1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2013 The FreeBSD Foundation
5 *
6 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
7 * under sponsorship from the FreeBSD Foundation.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/malloc.h>
34#include <sys/bus.h>
35#include <sys/interrupt.h>
36#include <sys/kernel.h>
37#include <sys/ktr.h>
38#include <sys/lock.h>
39#include <sys/memdesc.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/rwlock.h>
43#include <sys/rman.h>
44#include <sys/sf_buf.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47#include <sys/tree.h>
48#include <sys/uio.h>
49#include <sys/vmem.h>
50#include <vm/vm.h>
51#include <vm/vm_extern.h>
52#include <vm/vm_kern.h>
53#include <vm/vm_object.h>
54#include <vm/vm_page.h>
55#include <vm/vm_pager.h>
56#include <vm/vm_map.h>
57#include <dev/pci/pcireg.h>
58#include <machine/atomic.h>
59#include <machine/bus.h>
60#include <machine/cpu.h>
61#include <machine/md_var.h>
62#include <machine/specialreg.h>
63#include <x86/include/busdma_impl.h>
64#include <dev/iommu/busdma_iommu.h>
65#include <x86/iommu/intel_reg.h>
66#include <x86/iommu/x86_iommu.h>
67#include <x86/iommu/intel_dmar.h>
68
69static int domain_unmap_buf_locked(struct dmar_domain *domain,
70    iommu_gaddr_t base, iommu_gaddr_t size, int flags);
71
72/*
73 * The cache of the identity mapping page tables for the DMARs.  Using
74 * the cache saves significant amount of memory for page tables by
75 * reusing the page tables, since usually DMARs are identical and have
76 * the same capabilities.  Still, cache records the information needed
77 * to match DMAR capabilities and page table format, to correctly
78 * handle different DMARs.
79 */
80
81struct idpgtbl {
82	iommu_gaddr_t maxaddr;	/* Page table covers the guest address
83				   range [0..maxaddr) */
84	int pglvl;		/* Total page table levels ignoring
85				   superpages */
86	int leaf;		/* The last materialized page table
87				   level, it is non-zero if superpages
88				   are supported */
89	vm_object_t pgtbl_obj;	/* The page table pages */
90	LIST_ENTRY(idpgtbl) link;
91};
92
93static struct sx idpgtbl_lock;
94SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
95static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
96static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
97    "Intel DMAR Identity mappings cache elements");
98
99/*
100 * Build the next level of the page tables for the identity mapping.
101 * - lvl is the level to build;
102 * - idx is the index of the page table page in the pgtbl_obj, which is
103 *   being allocated filled now;
104 * - addr is the starting address in the bus address space which is
105 *   mapped by the page table page.
106 */
107static void
108domain_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
109    iommu_gaddr_t addr)
110{
111	vm_page_t m1;
112	iommu_pte_t *pte;
113	struct sf_buf *sf;
114	iommu_gaddr_t f, pg_sz;
115	vm_pindex_t base;
116	int i;
117
118	VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
119	if (addr >= tbl->maxaddr)
120		return;
121	(void)iommu_pgalloc(tbl->pgtbl_obj, idx, IOMMU_PGF_OBJL |
122	    IOMMU_PGF_WAITOK | IOMMU_PGF_ZERO);
123	base = idx * IOMMU_NPTEPG + 1; /* Index of the first child page of idx */
124	pg_sz = pglvl_page_size(tbl->pglvl, lvl);
125	if (lvl != tbl->leaf) {
126		for (i = 0, f = addr; i < IOMMU_NPTEPG; i++, f += pg_sz)
127			domain_idmap_nextlvl(tbl, lvl + 1, base + i, f);
128	}
129	VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
130	pte = iommu_map_pgtbl(tbl->pgtbl_obj, idx, IOMMU_PGF_WAITOK, &sf);
131	if (lvl == tbl->leaf) {
132		for (i = 0, f = addr; i < IOMMU_NPTEPG; i++, f += pg_sz) {
133			if (f >= tbl->maxaddr)
134				break;
135			pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
136			    DMAR_PTE_R | DMAR_PTE_W;
137		}
138	} else {
139		for (i = 0, f = addr; i < IOMMU_NPTEPG; i++, f += pg_sz) {
140			if (f >= tbl->maxaddr)
141				break;
142			m1 = iommu_pgalloc(tbl->pgtbl_obj, base + i,
143			    IOMMU_PGF_NOALLOC);
144			KASSERT(m1 != NULL, ("lost page table page"));
145			pte[i].pte = (DMAR_PTE_ADDR_MASK &
146			    VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
147		}
148	}
149	/* domain_get_idmap_pgtbl flushes CPU cache if needed. */
150	iommu_unmap_pgtbl(sf);
151	VM_OBJECT_WLOCK(tbl->pgtbl_obj);
152}
153
154/*
155 * Find a ready and compatible identity-mapping page table in the
156 * cache. If not found, populate the identity-mapping page table for
157 * the context, up to the maxaddr. The maxaddr byte is allowed to be
158 * not mapped, which is aligned with the definition of Maxmem as the
159 * highest usable physical address + 1.  If superpages are used, the
160 * maxaddr is typically mapped.
