1/*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66#include "opt_vm.h"
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/asan.h>
71#include <sys/domainset.h>
72#include <sys/eventhandler.h>
73#include <sys/kernel.h>
74#include <sys/lock.h>
75#include <sys/malloc.h>
76#include <sys/msan.h>
77#include <sys/proc.h>
78#include <sys/rwlock.h>
79#include <sys/smp.h>
80#include <sys/sysctl.h>
81#include <sys/vmem.h>
82#include <sys/vmmeter.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/vm_domainset.h>
87#include <vm/vm_kern.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pagequeue.h>
94#include <vm/vm_phys.h>
95#include <vm/vm_radix.h>
96#include <vm/vm_extern.h>
97#include <vm/uma.h>
98
99struct vm_map kernel_map_store;
100struct vm_map exec_map_store;
101struct vm_map pipe_map_store;
102
103const void *zero_region;
104CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
105
106/* NB: Used by kernel debuggers. */
107const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
108
109u_int exec_map_entry_size;
110u_int exec_map_entries;
111
112SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
113    SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
114
115SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
116#if defined(__arm__)
117    &vm_max_kernel_address, 0,
118#else
119    SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
120#endif
121    "Max kernel address");
122
123#if VM_NRESERVLEVEL > 0
124#define	KVA_QUANTUM_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
125#else
126/* On non-superpage architectures we want large import sizes. */
127#define	KVA_QUANTUM_SHIFT	(8 + PAGE_SHIFT)
128#endif
129#define	KVA_QUANTUM		(1ul << KVA_QUANTUM_SHIFT)
130#define	KVA_NUMA_IMPORT_QUANTUM	(KVA_QUANTUM * 128)
131
132extern void     uma_startup2(void);
133
134/*
135 *	kva_alloc:
136 *
137 *	Allocate a virtual address range with no underlying object and
138 *	no initial mapping to physical memory.  Any mapping from this
139 *	range to physical memory must be explicitly created prior to
140 *	its use, typically with pmap_qenter().  Any attempt to create
141 *	a mapping on demand through vm_fault() will result in a panic.
142 */
143vm_offset_t
144kva_alloc(vm_size_t size)
145{
146	vm_offset_t addr;
147
148	TSENTER();
149	size = round_page(size);
150	if (vmem_xalloc(kernel_arena, size, 0, 0, 0, VMEM_ADDR_MIN,
151	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
152		return (0);
153	TSEXIT();
154
155	return (addr);
156}
157
158/*
159 *	kva_alloc_aligned:
160 *
161 *	Allocate a virtual address range as in kva_alloc where the base
162 *	address is aligned to align.
163 */
164vm_offset_t
165kva_alloc_aligned(vm_size_t size, vm_size_t align)
166{
167	vm_offset_t addr;
168
169	TSENTER();
170	size = round_page(size);
171	if (vmem_xalloc(kernel_arena, size, align, 0, 0, VMEM_ADDR_MIN,
172	    VMEM_ADDR_MAX, M_BESTFIT | M_NOWAIT, &addr))
173		return (0);
174	TSEXIT();
175
176	return (addr);
177}
178
179/*
180 *	kva_free:
181 *
182 *	Release a region of kernel virtual memory allocated
183 *	with kva_alloc, and return the physical pages
184 *	associated with that region.
185 *
186 *	This routine may not block on kernel maps.
187 */
188void
189kva_free(vm_offset_t addr, vm_size_t size)
190{
191
192	size = round_page(size);
193	vmem_xfree(kernel_arena, addr, size);
194}
195
196/*
197 * Update sanitizer shadow state to reflect a new allocation.  Force inlining to
198 * help make KMSAN origin tracking more precise.
