machine wrong state! "
549			"0x%x 0x%x 0x%x 0x%x",
550			sc->nvm_mode, sc->nvm_bits,
551			sc->nvm_opaddr, sc->nvm_data);
552	}
553}
554
555static void
556e82545_itr_callback(int fd __unused, enum ev_type type __unused, void *param)
557{
558	uint32_t new;
559	struct e82545_softc *sc = param;
560
561	pthread_mutex_lock(&sc->esc_mtx);
562	new = sc->esc_ICR & sc->esc_IMS;
563	if (new && !sc->esc_irq_asserted) {
564		DPRINTF("itr callback: lintr assert %x", new);
565		sc->esc_irq_asserted = 1;
566		pci_lintr_assert(sc->esc_pi);
567	} else {
568		mevent_delete(sc->esc_mevpitr);
569		sc->esc_mevpitr = NULL;
570	}
571	pthread_mutex_unlock(&sc->esc_mtx);
572}
573
574static void
575e82545_icr_assert(struct e82545_softc *sc, uint32_t bits)
576{
577	uint32_t new;
578
579	DPRINTF("icr assert: 0x%x", bits);
580
581	/*
582	 * An interrupt is only generated if bits are set that
583	 * aren't already in the ICR, these bits are unmasked,
584	 * and there isn't an interrupt already pending.
585	 */
586	new = bits & ~sc->esc_ICR & sc->esc_IMS;
587	sc->esc_ICR |= bits;
588
589	if (new == 0) {
590		DPRINTF("icr assert: masked %x, ims %x", new, sc->esc_IMS);
591	} else if (sc->esc_mevpitr != NULL) {
592		DPRINTF("icr assert: throttled %x, ims %x", new, sc->esc_IMS);
593	} else if (!sc->esc_irq_asserted) {
594		DPRINTF("icr assert: lintr assert %x", new);
595		sc->esc_irq_asserted = 1;
596		pci_lintr_assert(sc->esc_pi);
597		if (sc->esc_ITR != 0) {
598			sc->esc_mevpitr = mevent_add(
599			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
600			    EVF_TIMER, e82545_itr_callback, sc);
601		}
602	}
603}
604
605static void
606e82545_ims_change(struct e82545_softc *sc, uint32_t bits)
607{
608	uint32_t new;
609
610	/*
611	 * Changing the mask may allow previously asserted
612	 * but masked interrupt requests to generate an interrupt.
613	 */
614	new = bits & sc->esc_ICR & ~sc->esc_IMS;
615	sc->esc_IMS |= bits;
616
617	if (new == 0) {
618		DPRINTF("ims change: masked %x, ims %x", new, sc->esc_IMS);
619	} else if (sc->esc_mevpitr != NULL) {
620		DPRINTF("ims change: throttled %x, ims %x", new, sc->esc_IMS);
621	} else if (!sc->esc_irq_asserted) {
622		DPRINTF("ims change: lintr assert %x", new);
623		sc->esc_irq_asserted = 1;
624		pci_lintr_assert(sc->esc_pi);
625		if (sc->esc_ITR != 0) {
626			sc->esc_mevpitr = mevent_add(
627			    (sc->esc_ITR + 3905) / 3906,  /* 256ns -> 1ms */
628			    EVF_TIMER, e82545_itr_callback, sc);
629		}
630	}
631}
632
633static void
634e82545_icr_deassert(struct e82545_softc *sc, uint32_t bits)
635{
636
637	DPRINTF("icr deassert: 0x%x", bits);
638	sc->esc_ICR &= ~bits;
639
640	/*
641	 * If there are no longer any interrupt sources and there
642	 * was an asserted interrupt, clear it
643	 */
644	if (sc->esc_irq_asserted && !(sc->esc_ICR & sc->esc_IMS)) {
645		DPRINTF("icr deassert: lintr deassert %x", bits);
646		pci_lintr_deassert(sc->esc_pi);
647		sc->esc_irq_asserted = 0;
648	}
649}
650
651static void
652e82545_intr_write(struct e82545_softc *sc, uint32_t offset, uint32_t value)
653{
654
655	DPRINTF("intr_write: off %x, val %x", offset, value);
656
657	switch (offset) {
658	case E1000_ICR:
659		e82545_icr_deassert(sc, value);
660		break;
661	case E1000_ITR:
662		sc->esc_ITR = value;
663		break;
664	case E1000_ICS:
665		sc->esc_ICS = value;	/* not used: store for debug */
666		e82545_icr_assert(sc, value);
667		break;
668	case E1000_IMS:
669		e82545_ims_change(sc, value);
670		break;
671	case E1000_IMC:
672		sc->esc_IMC = value;	/* for debug */
673		sc->esc_IMS &= ~value;
674		// XXX clear interrupts if all ICR bits now masked
675		// and interrupt was pending ?
676		break;
677	default:
678		break;
679	}
680}
681
682static uint32_t
683e82545_intr_read(struct e82545_softc *sc, uint32_t offset)
684{
685	uint32_t retval;
686
687	retval = 0;
688
689	DPRINTF("intr_read: off %x", offset);
690
691	switch (offset) {
692	case E1000_ICR:
693		retval = sc->esc_ICR;
694		sc->esc_ICR = 0;
695		e82545_icr_deassert(sc, ~0);
696		break;
697	case E1000_ITR:
698		retval = sc->esc_ITR;
699		break;
700	case E1000_ICS:
701		/* write-only register */
702		break;
703	case E1000_IMS:
704		retval = sc->esc_IMS;
705		break;
706	case E1000_IMC:
707		/* write-only register */
708		break;
709	default:
710		break;
711	}
712
713	return (retval);
714}
715
716static void
717e82545_devctl(struct e82545_softc *sc, uint32_t val)
718{
719
720	sc->esc_CTRL = val & ~E1000_CTRL_RST;
721
722	if (val & E1000_CTRL_RST) {
723		DPRINTF("e1k: s/w reset, ctl %x", val);
724		e82545_reset(sc, 1);
725	}
726	/* XXX check for phy reset ? */
727}
728
729static void
730e82545_rx_update_rdba(struct e82545_softc *sc)
731{
732
733	/* XXX verify desc base/len within phys mem range */
734	sc->esc_rdba = (uint64_t)sc->esc_RDBAH << 32 |
735	    sc->esc_RDBAL;
736
737	/* Cache host mapping of guest descriptor array */
738	sc->esc_rxdesc = paddr_guest2host(sc->esc_ctx,
739	    sc->esc_rdba, sc->esc_RDLEN);
740}
741
742static void
743e82545_rx_ctl(struct e82545_softc *sc, uint32_t val)
744{
745	int on;
746
747	on = ((val & E1000_RCTL_EN) == E1000_RCTL_EN);
748
749	/* Save RCTL after stripping reserved bits 31:27,24,21,14,11:10,0 */
750	sc->esc_RCTL = val & ~0xF9204c01;
751
752	DPRINTF("rx_ctl - %s RCTL %x, val %x",
753		on ? "on" : "off", sc->esc_RCTL, val);
754
755	/* state change requested */
756	if (on != sc->esc_rx_enabled) {
757		if (on) {
758			/* Catch disallowed/unimplemented settings */
759			//assert(!(val & E1000_RCTL_LBM_TCVR));
760
761			if (sc->esc_RCTL & E1000_RCTL_LBM_TCVR) {
762				sc->esc_rx_loopback = 1;
763			} else {
764				sc->esc_rx_loopback = 0;
765			}
766
767			e82545_rx_update_rdba(sc);
768			e82545_rx_enable(sc);
769		} else {
770			e82545_rx_disable(sc);
771			sc->esc_rx_loopback = 0;
772			sc->esc_rdba = 0;
773			sc->esc_rxdesc = NULL;
774		}
775	}
776}
777
778static void
779e82545_tx_update_tdba(struct e82545_softc *sc)
780{
781
782	/* XXX verify desc base/len within phys mem range */
783	sc->esc_tdba = (uint64_t)sc->esc_TDBAH << 32 | sc->esc_TDBAL;
784
785	/* Cache host mapping of guest descriptor array */
786	sc->esc_txdesc = paddr_guest2host(sc->esc_ctx, sc->esc_tdba,
787            sc->esc_TDLEN);
788}
789
790static void
791e82545_tx_ctl(struct e82545_softc *sc, uint32_t val)
792{
793	int on;
794
795	on = ((val & E1000_TCTL_EN) == E1000_TCTL_EN);
796
797	/* ignore TCTL_EN settings that don't change state */
798	if (on == sc->esc_tx_enabled)
799		return;
800
801	if (on) {
802		e82545_tx_update_tdba(sc);
803		e82545_tx_enable(sc);
804	} else {
805		e82545_tx_disable(sc);
806		sc->esc_tdba = 0;
807		sc->esc_txdesc = NULL;
808	}
809
810	/* Save TCTL value after stripping reserved bits 31:25,23,2,0 */
811	sc->esc_TCTL = val & ~0xFE800005;
812}
813
814static int
815e82545_bufsz(uint32_t rctl)
816{
817
818	switch (rctl & (E1000_RCTL_BSEX | E1000_RCTL_SZ_256)) {
819	case (E1000_RCTL_SZ_2048): return (2048);
820	case (E1000_RCTL_SZ_1024): return (1024);
821	case (E1000_RCTL_SZ_512): return (512);
822	case (E1000_RCTL_SZ_256): return (256);
823	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_16384): return (16384);
824	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_8192): return (8192);
825	case (E1000_RCTL_BSEX|E1000_RCTL_SZ_4096): return (4096);
826	}
827	return (256);	/* Forbidden value. */
828}
829
830/* XXX one packet at a time until this is debugged */
831static void
832e82545_rx_callback(int fd __unused, enum ev_type type __unused, void *param)
833{
834	struct e82545_softc *sc = param;
835	struct e1000_rx_desc *rxd;
836	struct iovec vec[64];
837	ssize_t len;
838	int left, lim, maxpktsz, maxpktdesc, bufsz, i, n, size;
839	uint32_t cause = 0;
840	uint16_t *tp, tag, head;
841
842	pthread_mutex_lock(&sc->esc_mtx);
843	DPRINTF("rx_run: head %x, tail %x", sc->esc_RDH, sc->esc_RDT);
844
845	if (!sc->esc_rx_enabled || sc->esc_rx_loopback) {
846		DPRINTF("rx disabled (!%d || %d) -- packet(s) dropped",
847		    sc->esc_rx_enabled, sc->esc_rx_loopback);
848		while (netbe_rx_discard(sc->esc_be) > 0) {
849		}
850		goto done1;
851	}
852	bufsz = e82545_bufsz(sc->esc_RCTL);
853	maxpktsz = (sc->esc_RCTL & E1000_RCTL_LPE) ? 16384 : 1522;
854	maxpktdesc = (maxpktsz + bufsz - 1) / bufsz;
855	size = sc->esc_RDLEN / 16;
856	head = sc->esc_RDH;
857	left = (size + sc->esc_RDT - head) % size;
858	if (left < maxpktdesc) {
859		DPRINTF("rx overflow (%d < %d) -- packet(s) dropped",
860		    left, maxpktdesc);
861		while (netbe_rx_discard(sc->esc_be) > 0) {
862		}
863		goto done1;
864	}
865
866	sc->esc_rx_active = 1;
867	pthread_mutex_unlock(&sc->esc_mtx);
868
869	for (lim = size / 4; lim > 0 && left >= maxpktdesc; lim -= n) {
870
871		/* Grab rx descriptor pointed to by the head pointer */
872		for (i = 0; i < maxpktdesc; i++) {
873			rxd = &sc->esc_rxdesc[(head + i) % size];
874			vec[i].iov_base = paddr_guest2host(sc->esc_ctx,
875			    rxd->buffer_addr, bufsz);
876			vec[i].iov_len = bufsz;
877		}
878		len = netbe_recv(sc->esc_be, vec, maxpktdesc);
879		if (len <= 0) {
880			DPRINTF("netbe_recv() returned %zd", len);
881			goto done;
882		}
883
884		/*
885		 * Adjust the packet length based on whether the CRC needs
886		 * to be stripped or if the packet is less than the minimum
887		 * eth packet size.
