1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1993
5 *	The Regents of the University of California.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#ifndef _SYS_MBUF_H_
34#define	_SYS_MBUF_H_
35
36/* XXX: These includes suck. Sorry! */
37#include <sys/queue.h>
38#ifdef _KERNEL
39#include <sys/systm.h>
40#include <sys/refcount.h>
41#include <vm/uma.h>
42
43#include <sys/sdt.h>
44
45#define	MBUF_PROBE1(probe, arg0)					\
46	SDT_PROBE1(sdt, , , probe, arg0)
47#define	MBUF_PROBE2(probe, arg0, arg1)					\
48	SDT_PROBE2(sdt, , , probe, arg0, arg1)
49#define	MBUF_PROBE3(probe, arg0, arg1, arg2)				\
50	SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2)
51#define	MBUF_PROBE4(probe, arg0, arg1, arg2, arg3)			\
52	SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3)
53#define	MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4)		\
54	SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4)
55
56SDT_PROBE_DECLARE(sdt, , , m__init);
57SDT_PROBE_DECLARE(sdt, , , m__gethdr_raw);
58SDT_PROBE_DECLARE(sdt, , , m__gethdr);
59SDT_PROBE_DECLARE(sdt, , , m__get_raw);
60SDT_PROBE_DECLARE(sdt, , , m__get);
61SDT_PROBE_DECLARE(sdt, , , m__getcl);
62SDT_PROBE_DECLARE(sdt, , , m__getjcl);
63SDT_PROBE_DECLARE(sdt, , , m__clget);
64SDT_PROBE_DECLARE(sdt, , , m__cljget);
65SDT_PROBE_DECLARE(sdt, , , m__cljset);
66SDT_PROBE_DECLARE(sdt, , , m__free);
67SDT_PROBE_DECLARE(sdt, , , m__freem);
68
69#endif /* _KERNEL */
70
71/*
72 * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead.
73 * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in
74 * sys/param.h), which has no additional overhead and is used instead of the
75 * internal data area; this is done when at least MINCLSIZE of data must be
76 * stored.  Additionally, it is possible to allocate a separate buffer
77 * externally and attach it to the mbuf in a way similar to that of mbuf
78 * clusters.
79 *
80 * NB: These calculation do not take actual compiler-induced alignment and
81 * padding inside the complete struct mbuf into account.  Appropriate
82 * attention is required when changing members of struct mbuf.
83 *
84 * MLEN is data length in a normal mbuf.
85 * MHLEN is data length in an mbuf with pktheader.
86 * MINCLSIZE is a smallest amount of data that should be put into cluster.
87 *
88 * Compile-time assertions in uipc_mbuf.c test these values to ensure that
89 * they are sensible.
90 */
91struct mbuf;
92#define	MHSIZE		offsetof(struct mbuf, m_dat)
93#define	MPKTHSIZE	offsetof(struct mbuf, m_pktdat)
94#define	MLEN		((int)(MSIZE - MHSIZE))
95#define	MHLEN		((int)(MSIZE - MPKTHSIZE))
96#define	MINCLSIZE	(MHLEN + 1)
97#define	M_NODOM		255
98
99#ifdef _KERNEL
100/*-
101 * Macro for type conversion: convert mbuf pointer to data pointer of correct
102 * type:
103 *
104 * mtod(m, t)	-- Convert mbuf pointer to data pointer of correct type.
105 * mtodo(m, o) -- Same as above but with offset 'o' into data.
106 */
107#define	mtod(m, t)	((t)((m)->m_data))
108#define	mtodo(m, o)	((void *)(((m)->m_data) + (o)))
109
110/*
111 * Argument structure passed to UMA routines during mbuf and packet
112 * allocations.
113 */
114struct mb_args {
115	int	flags;	/* Flags for mbuf being allocated */
116	short	type;	/* Type of mbuf being allocated */
117};
118#endif /* _KERNEL */
119
120/*
121 * Packet tag structure (see below for details).
122 */
123struct m_tag {
124	SLIST_ENTRY(m_tag)	m_tag_link;	/* List of packet tags */
125	u_int16_t		m_tag_id;	/* Tag ID */
126	u_int16_t		m_tag_len;	/* Length of data */
127	u_int32_t		m_tag_cookie;	/* ABI/Module ID */
128	void			(*m_tag_free)(struct m_tag *);
129};
130
131/*
132 * Static network interface owned tag.
133 * Allocated through ifp->if_snd_tag_alloc().
134 */
135struct if_snd_tag_sw;
136
137struct m_snd_tag {
138	struct ifnet *ifp;		/* network interface tag belongs to */
139	const struct if_snd_tag_sw *sw;
140	volatile u_int refcount;
141};
142
143/*
144 * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set.
145 * Size ILP32: 56
146 *	 LP64: 64
147 * Compile-time assertions in uipc_mbuf.c test these values to ensure that
148 * they are correct.
149 */
150struct pkthdr {
151	union {
152		struct m_snd_tag *snd_tag;	/* send tag, if any */
153		struct ifnet	*rcvif;		/* rcv interface */
154		struct {
155			uint16_t rcvidx;	/* rcv interface index ... */
156			uint16_t rcvgen;	/* ... and generation count */
157		};
158	};
159	union {
160		struct ifnet	*leaf_rcvif;	/* leaf rcv interface */
161		struct {
162			uint16_t leaf_rcvidx;	/* leaf rcv interface index ... */
163			uint16_t leaf_rcvgen;	/* ... and generation count */
164		};
165	};
166	SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */
167	int32_t		 len;		/* total packet length */
168
169	/* Layer crossing persistent information. */
170	uint32_t	 flowid;	/* packet's 4-tuple system */
171	uint32_t	 csum_flags;	/* checksum and offload features */
172	uint16_t	 fibnum;	/* this packet should use this fib */
173	uint8_t		 numa_domain;	/* NUMA domain of recvd pkt */
174	uint8_t		 rsstype;	/* hash type */
175#if !defined(__LP64__)
176	uint32_t	 pad;		/* pad for 64bit alignment */
177#endif
178	union {
179		uint64_t	rcv_tstmp;	/* timestamp in ns */
180		struct {
181			uint8_t		 l2hlen;	/* layer 2 hdr len */
182			uint8_t		 l3hlen;	/* layer 3 hdr len */
183			uint8_t		 l4hlen;	/* layer 4 hdr len */
184			uint8_t		 l5hlen;	/* layer 5 hdr len */
185			uint8_t		 inner_l2hlen;
186			uint8_t		 inner_l3hlen;
187			uint8_t		 inner_l4hlen;
188			uint8_t		 inner_l5hlen;
189		};
190	};
191	union {
192		uint8_t  eight[8];
193		uint16_t sixteen[4];
194		uint32_t thirtytwo[2];
195		uint64_t sixtyfour[1];
196		uintptr_t unintptr[1];
197		void	*ptr;
198	} PH_per;
199
200	/* Layer specific non-persistent local storage for reassembly, etc. */
201	union {
202		union {
203			uint8_t  eight[8];
204			uint16_t sixteen[4];
205			uint32_t thirtytwo[2];
206			uint64_t sixtyfour[1];
207			uintptr_t unintptr[1];
208			void 	*ptr;
209		} PH_loc;
210		/* Upon allocation: total packet memory consumption. */
211		u_int	memlen;
212	};
213};
214#define	ether_vtag	PH_per.sixteen[0]
215#define tcp_tun_port	PH_per.sixteen[0] /* outbound */
216#define	vt_nrecs	PH_per.sixteen[0]	  /* mld and v6-ND */
217#define	tso_segsz	PH_per.sixteen[1] /* inbound after LRO */
218#define	lro_nsegs	tso_segsz	  /* inbound after LRO */
219#define	csum_data	PH_per.thirtytwo[1] /* inbound from hardware up */
220#define	lro_tcp_d_len	PH_loc.sixteen[0] /* inbound during LRO (no reassembly) */
221#define	lro_tcp_d_csum	PH_loc.sixteen[1] /* inbound during LRO (no reassembly) */
222#define	lro_tcp_h_off	PH_loc.sixteen[2] /* inbound during LRO (no reassembly) */
223#define	lro_etype	PH_loc.sixteen[3] /* inbound during LRO (no reassembly) */
224/* Note PH_loc is used during IP reassembly (all 8 bytes as a ptr) */
225
226/*
227 * TLS records for TLS 1.0-1.2 can have the following header lengths:
228 * - 5 (AES-CBC with implicit IV)
229 * - 21 (AES-CBC with explicit IV)
230 * - 13 (AES-GCM with 8 byte explicit IV)
231 */
232#define	MBUF_PEXT_HDR_LEN	23
233
234/*
235 * TLS records for TLS 1.0-1.2 can have the following maximum trailer
236 * lengths:
237 * - 16 (AES-GCM)
238 * - 36 (AES-CBC with SHA1 and up to 16 bytes of padding)
239 * - 48 (AES-CBC with SHA2-256 and up to 16 bytes of padding)
240 * - 64 (AES-CBC with SHA2-384 and up to 16 bytes of padding)
241 */
242#define	MBUF_PEXT_TRAIL_LEN	64
243
244#if defined(__LP64__)
245#define MBUF_PEXT_MAX_PGS (40 / sizeof(vm_paddr_t))
246#else
247#define MBUF_PEXT_MAX_PGS (64 / sizeof(vm_paddr_t))
248#endif
249
250#define	MBUF_PEXT_MAX_BYTES						\
251    (MBUF_PEXT_MAX_PGS * PAGE_SIZE + MBUF_PEXT_HDR_LEN + MBUF_PEXT_TRAIL_LEN)
252
253struct ktls_session;
254struct socket;
255
256/*
257 * Description of external storage mapped into mbuf; valid only if M_EXT is
258 * set.