161 */
162vm_object_t
163domain_get_idmap_pgtbl(struct dmar_domain *domain, iommu_gaddr_t maxaddr)
164{
165	struct dmar_unit *unit;
166	struct idpgtbl *tbl;
167	vm_object_t res;
168	vm_page_t m;
169	int leaf, i;
170
171	leaf = 0; /* silence gcc */
172
173	/*
174	 * First, determine where to stop the paging structures.
175	 */
176	for (i = 0; i < domain->pglvl; i++) {
177		if (i == domain->pglvl - 1 || domain_is_sp_lvl(domain, i)) {
178			leaf = i;
179			break;
180		}
181	}
182
183	/*
184	 * Search the cache for a compatible page table.  Qualified
185	 * page table must map up to maxaddr, its level must be
186	 * supported by the DMAR and leaf should be equal to the
187	 * calculated value.  The later restriction could be lifted
188	 * but I believe it is currently impossible to have any
189	 * deviations for existing hardware.
190	 */
191	sx_slock(&idpgtbl_lock);
192	LIST_FOREACH(tbl, &idpgtbls, link) {
193		if (tbl->maxaddr >= maxaddr &&
194		    dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
195		    tbl->leaf == leaf) {
196			res = tbl->pgtbl_obj;
197			vm_object_reference(res);
198			sx_sunlock(&idpgtbl_lock);
199			domain->pglvl = tbl->pglvl; /* XXXKIB ? */
200			goto end;
201		}
202	}
203
204	/*
205	 * Not found in cache, relock the cache into exclusive mode to
206	 * be able to add element, and recheck cache again after the
207	 * relock.
208	 */
209	sx_sunlock(&idpgtbl_lock);
210	sx_xlock(&idpgtbl_lock);
211	LIST_FOREACH(tbl, &idpgtbls, link) {
212		if (tbl->maxaddr >= maxaddr &&
213		    dmar_pglvl_supported(domain->dmar, tbl->pglvl) &&
214		    tbl->leaf == leaf) {
215			res = tbl->pgtbl_obj;
216			vm_object_reference(res);
217			sx_xunlock(&idpgtbl_lock);
218			domain->pglvl = tbl->pglvl; /* XXXKIB ? */
219			return (res);
220		}
221	}
222
223	/*
224	 * Still not found, create new page table.
225	 */
226	tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
227	tbl->pglvl = domain->pglvl;
228	tbl->leaf = leaf;
229	tbl->maxaddr = maxaddr;
230	tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
231	    IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
232	VM_OBJECT_WLOCK(tbl->pgtbl_obj);
233	domain_idmap_nextlvl(tbl, 0, 0, 0);
234	VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
235	LIST_INSERT_HEAD(&idpgtbls, tbl, link);
236	res = tbl->pgtbl_obj;
237	vm_object_reference(res);
238	sx_xunlock(&idpgtbl_lock);
239
240end:
241	/*
242	 * Table was found or created.
243	 *
244	 * If DMAR does not snoop paging structures accesses, flush
245	 * CPU cache to memory.  Note that dmar_unmap_pgtbl() coherent
246	 * argument was possibly invalid at the time of the identity
247	 * page table creation, since DMAR which was passed at the
248	 * time of creation could be coherent, while current DMAR is
249	 * not.