888		 */
889		if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
890			len = ETHER_MIN_LEN - ETHER_CRC_LEN;
891		if (!(sc->esc_RCTL & E1000_RCTL_SECRC))
892			len += ETHER_CRC_LEN;
893		n = (len + bufsz - 1) / bufsz;
894
895		DPRINTF("packet read %zd bytes, %d segs, head %d",
896		    len, n, head);
897
898		/* Apply VLAN filter. */
899		tp = (uint16_t *)vec[0].iov_base + 6;
900		if ((sc->esc_RCTL & E1000_RCTL_VFE) &&
901		    (ntohs(tp[0]) == sc->esc_VET)) {
902			tag = ntohs(tp[1]) & 0x0fff;
903			if ((sc->esc_fvlan[tag >> 5] &
904			    (1 << (tag & 0x1f))) != 0) {
905				DPRINTF("known VLAN %d", tag);
906			} else {
907				DPRINTF("unknown VLAN %d", tag);
908				n = 0;
909				continue;
910			}
911		}
912
913		/* Update all consumed descriptors. */
914		for (i = 0; i < n - 1; i++) {
915			rxd = &sc->esc_rxdesc[(head + i) % size];
916			rxd->length = bufsz;
917			rxd->csum = 0;
918			rxd->errors = 0;
919			rxd->special = 0;
920			rxd->status = E1000_RXD_STAT_DD;
921		}
922		rxd = &sc->esc_rxdesc[(head + i) % size];
923		rxd->length = len % bufsz;
924		rxd->csum = 0;
925		rxd->errors = 0;
926		rxd->special = 0;
927		/* XXX signal no checksum for now */
928		rxd->status = E1000_RXD_STAT_PIF | E1000_RXD_STAT_IXSM |
929		    E1000_RXD_STAT_EOP | E1000_RXD_STAT_DD;
930
931		/* Schedule receive interrupts. */
932		if ((uint32_t)len <= sc->esc_RSRPD) {
933			cause |= E1000_ICR_SRPD | E1000_ICR_RXT0;
934		} else {
935			/* XXX: RDRT and RADV timers should be here. */
936			cause |= E1000_ICR_RXT0;
937		}
938
939		head = (head + n) % size;
940		left -= n;
941	}
942
943done:
944	pthread_mutex_lock(&sc->esc_mtx);
945	sc->esc_rx_active = 0;
946	if (sc->esc_rx_enabled == 0)
947		pthread_cond_signal(&sc->esc_rx_cond);
948
949	sc->esc_RDH = head;
950	/* Respect E1000_RCTL_RDMTS */
951	left = (size + sc->esc_RDT - head) % size;
952	if (left < (size >> (((sc->esc_RCTL >> 8) & 3) + 1)))
953		cause |= E1000_ICR_RXDMT0;
954	/* Assert all accumulated interrupts. */
955	if (cause != 0)
956		e82545_icr_assert(sc, cause);
957done1:
958	DPRINTF("rx_run done: head %x, tail %x", sc->esc_RDH, sc->esc_RDT);
959	pthread_mutex_unlock(&sc->esc_mtx);
960}
961
962static uint16_t
963e82545_carry(uint32_t sum)
964{
965
966	sum = (sum & 0xFFFF) + (sum >> 16);
967	if (sum > 0xFFFF)
968		sum -= 0xFFFF;
969	return (sum);
970}
971
972static uint16_t
973e82545_buf_checksum(uint8_t *buf, int len)
974{
975	int i;
976	uint32_t sum = 0;
977
978	/* Checksum all the pairs of bytes first... */
979	for (i = 0; i < (len & ~1); i += 2)
980		sum += *((u_int16_t *)(buf + i));
981
982	/*
983	 * If there's a single byte left over, checksum it, too.
984	 * Network byte order is big-endian, so the remaining byte is
985	 * the high byte.
986	 */
987	if (i < len)
988		sum += htons(buf[i] << 8);
989
990	return (e82545_carry(sum));
991}
992
993static uint16_t
994e82545_iov_checksum(struct iovec *iov, int iovcnt, unsigned int off,
995    unsigned int len)
996{
997	unsigned int now, odd;
998	uint32_t sum = 0, s;
999
1000	/* Skip completely unneeded vectors. */
1001	while (iovcnt > 0 && iov->iov_len <= off && off > 0) {
1002		off -= iov->iov_len;
1003		iov++;
1004		iovcnt--;
1005	}
1006
1007	/* Calculate checksum of requested range. */
1008	odd = 0;
1009	while (len > 0 && iovcnt > 0) {
1010		now = MIN(len, iov->iov_len - off);
1011		s = e82545_buf_checksum((uint8_t *)iov->iov_base + off, now);
1012		sum += odd ? (s << 8) : s;
1013		odd ^= (now & 1);
1014		len -= now;
1015		off = 0;
1016		iov++;
1017		iovcnt--;
1018	}
1019
1020	return (e82545_carry(sum));
1021}
1022
1023/*
1024 * Return the transmit descriptor type.
1025 */
1026static int
1027e82545_txdesc_type(uint32_t lower)
1028{
1029	int type;
1030
1031	type = 0;
1032
1033	if (lower & E1000_TXD_CMD_DEXT)
1034		type = lower & E1000_TXD_MASK;
1035
1036	return (type);
1037}
1038
1039static void
1040e82545_transmit_checksum(struct iovec *iov, int iovcnt, struct ck_info *ck)
1041{
1042	uint16_t cksum;
1043	unsigned int cklen;
1044
1045	DPRINTF("tx cksum: iovcnt/s/off/len %d/%d/%d/%d",
1046	    iovcnt, ck->ck_start, ck->ck_off, ck->ck_len);
1047	cklen = ck->ck_len ? ck->ck_len - ck->ck_start + 1U : UINT_MAX;
1048	cksum = e82545_iov_checksum(iov, iovcnt, ck->ck_start, cklen);
1049	*(uint16_t *)((uint8_t *)iov[0].iov_base + ck->ck_off) = ~cksum;
1050}
1051
1052static void
1053e82545_transmit_backend(struct e82545_softc *sc, struct iovec *iov, int iovcnt)
1054{
1055
1056	if (sc->esc_be == NULL)
1057		return;
1058
1059	(void) netbe_send(sc->esc_be, iov, iovcnt);
1060}
1061
1062static void
1063e82545_transmit_done(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1064    uint16_t dsize, int *tdwb)
1065{
1066	union e1000_tx_udesc *dsc;
1067
1068	for ( ; head != tail; head = (head + 1) % dsize) {
1069		dsc = &sc->esc_txdesc[head];
1070		if (dsc->td.lower.data & E1000_TXD_CMD_RS) {
1071			dsc->td.upper.data |= E1000_TXD_STAT_DD;
1072			*tdwb = 1;
1073		}
1074	}
1075}
1076
1077static int
1078e82545_transmit(struct e82545_softc *sc, uint16_t head, uint16_t tail,
1079    uint16_t dsize, uint16_t *rhead, int *tdwb)
1080{
1081	uint8_t *hdr, *hdrp;
1082	struct iovec iovb[I82545_MAX_TXSEGS + 2];
1083	struct iovec tiov[I82545_MAX_TXSEGS + 2];
1084	struct e1000_context_desc *cd;
1085	struct ck_info ckinfo[2];
1086	struct iovec *iov;
1087	union  e1000_tx_udesc *dsc;
1088	int desc, dtype, ntype, iovcnt, tcp, tso, paylen, seg, tiovcnt, pv;
1089	unsigned hdrlen, vlen, pktlen, len, left, mss, now, nnow, nleft, pvoff;
1090	uint32_t tcpsum, tcpseq;
1091	uint16_t ipcs, tcpcs, ipid, ohead;
1092	bool invalid;
1093
1094	ckinfo[0].ck_valid = ckinfo[1].ck_valid = 0;
1095	iovcnt = 0;
1096	ntype = 0;
1097	tso = 0;
1098	pktlen = 0;
1099	ohead = head;
1100	invalid = false;
1101
1102	/* iovb[0/1] may be used for writable copy of headers. */
1103	iov = &iovb[2];
1104
1105	for (desc = 0; ; desc++, head = (head + 1) % dsize) {
1106		if (head == tail) {
1107			*rhead = head;
1108			return (0);
1109		}
1110		dsc = &sc->esc_txdesc[head];
1111		dtype = e82545_txdesc_type(dsc->td.lower.data);
1112
1113		if (desc == 0) {
1114			switch (dtype) {
1115			case E1000_TXD_TYP_C:
1116				DPRINTF("tx ctxt desc idx %d: %016jx "
1117				    "%08x%08x",
1118				    head, dsc->td.buffer_addr,
1119				    dsc->td.upper.data, dsc->td.lower.data);
1120				/* Save context and return */
1121				sc->esc_txctx = dsc->cd;
1122				goto done;
1123			case E1000_TXD_TYP_L:
1124				DPRINTF("tx legacy desc idx %d: %08x%08x",
1125				    head, dsc->td.upper.data, dsc->td.lower.data);
1126				/*
1127				 * legacy cksum start valid in first descriptor
1128				 */
1129				ntype = dtype;
1130				ckinfo[0].ck_start = dsc->td.upper.fields.css;
1131				break;
1132			case E1000_TXD_TYP_D:
1133				DPRINTF("tx data desc idx %d: %08x%08x",
1134				    head, dsc->td.upper.data, dsc->td.lower.data);
1135				ntype = dtype;
1136				break;
1137			default:
1138				break;
1139			}
1140		} else {
1141			/* Descriptor type must be consistent */
1142			assert(dtype == ntype);
1143			DPRINTF("tx next desc idx %d: %08x%08x",
1144			    head, dsc->td.upper.data, dsc->td.lower.data);
1145		}
1146
1147		len = (dtype == E1000_TXD_TYP_L) ? dsc->td.lower.flags.length :
1148		    dsc->dd.lower.data & 0xFFFFF;
1149
1150		/* Strip checksum supplied by guest. */
1151		if ((dsc->td.lower.data & E1000_TXD_CMD_EOP) != 0 &&
1152		    (dsc->td.lower.data & E1000_TXD_CMD_IFCS) == 0) {
1153			if (len <= 2) {
1154				WPRINTF("final descriptor too short (%d) -- dropped",
1155				    len);
1156				invalid = true;
1157			} else
1158				len -= 2;
1159		}
1160
1161		if (len > 0 && iovcnt < I82545_MAX_TXSEGS) {
1162			iov[iovcnt].iov_base = paddr_guest2host(sc->esc_ctx,
1163			    dsc->td.buffer_addr, len);
1164			iov[iovcnt].iov_len = len;
1165			iovcnt++;
1166			pktlen += len;
1167		}
1168
1169		/*
1170		 * Pull out info that is valid in the final descriptor
1171		 * and exit descriptor loop.