259 * Size ILP32: 28
260 *	 LP64: 48
261 * Compile-time assertions in uipc_mbuf.c test these values to ensure that
262 * they are correct.
263 */
264typedef	void m_ext_free_t(struct mbuf *);
265struct m_ext {
266	union {
267		/*
268		 * If EXT_FLAG_EMBREF is set, then we use refcount in the
269		 * mbuf, the 'ext_count' member.  Otherwise, we have a
270		 * shadow copy and we use pointer 'ext_cnt'.  The original
271		 * mbuf is responsible to carry the pointer to free routine
272		 * and its arguments.  They aren't copied into shadows in
273		 * mb_dupcl() to avoid dereferencing next cachelines.
274		 */
275		volatile u_int	 ext_count;
276		volatile u_int	*ext_cnt;
277	};
278	uint32_t	 ext_size;	/* size of buffer, for ext_free */
279	uint32_t	 ext_type:8,	/* type of external storage */
280			 ext_flags:24;	/* external storage mbuf flags */
281	union {
282		struct {
283			/*
284			 * Regular M_EXT mbuf:
285			 * o ext_buf always points to the external buffer.
286			 * o ext_free (below) and two optional arguments
287			 *   ext_arg1 and ext_arg2 store the free context for
288			 *   the external storage.  They are set only in the
289			 *   refcount carrying mbuf, the one with
290			 *   EXT_FLAG_EMBREF flag, with exclusion for
291			 *   EXT_EXTREF type, where the free context is copied
292			 *   into all mbufs that use same external storage.
293			 */
294			char 	*ext_buf;	/* start of buffer */
295#define	m_ext_copylen	offsetof(struct m_ext, ext_arg2)
296			void	*ext_arg2;
297		};
298		struct {
299			/*
300			 * Multi-page M_EXTPG mbuf:
301			 * o extpg_pa - page vector.
302			 * o extpg_trail and extpg_hdr - TLS trailer and
303			 *   header.
304			 * Uses ext_free and may also use ext_arg1.
305			 */
306			vm_paddr_t	extpg_pa[MBUF_PEXT_MAX_PGS];
307			char		extpg_trail[MBUF_PEXT_TRAIL_LEN];
308			char		extpg_hdr[MBUF_PEXT_HDR_LEN];
309			/* Pretend these 3 fields are part of mbuf itself. */
310#define	m_epg_pa	m_ext.extpg_pa
311#define	m_epg_trail	m_ext.extpg_trail
312#define	m_epg_hdr	m_ext.extpg_hdr
313#define	m_epg_ext_copylen	offsetof(struct m_ext, ext_free)
314		};
315	};
316	/*
317	 * Free method and optional argument pointer, both
318	 * used by M_EXT and M_EXTPG.
319	 */
320	m_ext_free_t	*ext_free;
321	void		*ext_arg1;
322};
323
324/*
325 * The core of the mbuf object along with some shortcut defines for practical
326 * purposes.
327 */
328struct mbuf {
329	/*
330	 * Header present at the beginning of every mbuf.
331	 * Size ILP32: 24
332	 *      LP64: 32
333	 * Compile-time assertions in uipc_mbuf.c test these values to ensure
334	 * that they are correct.
335	 */
336	union {	/* next buffer in chain */
337		struct mbuf		*m_next;
338		SLIST_ENTRY(mbuf)	m_slist;
339		STAILQ_ENTRY(mbuf)	m_stailq;
340	};
341	union {	/* next chain in queue/record */
342		struct mbuf		*m_nextpkt;
343		SLIST_ENTRY(mbuf)	m_slistpkt;
344		STAILQ_ENTRY(mbuf)	m_stailqpkt;
345	};
346	caddr_t		 m_data;	/* location of data */
347	int32_t		 m_len;		/* amount of data in this mbuf */
348	uint32_t	 m_type:8,	/* type of data in this mbuf */
349			 m_flags:24;	/* flags; see below */
350#if !defined(__LP64__)
351	uint32_t	 m_pad;		/* pad for 64bit alignment */
352#endif
353
354	/*
355	 * A set of optional headers (packet header, external storage header)
356	 * and internal data storage.  Historically, these arrays were sized
357	 * to MHLEN (space left after a packet header) and MLEN (space left
358	 * after only a regular mbuf header); they are now variable size in
359	 * order to support future work on variable-size mbufs.
360	 */
361	union {
362		struct {
363			union {
364				/* M_PKTHDR set. */
365				struct pkthdr	m_pkthdr;
366
367				/* M_EXTPG set.
368				 * Multi-page M_EXTPG mbuf has its meta data
369				 * split between the below anonymous structure
370				 * and m_ext.  It carries vector of pages,
371				 * optional header and trailer char vectors
372				 * and pointers to socket/TLS data.
373				 */
374#define	m_epg_startcopy		m_epg_npgs
375#define	m_epg_endcopy		m_epg_stailq
376				struct {
377					/* Overall count of pages and count of
378					 * pages with I/O pending. */
379					uint8_t	m_epg_npgs;
380					uint8_t	m_epg_nrdy;
381					/* TLS header and trailer lengths.