199 */
200static __always_inline void
201kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags)
202{
203	if ((flags & M_ZERO) == 0) {
204		kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT);
205		kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM,
206		    KMSAN_RET_ADDR);
207	} else {
208		kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED);
209	}
210	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
211}
212
213static vm_page_t
214kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
215    int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
216    u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
217{
218	vm_page_t m;
219	int tries;
220	bool wait, reclaim;
221
222	VM_OBJECT_ASSERT_WLOCKED(object);
223
224	wait = (pflags & VM_ALLOC_WAITOK) != 0;
225	reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
226	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
227	pflags |= VM_ALLOC_NOWAIT;
228	for (tries = wait ? 3 : 1;; tries--) {
229		m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
230		    npages, low, high, alignment, boundary, memattr);
231		if (m != NULL || tries == 0 || !reclaim)
232			break;
233
234		VM_OBJECT_WUNLOCK(object);
235		if (vm_page_reclaim_contig_domain(domain, pflags, npages,
236		    low, high, alignment, boundary) == ENOMEM && wait)
237			vm_wait_domain(domain);
238		VM_OBJECT_WLOCK(object);
239	}
240	return (m);
241}
242
243/*
244 *	Allocates a region from the kernel address map and physical pages
245 *	within the specified address range to the kernel object.  Creates a
246 *	wired mapping from this region to these pages, and returns the
247 *	region's starting virtual address.  The allocated pages are not
248 *	necessarily physically contiguous.  If M_ZERO is specified through the
249 *	given flags, then the pages are zeroed before they are mapped.
250 */
251static void *
252kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
253    vm_paddr_t high, vm_memattr_t memattr)
254{
255	vmem_t *vmem;
256	vm_object_t object;
257	vm_offset_t addr, i, offset;
258	vm_page_t m;
259	vm_size_t asize;
260	int pflags;
261	vm_prot_t prot;
262
263	object = kernel_object;
264	asize = round_page(size);
265	vmem = vm_dom[domain].vmd_kernel_arena;
266	if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
267		return (0);
268	offset = addr - VM_MIN_KERNEL_ADDRESS;
269	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
270	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
271	VM_OBJECT_WLOCK(object);
272	for (i = 0; i < asize; i += PAGE_SIZE) {
273		m = kmem_alloc_contig_pages(object, atop(offset + i),
274		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
275		if (m == NULL) {
276			VM_OBJECT_WUNLOCK(object);
277			kmem_unback(object, addr, i);
278			vmem_free(vmem, addr, asize);
279			return (0);
280		}
281		KASSERT(vm_page_domain(m) == domain,
282		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
283		    vm_page_domain(m), domain));
284		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
285			pmap_zero_page(m);
286		vm_page_valid(m);
287		pmap_enter(kernel_pmap, addr + i, m, prot,
288		    prot | PMAP_ENTER_WIRED, 0);
289	}
290	VM_OBJECT_WUNLOCK(object);
291	kmem_alloc_san(addr, size, asize, flags);
292	return ((void *)addr);
293}
294
295void *
296kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
297    vm_memattr_t memattr)
298{
299
300	return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
301	    high, memattr));
302}
303
304void *
305kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
306    vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
307{
308	struct vm_domainset_iter di;
309	vm_page_t bounds[2];
310	void *addr;
311	int domain;
312	int start_segind;
313
314	start_segind = -1;
315
316	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
317	do {
318		addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
319		    memattr);
320		if (addr != NULL)
321			break;
322		if (start_segind == -1)
323			start_segind = vm_phys_lookup_segind(low);
324		if (vm_phys_find_range(bounds, start_segind, domain,
325		    atop(round_page(size)), low, high) == -1) {
326			vm_domainset_iter_ignore(&di, domain);
327		}
328	} while (vm_domainset_iter_policy(&di, &domain) == 0);
329
330	return (addr);
331}
332
333/*
334 *	Allocates a region from the kernel address map and physically
335 *	contiguous pages within the specified address range to the kernel
336 *	object.  Creates a wired mapping from this region to these pages, and
337 *	returns the region's starting virtual address.  If M_ZERO is specified
338 *	through the given flags, then the pages are zeroed before they are
339 *	mapped.