1172		 */
1173		if (dsc->td.lower.data & E1000_TXD_CMD_EOP) {
1174			if (dtype == E1000_TXD_TYP_L) {
1175				if (dsc->td.lower.data & E1000_TXD_CMD_IC) {
1176					ckinfo[0].ck_valid = 1;
1177					ckinfo[0].ck_off =
1178					    dsc->td.lower.flags.cso;
1179					ckinfo[0].ck_len = 0;
1180				}
1181			} else {
1182				cd = &sc->esc_txctx;
1183				if (dsc->dd.lower.data & E1000_TXD_CMD_TSE)
1184					tso = 1;
1185				if (dsc->dd.upper.fields.popts &
1186				    E1000_TXD_POPTS_IXSM)
1187					ckinfo[0].ck_valid = 1;
1188				if (dsc->dd.upper.fields.popts &
1189				    E1000_TXD_POPTS_IXSM || tso) {
1190					ckinfo[0].ck_start =
1191					    cd->lower_setup.ip_fields.ipcss;
1192					ckinfo[0].ck_off =
1193					    cd->lower_setup.ip_fields.ipcso;
1194					ckinfo[0].ck_len =
1195					    cd->lower_setup.ip_fields.ipcse;
1196				}
1197				if (dsc->dd.upper.fields.popts &
1198				    E1000_TXD_POPTS_TXSM)
1199					ckinfo[1].ck_valid = 1;
1200				if (dsc->dd.upper.fields.popts &
1201				    E1000_TXD_POPTS_TXSM || tso) {
1202					ckinfo[1].ck_start =
1203					    cd->upper_setup.tcp_fields.tucss;
1204					ckinfo[1].ck_off =
1205					    cd->upper_setup.tcp_fields.tucso;
1206					ckinfo[1].ck_len =
1207					    cd->upper_setup.tcp_fields.tucse;
1208				}
1209			}
1210			break;
1211		}
1212	}
1213
1214	if (invalid)
1215		goto done;
1216
1217	if (iovcnt > I82545_MAX_TXSEGS) {
1218		WPRINTF("tx too many descriptors (%d > %d) -- dropped",
1219		    iovcnt, I82545_MAX_TXSEGS);
1220		goto done;
1221	}
1222
1223	hdrlen = vlen = 0;
1224	/* Estimate writable space for VLAN header insertion. */
1225	if ((sc->esc_CTRL & E1000_CTRL_VME) &&
1226	    (dsc->td.lower.data & E1000_TXD_CMD_VLE)) {
1227		hdrlen = ETHER_ADDR_LEN*2;
1228		vlen = ETHER_VLAN_ENCAP_LEN;
1229	}
1230	if (!tso) {
1231		/* Estimate required writable space for checksums. */
1232		if (ckinfo[0].ck_valid)
1233			hdrlen = MAX(hdrlen, ckinfo[0].ck_off + 2U);
1234		if (ckinfo[1].ck_valid)
1235			hdrlen = MAX(hdrlen, ckinfo[1].ck_off + 2U);
1236		/* Round up writable space to the first vector. */
1237		if (hdrlen != 0 && iov[0].iov_len > hdrlen &&
1238		    iov[0].iov_len < hdrlen + 100)
1239			hdrlen = iov[0].iov_len;
1240	} else {
1241		/* In case of TSO header length provided by software. */
1242		hdrlen = sc->esc_txctx.tcp_seg_setup.fields.hdr_len;
1243
1244		/*
1245		 * Cap the header length at 240 based on 7.2.4.5 of
1246		 * the Intel 82576EB (Rev 2.63) datasheet.
1247		 */
1248		if (hdrlen > 240) {
1249			WPRINTF("TSO hdrlen too large: %d", hdrlen);
1250			goto done;
1251		}
1252
1253		/*
1254		 * If VLAN insertion is requested, ensure the header
1255		 * at least holds the amount of data copied during
1256		 * VLAN insertion below.
1257		 *
1258		 * XXX: Realistic packets will include a full Ethernet
1259		 * header before the IP header at ckinfo[0].ck_start,
1260		 * but this check is sufficient to prevent
1261		 * out-of-bounds access below.
1262		 */
1263		if (vlen != 0 && hdrlen < ETHER_ADDR_LEN*2) {
1264			WPRINTF("TSO hdrlen too small for vlan insertion "
1265			    "(%d vs %d) -- dropped", hdrlen,
1266			    ETHER_ADDR_LEN*2);
1267			goto done;
1268		}
1269
1270		/*
1271		 * Ensure that the header length covers the used fields
1272		 * in the IP and TCP headers as well as the IP and TCP
1273		 * checksums.  The following fields are accessed below:
1274		 *
1275		 * Header | Field | Offset | Length
1276		 * -------+-------+--------+-------
1277		 * IPv4   | len   | 2      | 2
1278		 * IPv4   | ID    | 4      | 2
1279		 * IPv6   | len   | 4      | 2
1280		 * TCP    | seq # | 4      | 4
1281		 * TCP    | flags | 13     | 1
1282		 * UDP    | len   | 4      | 4
1283		 */
1284		if (hdrlen < ckinfo[0].ck_start + 6U ||
1285		    hdrlen < ckinfo[0].ck_off + 2U) {
1286			WPRINTF("TSO hdrlen too small for IP fields (%d) "
1287			    "-- dropped", hdrlen);
1288			goto done;
1289		}
1290		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) {
1291			if (hdrlen < ckinfo[1].ck_start + 14U) {
1292				WPRINTF("TSO hdrlen too small for TCP fields "
1293				    "(%d) -- dropped", hdrlen);
1294				goto done;
1295			}
1296		} else {
1297			if (hdrlen < ckinfo[1].ck_start + 8U) {
1298				WPRINTF("TSO hdrlen too small for UDP fields "
1299				    "(%d) -- dropped", hdrlen);
1300				goto done;
1301			}
1302		}
1303		if (ckinfo[1].ck_valid && hdrlen < ckinfo[1].ck_off + 2U) {
1304			WPRINTF("TSO hdrlen too small for TCP/UDP fields "
1305			    "(%d) -- dropped", hdrlen);
1306			goto done;
1307		}
1308	}
1309
1310	if (pktlen < hdrlen + vlen) {
1311		WPRINTF("packet too small for writable header");
1312		goto done;
1313	}
1314
1315	/* Allocate, fill and prepend writable header vector. */
1316	if (hdrlen + vlen != 0) {
1317		hdr = __builtin_alloca(hdrlen + vlen);
1318		hdr += vlen;
1319		for (left = hdrlen, hdrp = hdr; left > 0;
1320		    left -= now, hdrp += now) {
1321			now = MIN(left, iov->iov_len);
1322			memcpy(hdrp, iov->iov_base, now);
1323			iov->iov_base = (uint8_t *)iov->iov_base + now;
1324			iov->iov_len -= now;
1325			if (iov->iov_len == 0) {
1326				iov++;
1327				iovcnt--;
1328			}
1329		}
1330		iov--;
1331		iovcnt++;
1332		iov->iov_base = hdr;
1333		iov->iov_len = hdrlen;
1334	} else
1335		hdr = NULL;
1336
1337	/* Insert VLAN tag. */
1338	if (vlen != 0) {
1339		hdr -= ETHER_VLAN_ENCAP_LEN;
1340		memmove(hdr, hdr + ETHER_VLAN_ENCAP_LEN, ETHER_ADDR_LEN*2);
1341		hdrlen += ETHER_VLAN_ENCAP_LEN;
1342		hdr[ETHER_ADDR_LEN*2 + 0] = sc->esc_VET >> 8;
1343		hdr[ETHER_ADDR_LEN*2 + 1] = sc->esc_VET & 0xff;
1344		hdr[ETHER_ADDR_LEN*2 + 2] = dsc->td.upper.fields.special >> 8;
1345		hdr[ETHER_ADDR_LEN*2 + 3] = dsc->td.upper.fields.special & 0xff;
1346		iov->iov_base = hdr;
1347		iov->iov_len += ETHER_VLAN_ENCAP_LEN;
1348		/* Correct checksum offsets after VLAN tag insertion. */
1349		ckinfo[0].ck_start += ETHER_VLAN_ENCAP_LEN;
1350		ckinfo[0].ck_off += ETHER_VLAN_ENCAP_LEN;
1351		if (ckinfo[0].ck_len != 0)
1352			ckinfo[0].ck_len += ETHER_VLAN_ENCAP_LEN;