382					 * The data itself resides in m_ext. */
383					uint8_t	m_epg_hdrlen;
384					uint8_t	m_epg_trllen;
385					/* Offset into 1st page and length of
386					 * data in the last page. */
387					uint16_t m_epg_1st_off;
388					uint16_t m_epg_last_len;
389					uint8_t	m_epg_flags;
390#define	EPG_FLAG_ANON	0x1	/* Data can be encrypted in place. */
391#define	EPG_FLAG_2FREE	0x2	/* Scheduled for free. */
392					uint8_t	m_epg_record_type;
393					uint8_t	__spare[2];
394					int	m_epg_enc_cnt;
395					struct ktls_session *m_epg_tls;
396					struct socket	*m_epg_so;
397					uint64_t	m_epg_seqno;
398					STAILQ_ENTRY(mbuf) m_epg_stailq;
399				};
400			};
401			union {
402				/* M_EXT or M_EXTPG set. */
403				struct m_ext	m_ext;
404				/* M_PKTHDR set, neither M_EXT nor M_EXTPG. */
405				char		m_pktdat[0];
406			};
407		};
408		char	m_dat[0];			/* !M_PKTHDR, !M_EXT */
409	};
410};
411
412#ifdef _KERNEL
413static inline int
414m_epg_pagelen(const struct mbuf *m, int pidx, int pgoff)
415{
416
417	KASSERT(pgoff == 0 || pidx == 0,
418	    ("page %d with non-zero offset %d in %p", pidx, pgoff, m));
419
420	if (pidx == m->m_epg_npgs - 1) {
421		return (m->m_epg_last_len);
422	} else {
423		return (PAGE_SIZE - pgoff);
424	}
425}
426
427#ifdef INVARIANTS
428#define	MCHECK(ex, msg)	KASSERT((ex),				\
429	    ("Multi page mbuf %p with " #msg " at %s:%d",	\
430	    m, __FILE__, __LINE__))
431/*
432 * NB: This expects a non-empty buffer (npgs > 0 and
433 * last_pg_len > 0).
434 */
435#define	MBUF_EXT_PGS_ASSERT_SANITY(m)	do {				\
436	MCHECK(m->m_epg_npgs > 0, "no valid pages");		\
437	MCHECK(m->m_epg_npgs <= nitems(m->m_epg_pa),		\
438	    "too many pages");						\
439	MCHECK(m->m_epg_nrdy <= m->m_epg_npgs,			\
440	    "too many ready pages");					\
441	MCHECK(m->m_epg_1st_off < PAGE_SIZE,			\
442		"too large page offset");				\
443	MCHECK(m->m_epg_last_len > 0, "zero last page length");	\
444	MCHECK(m->m_epg_last_len <= PAGE_SIZE,			\
445	    "too large last page length");				\
446	if (m->m_epg_npgs == 1)					\
447		MCHECK(m->m_epg_1st_off +			\
448		    m->m_epg_last_len <=	 PAGE_SIZE,		\
449		    "single page too large");				\
450	MCHECK(m->m_epg_hdrlen <= sizeof(m->m_epg_hdr),		\
451	    "too large header length");					\
452	MCHECK(m->m_epg_trllen <= sizeof(m->m_epg_trail),	\
453	    "too large header length");					\
454} while (0)
455#else
456#define	MBUF_EXT_PGS_ASSERT_SANITY(m)	do {} while (0)
457#endif
458#endif
459
460/*
461 * mbuf flags of global significance and layer crossing.
462 * Those of only protocol/layer specific significance are to be mapped
463 * to M_PROTO[1-11] and cleared at layer handoff boundaries.
464 * NB: Limited to the lower 24 bits.
465 */
466#define	M_EXT		0x00000001 /* has associated external storage */
467#define	M_PKTHDR	0x00000002 /* start of record */
468#define	M_EOR		0x00000004 /* end of record */
469#define	M_RDONLY	0x00000008 /* associated data is marked read-only */
470#define	M_BCAST		0x00000010 /* send/received as link-level broadcast */
471#define	M_MCAST		0x00000020 /* send/received as link-level multicast */
472#define	M_PROMISC	0x00000040 /* packet was not for us */
473#define	M_VLANTAG	0x00000080 /* ether_vtag is valid */
474#define	M_EXTPG		0x00000100 /* has array of unmapped pages and TLS */
475#define	M_NOFREE	0x00000200 /* do not free mbuf, embedded in cluster */
476#define	M_TSTMP		0x00000400 /* rcv_tstmp field is valid */
477#define	M_TSTMP_HPREC	0x00000800 /* rcv_tstmp is high-prec, typically
478				      hw-stamped on port (useful for IEEE 1588
479				      and 802.1AS) */
480#define M_TSTMP_LRO	0x00001000 /* Time LRO pushed in pkt is valid in (PH_loc) */
481
482#define	M_PROTO1	0x00002000 /* protocol-specific */
483#define	M_PROTO2	0x00004000 /* protocol-specific */
484#define	M_PROTO3	0x00008000 /* protocol-specific */
485#define	M_PROTO4	0x00010000 /* protocol-specific */
486#define	M_PROTO5	0x00020000 /* protocol-specific */
487#define	M_PROTO6	0x00040000 /* protocol-specific */
488#define	M_PROTO7	0x00080000 /* protocol-specific */
489#define	M_PROTO8	0x00100000 /* protocol-specific */
490#define	M_PROTO9	0x00200000 /* protocol-specific */
491#define	M_PROTO10	0x00400000 /* protocol-specific */
492#define	M_PROTO11	0x00800000 /* protocol-specific */
493
494/*
495 * Flags to purge when crossing layers.
496 */
497#define	M_PROTOFLAGS \
498    (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\
499     M_PROTO9|M_PROTO10|M_PROTO11)
500
501/*
502 * Flags preserved when copying m_pkthdr.
503 */
504#define M_COPYFLAGS \
505    (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \
506     M_TSTMP_HPREC|M_TSTMP_LRO|M_PROTOFLAGS)
507
508/*
509 * Flags preserved during demote.
510 */
511#define	M_DEMOTEFLAGS \
512    (M_EXT | M_RDONLY | M_NOFREE | M_EXTPG)
513
514/*
515 * Mbuf flag description for use with printf(9) %b identifier.
516 */
517#define	M_FLAG_BITS \
518    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \
519    "\7M_PROMISC\10M_VLANTAG\11M_EXTPG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC\15M_TSTMP_LRO"
520#define	M_FLAG_PROTOBITS \
521    "\16M_PROTO1\17M_PROTO2\20M_PROTO3\21M_PROTO4" \
522    "\22M_PROTO5\23M_PROTO6\24M_PROTO7\25M_PROTO8\26M_PROTO9" \
523    "\27M_PROTO10\28M_PROTO11"
524#define	M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS)
525
526/*
527 * Network interface cards are able to hash protocol fields (such as IPv4
528 * addresses and TCP port numbers) classify packets into flows.  These flows
529 * can then be used to maintain ordering while delivering packets to the OS
530 * via parallel input queues, as well as to provide a stateless affinity
531 * model.  NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set
532 * m_flag fields to indicate how the hash should be interpreted by the
533 * network stack.
534 *
535 * Most NICs support RSS, which provides ordering and explicit affinity, and
536 * use the hash m_flag bits to indicate what header fields were covered by
537 * the hash.  M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non-
538 * RSS cards or configurations that provide an opaque flow identifier, allowing
539 * for ordering and distribution without explicit affinity.  Additionally,
540 * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash
541 * properties.
542 *
543 * The meaning of the IPV6_EX suffix:
544 * "o  Home address from the home address option in the IPv6 destination
545 *     options header.  If the extension header is not present, use the Source
546 *     IPv6 Address.
547 *  o  IPv6 address that is contained in the Routing-Header-Type-2 from the
548 *     associated extension header.  If the extension header is not present,
549 *     use the Destination IPv6 Address."