250	 *
251	 * If DMAR cannot look into the chipset write buffer, flush it
252	 * as well.
253	 */
254	unit = domain->dmar;
255	if (!DMAR_IS_COHERENT(unit)) {
256		VM_OBJECT_WLOCK(res);
257		for (m = vm_page_lookup(res, 0); m != NULL;
258		     m = vm_page_next(m))
259			pmap_invalidate_cache_pages(&m, 1);
260		VM_OBJECT_WUNLOCK(res);
261	}
262	if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
263		DMAR_LOCK(unit);
264		dmar_flush_write_bufs(unit);
265		DMAR_UNLOCK(unit);
266	}
267
268	return (res);
269}
270
271/*
272 * Return a reference to the identity mapping page table to the cache.
273 */
274void
275put_idmap_pgtbl(vm_object_t obj)
276{
277	struct idpgtbl *tbl, *tbl1;
278	vm_object_t rmobj;
279
280	sx_slock(&idpgtbl_lock);
281	KASSERT(obj->ref_count >= 2, ("lost cache reference"));
282	vm_object_deallocate(obj);
283
284	/*
285	 * Cache always owns one last reference on the page table object.
286	 * If there is an additional reference, object must stay.
287	 */
288	if (obj->ref_count > 1) {
289		sx_sunlock(&idpgtbl_lock);
290		return;
291	}
292
293	/*
294	 * Cache reference is the last, remove cache element and free
295	 * page table object, returning the page table pages to the
296	 * system.
297	 */
298	sx_sunlock(&idpgtbl_lock);
299	sx_xlock(&idpgtbl_lock);
300	LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
301		rmobj = tbl->pgtbl_obj;
302		if (rmobj->ref_count == 1) {
303			LIST_REMOVE(tbl, link);
304			atomic_subtract_int(&iommu_tbl_pagecnt,
305			    rmobj->resident_page_count);
306			vm_object_deallocate(rmobj);
307			free(tbl, M_DMAR_IDPGTBL);
308		}
309	}
310	sx_xunlock(&idpgtbl_lock);
311}
312
313/*
314 * The core routines to map and unmap host pages at the given guest
315 * address.  Support superpages.
316 */
317
318/*
319 * Index of the pte for the guest address base in the page table at
320 * the level lvl.
321 */
322static int
323domain_pgtbl_pte_off(struct dmar_domain *domain, iommu_gaddr_t base, int lvl)
324{
325
326	base >>= IOMMU_PAGE_SHIFT + (domain->pglvl - lvl - 1) *
327	    IOMMU_NPTEPGSHIFT;
328	return (base & IOMMU_PTEMASK);
329}
330
331/*
332 * Returns the page index of the page table page in the page table
333 * object, which maps the given address base at the page table level
334 * lvl.
335 */
336static vm_pindex_t
337domain_pgtbl_get_pindex(struct dmar_domain *domain, iommu_gaddr_t base, int lvl)
338{
339	vm_pindex_t idx, pidx;
340	int i;
341
342	KASSERT(lvl >= 0 && lvl < domain->pglvl,
343	    ("wrong lvl %p %d", domain, lvl));
344
345	for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) {
346		idx = domain_pgtbl_pte_off(domain, base, i) +
347		    pidx * IOMMU_NPTEPG + 1;
348	}
349	return (idx);
350}
351
352static iommu_pte_t *
353domain_pgtbl_map_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl,
354    int flags, vm_pindex_t *idxp, struct sf_buf **sf)
355{
356	vm_page_t m;
357	struct sf_buf *sfp;
358	iommu_pte_t *pte, *ptep;
359	vm_pindex_t idx, idx1;
360
361	DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
362	KASSERT((flags & IOMMU_PGF_OBJL) != 0, ("lost PGF_OBJL"));
363
364	idx = domain_pgtbl_get_pindex(domain, base, lvl);
365	if (*sf != NULL && idx == *idxp) {
366		pte = (iommu_pte_t *)sf_buf_kva(*sf);
367	} else {
368		if (*sf != NULL)
369			iommu_unmap_pgtbl(*sf);
370		*idxp = idx;
371retry:
372		pte = iommu_map_pgtbl(domain->pgtbl_obj, idx, flags, sf);
373		if (pte == NULL) {
374			KASSERT(lvl > 0,
375			    ("lost root page table page %p", domain));
376			/*
377			 * Page table page does not exist, allocate
378			 * it and create a pte in the preceeding page level
379			 * to reference the allocated page table page.