1353		ckinfo[1].ck_start += ETHER_VLAN_ENCAP_LEN;
1354		ckinfo[1].ck_off += ETHER_VLAN_ENCAP_LEN;
1355		if (ckinfo[1].ck_len != 0)
1356			ckinfo[1].ck_len += ETHER_VLAN_ENCAP_LEN;
1357	}
1358
1359	/* Simple non-TSO case. */
1360	if (!tso) {
1361		/* Calculate checksums and transmit. */
1362		if (ckinfo[0].ck_valid)
1363			e82545_transmit_checksum(iov, iovcnt, &ckinfo[0]);
1364		if (ckinfo[1].ck_valid)
1365			e82545_transmit_checksum(iov, iovcnt, &ckinfo[1]);
1366		e82545_transmit_backend(sc, iov, iovcnt);
1367		goto done;
1368	}
1369
1370	/* Doing TSO. */
1371	tcp = (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_TCP) != 0;
1372	mss = sc->esc_txctx.tcp_seg_setup.fields.mss;
1373	paylen = (sc->esc_txctx.cmd_and_length & 0x000fffff);
1374	DPRINTF("tx %s segmentation offload %d+%d/%u bytes %d iovs",
1375	    tcp ? "TCP" : "UDP", hdrlen, paylen, mss, iovcnt);
1376	ipid = ntohs(*(uint16_t *)&hdr[ckinfo[0].ck_start + 4]);
1377	tcpseq = 0;
1378	if (tcp)
1379		tcpseq = ntohl(*(uint32_t *)&hdr[ckinfo[1].ck_start + 4]);
1380	ipcs = *(uint16_t *)&hdr[ckinfo[0].ck_off];
1381	tcpcs = 0;
1382	if (ckinfo[1].ck_valid)	/* Save partial pseudo-header checksum. */
1383		tcpcs = *(uint16_t *)&hdr[ckinfo[1].ck_off];
1384	pv = 1;
1385	pvoff = 0;
1386	for (seg = 0, left = paylen; left > 0; seg++, left -= now) {
1387		now = MIN(left, mss);
1388
1389		/* Construct IOVs for the segment. */
1390		/* Include whole original header. */
1391		tiov[0].iov_base = hdr;
1392		tiov[0].iov_len = hdrlen;
1393		tiovcnt = 1;
1394		/* Include respective part of payload IOV. */
1395		for (nleft = now; pv < iovcnt && nleft > 0; nleft -= nnow) {
1396			nnow = MIN(nleft, iov[pv].iov_len - pvoff);
1397			tiov[tiovcnt].iov_base = (uint8_t *)iov[pv].iov_base +
1398			    pvoff;
1399			tiov[tiovcnt++].iov_len = nnow;
1400			if (pvoff + nnow == iov[pv].iov_len) {
1401				pv++;
1402				pvoff = 0;
1403			} else
1404				pvoff += nnow;
1405		}
1406		DPRINTF("tx segment %d %d+%d bytes %d iovs",
1407		    seg, hdrlen, now, tiovcnt);
1408
1409		/* Update IP header. */
1410		if (sc->esc_txctx.cmd_and_length & E1000_TXD_CMD_IP) {
1411			/* IPv4 -- set length and ID */
1412			*(uint16_t *)&hdr[ckinfo[0].ck_start + 2] =
1413			    htons(hdrlen - ckinfo[0].ck_start + now);
1414			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1415			    htons(ipid + seg);
1416		} else {
1417			/* IPv6 -- set length */
1418			*(uint16_t *)&hdr[ckinfo[0].ck_start + 4] =
1419			    htons(hdrlen - ckinfo[0].ck_start - 40 +
1420				  now);
1421		}
1422
1423		/* Update pseudo-header checksum. */
1424		tcpsum = tcpcs;
1425		tcpsum += htons(hdrlen - ckinfo[1].ck_start + now);
1426
1427		/* Update TCP/UDP headers. */
1428		if (tcp) {
1429			/* Update sequence number and FIN/PUSH flags. */
1430			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1431			    htonl(tcpseq + paylen - left);
1432			if (now < left) {
1433				hdr[ckinfo[1].ck_start + 13] &=
1434				    ~(TH_FIN | TH_PUSH);
1435			}
1436		} else {
1437			/* Update payload length. */
1438			*(uint32_t *)&hdr[ckinfo[1].ck_start + 4] =
1439			    hdrlen - ckinfo[1].ck_start + now;
1440		}
1441
1442		/* Calculate checksums and transmit. */
1443		if (ckinfo[0].ck_valid) {
1444			*(uint16_t *)&hdr[ckinfo[0].ck_off] = ipcs;
1445			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[0]);
1446		}
1447		if (ckinfo[1].ck_valid) {
1448			*(uint16_t *)&hdr[ckinfo[1].ck_off] =
1449			    e82545_carry(tcpsum);
1450			e82545_transmit_checksum(tiov, tiovcnt, &ckinfo[1]);
1451		}
1452		e82545_transmit_backend(sc, tiov, tiovcnt);
1453	}
1454
1455done:
1456	head = (head + 1) % dsize;
1457	e82545_transmit_done(sc, ohead, head, dsize, tdwb);
1458
1459	*rhead = head;
1460	return (desc + 1);
1461}
1462
1463static void
1464e82545_tx_run(struct e82545_softc *sc)
1465{
1466	uint32_t cause;
1467	uint16_t head, rhead, tail, size;
1468	int lim, tdwb, sent;
1469
1470	size = sc->esc_TDLEN / 16;
1471	if (size == 0)
1472		return;
1473
1474	head = sc->esc_TDH % size;
1475	tail = sc->esc_TDT % size;
1476	DPRINTF("tx_run: head %x, rhead %x, tail %x",
1477	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1478
1479	pthread_mutex_unlock(&sc->esc_mtx);
1480	rhead = head;
1481	tdwb = 0;
1482	for (lim = size / 4; sc->esc_tx_enabled && lim > 0; lim -= sent) {
1483		sent = e82545_transmit(sc, head, tail, size, &rhead, &tdwb);
1484		if (sent == 0)
1485			break;
1486		head = rhead;
1487	}
1488	pthread_mutex_lock(&sc->esc_mtx);
1489
1490	sc->esc_TDH = head;
1491	sc->esc_TDHr = rhead;
1492	cause = 0;
1493	if (tdwb)
1494		cause |= E1000_ICR_TXDW;
1495	if (lim != size / 4 && sc->esc_TDH == sc->esc_TDT)
1496		cause |= E1000_ICR_TXQE;
1497	if (cause)
1498		e82545_icr_assert(sc, cause);
1499
1500	DPRINTF("tx_run done: head %x, rhead %x, tail %x",
1501	    sc->esc_TDH, sc->esc_TDHr, sc->esc_TDT);
1502}
1503
1504static _Noreturn void *
1505e82545_tx_thread(void *param)
1506{
1507	struct e82545_softc *sc = param;
1508
1509	pthread_mutex_lock(&sc->esc_mtx);
1510	for (;;) {
1511		while (!sc->esc_tx_enabled || sc->esc_TDHr == sc->esc_TDT) {
1512			if (sc->esc_tx_enabled && sc->esc_TDHr != sc->esc_TDT)
1513				break;
1514			sc->esc_tx_active = 0;
1515			if (sc->esc_tx_enabled == 0)
1516				pthread_cond_signal(&sc->esc_tx_cond);
1517			pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1518		}
1519		sc->esc_tx_active = 1;
1520
1521		/* Process some tx descriptors.  Lock dropped inside. */
1522		e82545_tx_run(sc);
1523	}
1524}
1525
1526static void
1527e82545_tx_start(struct e82545_softc *sc)
1528{
1529
1530	if (sc->esc_tx_active == 0)
1531		pthread_cond_signal(&sc->esc_tx_cond);
1532}
1533
1534static void
1535e82545_tx_enable(struct e82545_softc *sc)
1536{
1537
1538	sc->esc_tx_enabled = 1;
1539}
1540
1541static void
1542e82545_tx_disable(struct e82545_softc *sc)
1543{
1544
1545	sc->esc_tx_enabled = 0;
1546	while (sc->esc_tx_active)
1547		pthread_cond_wait(&sc->esc_tx_cond, &sc->esc_mtx);
1548}
1549
1550static void