550 * Quoted from:
551 * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex
552 */
553#define	M_HASHTYPE_HASHPROP		0x80	/* has hash properties */
554#define	M_HASHTYPE_INNER		0x40	/* calculated from inner headers */
555#define	M_HASHTYPE_HASH(t)		(M_HASHTYPE_HASHPROP | (t))
556/* Microsoft RSS standard hash types */
557#define	M_HASHTYPE_NONE			0
558#define	M_HASHTYPE_RSS_IPV4		M_HASHTYPE_HASH(1) /* IPv4 2-tuple */
559#define	M_HASHTYPE_RSS_TCP_IPV4		M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */
560#define	M_HASHTYPE_RSS_IPV6		M_HASHTYPE_HASH(3) /* IPv6 2-tuple */
561#define	M_HASHTYPE_RSS_TCP_IPV6		M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */
562#define	M_HASHTYPE_RSS_IPV6_EX		M_HASHTYPE_HASH(5) /* IPv6 2-tuple +
563							    * ext hdrs */
564#define	M_HASHTYPE_RSS_TCP_IPV6_EX	M_HASHTYPE_HASH(6) /* TCPv6 4-tuple +
565							    * ext hdrs */
566#define	M_HASHTYPE_RSS_UDP_IPV4		M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/
567#define	M_HASHTYPE_RSS_UDP_IPV6		M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/
568#define	M_HASHTYPE_RSS_UDP_IPV6_EX	M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple +
569							    * ext hdrs */
570
571#define	M_HASHTYPE_OPAQUE		0x3f	/* ordering, not affinity */
572#define	M_HASHTYPE_OPAQUE_HASH		M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE)
573						/* ordering+hash, not affinity*/
574
575#define	M_HASHTYPE_CLEAR(m)	((m)->m_pkthdr.rsstype = 0)
576#define	M_HASHTYPE_GET(m)	((m)->m_pkthdr.rsstype & ~M_HASHTYPE_INNER)
577#define	M_HASHTYPE_SET(m, v)	((m)->m_pkthdr.rsstype = (v))
578#define	M_HASHTYPE_TEST(m, v)	(M_HASHTYPE_GET(m) == (v))
579#define	M_HASHTYPE_ISHASH(m)	\
580    (((m)->m_pkthdr.rsstype & M_HASHTYPE_HASHPROP) != 0)
581#define	M_HASHTYPE_SETINNER(m)	do {			\
582	(m)->m_pkthdr.rsstype |= M_HASHTYPE_INNER;	\
583    } while (0)
584
585/*
586 * External mbuf storage buffer types.
587 */
588#define	EXT_CLUSTER	1	/* mbuf cluster */
589#define	EXT_SFBUF	2	/* sendfile(2)'s sf_buf */
590#define	EXT_JUMBOP	3	/* jumbo cluster page sized */
591#define	EXT_JUMBO9	4	/* jumbo cluster 9216 bytes */
592#define	EXT_JUMBO16	5	/* jumbo cluster 16184 bytes */
593#define	EXT_PACKET	6	/* mbuf+cluster from packet zone */
594#define	EXT_MBUF	7	/* external mbuf reference */
595#define	EXT_RXRING	8	/* data in NIC receive ring */
596#define	EXT_CTL		9	/* buffer from a ctl(4) backend */
597
598#define	EXT_VENDOR1	224	/* for vendor-internal use */
599#define	EXT_VENDOR2	225	/* for vendor-internal use */
600#define	EXT_VENDOR3	226	/* for vendor-internal use */
601#define	EXT_VENDOR4	227	/* for vendor-internal use */
602
603#define	EXT_EXP1	244	/* for experimental use */
604#define	EXT_EXP2	245	/* for experimental use */
605#define	EXT_EXP3	246	/* for experimental use */
606#define	EXT_EXP4	247	/* for experimental use */
607
608#define	EXT_NET_DRV	252	/* custom ext_buf provided by net driver(s) */
609#define	EXT_MOD_TYPE	253	/* custom module's ext_buf type */
610#define	EXT_DISPOSABLE	254	/* can throw this buffer away w/page flipping */
611#define	EXT_EXTREF	255	/* has externally maintained ext_cnt ptr */
612
613/*
614 * Flags for external mbuf buffer types.
615 * NB: limited to the lower 24 bits.
616 */
617#define	EXT_FLAG_EMBREF		0x000001	/* embedded ext_count */
618#define	EXT_FLAG_EXTREF		0x000002	/* external ext_cnt, notyet */
619
620#define	EXT_FLAG_NOFREE		0x000010	/* don't free mbuf to pool, notyet */
621
622#define	EXT_FLAG_VENDOR1	0x010000	/* These flags are vendor */
623#define	EXT_FLAG_VENDOR2	0x020000	/* or submodule specific, */
624#define	EXT_FLAG_VENDOR3	0x040000	/* not used by mbuf code. */
625#define	EXT_FLAG_VENDOR4	0x080000	/* Set/read by submodule. */
626
627#define	EXT_FLAG_EXP1		0x100000	/* for experimental use */
628#define	EXT_FLAG_EXP2		0x200000	/* for experimental use */
629#define	EXT_FLAG_EXP3		0x400000	/* for experimental use */
630#define	EXT_FLAG_EXP4		0x800000	/* for experimental use */
631
632/*
633 * EXT flag description for use with printf(9) %b identifier.
634 */
635#define	EXT_FLAG_BITS \
636    "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \
637    "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \
638    "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \
639    "\30EXT_FLAG_EXP4"
640
641/*
642 * Flags indicating checksum, segmentation and other offload work to be
643 * done, or already done, by hardware or lower layers.  It is split into
644 * separate inbound and outbound flags.
645 *
646 * Outbound flags that are set by upper protocol layers requesting lower
647 * layers, or ideally the hardware, to perform these offloading tasks.
648 * For outbound packets this field and its flags can be directly tested
649 * against ifnet if_hwassist.  Note that the outbound and the inbound flags do
650 * not collide right now but they could be allowed to (as long as the flags are
651 * scrubbed appropriately when the direction of an mbuf changes).  CSUM_BITS
652 * would also have to split into CSUM_BITS_TX and CSUM_BITS_RX.
653 *
654 * CSUM_INNER_<x> is the same as CSUM_<x> but it applies to the inner frame.
655 * The CSUM_ENCAP_<x> bits identify the outer encapsulation.
656 */
657#define	CSUM_IP			0x00000001	/* IP header checksum offload */
658#define	CSUM_IP_UDP		0x00000002	/* UDP checksum offload */
659#define	CSUM_IP_TCP		0x00000004	/* TCP checksum offload */
660#define	CSUM_IP_SCTP		0x00000008	/* SCTP checksum offload */
661#define	CSUM_IP_TSO		0x00000010	/* TCP segmentation offload */
662#define	CSUM_IP_ISCSI		0x00000020	/* iSCSI checksum offload */
663
664#define	CSUM_INNER_IP6_UDP	0x00000040
665#define	CSUM_INNER_IP6_TCP	0x00000080
666#define	CSUM_INNER_IP6_TSO	0x00000100
667#define	CSUM_IP6_UDP		0x00000200	/* UDP checksum offload */
668#define	CSUM_IP6_TCP		0x00000400	/* TCP checksum offload */
669#define	CSUM_IP6_SCTP		0x00000800	/* SCTP checksum offload */
670#define	CSUM_IP6_TSO		0x00001000	/* TCP segmentation offload */
671#define	CSUM_IP6_ISCSI		0x00002000	/* iSCSI checksum offload */
672
673#define	CSUM_INNER_IP		0x00004000
674#define	CSUM_INNER_IP_UDP	0x00008000
675#define	CSUM_INNER_IP_TCP	0x00010000
676#define	CSUM_INNER_IP_TSO	0x00020000
677
678#define	CSUM_ENCAP_VXLAN	0x00040000	/* VXLAN outer encapsulation */
679#define	CSUM_ENCAP_RSVD1	0x00080000
680
681/* Inbound checksum support where the checksum was verified by hardware. */
682#define	CSUM_INNER_L3_CALC	0x00100000
683#define	CSUM_INNER_L3_VALID	0x00200000
684#define	CSUM_INNER_L4_CALC	0x00400000
685#define	CSUM_INNER_L4_VALID	0x00800000
686#define	CSUM_L3_CALC		0x01000000	/* calculated layer 3 csum */
687#define	CSUM_L3_VALID		0x02000000	/* checksum is correct */
688#define	CSUM_L4_CALC		0x04000000	/* calculated layer 4 csum */
689#define	CSUM_L4_VALID		0x08000000	/* checksum is correct */
690#define	CSUM_L5_CALC		0x10000000	/* calculated layer 5 csum */
691#define	CSUM_L5_VALID		0x20000000	/* checksum is correct */
692#define	CSUM_COALESCED		0x40000000	/* contains merged segments */
693
694#define	CSUM_SND_TAG		0x80000000	/* Packet header has send tag */
695
696#define CSUM_FLAGS_TX (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \
697    CSUM_IP_TSO | CSUM_IP_ISCSI | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | \
698    CSUM_INNER_IP6_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP | \
699    CSUM_IP6_TSO | CSUM_IP6_ISCSI | CSUM_INNER_IP | CSUM_INNER_IP_UDP | \
700    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN | \
701    CSUM_ENCAP_RSVD1 | CSUM_SND_TAG)
702
703#define CSUM_FLAGS_RX (CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | \
704    CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID | CSUM_L3_CALC | CSUM_L3_VALID | \
705    CSUM_L4_CALC | CSUM_L4_VALID | CSUM_L5_CALC | CSUM_L5_VALID | \
706    CSUM_COALESCED)
707
708/*
709 * CSUM flag description for use with printf(9) %b identifier.