340 */
341static void *
342kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
343    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
344    vm_memattr_t memattr)
345{
346	vmem_t *vmem;
347	vm_object_t object;
348	vm_offset_t addr, offset, tmp;
349	vm_page_t end_m, m;
350	vm_size_t asize;
351	u_long npages;
352	int pflags;
353
354	object = kernel_object;
355	asize = round_page(size);
356	vmem = vm_dom[domain].vmd_kernel_arena;
357	if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
358		return (NULL);
359	offset = addr - VM_MIN_KERNEL_ADDRESS;
360	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
361	npages = atop(asize);
362	VM_OBJECT_WLOCK(object);
363	m = kmem_alloc_contig_pages(object, atop(offset), domain,
364	    pflags, npages, low, high, alignment, boundary, memattr);
365	if (m == NULL) {
366		VM_OBJECT_WUNLOCK(object);
367		vmem_free(vmem, addr, asize);
368		return (NULL);
369	}
370	KASSERT(vm_page_domain(m) == domain,
371	    ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
372	    vm_page_domain(m), domain));
373	end_m = m + npages;
374	tmp = addr;
375	for (; m < end_m; m++) {
376		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
377			pmap_zero_page(m);
378		vm_page_valid(m);
379		pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
380		    VM_PROT_RW | PMAP_ENTER_WIRED, 0);
381		tmp += PAGE_SIZE;
382	}
383	VM_OBJECT_WUNLOCK(object);
384	kmem_alloc_san(addr, size, asize, flags);
385	return ((void *)addr);
386}
387
388void *
389kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
390    u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
391{
392
393	return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
394	    high, alignment, boundary, memattr));
395}
396
397void *
398kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
399    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
400    vm_memattr_t memattr)
401{
402	struct vm_domainset_iter di;
403	vm_page_t bounds[2];
404	void *addr;
405	int domain;
406	int start_segind;
407
408	start_segind = -1;
409
410	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
411	do {
412		addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
413		    alignment, boundary, memattr);
414		if (addr != NULL)
415			break;
416		if (start_segind == -1)
417			start_segind = vm_phys_lookup_segind(low);
418		if (vm_phys_find_range(bounds, start_segind, domain,
419		    atop(round_page(size)), low, high) == -1) {
420			vm_domainset_iter_ignore(&di, domain);
421		}
422	} while (vm_domainset_iter_policy(&di, &domain) == 0);
423
424	return (addr);
425}
426
427/*
428 *	kmem_subinit:
429 *
430 *	Initializes a map to manage a subrange
431 *	of the kernel virtual address space.
432 *
433 *	Arguments are as follows:
434 *
435 *	parent		Map to take range from
436 *	min, max	Returned endpoints of map
437 *	size		Size of range to find
438 *	superpage_align	Request that min is superpage aligned
439 */
440void
441kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
442    vm_size_t size, bool superpage_align)
443{
444	int ret;
445
446	size = round_page(size);
447
448	*min = vm_map_min(parent);
449	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
450	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
451	    MAP_ACC_NO_CHARGE);
452	if (ret != KERN_SUCCESS)
453		panic("kmem_subinit: bad status return of %d", ret);
454	*max = *min + size;
455	vm_map_init(map, vm_map_pmap(parent), *min, *max);
456	if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
457		panic("kmem_subinit: unable to change range to submap");
458}
459
460/*
461 *	kmem_malloc_domain:
462 *
463 *	Allocate wired-down pages in the kernel's address space.