1551e82545_rx_enable(struct e82545_softc *sc)
1552{
1553
1554	sc->esc_rx_enabled = 1;
1555}
1556
1557static void
1558e82545_rx_disable(struct e82545_softc *sc)
1559{
1560
1561	sc->esc_rx_enabled = 0;
1562	while (sc->esc_rx_active)
1563		pthread_cond_wait(&sc->esc_rx_cond, &sc->esc_mtx);
1564}
1565
1566static void
1567e82545_write_ra(struct e82545_softc *sc, int reg, uint32_t wval)
1568{
1569	struct eth_uni *eu;
1570	int idx;
1571
1572	idx = reg >> 1;
1573	assert(idx < 15);
1574
1575	eu = &sc->esc_uni[idx];
1576
1577	if (reg & 0x1) {
1578		/* RAH */
1579		eu->eu_valid = ((wval & E1000_RAH_AV) == E1000_RAH_AV);
1580		eu->eu_addrsel = (wval >> 16) & 0x3;
1581		eu->eu_eth.octet[5] = wval >> 8;
1582		eu->eu_eth.octet[4] = wval;
1583	} else {
1584		/* RAL */
1585		eu->eu_eth.octet[3] = wval >> 24;
1586		eu->eu_eth.octet[2] = wval >> 16;
1587		eu->eu_eth.octet[1] = wval >> 8;
1588		eu->eu_eth.octet[0] = wval;
1589	}
1590}
1591
1592static uint32_t
1593e82545_read_ra(struct e82545_softc *sc, int reg)
1594{
1595	struct eth_uni *eu;
1596	uint32_t retval;
1597	int idx;
1598
1599	idx = reg >> 1;
1600	assert(idx < 15);
1601
1602	eu = &sc->esc_uni[idx];
1603
1604	if (reg & 0x1) {
1605		/* RAH */
1606		retval = (eu->eu_valid << 31) |
1607			 (eu->eu_addrsel << 16) |
1608			 (eu->eu_eth.octet[5] << 8) |
1609			 eu->eu_eth.octet[4];
1610	} else {
1611		/* RAL */
1612		retval = (eu->eu_eth.octet[3] << 24) |
1613			 (eu->eu_eth.octet[2] << 16) |
1614			 (eu->eu_eth.octet[1] << 8) |
1615			 eu->eu_eth.octet[0];
1616	}
1617
1618	return (retval);
1619}
1620
1621static void
1622e82545_write_register(struct e82545_softc *sc, uint32_t offset, uint32_t value)
1623{
1624	int ridx;
1625
1626	if (offset & 0x3) {
1627		DPRINTF("Unaligned register write offset:0x%x value:0x%x", offset, value);
1628		return;
1629	}
1630	DPRINTF("Register write: 0x%x value: 0x%x", offset, value);
1631
1632	switch (offset) {
1633	case E1000_CTRL:
1634	case E1000_CTRL_DUP:
1635		e82545_devctl(sc, value);
1636		break;
1637	case E1000_FCAL:
1638		sc->esc_FCAL = value;
1639		break;
1640	case E1000_FCAH:
1641		sc->esc_FCAH = value & ~0xFFFF0000;
1642		break;
1643	case E1000_FCT:
1644		sc->esc_FCT = value & ~0xFFFF0000;
1645		break;
1646	case E1000_VET:
1647		sc->esc_VET = value & ~0xFFFF0000;
1648		break;
1649	case E1000_FCTTV:
1650		sc->esc_FCTTV = value & ~0xFFFF0000;
1651		break;
1652	case E1000_LEDCTL:
1653		sc->esc_LEDCTL = value & ~0x30303000;
1654		break;
1655	case E1000_PBA:
1656		sc->esc_PBA = value & 0x0000FF80;
1657		break;
1658	case E1000_ICR:
1659	case E1000_ITR:
1660	case E1000_ICS:
1661	case E1000_IMS:
1662	case E1000_IMC:
1663		e82545_intr_write(sc, offset, value);
1664		break;
1665	case E1000_RCTL:
1666		e82545_rx_ctl(sc, value);
1667		break;
1668	case E1000_FCRTL:
1669		sc->esc_FCRTL = value & ~0xFFFF0007;
1670		break;
1671	case E1000_FCRTH:
1672		sc->esc_FCRTH = value & ~0xFFFF0007;
1673		break;
1674	case E1000_RDBAL(0):
1675		sc->esc_RDBAL = value & ~0xF;
1676		if (sc->esc_rx_enabled) {
1677			/* Apparently legal: update cached address */
1678			e82545_rx_update_rdba(sc);
1679		}
1680		break;
1681	case E1000_RDBAH(0):
1682		assert(!sc->esc_rx_enabled);
1683		sc->esc_RDBAH = value;
1684		break;
1685	case E1000_RDLEN(0):
1686		assert(!sc->esc_rx_enabled);
1687		sc->esc_RDLEN = value & ~0xFFF0007F;
1688		break;
1689	case E1000_RDH(0):
1690		/* XXX should only ever be zero ? Range check ? */
1691		sc->esc_RDH = value;
1692		break;
1693	case E1000_RDT(0):
1694		/* XXX if this opens up the rx ring, do something ? */
1695		sc->esc_RDT = value;
1696		break;
1697	case E1000_RDTR:
1698		/* ignore FPD bit 31 */
1699		sc->esc_RDTR = value & ~0xFFFF0000;
1700		break;
1701	case E1000_RXDCTL(0):
1702		sc->esc_RXDCTL = value & ~0xFEC0C0C0;
1703		break;
1704	case E1000_RADV:
1705		sc->esc_RADV = value & ~0xFFFF0000;
1706		break;
1707	case E1000_RSRPD:
1708		sc->esc_RSRPD = value & ~0xFFFFF000;
1709		break;
1710	case E1000_RXCSUM:
1711		sc->esc_RXCSUM = value & ~0xFFFFF800;
1712		break;
1713	case E1000_TXCW:
1714		sc->esc_TXCW = value & ~0x3FFF0000;
1715		break;
1716	case E1000_TCTL:
1717		e82545_tx_ctl(sc, value);
1718		break;
1719	case E1000_TIPG:
1720		sc->esc_TIPG = value;
1721		break;
1722	case E1000_AIT:
1723		sc->esc_AIT = value;
1724		break;
1725	case E1000_TDBAL(0):
1726		sc->esc_TDBAL = value & ~0xF;
1727		if (sc->esc_tx_enabled)
1728			e82545_tx_update_tdba(sc);
1729		break;
1730	case E1000_TDBAH(0):
1731		sc->esc_TDBAH = value;
1732		if (sc->esc_tx_enabled)
1733			e82545_tx_update_tdba(sc);
1734		break;
1735	case E1000_TDLEN(0):
1736		sc->esc_TDLEN = value & ~0xFFF0007F;
1737		if (sc->esc_tx_enabled)
1738			e82545_tx_update_tdba(sc);
1739		break;
1740	case E1000_TDH(0):
1741		if (sc->esc_tx_enabled) {
1742			WPRINTF("ignoring write to TDH while transmit enabled");
1743			break;
1744		}
1745		if (value != 0) {
1746			WPRINTF("ignoring non-zero value written to TDH");
1747			break;
1748		}
1749		sc->esc_TDHr = sc->esc_TDH = value;
1750		break;
1751	case E1000_TDT(0):
1752		sc->esc_TDT = value;
1753		if (sc->esc_tx_enabled)
1754			e82545_tx_start(sc);
1755		break;
1756	case E1000_TIDV:
1757		sc->esc_TIDV = value & ~0xFFFF0000;
1758		break;
1759	case E1000_TXDCTL(0):
1760		//assert(!sc->esc_tx_enabled);
1761		sc->esc_TXDCTL = value & ~0xC0C0C0;
1762		break;
1763	case E1000_TADV:
1764		sc->esc_TADV = value & ~0xFFFF0000;
1765		break;
1766	case E1000_RAL(0) ... E1000_RAH(15):
1767		/* convert to u32 offset */
1768		ridx = (offset - E1000_RAL(0)) >> 2;
1769		e82545_write_ra(sc, ridx, value);
1770		break;
1771	case E1000_MTA ... (E1000_MTA + (127*4)):
1772		sc->esc_fmcast[(offset - E1000_MTA) >> 2] = value;
1773		break;
1774	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1775		sc->esc_fvlan[(offset - E1000_VFTA) >> 2] = value;
1776		break;
1777	case E1000_EECD:
1778	{
1779		//DPRINTF("EECD write 0x%x -> 0x%x", sc->eeprom_control, value);
1780		/* edge triggered low->high */
1781		uint32_t eecd_strobe = ((sc->eeprom_control & E1000_EECD_SK) ?