380			 */
381			m = iommu_pgalloc(domain->pgtbl_obj, idx, flags |
382			    IOMMU_PGF_ZERO);
383			if (m == NULL)
384				return (NULL);
385
386			/*
387			 * Prevent potential free while pgtbl_obj is
388			 * unlocked in the recursive call to
389			 * domain_pgtbl_map_pte(), if other thread did
390			 * pte write and clean while the lock is
391			 * dropped.
392			 */
393			m->ref_count++;
394
395			sfp = NULL;
396			ptep = domain_pgtbl_map_pte(domain, base, lvl - 1,
397			    flags, &idx1, &sfp);
398			if (ptep == NULL) {
399				KASSERT(m->pindex != 0,
400				    ("loosing root page %p", domain));
401				m->ref_count--;
402				iommu_pgfree(domain->pgtbl_obj, m->pindex,
403				    flags);
404				return (NULL);
405			}
406			dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
407			    VM_PAGE_TO_PHYS(m));
408			dmar_flush_pte_to_ram(domain->dmar, ptep);
409			sf_buf_page(sfp)->ref_count += 1;
410			m->ref_count--;
411			iommu_unmap_pgtbl(sfp);
412			/* Only executed once. */
413			goto retry;
414		}
415	}
416	pte += domain_pgtbl_pte_off(domain, base, lvl);
417	return (pte);
418}
419
420static int
421domain_map_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base,
422    iommu_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags)
423{
424	iommu_pte_t *pte;
425	struct sf_buf *sf;
426	iommu_gaddr_t pg_sz, base1;
427	vm_pindex_t pi, c, idx, run_sz;
428	int lvl;
429	bool superpage;
430
431	DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
432
433	base1 = base;
434	flags |= IOMMU_PGF_OBJL;
435	TD_PREP_PINNED_ASSERT;
436
437	for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
438	    pi += run_sz) {
439		for (lvl = 0, c = 0, superpage = false;; lvl++) {
440			pg_sz = domain_page_size(domain, lvl);
441			run_sz = pg_sz >> IOMMU_PAGE_SHIFT;
442			if (lvl == domain->pglvl - 1)
443				break;
444			/*
445			 * Check if the current base suitable for the
446			 * superpage mapping.  First, verify the level.
447			 */
448			if (!domain_is_sp_lvl(domain, lvl))
449				continue;
450			/*
451			 * Next, look at the size of the mapping and
452			 * alignment of both guest and host addresses.
453			 */
454			if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
455			    (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
456				continue;
457			/* All passed, check host pages contiguouty. */
458			if (c == 0) {
459				for (c = 1; c < run_sz; c++) {
460					if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
461					    VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
462					    PAGE_SIZE)
463						break;
464				}
465			}
466			if (c >= run_sz) {
467				superpage = true;
468				break;
469			}
470		}
471		KASSERT(size >= pg_sz,
472		    ("mapping loop overflow %p %jx %jx %jx", domain,
473		    (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
474		KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl));
475		pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
476		if (pte == NULL) {
477			KASSERT((flags & IOMMU_PGF_WAITOK) == 0,
478			    ("failed waitable pte alloc %p", domain));
479			if (sf != NULL)
480				iommu_unmap_pgtbl(sf);
481			domain_unmap_buf_locked(domain, base1, base - base1,
482			    flags);
483			TD_PINNED_ASSERT;
484			return (ENOMEM);
485		}
486		dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
487		    (superpage ? DMAR_PTE_SP : 0));
488		dmar_flush_pte_to_ram(domain->dmar, pte);
489		sf_buf_page(sf)->ref_count += 1;
490	}
491	if (sf != NULL)
492		iommu_unmap_pgtbl(sf);
493	TD_PINNED_ASSERT;
494	return (0);
495}
496
497static int
498domain_map_buf(struct iommu_domain *iodom, iommu_gaddr_t base,
499    iommu_gaddr_t size, vm_page_t *ma, uint64_t eflags, int flags)
500{
501	struct dmar_domain *domain;
502	struct dmar_unit *unit;
503	uint64_t pflags;
504	int error;
505