464 */
465static void *
466kmem_malloc_domain(int domain, vm_size_t size, int flags)
467{
468	vmem_t *arena;
469	vm_offset_t addr;
470	vm_size_t asize;
471	int rv;
472
473	if (__predict_true((flags & M_EXEC) == 0))
474		arena = vm_dom[domain].vmd_kernel_arena;
475	else
476		arena = vm_dom[domain].vmd_kernel_rwx_arena;
477	asize = round_page(size);
478	if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
479		return (0);
480
481	rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
482	if (rv != KERN_SUCCESS) {
483		vmem_free(arena, addr, asize);
484		return (0);
485	}
486	kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
487	return ((void *)addr);
488}
489
490void *
491kmem_malloc(vm_size_t size, int flags)
492{
493	void * p;
494
495	TSENTER();
496	p = kmem_malloc_domainset(DOMAINSET_RR(), size, flags);
497	TSEXIT();
498	return (p);
499}
500
501void *
502kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
503{
504	struct vm_domainset_iter di;
505	void *addr;
506	int domain;
507
508	vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
509	do {
510		addr = kmem_malloc_domain(domain, size, flags);
511		if (addr != NULL)
512			break;
513	} while (vm_domainset_iter_policy(&di, &domain) == 0);
514
515	return (addr);
516}
517
518/*
519 *	kmem_back_domain:
520 *
521 *	Allocate physical pages from the specified domain for the specified
522 *	virtual address range.
523 */
524int
525kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
526    vm_size_t size, int flags)
527{
528	vm_offset_t offset, i;
529	vm_page_t m, mpred;
530	vm_prot_t prot;
531	int pflags;
532
533	KASSERT(object == kernel_object,
534	    ("kmem_back_domain: only supports kernel object."));
535
536	offset = addr - VM_MIN_KERNEL_ADDRESS;
537	pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
538	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
539	if (flags & M_WAITOK)
540		pflags |= VM_ALLOC_WAITFAIL;
541	prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
542
543	i = 0;
544	VM_OBJECT_WLOCK(object);
545retry:
546	mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
547	for (; i < size; i += PAGE_SIZE, mpred = m) {
548		m = vm_page_alloc_domain_after(object, atop(offset + i),
549		    domain, pflags, mpred);
550
551		/*
552		 * Ran out of space, free everything up and return. Don't need
553		 * to lock page queues here as we know that the pages we got
554		 * aren't on any queues.
555		 */
556		if (m == NULL) {
557			if ((flags & M_NOWAIT) == 0)
558				goto retry;
559			VM_OBJECT_WUNLOCK(object);
560			kmem_unback(object, addr, i);
561			return (KERN_NO_SPACE);
562		}
563		KASSERT(vm_page_domain(m) == domain,
564		    ("kmem_back_domain: Domain mismatch %d != %d",
565		    vm_page_domain(m), domain));
566		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
567			pmap_zero_page(m);
568		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
569		    ("kmem_malloc: page %p is managed", m));
570		vm_page_valid(m);
571		pmap_enter(kernel_pmap, addr + i, m, prot,
572		    prot | PMAP_ENTER_WIRED, 0);
573		if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
574			m->oflags |= VPO_KMEM_EXEC;
575	}
576	VM_OBJECT_WUNLOCK(object);
577	kmem_alloc_san(addr, size, size, flags);
578	return (KERN_SUCCESS);
579}
580
581/*
582 *	kmem_back:
583 *
584 *	Allocate physical pages for the specified virtual address range.
585 */
586int
587kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
588{
589	vm_offset_t end, next, start;
590	int domain, rv;
591
592	KASSERT(object == kernel_object,
593	    ("kmem_back: only supports kernel object."));
594
595	for (start = addr, end = addr + size; addr < end; addr = next) {
596		/*
597		 * We must ensure that pages backing a given large virtual page
598		 * all come from the same physical domain.
599		 */
600		if (vm_ndomains > 1) {
601			domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
602			while (VM_DOMAIN_EMPTY(domain))
603				domain++;
604			next = roundup2(addr + 1, KVA_QUANTUM);
605			if (next > end || next < start)
606				next = end;
607		} else {
608			domain = 0;
609			next = end;
610		}
611		rv = kmem_back_domain(domain, object, addr, next - addr, flags);
612		if (rv != KERN_SUCCESS) {
613			kmem_unback(object, start, addr - start);
614			break;
615		}
616	}
617	return (rv);
618}
619
620/*
621 *	kmem_unback:
622 *
623 *	Unmap and free the physical pages underlying the specified virtual
624 *	address range.
625 *
626 *	A physical page must exist within the specified object at each index
627 *	that is being unmapped.