710 */
711#define	CSUM_BITS \
712    "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \
713    "\6CSUM_IP_ISCSI\7CSUM_INNER_IP6_UDP\10CSUM_INNER_IP6_TCP" \
714    "\11CSUM_INNER_IP6_TSO\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP" \
715    "\15CSUM_IP6_TSO\16CSUM_IP6_ISCSI\17CSUM_INNER_IP\20CSUM_INNER_IP_UDP" \
716    "\21CSUM_INNER_IP_TCP\22CSUM_INNER_IP_TSO\23CSUM_ENCAP_VXLAN" \
717    "\24CSUM_ENCAP_RSVD1\25CSUM_INNER_L3_CALC\26CSUM_INNER_L3_VALID" \
718    "\27CSUM_INNER_L4_CALC\30CSUM_INNER_L4_VALID\31CSUM_L3_CALC" \
719    "\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID\35CSUM_L5_CALC" \
720    "\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG"
721
722/* CSUM flags compatibility mappings. */
723#define	CSUM_IP_CHECKED		CSUM_L3_CALC
724#define	CSUM_IP_VALID		CSUM_L3_VALID
725#define	CSUM_DATA_VALID		CSUM_L4_VALID
726#define	CSUM_PSEUDO_HDR		CSUM_L4_CALC
727#define	CSUM_SCTP_VALID		CSUM_L4_VALID
728#define	CSUM_DELAY_DATA		(CSUM_TCP|CSUM_UDP)
729#define	CSUM_DELAY_IP		CSUM_IP		/* Only v4, no v6 IP hdr csum */
730#define	CSUM_DELAY_DATA_IPV6	(CSUM_TCP_IPV6|CSUM_UDP_IPV6)
731#define	CSUM_DATA_VALID_IPV6	CSUM_DATA_VALID
732#define	CSUM_TCP		CSUM_IP_TCP
733#define	CSUM_UDP		CSUM_IP_UDP
734#define	CSUM_SCTP		CSUM_IP_SCTP
735#define	CSUM_TSO		(CSUM_IP_TSO|CSUM_IP6_TSO)
736#define	CSUM_INNER_TSO		(CSUM_INNER_IP_TSO|CSUM_INNER_IP6_TSO)
737#define	CSUM_UDP_IPV6		CSUM_IP6_UDP
738#define	CSUM_TCP_IPV6		CSUM_IP6_TCP
739#define	CSUM_SCTP_IPV6		CSUM_IP6_SCTP
740#define	CSUM_TLS_MASK		(CSUM_L5_CALC|CSUM_L5_VALID)
741#define	CSUM_TLS_DECRYPTED	CSUM_L5_CALC
742
743/*
744 * mbuf types describing the content of the mbuf (including external storage).
745 */
746#define	MT_NOTMBUF	0	/* USED INTERNALLY ONLY! Object is not mbuf */
747#define	MT_DATA		1	/* dynamic (data) allocation */
748#define	MT_HEADER	MT_DATA	/* packet header, use M_PKTHDR instead */
749
750#define	MT_VENDOR1	4	/* for vendor-internal use */
751#define	MT_VENDOR2	5	/* for vendor-internal use */
752#define	MT_VENDOR3	6	/* for vendor-internal use */
753#define	MT_VENDOR4	7	/* for vendor-internal use */
754
755#define	MT_SONAME	8	/* socket name */
756
757#define	MT_EXP1		9	/* for experimental use */
758#define	MT_EXP2		10	/* for experimental use */
759#define	MT_EXP3		11	/* for experimental use */
760#define	MT_EXP4		12	/* for experimental use */
761
762#define	MT_CONTROL	14	/* extra-data protocol message */
763#define	MT_EXTCONTROL	15	/* control message with externalized contents */
764#define	MT_OOBDATA	16	/* expedited data  */
765
766#define	MT_NOINIT	255	/* Not a type but a flag to allocate
767				   a non-initialized mbuf */
768
769/*
770 * String names of mbuf-related UMA(9) and malloc(9) types.  Exposed to
771 * !_KERNEL so that monitoring tools can look up the zones with
772 * libmemstat(3).
773 */
774#define	MBUF_MEM_NAME		"mbuf"
775#define	MBUF_CLUSTER_MEM_NAME	"mbuf_cluster"
776#define	MBUF_PACKET_MEM_NAME	"mbuf_packet"
777#define	MBUF_JUMBOP_MEM_NAME	"mbuf_jumbo_page"
778#define	MBUF_JUMBO9_MEM_NAME	"mbuf_jumbo_9k"
779#define	MBUF_JUMBO16_MEM_NAME	"mbuf_jumbo_16k"
780#define	MBUF_TAG_MEM_NAME	"mbuf_tag"
781#define	MBUF_EXTREFCNT_MEM_NAME	"mbuf_ext_refcnt"
782#define	MBUF_EXTPGS_MEM_NAME	"mbuf_extpgs"
783
784#ifdef _KERNEL
785union if_snd_tag_alloc_params;
786
787#define	MBUF_CHECKSLEEP(how) do {					\
788	if (how == M_WAITOK)						\
789		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,		\
790		    "Sleeping in \"%s\"", __func__);			\
791} while (0)
792
793/*
794 * Network buffer allocation API
795 *
796 * The rest of it is defined in kern/kern_mbuf.c
797 */
798extern uma_zone_t	zone_mbuf;
799extern uma_zone_t	zone_clust;
800extern uma_zone_t	zone_pack;
801extern uma_zone_t	zone_jumbop;
802extern uma_zone_t	zone_jumbo9;
803extern uma_zone_t	zone_jumbo16;
804extern uma_zone_t	zone_extpgs;
805
806void		 mb_dupcl(struct mbuf *, struct mbuf *);
807void		 mb_free_ext(struct mbuf *);
808void		 mb_free_extpg(struct mbuf *);
809void		 mb_free_mext_pgs(struct mbuf *);
810struct mbuf	*mb_alloc_ext_pgs(int, m_ext_free_t);
811struct mbuf	*mb_alloc_ext_plus_pages(int, int);
812struct mbuf	*mb_mapped_to_unmapped(struct mbuf *, int, int, int,
813		    struct mbuf **);
814int		 mb_unmapped_compress(struct mbuf *m);
815struct mbuf 	*mb_unmapped_to_ext(struct mbuf *m);
816void		 mb_free_notready(struct mbuf *m, int count);
817void		 m_adj(struct mbuf *, int);
818void		 m_adj_decap(struct mbuf *, int);
819int		 m_apply(struct mbuf *, int, int,
820		    int (*)(void *, void *, u_int), void *);
821int		 m_append(struct mbuf *, int, c_caddr_t);
822void		 m_cat(struct mbuf *, struct mbuf *);
823void		 m_catpkt(struct mbuf *, struct mbuf *);
824int		 m_clget(struct mbuf *m, int how);
825void 		*m_cljget(struct mbuf *m, int how, int size);
826struct mbuf	*m_collapse(struct mbuf *, int, int);
827void		 m_copyback(struct mbuf *, int, int, c_caddr_t);
828void		 m_copydata(const struct mbuf *, int, int, caddr_t);
829struct mbuf	*m_copym(struct mbuf *, int, int, int);
830struct mbuf	*m_copypacket(struct mbuf *, int);
831void		 m_copy_pkthdr(struct mbuf *, struct mbuf *);
832struct mbuf	*m_copyup(struct mbuf *, int, int);
833struct mbuf	*m_defrag(struct mbuf *, int);
834void		 m_demote_pkthdr(struct mbuf *);
835void		 m_demote(struct mbuf *, int, int);
836struct mbuf	*m_devget(char *, int, int, struct ifnet *,
837		    void (*)(char *, caddr_t, u_int));
838void		 m_dispose_extcontrolm(struct mbuf *m);
839struct mbuf	*m_dup(const struct mbuf *, int);