506	pflags = ((eflags & IOMMU_MAP_ENTRY_READ) != 0 ? DMAR_PTE_R : 0) |
507	    ((eflags & IOMMU_MAP_ENTRY_WRITE) != 0 ? DMAR_PTE_W : 0) |
508	    ((eflags & IOMMU_MAP_ENTRY_SNOOP) != 0 ? DMAR_PTE_SNP : 0) |
509	    ((eflags & IOMMU_MAP_ENTRY_TM) != 0 ? DMAR_PTE_TM : 0);
510
511	domain = IODOM2DOM(iodom);
512	unit = domain->dmar;
513
514	KASSERT((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) == 0,
515	    ("modifying idmap pagetable domain %p", domain));
516	KASSERT((base & IOMMU_PAGE_MASK) == 0,
517	    ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
518	    (uintmax_t)size));
519	KASSERT((size & IOMMU_PAGE_MASK) == 0,
520	    ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
521	    (uintmax_t)size));
522	KASSERT(size > 0, ("zero size %p %jx %jx", domain, (uintmax_t)base,
523	    (uintmax_t)size));
524	KASSERT(base < (1ULL << domain->agaw),
525	    ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
526	    (uintmax_t)size, domain->agaw));
527	KASSERT(base + size < (1ULL << domain->agaw),
528	    ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
529	    (uintmax_t)size, domain->agaw));
530	KASSERT(base + size > base,
531	    ("size overflow %p %jx %jx", domain, (uintmax_t)base,
532	    (uintmax_t)size));
533	KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
534	    ("neither read nor write %jx", (uintmax_t)pflags));
535	KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
536	    DMAR_PTE_TM)) == 0,
537	    ("invalid pte flags %jx", (uintmax_t)pflags));
538	KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
539	    (unit->hw_ecap & DMAR_ECAP_SC) != 0,
540	    ("PTE_SNP for dmar without snoop control %p %jx",
541	    domain, (uintmax_t)pflags));
542	KASSERT((pflags & DMAR_PTE_TM) == 0 ||
543	    (unit->hw_ecap & DMAR_ECAP_DI) != 0,
544	    ("PTE_TM for dmar without DIOTLB %p %jx",
545	    domain, (uintmax_t)pflags));
546	KASSERT((flags & ~IOMMU_PGF_WAITOK) == 0, ("invalid flags %x", flags));
547
548	DMAR_DOMAIN_PGLOCK(domain);
549	error = domain_map_buf_locked(domain, base, size, ma, pflags, flags);
550	DMAR_DOMAIN_PGUNLOCK(domain);
551	if (error != 0)
552		return (error);
553
554	if ((unit->hw_cap & DMAR_CAP_CM) != 0)
555		domain_flush_iotlb_sync(domain, base, size);
556	else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
557		/* See 11.1 Write Buffer Flushing. */
558		DMAR_LOCK(unit);
559		dmar_flush_write_bufs(unit);
560		DMAR_UNLOCK(unit);
561	}
562	return (0);
563}
564
565static void domain_unmap_clear_pte(struct dmar_domain *domain,
566    iommu_gaddr_t base, int lvl, int flags, iommu_pte_t *pte,
567    struct sf_buf **sf, bool free_fs);
568
569static void
570domain_free_pgtbl_pde(struct dmar_domain *domain, iommu_gaddr_t base,
571    int lvl, int flags)
572{
573	struct sf_buf *sf;
574	iommu_pte_t *pde;
575	vm_pindex_t idx;
576
577	sf = NULL;
578	pde = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf);
579	domain_unmap_clear_pte(domain, base, lvl, flags, pde, &sf, true);
580}
581
582static void
583domain_unmap_clear_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl,
584    int flags, iommu_pte_t *pte, struct sf_buf **sf, bool free_sf)
585{
586	vm_page_t m;
587
588	dmar_pte_clear(&pte->pte);
589	dmar_flush_pte_to_ram(domain->dmar, pte);
590	m = sf_buf_page(*sf);
591	if (free_sf) {
592		iommu_unmap_pgtbl(*sf);
593		*sf = NULL;
594	}
595	m->ref_count--;
596	if (m->ref_count != 0)
597		return;
598	KASSERT(lvl != 0,
599	    ("lost reference (lvl) on root pg domain %p base %jx lvl %d",
600	    domain, (uintmax_t)base, lvl));
601	KASSERT(m->pindex != 0,
602	    ("lost reference (idx) on root pg domain %p base %jx lvl %d",
603	    domain, (uintmax_t)base, lvl));
604	iommu_pgfree(domain->pgtbl_obj, m->pindex, flags);
605	domain_free_pgtbl_pde(domain, base, lvl - 1, flags);
606}
607
608/*
609 * Assumes that the unmap is never partial.