1782			0 : (value & E1000_EECD_SK));
1783		uint32_t eecd_mask = (E1000_EECD_SK|E1000_EECD_CS|
1784					E1000_EECD_DI|E1000_EECD_REQ);
1785		sc->eeprom_control &= ~eecd_mask;
1786		sc->eeprom_control |= (value & eecd_mask);
1787		/* grant/revoke immediately */
1788		if (value & E1000_EECD_REQ) {
1789			sc->eeprom_control |= E1000_EECD_GNT;
1790		} else {
1791                        sc->eeprom_control &= ~E1000_EECD_GNT;
1792		}
1793		if (eecd_strobe && (sc->eeprom_control & E1000_EECD_CS)) {
1794			e82545_eecd_strobe(sc);
1795		}
1796		return;
1797	}
1798	case E1000_MDIC:
1799	{
1800		uint8_t reg_addr = (uint8_t)((value & E1000_MDIC_REG_MASK) >>
1801						E1000_MDIC_REG_SHIFT);
1802		uint8_t phy_addr = (uint8_t)((value & E1000_MDIC_PHY_MASK) >>
1803						E1000_MDIC_PHY_SHIFT);
1804		sc->mdi_control =
1805			(value & ~(E1000_MDIC_ERROR|E1000_MDIC_DEST));
1806		if ((value & E1000_MDIC_READY) != 0) {
1807			DPRINTF("Incorrect MDIC ready bit: 0x%x", value);
1808			return;
1809		}
1810		switch (value & E82545_MDIC_OP_MASK) {
1811		case E1000_MDIC_OP_READ:
1812			sc->mdi_control &= ~E82545_MDIC_DATA_MASK;
1813			sc->mdi_control |= e82545_read_mdi(sc, reg_addr, phy_addr);
1814			break;
1815		case E1000_MDIC_OP_WRITE:
1816			e82545_write_mdi(sc, reg_addr, phy_addr,
1817				value & E82545_MDIC_DATA_MASK);
1818			break;
1819		default:
1820			DPRINTF("Unknown MDIC op: 0x%x", value);
1821			return;
1822		}
1823		/* TODO: barrier? */
1824		sc->mdi_control |= E1000_MDIC_READY;
1825		if (value & E82545_MDIC_IE) {
1826			// TODO: generate interrupt
1827		}
1828		return;
1829	}
1830	case E1000_MANC:
1831	case E1000_STATUS:
1832		return;
1833	default:
1834		DPRINTF("Unknown write register: 0x%x value:%x", offset, value);
1835		return;
1836	}
1837}
1838
1839static uint32_t
1840e82545_read_register(struct e82545_softc *sc, uint32_t offset)
1841{
1842	uint32_t retval;
1843	int ridx;
1844
1845	if (offset & 0x3) {
1846		DPRINTF("Unaligned register read offset:0x%x", offset);
1847		return 0;
1848	}
1849
1850	DPRINTF("Register read: 0x%x", offset);
1851
1852	switch (offset) {
1853	case E1000_CTRL:
1854		retval = sc->esc_CTRL;
1855		break;
1856	case E1000_STATUS:
1857		retval = E1000_STATUS_FD | E1000_STATUS_LU |
1858		    E1000_STATUS_SPEED_1000;
1859		break;
1860	case E1000_FCAL:
1861		retval = sc->esc_FCAL;
1862		break;
1863	case E1000_FCAH:
1864		retval = sc->esc_FCAH;
1865		break;
1866	case E1000_FCT:
1867		retval = sc->esc_FCT;
1868		break;
1869	case E1000_VET:
1870		retval = sc->esc_VET;
1871		break;
1872	case E1000_FCTTV:
1873		retval = sc->esc_FCTTV;
1874		break;
1875	case E1000_LEDCTL:
1876		retval = sc->esc_LEDCTL;
1877		break;
1878	case E1000_PBA:
1879		retval = sc->esc_PBA;
1880		break;
1881	case E1000_ICR:
1882	case E1000_ITR:
1883	case E1000_ICS:
1884	case E1000_IMS:
1885	case E1000_IMC:
1886		retval = e82545_intr_read(sc, offset);
1887		break;
1888	case E1000_RCTL:
1889		retval = sc->esc_RCTL;
1890		break;
1891	case E1000_FCRTL:
1892		retval = sc->esc_FCRTL;
1893		break;
1894	case E1000_FCRTH:
1895		retval = sc->esc_FCRTH;
1896		break;
1897	case E1000_RDBAL(0):
1898		retval = sc->esc_RDBAL;
1899		break;
1900	case E1000_RDBAH(0):
1901		retval = sc->esc_RDBAH;
1902		break;
1903	case E1000_RDLEN(0):
1904		retval = sc->esc_RDLEN;
1905		break;
1906	case E1000_RDH(0):
1907		retval = sc->esc_RDH;
1908		break;
1909	case E1000_RDT(0):
1910		retval = sc->esc_RDT;
1911		break;
1912	case E1000_RDTR:
1913		retval = sc->esc_RDTR;
1914		break;
1915	case E1000_RXDCTL(0):
1916		retval = sc->esc_RXDCTL;
1917		break;
1918	case E1000_RADV:
1919		retval = sc->esc_RADV;
1920		break;
1921	case E1000_RSRPD:
1922		retval = sc->esc_RSRPD;
1923		break;
1924	case E1000_RXCSUM:
1925		retval = sc->esc_RXCSUM;
1926		break;
1927	case E1000_TXCW:
1928		retval = sc->esc_TXCW;
1929		break;
1930	case E1000_TCTL:
1931		retval = sc->esc_TCTL;
1932		break;
1933	case E1000_TIPG:
1934		retval = sc->esc_TIPG;
1935		break;
1936	case E1000_AIT:
1937		retval = sc->esc_AIT;
1938		break;
1939	case E1000_TDBAL(0):
1940		retval = sc->esc_TDBAL;
1941		break;
1942	case E1000_TDBAH(0):
1943		retval = sc->esc_TDBAH;
1944		break;
1945	case E1000_TDLEN(0):
1946		retval = sc->esc_TDLEN;
1947		break;
1948	case E1000_TDH(0):
1949		retval = sc->esc_TDH;
1950		break;
1951	case E1000_TDT(0):
1952		retval = sc->esc_TDT;
1953		break;
1954	case E1000_TIDV:
1955		retval = sc->esc_TIDV;
1956		break;
1957	case E1000_TXDCTL(0):
1958		retval = sc->esc_TXDCTL;
1959		break;
1960	case E1000_TADV:
1961		retval = sc->esc_TADV;
1962		break;
1963	case E1000_RAL(0) ... E1000_RAH(15):
1964		/* convert to u32 offset */
1965		ridx = (offset - E1000_RAL(0)) >> 2;
1966		retval = e82545_read_ra(sc, ridx);
1967		break;
1968	case E1000_MTA ... (E1000_MTA + (127*4)):
1969		retval = sc->esc_fmcast[(offset - E1000_MTA) >> 2];
1970		break;
1971	case E1000_VFTA ... (E1000_VFTA + (127*4)):
1972		retval = sc->esc_fvlan[(offset - E1000_VFTA) >> 2];
1973		break;
1974	case E1000_EECD:
1975		//DPRINTF("EECD read %x", sc->eeprom_control);
1976		retval = sc->eeprom_control;
1977		break;
1978	case E1000_MDIC:
1979		retval = sc->mdi_control;
1980		break;
1981	case E1000_MANC:
1982		retval = 0;
1983		break;
1984	/* stats that we emulate. */
1985	case E1000_MPC:
1986		retval = sc->missed_pkt_count;
1987		break;
1988	case E1000_PRC64:
1989		retval = sc->pkt_rx_by_size[0];
1990		break;
1991	case E1000_PRC127:
1992		retval = sc->pkt_rx_by_size[1];
1993		break;
1994	case E1000_PRC255:
1995		retval = sc->pkt_rx_by_size[2];
1996		break;
1997	case E1000_PRC511:
1998		retval = sc->pkt_rx_by_size[3];
1999		break;
2000	case E1000_PRC1023:
2001		retval = sc->pkt_rx_by_size[4];
2002		break;
2003	case E1000_PRC1522:
2004		retval = sc->pkt_rx_by_size[5];
2005		break;
2006	case E1000_GPRC:
2007		retval = sc->good_pkt_rx_count;
2008		break;
2009	case E1000_BPRC:
2010		retval = sc->bcast_pkt_rx_count;
2011		break;
2012	case E1000_MPRC:
2013		retval = sc->mcast_pkt_rx_count;
2014		break;
2015	case E1000_GPTC:
2016	case E1000_TPT:
2017		retval = sc->good_pkt_tx_count;
2018		break;
2019	case E1000_GORCL:
2020		retval = (uint32_t)sc->good_octets_rx;
2021		break;
2022	case E1000_GORCH:
2023		retval = (uint32_t)(sc->good_octets_rx >> 32);
2024		break;
2025	case E1000_TOTL:
2026	case E1000_GOTCL:
2027		retval = (uint32_t)sc->good_octets_tx;
2028		break;
2029	case E1000_TOTH:
2030	case E1000_GOTCH:
2031		retval = (uint32_t)(sc->good_octets_tx >> 32);
2032		break;
2033	case E1000_ROC:
2034		retval = sc->oversize_rx_count;
2035		break;
2036	case E1000_TORL:
2037		retval = (uint32_t)(sc->good_octets_rx + sc->missed_octets);
2038		break;
2039	case E1000_TORH:
2040		retval = (uint32_t)((sc->good_octets_rx +
2041		    sc->missed_octets) >> 32);
2042		break;
2043	case E1000_TPR:
2044		retval = sc->good_pkt_rx_count + sc->missed_pkt_count +
2045		    sc->oversize_rx_count;
2046		break;
2047	case E1000_PTC64:
2048		retval = sc->pkt_tx_by_size[0];
2049		break;
2050	case E1000_PTC127:
2051		retval = sc->pkt_tx_by_size[1];
2052		break;
2053	case E1000_PTC255:
2054		retval = sc->pkt_tx_by_size[2];
2055		break;
2056	case E1000_PTC511:
2057		retval = sc->pkt_tx_by_size[3];
2058		break;
2059	case E1000_PTC1023:
2060		retval = sc->pkt_tx_by_size[4];
2061		break;
2062	case E1000_PTC1522:
2063		retval = sc->pkt_tx_by_size[5];
2064		break;
2065	case E1000_MPTC:
2066		retval = sc->mcast_pkt_tx_count;
2067		break;
2068	case E1000_BPTC:
2069		retval = sc->bcast_pkt_tx_count;
2070		break;
2071	case E1000_TSCTC:
2072		retval = sc->tso_tx_count;
2073		break;
2074	/* stats that are always 0. */
2075	case E1000_CRCERRS:
2076	case E1000_ALGNERRC:
2077	case E1000_SYMERRS:
2078	case E1000_RXERRC:
2079	case E1000_SCC:
2080	case E1000_ECOL:
2081	case E1000_MCC:
2082	case E1000_LATECOL:
2083	case E1000_COLC:
2084	case E1000_DC:
2085	case E1000_TNCRS:
2086	case E1000_SEC:
2087	case E1000_CEXTERR:
2088	case E1000_RLEC:
2089	case E1000_XONRXC:
2090	case E1000_XONTXC:
2091	case E1000_XOFFRXC:
2092	case E1000_XOFFTXC:
2093	case E1000_FCRUC:
2094	case E1000_RNBC:
2095	case E1000_RUC:
2096	case E1000_RFC:
2097	case E1000_RJC:
2098	case E1000_MGTPRC:
2099	case E1000_MGTPDC:
2100	case E1000_MGTPTC:
2101	case E1000_TSCTFC:
2102		retval = 0;
2103		break;
2104	default:
2105		DPRINTF("Unknown read register: 0x%x", offset);
2106		retval = 0;
2107		break;
2108	}
2109
2110	return (retval);
2111}
2112
2113static void
2114e82545_write(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
2115    uint64_t value)
2116{
2117	struct e82545_softc *sc;
2118
2119	//DPRINTF("Write bar:%d offset:0x%lx value:0x%lx size:%d", baridx, offset, value, size);
