1/*
2 *  This program may be freely redistributed,
3 *  but this entire comment MUST remain intact.
4 *
5 *  Copyright (c) 2018, Eitan Adler
6 *  Copyright (c) 1984, 1989, William LeFebvre, Rice University
7 *  Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University
8 */
9
10/*
11 *  This file contains various handy utilities used by top.
12 */
13
14#include "top.h"
15#include "utils.h"
16
17#include <sys/param.h>
18#include <sys/sysctl.h>
19#include <sys/user.h>
20
21#include <libutil.h>
22#include <stdlib.h>
23#include <stdio.h>
24#include <string.h>
25#include <fcntl.h>
26#include <paths.h>
27#include <kvm.h>
28
29int
30atoiwi(const char *str)
31{
32    size_t len;
33
34    len = strlen(str);
35    if (len != 0)
36    {
37	if (strncmp(str, "infinity", len) == 0 ||
38	    strncmp(str, "all",      len) == 0 ||
39	    strncmp(str, "maximum",  len) == 0)
40	{
41	    return(Infinity);
42	}
43	else if (str[0] == '-')
44	{
45	    return(Invalid);
46	}
47	else
48	{
49		return((int)strtol(str, NULL, 10));
50	}
51    }
52    return(0);
53}
54
55/*
56 *  itoa - convert integer (decimal) to ascii string for positive numbers
57 *  	   only (we don't bother with negative numbers since we know we
58 *	   don't use them).
59 */
60
61				/*
62				 * How do we know that 16 will suffice?
63				 * Because the biggest number that we will
64				 * ever convert will be 2^32-1, which is 10
65				 * digits.
66				 */
67_Static_assert(sizeof(int) <= 4, "buffer too small for this sized int");
68
69char *
70itoa(unsigned int val)
71{
72    static char buffer[16];	/* result is built here */
73    				/* 16 is sufficient since the largest number
74				   we will ever convert will be 2^32-1,
75				   which is 10 digits. */
76
77	sprintf(buffer, "%u", val);
78    return (buffer);
79}
80
81/*
82 *  itoa7(val) - like itoa, except the number is right justified in a 7
83 *	character field.  This code is a duplication of itoa instead of
84 *	a front end to a more general routine for efficiency.
85 */
86
87char *
88itoa7(int val)
89{
90    static char buffer[16];	/* result is built here */
91    				/* 16 is sufficient since the largest number
92				   we will ever convert will be 2^32-1,
93				   which is 10 digits. */
94
95	sprintf(buffer, "%6u", val);
96    return (buffer);
97}
98
99/*
100 *  digits(val) - return number of decimal digits in val.  Only works for
101 *	non-negative numbers.
102 */
103
104int __pure2
105digits(int val)
106{
107    int cnt = 0;
108	if (val == 0) {
109		return 1;
110	}
111
112    while (val > 0) {
113		cnt++;
114		val /= 10;
115    }
116    return(cnt);
117}
118
119/*
120 * string_index(string, array) - find string in array and return index
121 */
122
123int
124string_index(const char *string, const char * const *array)
125{
126    size_t i = 0;
127
128    while (*array != NULL)
129    {
130	if (strcmp(string, *array) == 0)
131	{
132	    return(i);
133	}
134	array++;
135	i++;
136    }
137    return(-1);
138}
139
140/*
141 * argparse(line, cntp) - parse arguments in string "line", separating them
142 *	out into an argv-like array, and setting *cntp to the number of
143 *	arguments encountered.  This is a simple parser that doesn't understand
144 *	squat about quotes.
145 */
146
147const char **
148argparse(char *line, int *cntp)
149{
150    const char **ap;
151    static const char *argv[1024] = {0};
152
153    *cntp = 1;
154    ap = &argv[1];
155    while ((*ap = strsep(&line, " ")) != NULL) {
156        if (**ap != '\0') {
157            (*cntp)++;
158            if (*cntp >= (int)nitems(argv)) {
159                break;
160            }
161	    ap++;
162        }
163    }
164    return (argv);
165}
166
167/*
168 *  percentages(cnt, out, new, old, diffs) - calculate percentage change
169 *	between array "old" and "new", putting the percentages i "out".
170 *	"cnt" is size of each array and "diffs" is used for scratch space.
171 *	The array "old" is updated on each call.
172 *	The routine assumes modulo arithmetic.  This function is especially
173 *	useful on for calculating cpu state percentages.