610 */
611static int
612domain_unmap_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base,
613    iommu_gaddr_t size, int flags)
614{
615	iommu_pte_t *pte;
616	struct sf_buf *sf;
617	vm_pindex_t idx;
618	iommu_gaddr_t pg_sz;
619	int lvl;
620
621	DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
622	if (size == 0)
623		return (0);
624
625	KASSERT((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) == 0,
626	    ("modifying idmap pagetable domain %p", domain));
627	KASSERT((base & IOMMU_PAGE_MASK) == 0,
628	    ("non-aligned base %p %jx %jx", domain, (uintmax_t)base,
629	    (uintmax_t)size));
630	KASSERT((size & IOMMU_PAGE_MASK) == 0,
631	    ("non-aligned size %p %jx %jx", domain, (uintmax_t)base,
632	    (uintmax_t)size));
633	KASSERT(base < (1ULL << domain->agaw),
634	    ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
635	    (uintmax_t)size, domain->agaw));
636	KASSERT(base + size < (1ULL << domain->agaw),
637	    ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base,
638	    (uintmax_t)size, domain->agaw));
639	KASSERT(base + size > base,
640	    ("size overflow %p %jx %jx", domain, (uintmax_t)base,
641	    (uintmax_t)size));
642	KASSERT((flags & ~IOMMU_PGF_WAITOK) == 0, ("invalid flags %x", flags));
643
644	pg_sz = 0; /* silence gcc */
645	flags |= IOMMU_PGF_OBJL;
646	TD_PREP_PINNED_ASSERT;
647
648	for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
649		for (lvl = 0; lvl < domain->pglvl; lvl++) {
650			if (lvl != domain->pglvl - 1 &&
651			    !domain_is_sp_lvl(domain, lvl))
652				continue;
653			pg_sz = domain_page_size(domain, lvl);
654			if (pg_sz > size)
655				continue;
656			pte = domain_pgtbl_map_pte(domain, base, lvl, flags,
657			    &idx, &sf);
658			KASSERT(pte != NULL,
659			    ("sleeping or page missed %p %jx %d 0x%x",
660			    domain, (uintmax_t)base, lvl, flags));
661			if ((pte->pte & DMAR_PTE_SP) != 0 ||
662			    lvl == domain->pglvl - 1) {
663				domain_unmap_clear_pte(domain, base, lvl,
664				    flags, pte, &sf, false);
665				break;
666			}
667		}
668		KASSERT(size >= pg_sz,
669		    ("unmapping loop overflow %p %jx %jx %jx", domain,
670		    (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
671	}
672	if (sf != NULL)
673		iommu_unmap_pgtbl(sf);
674	/*
675	 * See 11.1 Write Buffer Flushing for an explanation why RWBF
676	 * can be ignored there.