2120
2121	sc = pi->pi_arg;
2122
2123	pthread_mutex_lock(&sc->esc_mtx);
2124
2125	switch (baridx) {
2126	case E82545_BAR_IO:
2127		switch (offset) {
2128		case E82545_IOADDR:
2129			if (size != 4) {
2130				DPRINTF("Wrong io addr write sz:%d value:0x%lx", size, value);
2131			} else
2132				sc->io_addr = (uint32_t)value;
2133			break;
2134		case E82545_IODATA:
2135			if (size != 4) {
2136				DPRINTF("Wrong io data write size:%d value:0x%lx", size, value);
2137			} else if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2138				DPRINTF("Non-register io write addr:0x%x value:0x%lx", sc->io_addr, value);
2139			} else
2140				e82545_write_register(sc, sc->io_addr,
2141						      (uint32_t)value);
2142			break;
2143		default:
2144			DPRINTF("Unknown io bar write offset:0x%lx value:0x%lx size:%d", offset, value, size);
2145			break;
2146		}
2147		break;
2148	case E82545_BAR_REGISTER:
2149		if (size != 4) {
2150			DPRINTF("Wrong register write size:%d offset:0x%lx value:0x%lx", size, offset, value);
2151		} else
2152			e82545_write_register(sc, (uint32_t)offset,
2153					      (uint32_t)value);
2154		break;
2155	default:
2156		DPRINTF("Unknown write bar:%d off:0x%lx val:0x%lx size:%d",
2157			baridx, offset, value, size);
2158	}
2159
2160	pthread_mutex_unlock(&sc->esc_mtx);
2161}
2162
2163static uint64_t
2164e82545_read(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
2165{
2166	struct e82545_softc *sc;
2167	uint64_t retval;
2168
2169	//DPRINTF("Read  bar:%d offset:0x%lx size:%d", baridx, offset, size);
2170	sc = pi->pi_arg;
2171	retval = 0;
2172
2173	pthread_mutex_lock(&sc->esc_mtx);
2174
2175	switch (baridx) {
2176	case E82545_BAR_IO:
2177		switch (offset) {
2178		case E82545_IOADDR:
2179			if (size != 4) {
2180				DPRINTF("Wrong io addr read sz:%d", size);
2181			} else
2182				retval = sc->io_addr;
2183			break;
2184		case E82545_IODATA:
2185			if (size != 4) {
2186				DPRINTF("Wrong io data read sz:%d", size);
2187			}
2188			if (sc->io_addr > E82545_IO_REGISTER_MAX) {
2189				DPRINTF("Non-register io read addr:0x%x",
2190					sc->io_addr);
2191			} else
2192				retval = e82545_read_register(sc, sc->io_addr);
2193			break;
2194		default:
2195			DPRINTF("Unknown io bar read offset:0x%lx size:%d",
2196				offset, size);
2197			break;
2198		}
2199		break;
2200	case E82545_BAR_REGISTER:
2201		if (size != 4) {
2202			DPRINTF("Wrong register read size:%d offset:0x%lx",
2203				size, offset);
2204		} else
2205			retval = e82545_read_register(sc, (uint32_t)offset);
2206		break;
2207	default:
2208		DPRINTF("Unknown read bar:%d offset:0x%lx size:%d",
2209			baridx, offset, size);
2210		break;
2211	}
2212
2213	pthread_mutex_unlock(&sc->esc_mtx);
2214
2215	return (retval);
2216}
2217
2218static void
2219e82545_reset(struct e82545_softc *sc, int drvr)
2220{
2221	int i;
2222
2223	e82545_rx_disable(sc);
2224	e82545_tx_disable(sc);
2225
2226	/* clear outstanding interrupts */
2227	if (sc->esc_irq_asserted)
2228		pci_lintr_deassert(sc->esc_pi);
2229
2230	/* misc */
2231	if (!drvr) {
2232		sc->esc_FCAL = 0;
2233		sc->esc_FCAH = 0;
2234		sc->esc_FCT = 0;
2235		sc->esc_VET = 0;
2236		sc->esc_FCTTV = 0;
2237	}
2238	sc->esc_LEDCTL = 0x07061302;
2239	sc->esc_PBA = 0x00100030;
2240
2241	/* start nvm in opcode mode. */
2242	sc->nvm_opaddr = 0;
2243	sc->nvm_mode = E82545_NVM_MODE_OPADDR;
2244	sc->nvm_bits = E82545_NVM_OPADDR_BITS;
2245	sc->eeprom_control = E1000_EECD_PRES | E82545_EECD_FWE_EN;
2246	e82545_init_eeprom(sc);
2247
2248	/* interrupt */
2249	sc->esc_ICR = 0;
2250	sc->esc_ITR = 250;
2251	sc->esc_ICS = 0;
2252	sc->esc_IMS = 0;
2253	sc->esc_IMC = 0;
2254
2255	/* L2 filters */
2256	if (!drvr) {
2257		memset(sc->esc_fvlan, 0, sizeof(sc->esc_fvlan));
2258		memset(sc->esc_fmcast, 0, sizeof(sc->esc_fmcast));
2259		memset(sc->esc_uni, 0, sizeof(sc->esc_uni));
2260
2261		/* XXX not necessary on 82545 ?? */
2262		sc->esc_uni[0].eu_valid = 1;
2263		memcpy(sc->esc_uni[0].eu_eth.octet, sc->esc_mac.octet,
2264		    ETHER_ADDR_LEN);
2265	} else {
2266		/* Clear RAH valid bits */
2267		for (i = 0; i < 16; i++)
2268			sc->esc_uni[i].eu_valid = 0;
2269	}
2270
2271	/* receive */
2272	if (!drvr) {
2273		sc->esc_RDBAL = 0;
2274		sc->esc_RDBAH = 0;
2275	}
2276	sc->esc_RCTL = 0;
2277	sc->esc_FCRTL = 0;
2278	sc->esc_FCRTH = 0;
2279	sc->esc_RDLEN = 0;
2280	sc->esc_RDH = 0;
2281	sc->esc_RDT = 0;
2282	sc->esc_RDTR = 0;
2283	sc->esc_RXDCTL = (1 << 24) | (1 << 16); /* default GRAN/WTHRESH */
2284	sc->esc_RADV = 0;
2285	sc->esc_RXCSUM = 0;
2286
2287	/* transmit */
2288	if (!drvr) {
2289		sc->esc_TDBAL = 0;
2290		sc->esc_TDBAH = 0;
2291		sc->esc_TIPG = 0;
2292		sc->esc_AIT = 0;
2293		sc->esc_TIDV = 0;
2294		sc->esc_TADV = 0;
2295	}
2296	sc->esc_tdba = 0;
2297	sc->esc_txdesc = NULL;
2298	sc->esc_TXCW = 0;
2299	sc->esc_TCTL = 0;
2300	sc->esc_TDLEN = 0;
2301	sc->esc_TDT = 0;
2302	sc->esc_TDHr = sc->esc_TDH = 0;
2303	sc->esc_TXDCTL = 0;
2304}
2305
2306static int
2307e82545_init(struct pci_devinst *pi, nvlist_t *nvl)
2308{
2309	char nstr[80];
2310	struct e82545_softc *sc;
2311	const char *mac;
2312	int err;
2313
2314	/* Setup our softc */
2315	sc = calloc(1, sizeof(*sc));
2316
2317	pi->pi_arg = sc;
2318	sc->esc_pi = pi;
2319	sc->esc_ctx = pi->pi_vmctx;
2320
2321	pthread_mutex_init(&sc->esc_mtx, NULL);
2322	pthread_cond_init(&sc->esc_rx_cond, NULL);
2323	pthread_cond_init(&sc->esc_tx_cond, NULL);
2324	pthread_create(&sc->esc_tx_tid, NULL, e82545_tx_thread, sc);
2325	snprintf(nstr, sizeof(nstr), "e82545-%d:%d tx", pi->pi_slot,
2326	    pi->pi_func);
2327        pthread_set_name_np(sc->esc_tx_tid, nstr);
2328
2329	pci_set_cfgdata16(pi, PCIR_DEVICE, E82545_DEV_ID_82545EM_COPPER);
2330	pci_set_cfgdata16(pi, PCIR_VENDOR, E82545_VENDOR_ID_INTEL);
2331	pci_set_cfgdata8(pi,  PCIR_CLASS, PCIC_NETWORK);
2332	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_NETWORK_ETHERNET);
2333	pci_set_cfgdata16(pi, PCIR_SUBDEV_0, E82545_SUBDEV_ID);
2334	pci_set_cfgdata16(pi, PCIR_SUBVEND_0, E82545_VENDOR_ID_INTEL);
2335
2336	pci_set_cfgdata8(pi,  PCIR_HDRTYPE, PCIM_HDRTYPE_NORMAL);
2337	pci_set_cfgdata8(pi,  PCIR_INTPIN, 0x1);
2338
2339	/* TODO: this card also supports msi, but the freebsd driver for it
2340	 * does not, so I have not implemented it. */
2341	pci_lintr_request(pi);
2342
2343	pci_emul_alloc_bar(pi, E82545_BAR_REGISTER, PCIBAR_MEM32,
2344		E82545_BAR_REGISTER_LEN);
2345	pci_emul_alloc_bar(pi, E82545_BAR_FLASH, PCIBAR_MEM32,
2346		E82545_BAR_FLASH_LEN);
2347	pci_emul_alloc_bar(pi, E82545_BAR_IO, PCIBAR_IO,
2348		E82545_BAR_IO_LEN);
2349
2350	mac = get_config_value_node(nvl, "mac");
2351	if (mac != NULL) {
2352		err = net_parsemac(mac, sc->esc_mac.octet);
2353		if (err) {
2354			free(sc);
2355			return (err);
2356		}
2357	} else
2358		net_genmac(pi, sc->esc_mac.octet);
2359
2360	err = netbe_init(&sc->esc_be, nvl, e82545_rx_callback, sc);
2361	if (err) {
2362		free(sc);
2363		return (err);
2364	}
2365
2366	netbe_rx_enable(sc->esc_be);
2367
2368	/* H/w initiated reset */
2369	e82545_reset(sc, 0);
2370
2371	return (0);
2372}
2373
2374#ifdef BHYVE_SNAPSHOT
2375static int
2376e82545_snapshot(struct vm_snapshot_meta *meta)
2377{
2378	int i;
2379	int ret;
2380	struct e82545_softc *sc;
2381	struct pci_devinst *pi;
2382	uint64_t bitmap_value;
2383
2384	pi = meta->dev_data;
2385	sc = pi->pi_arg;
2386
2387	/* esc_mevp and esc_mevpitr should be reinitiated at init. */
2388	SNAPSHOT_VAR_OR_LEAVE(sc->esc_mac, meta, ret, done);
2389
2390	/* General */
2391	SNAPSHOT_VAR_OR_LEAVE(sc->esc_CTRL, meta, ret, done);
2392	SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCAL, meta, ret, done);
2393	SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCAH, meta, ret, done);
2394	SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCT, meta, ret, done);
2395	SNAPSHOT_VAR_OR_LEAVE(sc->esc_VET, meta, ret, done);
2396	SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCTTV, meta, ret, done);
2397	SNAPSHOT_VAR_OR_LEAVE(sc->esc_LEDCTL, meta, ret, done);
2398	SNAPSHOT_VAR_OR_LEAVE(sc->esc_PBA, meta, ret, done);
2399
2400	/* Interrupt control */
2401	SNAPSHOT_VAR_OR_LEAVE(sc->esc_irq_asserted, meta, ret, done);
2402	SNAPSHOT_VAR_OR_LEAVE(sc->esc_ICR, meta, ret, done);
2403	SNAPSHOT_VAR_OR_LEAVE(sc->esc_ITR, meta, ret, done);
2404	SNAPSHOT_VAR_OR_LEAVE(sc->esc_ICS, meta, ret, done);
2405	SNAPSHOT_VAR_OR_LEAVE(sc->esc_IMS, meta, ret, done);
2406	SNAPSHOT_VAR_OR_LEAVE(sc->esc_IMC, meta, ret, done);
2407
2408	/*
2409	 * Transmit
2410	 *
2411	 * The fields in the unions are in superposition to access certain
2412	 * bytes in the larger uint variables.