840int		 m_dup_pkthdr(struct mbuf *, const struct mbuf *, int);
841void		 m_extadd(struct mbuf *, char *, u_int, m_ext_free_t,
842		    void *, void *, int, int);
843u_int		 m_fixhdr(struct mbuf *);
844struct mbuf	*m_fragment(struct mbuf *, int, int);
845void		 m_freem(struct mbuf *);
846void		 m_free_raw(struct mbuf *);
847struct mbuf	*m_get2(int, int, short, int);
848struct mbuf	*m_get3(int, int, short, int);
849struct mbuf	*m_getjcl(int, short, int, int);
850struct mbuf	*m_getm2(struct mbuf *, int, int, short, int);
851struct mbuf	*m_getptr(struct mbuf *, int, int *);
852u_int		 m_length(struct mbuf *, struct mbuf **);
853int		 m_mbuftouio(struct uio *, const struct mbuf *, int);
854void		 m_move_pkthdr(struct mbuf *, struct mbuf *);
855int		 m_pkthdr_init(struct mbuf *, int);
856struct mbuf	*m_prepend(struct mbuf *, int, int);
857void		 m_print(const struct mbuf *, int);
858struct mbuf	*m_pulldown(struct mbuf *, int, int, int *);
859struct mbuf	*m_pullup(struct mbuf *, int);
860int		 m_sanity(struct mbuf *, int);
861struct mbuf	*m_split(struct mbuf *, int, int);
862struct mbuf	*m_uiotombuf(struct uio *, int, int, int, int);
863int		 m_unmapped_uiomove(const struct mbuf *, int, struct uio *,
864		    int);
865struct mbuf	*m_unshare(struct mbuf *, int);
866int		 m_snd_tag_alloc(struct ifnet *,
867		    union if_snd_tag_alloc_params *, struct m_snd_tag **);
868void		 m_snd_tag_init(struct m_snd_tag *, struct ifnet *,
869		    const struct if_snd_tag_sw *);
870void		 m_snd_tag_destroy(struct m_snd_tag *);
871void		 m_rcvif_serialize(struct mbuf *);
872struct ifnet	*m_rcvif_restore(struct mbuf *);
873
874static __inline int
875m_gettype(int size)
876{
877	int type;
878
879	switch (size) {
880	case MSIZE:
881		type = EXT_MBUF;
882		break;
883	case MCLBYTES:
884		type = EXT_CLUSTER;
885		break;
886	case MJUMPAGESIZE:
887		type = EXT_JUMBOP;
888		break;
889	case MJUM9BYTES:
890		type = EXT_JUMBO9;
891		break;
892	case MJUM16BYTES:
893		type = EXT_JUMBO16;
894		break;
895	default:
896		panic("%s: invalid cluster size %d", __func__, size);
897	}
898
899	return (type);
900}
901
902/*
903 * Associated an external reference counted buffer with an mbuf.
904 */
905static __inline void
906m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt,
907    m_ext_free_t freef, void *arg1, void *arg2)
908{
909
910	KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__));
911
912	atomic_add_int(ref_cnt, 1);
913	m->m_flags |= M_EXT;
914	m->m_ext.ext_buf = buf;
915	m->m_ext.ext_cnt = ref_cnt;
916	m->m_data = m->m_ext.ext_buf;
917	m->m_ext.ext_size = size;
918	m->m_ext.ext_free = freef;
919	m->m_ext.ext_arg1 = arg1;
920	m->m_ext.ext_arg2 = arg2;
921	m->m_ext.ext_type = EXT_EXTREF;
922	m->m_ext.ext_flags = 0;
923}
924
925static __inline uma_zone_t
926m_getzone(int size)
927{
928	uma_zone_t zone;
929
930	switch (size) {
931	case MCLBYTES:
932		zone = zone_clust;
933		break;
934	case MJUMPAGESIZE:
935		zone = zone_jumbop;
936		break;
937	case MJUM9BYTES:
938		zone = zone_jumbo9;
939		break;
940	case MJUM16BYTES:
941		zone = zone_jumbo16;
942		break;
943	default:
944		panic("%s: invalid cluster size %d", __func__, size);
945	}
946
947	return (zone);
948}
949
950/*
951 * Initialize an mbuf with linear storage.
952 *
953 * Inline because the consumer text overhead will be roughly the same to
954 * initialize or call a function with this many parameters and M_PKTHDR
955 * should go away with constant propagation for !MGETHDR.
956 */
957static __inline int
958m_init(struct mbuf *m, int how, short type, int flags)
959{
960	int error;
961
962	m->m_next = NULL;
963	m->m_nextpkt = NULL;
964	m->m_data = m->m_dat;
965	m->m_len = 0;
966	m->m_flags = flags;
967	m->m_type = type;
968	if (flags & M_PKTHDR)
969		error = m_pkthdr_init(m, how);
970	else
971		error = 0;
972
973	MBUF_PROBE5(m__init, m, how, type, flags, error);
974	return (error);
975}
976
977static __inline struct mbuf *
978m_get_raw(int how, short type)
979{
980	struct mbuf *m;
981	struct mb_args args;
982
983	args.flags = 0;
984	args.type = type | MT_NOINIT;
985	m = uma_zalloc_arg(zone_mbuf, &args, how);
986	MBUF_PROBE3(m__get_raw, how, type, m);
987	return (m);
988}
989
990static __inline struct mbuf *
991m_get(int how, short type)
992{
993	struct mbuf *m;
994	struct mb_args args;
995
996	args.flags = 0;
997	args.type = type;
998	m = uma_zalloc_arg(zone_mbuf, &args, how);
999	MBUF_PROBE3(m__get, how, type, m);
1000	return (m);
1001}
1002
1003static __inline struct mbuf *
1004m_gethdr_raw(int how, short type)
1005{
1006	struct mbuf *m;
1007	struct mb_args args;
1008
1009	args.flags = M_PKTHDR;
1010	args.type = type | MT_NOINIT;
1011	m = uma_zalloc_arg(zone_mbuf, &args, how);
1012	MBUF_PROBE3(m__gethdr_raw, how, type, m);
1013	return (m);
1014}
1015
1016static __inline struct mbuf *
1017m_gethdr(int how, short type)
1018{
1019	struct mbuf *m;
1020	struct mb_args args;
1021
1022	args.flags = M_PKTHDR;
1023	args.type = type;
1024	m = uma_zalloc_arg(zone_mbuf, &args, how);
1025	MBUF_PROBE3(m__gethdr, how, type, m);
1026	return (m);
1027}
1028
1029static __inline struct mbuf *
1030m_getcl(int how, short type, int flags)
1031{
1032	struct mbuf *m;
1033	struct mb_args args;
1034
1035	args.flags = flags;
1036	args.type = type;
1037	m = uma_zalloc_arg(zone_pack, &args, how);
1038	MBUF_PROBE4(m__getcl, how, type, flags, m);
1039	return (m);
1040}
1041
1042/*
1043 * XXX: m_cljset() is a dangerous API.  One must attach only a new,
1044 * unreferenced cluster to an mbuf(9).  It is not possible to assert
1045 * that, so care can be taken only by users of the API.