628 */
629static struct vmem *
630_kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
631{
632	struct vmem *arena;
633	vm_page_t m, next;
634	vm_offset_t end, offset;
635	int domain;
636
637	KASSERT(object == kernel_object,
638	    ("kmem_unback: only supports kernel object."));
639
640	if (size == 0)
641		return (NULL);
642	pmap_remove(kernel_pmap, addr, addr + size);
643	offset = addr - VM_MIN_KERNEL_ADDRESS;
644	end = offset + size;
645	VM_OBJECT_WLOCK(object);
646	m = vm_page_lookup(object, atop(offset));
647	domain = vm_page_domain(m);
648	if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
649		arena = vm_dom[domain].vmd_kernel_arena;
650	else
651		arena = vm_dom[domain].vmd_kernel_rwx_arena;
652	for (; offset < end; offset += PAGE_SIZE, m = next) {
653		next = vm_page_next(m);
654		vm_page_xbusy_claim(m);
655		vm_page_unwire_noq(m);
656		vm_page_free(m);
657	}
658	VM_OBJECT_WUNLOCK(object);
659
660	return (arena);
661}
662
663void
664kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
665{
666
667	(void)_kmem_unback(object, addr, size);
668}
669
670/*
671 *	kmem_free:
672 *
673 *	Free memory allocated with kmem_malloc.  The size must match the
674 *	original allocation.
675 */
676void
677kmem_free(void *addr, vm_size_t size)
678{
679	struct vmem *arena;
680
681	size = round_page(size);
682	kasan_mark(addr, size, size, 0);
683	arena = _kmem_unback(kernel_object, (uintptr_t)addr, size);
684	if (arena != NULL)
685		vmem_free(arena, (uintptr_t)addr, size);
686}
687
688/*
689 *	kmap_alloc_wait:
690 *
691 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
692 *	has no room, the caller sleeps waiting for more memory in the submap.
693 *
694 *	This routine may block.
695 */
696vm_offset_t
697kmap_alloc_wait(vm_map_t map, vm_size_t size)
698{
699	vm_offset_t addr;
700
701	size = round_page(size);
702	if (!swap_reserve(size))
703		return (0);
704
705	for (;;) {
706		/*
707		 * To make this work for more than one map, use the map's lock
708		 * to lock out sleepers/wakers.
709		 */
710		vm_map_lock(map);
711		addr = vm_map_findspace(map, vm_map_min(map), size);
712		if (addr + size <= vm_map_max(map))
713			break;
714		/* no space now; see if we can ever get space */
715		if (vm_map_max(map) - vm_map_min(map) < size) {
716			vm_map_unlock(map);
717			swap_release(size);
718			return (0);
719		}
720		map->needs_wakeup = TRUE;
721		vm_map_unlock_and_wait(map, 0);
722	}
723	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
724	    MAP_ACC_CHARGED);
725	vm_map_unlock(map);
726	return (addr);
727}
728
729/*
730 *	kmap_free_wakeup:
731 *
732 *	Returns memory to a submap of the kernel, and wakes up any processes
733 *	waiting for memory in that map.
734 */
735void
736kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
737{
738
739	vm_map_lock(map);
740	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
741	if (map->needs_wakeup) {
742		map->needs_wakeup = FALSE;
743		vm_map_wakeup(map);
744	}
745	vm_map_unlock(map);
746}
747
748void
749kmem_init_zero_region(void)
750{
751	vm_offset_t addr, i;
752	vm_page_t m;
753
754	/*
755	 * Map a single physical page of zeros to a larger virtual range.
756	 * This requires less looping in places that want large amounts of
757	 * zeros, while not using much more physical resources.
758	 */
759	addr = kva_alloc(ZERO_REGION_SIZE);
760	m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
761	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
762		pmap_qenter(addr + i, &m, 1);
763	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
764
765	zero_region = (const void *)addr;
766}
767
768/*
769 * Import KVA from the kernel map into the kernel arena.