2413	 * e.g., ip_config = [ipcss|ipcso|ipcse0|ipcse1]
2414	 */
2415	SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.lower_setup.ip_config, meta, ret, done);
2416	SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.upper_setup.tcp_config, meta, ret, done);
2417	SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.cmd_and_length, meta, ret, done);
2418	SNAPSHOT_VAR_OR_LEAVE(sc->esc_txctx.tcp_seg_setup.data, meta, ret, done);
2419
2420	SNAPSHOT_VAR_OR_LEAVE(sc->esc_tx_enabled, meta, ret, done);
2421	SNAPSHOT_VAR_OR_LEAVE(sc->esc_tx_active, meta, ret, done);
2422	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TXCW, meta, ret, done);
2423	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TCTL, meta, ret, done);
2424	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TIPG, meta, ret, done);
2425	SNAPSHOT_VAR_OR_LEAVE(sc->esc_AIT, meta, ret, done);
2426	SNAPSHOT_VAR_OR_LEAVE(sc->esc_tdba, meta, ret, done);
2427	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDBAL, meta, ret, done);
2428	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDBAH, meta, ret, done);
2429	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDLEN, meta, ret, done);
2430	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDH, meta, ret, done);
2431	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDHr, meta, ret, done);
2432	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TDT, meta, ret, done);
2433	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TIDV, meta, ret, done);
2434	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TXDCTL, meta, ret, done);
2435	SNAPSHOT_VAR_OR_LEAVE(sc->esc_TADV, meta, ret, done);
2436
2437	/* Has dependency on esc_TDLEN; reoreder of fields from struct. */
2438	SNAPSHOT_GUEST2HOST_ADDR_OR_LEAVE(pi->pi_vmctx, sc->esc_txdesc,
2439	    sc->esc_TDLEN, true, meta, ret, done);
2440
2441	/* L2 frame acceptance */
2442	for (i = 0; i < (int)nitems(sc->esc_uni); i++) {
2443		SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_valid, meta, ret, done);
2444		SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_addrsel, meta, ret, done);
2445		SNAPSHOT_VAR_OR_LEAVE(sc->esc_uni[i].eu_eth, meta, ret, done);
2446	}
2447
2448	SNAPSHOT_BUF_OR_LEAVE(sc->esc_fmcast, sizeof(sc->esc_fmcast),
2449			      meta, ret, done);
2450	SNAPSHOT_BUF_OR_LEAVE(sc->esc_fvlan, sizeof(sc->esc_fvlan),
2451			      meta, ret, done);
2452
2453	/* Receive */
2454	SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_enabled, meta, ret, done);
2455	SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_active, meta, ret, done);
2456	SNAPSHOT_VAR_OR_LEAVE(sc->esc_rx_loopback, meta, ret, done);
2457	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RCTL, meta, ret, done);
2458	SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCRTL, meta, ret, done);
2459	SNAPSHOT_VAR_OR_LEAVE(sc->esc_FCRTH, meta, ret, done);
2460	SNAPSHOT_VAR_OR_LEAVE(sc->esc_rdba, meta, ret, done);
2461	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDBAL, meta, ret, done);
2462	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDBAH, meta, ret, done);
2463	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDLEN, meta, ret, done);
2464	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDH, meta, ret, done);
2465	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDT, meta, ret, done);
2466	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RDTR, meta, ret, done);
2467	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RXDCTL, meta, ret, done);
2468	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RADV, meta, ret, done);
2469	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RSRPD, meta, ret, done);
2470	SNAPSHOT_VAR_OR_LEAVE(sc->esc_RXCSUM, meta, ret, done);
2471
2472	/* Has dependency on esc_RDLEN; reoreder of fields from struct. */
2473	SNAPSHOT_GUEST2HOST_ADDR_OR_LEAVE(pi->pi_vmctx, sc->esc_rxdesc,
2474	    sc->esc_TDLEN, true, meta, ret, done);
2475
2476	/* IO Port register access */
2477	SNAPSHOT_VAR_OR_LEAVE(sc->io_addr, meta, ret, done);
2478
2479	/* Shadow copy of MDIC */
2480	SNAPSHOT_VAR_OR_LEAVE(sc->mdi_control, meta, ret, done);
2481
2482	/* Shadow copy of EECD */
2483	SNAPSHOT_VAR_OR_LEAVE(sc->eeprom_control, meta, ret, done);
2484
2485	/* Latest NVM in/out */
2486	SNAPSHOT_VAR_OR_LEAVE(sc->nvm_data, meta, ret, done);
2487	SNAPSHOT_VAR_OR_LEAVE(sc->nvm_opaddr, meta, ret, done);
2488
2489	/* Stats */
2490	SNAPSHOT_VAR_OR_LEAVE(sc->missed_pkt_count, meta, ret, done);
2491	SNAPSHOT_BUF_OR_LEAVE(sc->pkt_rx_by_size, sizeof(sc->pkt_rx_by_size),
2492			      meta, ret, done);
2493	SNAPSHOT_BUF_OR_LEAVE(sc->pkt_tx_by_size, sizeof(sc->pkt_tx_by_size),
2494			      meta, ret, done);
2495	SNAPSHOT_VAR_OR_LEAVE(sc->good_pkt_rx_count, meta, ret, done);
2496	SNAPSHOT_VAR_OR_LEAVE(sc->bcast_pkt_rx_count, meta, ret, done);
2497	SNAPSHOT_VAR_OR_LEAVE(sc->mcast_pkt_rx_count, meta, ret, done);
2498	SNAPSHOT_VAR_OR_LEAVE(sc->good_pkt_tx_count, meta, ret, done);
2499	SNAPSHOT_VAR_OR_LEAVE(sc->bcast_pkt_tx_count, meta, ret, done);
2500	SNAPSHOT_VAR_OR_LEAVE(sc->mcast_pkt_tx_count, meta, ret, done);
2501	SNAPSHOT_VAR_OR_LEAVE(sc->oversize_rx_count, meta, ret, done);
2502	SNAPSHOT_VAR_OR_LEAVE(sc->tso_tx_count, meta, ret, done);
2503	SNAPSHOT_VAR_OR_LEAVE(sc->good_octets_rx, meta, ret, done);
2504	SNAPSHOT_VAR_OR_LEAVE(sc->good_octets_tx, meta, ret, done);
2505	SNAPSHOT_VAR_OR_LEAVE(sc->missed_octets, meta, ret, done);
2506
2507	if (meta->op == VM_SNAPSHOT_SAVE)
2508		bitmap_value = sc->nvm_bits;
2509	SNAPSHOT_VAR_OR_LEAVE(bitmap_value, meta, ret, done);
2510	if (meta->op == VM_SNAPSHOT_RESTORE)
2511		sc->nvm_bits = bitmap_value;
2512
2513	if (meta->op == VM_SNAPSHOT_SAVE)
2514		bitmap_value = sc->nvm_bits;
2515	SNAPSHOT_VAR_OR_LEAVE(bitmap_value, meta, ret, done);
2516	if (meta->op == VM_SNAPSHOT_RESTORE)
2517		sc->nvm_bits = bitmap_value;
2518
2519	/* EEPROM data */
2520	SNAPSHOT_BUF_OR_LEAVE(sc->eeprom_data, sizeof(sc->eeprom_data),
2521			      meta, ret, done);
2522
2523done:
2524	return (ret);
2525}
2526#endif
2527
2528static const struct pci_devemu pci_de_e82545 = {
2529	.pe_emu = 	"e1000",
2530	.pe_init =	e82545_init,
2531	.pe_legacy_config = netbe_legacy_config,
2532	.pe_barwrite =	e82545_write,
2533	.pe_barread =	e82545_read,
2534#ifdef BHYVE_SNAPSHOT
2535	.pe_snapshot =	e82545_snapshot,
2536#endif
2537};
2538PCI_EMUL_SET(pci_de_e82545);
2539