1046 */
1047static __inline void
1048m_cljset(struct mbuf *m, void *cl, int type)
1049{
1050	int size;
1051
1052	switch (type) {
1053	case EXT_CLUSTER:
1054		size = MCLBYTES;
1055		break;
1056	case EXT_JUMBOP:
1057		size = MJUMPAGESIZE;
1058		break;
1059	case EXT_JUMBO9:
1060		size = MJUM9BYTES;
1061		break;
1062	case EXT_JUMBO16:
1063		size = MJUM16BYTES;
1064		break;
1065	default:
1066		panic("%s: unknown cluster type %d", __func__, type);
1067		break;
1068	}
1069
1070	m->m_data = m->m_ext.ext_buf = cl;
1071	m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL;
1072	m->m_ext.ext_size = size;
1073	m->m_ext.ext_type = type;
1074	m->m_ext.ext_flags = EXT_FLAG_EMBREF;
1075	m->m_ext.ext_count = 1;
1076	m->m_flags |= M_EXT;
1077	MBUF_PROBE3(m__cljset, m, cl, type);
1078}
1079
1080static __inline void
1081m_chtype(struct mbuf *m, short new_type)
1082{
1083
1084	m->m_type = new_type;
1085}
1086
1087static __inline void
1088m_clrprotoflags(struct mbuf *m)
1089{
1090
1091	while (m) {
1092		m->m_flags &= ~M_PROTOFLAGS;
1093		m = m->m_next;
1094	}
1095}
1096
1097static __inline struct mbuf *
1098m_last(struct mbuf *m)
1099{
1100
1101	while (m->m_next)
1102		m = m->m_next;
1103	return (m);
1104}
1105
1106static inline u_int
1107m_extrefcnt(struct mbuf *m)
1108{
1109
1110	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__));
1111
1112	return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count :
1113	    *m->m_ext.ext_cnt);
1114}
1115
1116/*
1117 * mbuf, cluster, and external object allocation macros (for compatibility
1118 * purposes).
1119 */
1120#define	M_MOVE_PKTHDR(to, from)	m_move_pkthdr((to), (from))
1121#define	MGET(m, how, type)	((m) = m_get((how), (type)))
1122#define	MGETHDR(m, how, type)	((m) = m_gethdr((how), (type)))
1123#define	MCLGET(m, how)		m_clget((m), (how))
1124#define	MEXTADD(m, buf, size, free, arg1, arg2, flags, type)		\
1125    m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2),	\
1126    (flags), (type))
1127#define	m_getm(m, len, how, type)					\
1128    m_getm2((m), (len), (how), (type), M_PKTHDR)
1129
1130/*
1131 * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can
1132 * be both the local data payload, or an external buffer area, depending on
1133 * whether M_EXT is set).
1134 */
1135#define	M_WRITABLE(m)	(((m)->m_flags & (M_RDONLY | M_EXTPG)) == 0 &&	\
1136			 (!(((m)->m_flags & M_EXT)) ||			\
1137			 (m_extrefcnt(m) == 1)))
1138
1139/* Check if the supplied mbuf has a packet header, or else panic. */
1140#define	M_ASSERTPKTHDR(m)						\
1141	KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR,			\
1142	    ("%s: no mbuf packet header!", __func__))
1143
1144/* Check if the supplied mbuf has no send tag, or else panic. */
1145#define	M_ASSERT_NO_SND_TAG(m)						\
1146	KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR &&		\
1147	       ((m)->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0,		\
1148	    ("%s: receive mbuf has send tag!", __func__))
1149
1150/* Check if mbuf is multipage. */
1151#define M_ASSERTEXTPG(m)						\
1152	KASSERT(((m)->m_flags & (M_EXTPG|M_PKTHDR)) == M_EXTPG,		\
1153	    ("%s: m %p is not multipage!", __func__, m))
1154
1155/*
1156 * Ensure that the supplied mbuf is a valid, non-free mbuf.
1157 *
1158 * XXX: Broken at the moment.  Need some UMA magic to make it work again.
1159 */
1160#define	M_ASSERTVALID(m)						\
1161	KASSERT((((struct mbuf *)m)->m_flags & 0) == 0,			\
1162	    ("%s: attempted use of a free mbuf!", __func__))
1163
1164/* Check whether any mbuf in the chain is unmapped. */
1165#ifdef INVARIANTS
1166#define	M_ASSERTMAPPED(m) do {						\
1167	for (struct mbuf *__m = (m); __m != NULL; __m = __m->m_next)	\
1168		KASSERT((__m->m_flags & M_EXTPG) == 0,			\
1169		    ("%s: chain %p contains an unmapped mbuf", __func__, (m)));\
1170} while (0)
1171#else
1172#define	M_ASSERTMAPPED(m) do {} while (0)
1173#endif
1174
1175/*
1176 * Return the address of the start of the buffer associated with an mbuf,
1177 * handling external storage, packet-header mbufs, and regular data mbufs.
1178 */
1179#define	M_START(m)							\
1180	(((m)->m_flags & M_EXTPG) ? NULL :				\
1181	 ((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf :			\
1182	 ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] :		\
1183	 &(m)->m_dat[0])
1184
1185/*
1186 * Return the size of the buffer associated with an mbuf, handling external
1187 * storage, packet-header mbufs, and regular data mbufs.
1188 */
1189#define	M_SIZE(m)							\
1190	(((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size :			\
1191	 ((m)->m_flags & M_PKTHDR) ? MHLEN :				\
1192	 MLEN)
1193
1194/*
1195 * Set the m_data pointer of a newly allocated mbuf to place an object of the
1196 * specified size at the end of the mbuf, longword aligned.
1197 *
1198 * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as
1199 * separate macros, each asserting that it was called at the proper moment.
1200 * This required callers to themselves test the storage type and call the
1201 * right one.  Rather than require callers to be aware of those layout
1202 * decisions, we centralize here.
1203 */
1204static __inline void
1205m_align(struct mbuf *m, int len)
1206{
1207#ifdef INVARIANTS
1208	const char *msg = "%s: not a virgin mbuf";
1209#endif
1210	int adjust;
1211
1212	KASSERT(m->m_data == M_START(m), (msg, __func__));
1213
1214	adjust = M_SIZE(m) - len;
1215	m->m_data += adjust &~ (sizeof(long)-1);
1216}
1217
1218#define	M_ALIGN(m, len)		m_align(m, len)
1219#define	MH_ALIGN(m, len)	m_align(m, len)
1220#define	MEXT_ALIGN(m, len)	m_align(m, len)
1221
1222/*
1223 * Compute the amount of space available before the current start of data in
1224 * an mbuf.
1225 *
1226 * The M_WRITABLE() is a temporary, conservative safety measure: the burden
1227 * of checking writability of the mbuf data area rests solely with the caller.
1228 *
1229 * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE()
1230 * for mbufs with external storage.  We now allow mbuf-embedded data to be
1231 * read-only as well.
1232 */
1233#define	M_LEADINGSPACE(m)						\
1234	(M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0)
1235
1236/*
1237 * So M_TRAILINGROOM() is for when you want to know how much space
1238 * would be there if it was writable. This can be used to
1239 * detect changes in mbufs by knowing the value at one point
1240 * and then being able to compare it later to the current M_TRAILINGROOM().
1241 * The TRAILINGSPACE() macro is not suitable for this since an mbuf
1242 * at one point might not be writable and then later it becomes writable
1243 * even though the space at the back of it has not changed.
1244 */
1245#define M_TRAILINGROOM(m) ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len))
1246/*
1247 * Compute the amount of space available after the end of data in an mbuf.
1248 *
1249 * The M_WRITABLE() is a temporary, conservative safety measure: the burden
1250 * of checking writability of the mbuf data area rests solely with the caller.