770 */
771static int
772kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
773{
774	vm_offset_t addr;
775	int result;
776
777	TSENTER();
778	KASSERT((size % KVA_QUANTUM) == 0,
779	    ("kva_import: Size %jd is not a multiple of %d",
780	    (intmax_t)size, (int)KVA_QUANTUM));
781	addr = vm_map_min(kernel_map);
782	result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
783	    VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
784	if (result != KERN_SUCCESS) {
785		TSEXIT();
786                return (ENOMEM);
787	}
788
789	*addrp = addr;
790
791	TSEXIT();
792	return (0);
793}
794
795/*
796 * Import KVA from a parent arena into a per-domain arena.  Imports must be
797 * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
798 */
799static int
800kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
801{
802
803	KASSERT((size % KVA_QUANTUM) == 0,
804	    ("kva_import_domain: Size %jd is not a multiple of %d",
805	    (intmax_t)size, (int)KVA_QUANTUM));
806	return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
807	    VMEM_ADDR_MAX, flags, addrp));
808}
809
810/*
811 * 	kmem_init:
812 *
813 *	Create the kernel map; insert a mapping covering kernel text,
814 *	data, bss, and all space allocated thus far (`boostrap' data).  The
815 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
816 *	`start' as allocated, and the range between `start' and `end' as free.
817 *	Create the kernel vmem arena and its per-domain children.
818 */
819void
820kmem_init(vm_offset_t start, vm_offset_t end)
821{
822	vm_size_t quantum;
823	int domain;
824
825	vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
826	kernel_map->system_map = 1;
827	vm_map_lock(kernel_map);
828	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
829	(void)vm_map_insert(kernel_map, NULL, 0,
830#ifdef __amd64__
831	    KERNBASE,
832#else
833	    VM_MIN_KERNEL_ADDRESS,
834#endif
835	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
836	/* ... and ending with the completion of the above `insert' */
837
838#ifdef __amd64__
839	/*
840	 * Mark KVA used for the page array as allocated.  Other platforms
841	 * that handle vm_page_array allocation can simply adjust virtual_avail
842	 * instead.
843	 */
844	(void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
845	    (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
846	    sizeof(struct vm_page)),
847	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
848#endif
849	vm_map_unlock(kernel_map);
850
851	/*
852	 * Use a large import quantum on NUMA systems.  This helps minimize
853	 * interleaving of superpages, reducing internal fragmentation within
854	 * the per-domain arenas.
855	 */
856	if (vm_ndomains > 1 && PMAP_HAS_DMAP)
857		quantum = KVA_NUMA_IMPORT_QUANTUM;
858	else
859		quantum = KVA_QUANTUM;
860
861	/*
862	 * Initialize the kernel_arena.  This can grow on demand.
863	 */
864	vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
865	vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
866
867	for (domain = 0; domain < vm_ndomains; domain++) {
868		/*
869		 * Initialize the per-domain arenas.  These are used to color
870		 * the KVA space in a way that ensures that virtual large pages
871		 * are backed by memory from the same physical domain,
872		 * maximizing the potential for superpage promotion.
873		 */
874		vm_dom[domain].vmd_kernel_arena = vmem_create(
875		    "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
876		vmem_set_import(vm_dom[domain].vmd_kernel_arena,
877		    kva_import_domain, NULL, kernel_arena, quantum);
878
879		/*
880		 * In architectures with superpages, maintain separate arenas
881		 * for allocations with permissions that differ from the
882		 * "standard" read/write permissions used for kernel memory,
883		 * so as not to inhibit superpage promotion.
884		 *
885		 * Use the base import quantum since this arena is rarely used.
886		 */
887#if VM_NRESERVLEVEL > 0
888		vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
889		    "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
890		vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
891		    kva_import_domain, (vmem_release_t *)vmem_xfree,
892		    kernel_arena, KVA_QUANTUM);
893#else
894		vm_dom[domain].vmd_kernel_rwx_arena =
895		    vm_dom[domain].vmd_kernel_arena;
896#endif
897	}
898
899	/*
900	 * This must be the very first call so that the virtual address
901	 * space used for early allocations is properly marked used in
902	 * the map.