174 */
175
176long
177percentages(int cnt, int *out, long *new, long *old, long *diffs)
178{
179    int i;
180    long change;
181    long total_change;
182    long *dp;
183    long half_total;
184
185    /* initialization */
186    total_change = 0;
187    dp = diffs;
188
189    /* calculate changes for each state and the overall change */
190    for (i = 0; i < cnt; i++)
191    {
192	if ((change = *new - *old) < 0)
193	{
194	    /* this only happens when the counter wraps */
195	    change = (int)
196		((unsigned long)*new-(unsigned long)*old);
197	}
198	total_change += (*dp++ = change);
199	*old++ = *new++;
200    }
201
202    /* avoid divide by zero potential */
203    if (total_change == 0)
204    {
205	total_change = 1;
206    }
207
208    /* calculate percentages based on overall change, rounding up */
209    half_total = total_change / 2l;
210
211	for (i = 0; i < cnt; i++)
212	{
213		*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
214	}
215
216    /* return the total in case the caller wants to use it */
217    return(total_change);
218}
219
220/* format_time(seconds) - format number of seconds into a suitable
221 *		display that will fit within 6 characters.  Note that this
222 *		routine builds its string in a static area.  If it needs
223 *		to be called more than once without overwriting previous data,
224 *		then we will need to adopt a technique similar to the
225 *		one used for format_k.
226 */
227
228/* Explanation:
229   We want to keep the output within 6 characters.  For low values we use
230   the format mm:ss.  For values that exceed 999:59, we switch to a format
231   that displays hours and fractions:  hhh.tH.  For values that exceed
232   999.9, we use hhhh.t and drop the "H" designator.  For values that
233   exceed 9999.9, we use "???".
234 */
235
236const char *
237format_time(long seconds)
238{
239	static char result[10];
240
241	/* sanity protection */
242	if (seconds < 0 || seconds > (99999l * 360l))
243	{
244		strcpy(result, "   ???");
245	}
246	else if (seconds >= (1000l * 60l))
247	{
248		/* alternate (slow) method displaying hours and tenths */
249		sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
250
251		/* It is possible that the sprintf took more than 6 characters.
252		   If so, then the "H" appears as result[6].  If not, then there
253		   is a \0 in result[6].  Either way, it is safe to step on.
254		   */
255		result[6] = '\0';
256	}
257	else
258	{
259		/* standard method produces MMM:SS */
260		sprintf(result, "%3ld:%02ld",
261				seconds / 60l, seconds % 60l);
262	}
263	return(result);
264}
265
266/*
267 * format_k(amt) - format a kilobyte memory value, returning a string
268 *		suitable for display.  Returns a pointer to a static
269 *		area that changes each call.  "amt" is converted to a fixed
270 *		size humanize_number call
271 */
272
273/*
274 * Compromise time.  We need to return a string, but we don't want the
275 * caller to have to worry about freeing a dynamically allocated string.
276 * Unfortunately, we can't just return a pointer to a static area as one
277 * of the common uses of this function is in a large call to sprintf where
278 * it might get invoked several times.  Our compromise is to maintain an
279 * array of strings and cycle thru them with each invocation.  We make the
280 * array large enough to handle the above mentioned case.  The constant
281 * NUM_STRINGS defines the number of strings in this array:  we can tolerate
282 * up to NUM_STRINGS calls before we start overwriting old information.
283 * Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
284 * to convert the modulo operation into something quicker.  What a hack!
285 */
286
287#define NUM_STRINGS 8
288
289char *
290format_k(int64_t amt)
291{
292	static char retarray[NUM_STRINGS][16];
293	static int index_ = 0;
294	char *ret;
295
296	ret = retarray[index_];
297	index_ = (index_ + 1) % NUM_STRINGS;
298	humanize_number(ret, 6, amt * 1024, "", HN_AUTOSCALE, HN_NOSPACE |
299	    HN_B);
300	return (ret);
301}
302
303int
304find_pid(pid_t pid)
305{
306	kvm_t *kd = NULL;
307	struct kinfo_proc *pbase = NULL;
308	int nproc;
309	int ret = 0;
310
311	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, NULL);
312	if (kd == NULL) {
313		fprintf(stderr, "top: kvm_open() failed.\n");
314		quit(TOP_EX_SYS_ERROR);
315	}
316
317	pbase = kvm_getprocs(kd, KERN_PROC_PID, pid, &nproc);
318	if (pbase == NULL) {
319		goto done;
320	}
321
322	if ((nproc == 1) && (pbase->ki_pid == pid)) {
323		ret = 1;
324	}
325
326done:
327	kvm_close(kd);
328	return ret;
329}
330