677	 */
678
679	TD_PINNED_ASSERT;
680	return (0);
681}
682
683static int
684domain_unmap_buf(struct iommu_domain *iodom, iommu_gaddr_t base,
685    iommu_gaddr_t size, int flags)
686{
687	struct dmar_domain *domain;
688	int error;
689
690	domain = IODOM2DOM(iodom);
691
692	DMAR_DOMAIN_PGLOCK(domain);
693	error = domain_unmap_buf_locked(domain, base, size, flags);
694	DMAR_DOMAIN_PGUNLOCK(domain);
695	return (error);
696}
697
698int
699domain_alloc_pgtbl(struct dmar_domain *domain)
700{
701	vm_page_t m;
702
703	KASSERT(domain->pgtbl_obj == NULL,
704	    ("already initialized %p", domain));
705
706	domain->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
707	    IDX_TO_OFF(pglvl_max_pages(domain->pglvl)), 0, 0, NULL);
708	DMAR_DOMAIN_PGLOCK(domain);
709	m = iommu_pgalloc(domain->pgtbl_obj, 0, IOMMU_PGF_WAITOK |
710	    IOMMU_PGF_ZERO | IOMMU_PGF_OBJL);
711	/* No implicit free of the top level page table page. */
712	m->ref_count = 1;
713	DMAR_DOMAIN_PGUNLOCK(domain);
714	DMAR_LOCK(domain->dmar);
715	domain->iodom.flags |= IOMMU_DOMAIN_PGTBL_INITED;
716	DMAR_UNLOCK(domain->dmar);
717	return (0);
718}
719
720void
721domain_free_pgtbl(struct dmar_domain *domain)
722{
723	vm_object_t obj;
724	vm_page_t m;
725
726	obj = domain->pgtbl_obj;
727	if (obj == NULL) {
728		KASSERT((domain->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
729		    (domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0,
730		    ("lost pagetable object domain %p", domain));
731		return;
732	}
733	DMAR_DOMAIN_ASSERT_PGLOCKED(domain);
734	domain->pgtbl_obj = NULL;
735
736	if ((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0) {
737		put_idmap_pgtbl(obj);
738		domain->iodom.flags &= ~IOMMU_DOMAIN_IDMAP;
739		return;
740	}
741
742	/* Obliterate ref_counts */
743	VM_OBJECT_ASSERT_WLOCKED(obj);
744	for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
745		m->ref_count = 0;
746	VM_OBJECT_WUNLOCK(obj);
747	vm_object_deallocate(obj);
748}
749
750static inline uint64_t
751domain_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
752{
753	uint64_t iotlbr;
754
755	dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
756	    DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
757	for (;;) {
758		iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
759		if ((iotlbr & DMAR_IOTLB_IVT) == 0)
760			break;
761		cpu_spinwait();
762	}
763	return (iotlbr);
764}
765
766void
767domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base,
768    iommu_gaddr_t size)
769{
770	struct dmar_unit *unit;
771	iommu_gaddr_t isize;
772	uint64_t iotlbr;
773	int am, iro;
774
775	unit = domain->dmar;
776	KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
777	    unit->iommu.unit));
778	iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
779	DMAR_LOCK(unit);
780	if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
781		iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
782		    DMAR_IOTLB_DID(domain->domain), iro);
783		KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
784		    DMAR_IOTLB_IAIG_INVLD,
785		    ("dmar%d: invalidation failed %jx", unit->iommu.unit,
786		    (uintmax_t)iotlbr));
787	} else {
788		for (; size > 0; base += isize, size -= isize) {
789			am = calc_am(unit, base, size, &isize);
790			dmar_write8(unit, iro, base | am);
791			iotlbr = domain_wait_iotlb_flush(unit,
792			    DMAR_IOTLB_IIRG_PAGE |
793			    DMAR_IOTLB_DID(domain->domain), iro);
794			KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
795			    DMAR_IOTLB_IAIG_INVLD,
796			    ("dmar%d: PSI invalidation failed "
797			    "iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
798			    unit->iommu.unit, (uintmax_t)iotlbr,
799			    (uintmax_t)base, (uintmax_t)size, am));
800			/*
801			 * Any non-page granularity covers whole guest
802			 * address space for the domain.
803			 */
804			if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
805			    DMAR_IOTLB_IAIG_PAGE)
806				break;
807		}
808	}
809	DMAR_UNLOCK(unit);
810}
811
812const struct iommu_domain_map_ops dmar_domain_map_ops = {
813	.map = domain_map_buf,
814	.unmap = domain_unmap_buf,
815};
816