903	 */
904	uma_startup2();
905}
906
907/*
908 *	kmem_bootstrap_free:
909 *
910 *	Free pages backing preloaded data (e.g., kernel modules) to the
911 *	system.  Currently only supported on platforms that create a
912 *	vm_phys segment for preloaded data.
913 */
914void
915kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
916{
917#if defined(__i386__) || defined(__amd64__)
918	struct vm_domain *vmd;
919	vm_offset_t end, va;
920	vm_paddr_t pa;
921	vm_page_t m;
922
923	end = trunc_page(start + size);
924	start = round_page(start);
925
926#ifdef __amd64__
927	/*
928	 * Preloaded files do not have execute permissions by default on amd64.
929	 * Restore the default permissions to ensure that the direct map alias
930	 * is updated.
931	 */
932	pmap_change_prot(start, end - start, VM_PROT_RW);
933#endif
934	for (va = start; va < end; va += PAGE_SIZE) {
935		pa = pmap_kextract(va);
936		m = PHYS_TO_VM_PAGE(pa);
937
938		vmd = vm_pagequeue_domain(m);
939		vm_domain_free_lock(vmd);
940		vm_phys_free_pages(m, 0);
941		vm_domain_free_unlock(vmd);
942
943		vm_domain_freecnt_inc(vmd, 1);
944		vm_cnt.v_page_count++;
945	}
946	pmap_remove(kernel_pmap, start, end);
947	(void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
948#endif
949}
950
951#ifdef PMAP_WANT_ACTIVE_CPUS_NAIVE
952void
953pmap_active_cpus(pmap_t pmap, cpuset_t *res)
954{
955	struct thread *td;
956	struct proc *p;
957	struct vmspace *vm;
958	int c;
959
960	CPU_ZERO(res);
961	CPU_FOREACH(c) {
962		td = cpuid_to_pcpu[c]->pc_curthread;
963		p = td->td_proc;
964		if (p == NULL)
965			continue;
966		vm = vmspace_acquire_ref(p);
967		if (vm == NULL)
968			continue;
969		if (pmap == vmspace_pmap(vm))
970			CPU_SET(c, res);
971		vmspace_free(vm);
972	}
973}
974#endif
975
976/*
977 * Allow userspace to directly trigger the VM drain routine for testing
978 * purposes.
979 */
980static int
981debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
982{
983	int error, i;
984
985	i = 0;
986	error = sysctl_handle_int(oidp, &i, 0, req);
987	if (error != 0)
988		return (error);
989	if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
990		return (EINVAL);
991	if (i != 0)
992		EVENTHANDLER_INVOKE(vm_lowmem, i);
993	return (0);
994}
995SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
996    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
997    "set to trigger vm_lowmem event with given flags");
998
999static int
1000debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
1001{
1002	int error, i;
1003
1004	i = 0;
1005	error = sysctl_handle_int(oidp, &i, 0, req);
1006	if (error != 0 || req->newptr == NULL)
1007		return (error);
1008	if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
1009	    i != UMA_RECLAIM_DRAIN_CPU)
1010		return (EINVAL);
1011	uma_reclaim(i);
1012	return (0);
1013}
1014SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
1015    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
1016    "set to generate request to reclaim uma caches");
1017
1018static int
1019debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
1020{
1021	int domain, error, request;
1022
1023	request = 0;
1024	error = sysctl_handle_int(oidp, &request, 0, req);
1025	if (error != 0 || req->newptr == NULL)
1026		return (error);
1027
1028	domain = request >> 4;
1029	request &= 0xf;
1030	if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
1031	    request != UMA_RECLAIM_DRAIN_CPU)
1032		return (EINVAL);
1033	if (domain < 0 || domain >= vm_ndomains)
1034		return (EINVAL);
1035	uma_reclaim_domain(request, domain);
1036	return (0);
1037}
1038SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain,
1039    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
1040    debug_uma_reclaim_domain, "I",
1041    "");
1042