1251 *
1252 * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE()
1253 * for mbufs with external storage.  We now allow mbuf-embedded data to be
1254 * read-only as well.
1255 */
1256#define	M_TRAILINGSPACE(m) (M_WRITABLE(m) ? M_TRAILINGROOM(m) : 0)
1257
1258/*
1259 * Arrange to prepend space of size plen to mbuf m.  If a new mbuf must be
1260 * allocated, how specifies whether to wait.  If the allocation fails, the
1261 * original mbuf chain is freed and m is set to NULL.
1262 */
1263#define	M_PREPEND(m, plen, how) do {					\
1264	struct mbuf **_mmp = &(m);					\
1265	struct mbuf *_mm = *_mmp;					\
1266	int _mplen = (plen);						\
1267	int __mhow = (how);						\
1268									\
1269	MBUF_CHECKSLEEP(how);						\
1270	if (M_LEADINGSPACE(_mm) >= _mplen) {				\
1271		_mm->m_data -= _mplen;					\
1272		_mm->m_len += _mplen;					\
1273	} else								\
1274		_mm = m_prepend(_mm, _mplen, __mhow);			\
1275	if (_mm != NULL && _mm->m_flags & M_PKTHDR)			\
1276		_mm->m_pkthdr.len += _mplen;				\
1277	*_mmp = _mm;							\
1278} while (0)
1279
1280/*
1281 * Change mbuf to new type.  This is a relatively expensive operation and
1282 * should be avoided.
1283 */
1284#define	MCHTYPE(m, t)	m_chtype((m), (t))
1285
1286/* Return the rcvif of a packet header. */
1287static __inline struct ifnet *
1288m_rcvif(struct mbuf *m)
1289{
1290
1291	M_ASSERTPKTHDR(m);
1292	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
1293		return (NULL);
1294	return (m->m_pkthdr.rcvif);
1295}
1296
1297/* Length to m_copy to copy all. */
1298#define	M_COPYALL	1000000000
1299
1300extern u_int		max_linkhdr;	/* Largest link-level header */
1301extern u_int		max_hdr;	/* Largest link + protocol header */
1302extern u_int		max_protohdr;	/* Largest protocol header */
1303void max_linkhdr_grow(u_int);
1304void max_protohdr_grow(u_int);
1305
1306extern int		nmbclusters;	/* Maximum number of clusters */
1307extern bool		mb_use_ext_pgs;	/* Use ext_pgs for sendfile */
1308
1309/*-
1310 * Network packets may have annotations attached by affixing a list of
1311 * "packet tags" to the pkthdr structure.  Packet tags are dynamically
1312 * allocated semi-opaque data structures that have a fixed header
1313 * (struct m_tag) that specifies the size of the memory block and a
1314 * <cookie,type> pair that identifies it.  The cookie is a 32-bit unique
1315 * unsigned value used to identify a module or ABI.  By convention this value
1316 * is chosen as the date+time that the module is created, expressed as the
1317 * number of seconds since the epoch (e.g., using date -u +'%s').  The type
1318 * value is an ABI/module-specific value that identifies a particular
1319 * annotation and is private to the module.  For compatibility with systems
1320 * like OpenBSD that define packet tags w/o an ABI/module cookie, the value
1321 * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find
1322 * compatibility shim functions and several tag types are defined below.
1323 * Users that do not require compatibility should use a private cookie value
1324 * so that packet tag-related definitions can be maintained privately.
1325 *
1326 * Note that the packet tag returned by m_tag_alloc has the default memory
1327 * alignment implemented by malloc.  To reference private data one can use a
1328 * construct like:
1329 *
1330 *	struct m_tag *mtag = m_tag_alloc(...);
1331 *	struct foo *p = (struct foo *)(mtag+1);
1332 *
1333 * if the alignment of struct m_tag is sufficient for referencing members of
1334 * struct foo.  Otherwise it is necessary to embed struct m_tag within the
1335 * private data structure to insure proper alignment; e.g.,
1336 *
1337 *	struct foo {
1338 *		struct m_tag	tag;
1339 *		...
1340 *	};
1341 *	struct foo *p = (struct foo *) m_tag_alloc(...);
1342 *	struct m_tag *mtag = &p->tag;
1343 */
1344
1345/*
1346 * Persistent tags stay with an mbuf until the mbuf is reclaimed.  Otherwise
1347 * tags are expected to ``vanish'' when they pass through a network
1348 * interface.  For most interfaces this happens normally as the tags are
1349 * reclaimed when the mbuf is free'd.  However in some special cases
1350 * reclaiming must be done manually.  An example is packets that pass through
1351 * the loopback interface.  Also, one must be careful to do this when
1352 * ``turning around'' packets (e.g., icmp_reflect).
1353 *
1354 * To mark a tag persistent bit-or this flag in when defining the tag id.
1355 * The tag will then be treated as described above.
1356 */
1357#define	MTAG_PERSISTENT				0x800
1358
1359#define	PACKET_TAG_NONE				0  /* Nadda */
1360
1361/* Packet tags for use with PACKET_ABI_COMPAT. */
1362#define	PACKET_TAG_IPSEC_IN_DONE		1  /* IPsec applied, in */
1363#define	PACKET_TAG_IPSEC_OUT_DONE		2  /* IPsec applied, out */
1364#define	PACKET_TAG_IPSEC_IN_CRYPTO_DONE		3  /* NIC IPsec crypto done */
1365#define	PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED	4  /* NIC IPsec crypto req'ed */
1366#define	PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO	5  /* NIC notifies IPsec */
1367#define	PACKET_TAG_IPSEC_PENDING_TDB		6  /* Reminder to do IPsec */
1368#define	PACKET_TAG_BRIDGE			7  /* Bridge processing done */
1369#define	PACKET_TAG_GIF				8  /* GIF processing done */
1370#define	PACKET_TAG_GRE				9  /* GRE processing done */
1371#define	PACKET_TAG_IN_PACKET_CHECKSUM		10 /* NIC checksumming done */
1372#define	PACKET_TAG_ENCAP			11 /* Encap.  processing */
1373#define	PACKET_TAG_IPSEC_SOCKET			12 /* IPSEC socket ref */
1374#define	PACKET_TAG_IPSEC_HISTORY		13 /* IPSEC history */
1375#define	PACKET_TAG_IPV6_INPUT			14 /* IPV6 input processing */
1376#define	PACKET_TAG_DUMMYNET			15 /* dummynet info */
1377#define	PACKET_TAG_DIVERT			17 /* divert info */
1378#define	PACKET_TAG_IPFORWARD			18 /* ipforward info */
1379#define	PACKET_TAG_MACLABEL	(19 | MTAG_PERSISTENT) /* MAC label */
1380#define	PACKET_TAG_PF				21 /* PF/ALTQ information */
1381/* was	PACKET_TAG_RTSOCKFAM			25    rtsock sa family */
1382#define	PACKET_TAG_IPOPTIONS			27 /* Saved IP options */
1383#define	PACKET_TAG_CARP				28 /* CARP info */
1384#define	PACKET_TAG_IPSEC_NAT_T_PORTS		29 /* two uint16_t */
1385#define	PACKET_TAG_ND_OUTGOING			30 /* ND outgoing */
1386#define	PACKET_TAG_PF_REASSEMBLED		31
1387
1388/* Specific cookies and tags. */
1389
1390/* Packet tag routines. */
1391struct m_tag	*m_tag_alloc(uint32_t, uint16_t, int, int);
1392void		 m_tag_delete(struct mbuf *, struct m_tag *);
1393void		 m_tag_delete_chain(struct mbuf *, struct m_tag *);
1394void		 m_tag_free_default(struct m_tag *);
1395struct m_tag	*m_tag_locate(struct mbuf *, uint32_t, uint16_t,
1396    struct m_tag *);
1397struct m_tag	*m_tag_copy(struct m_tag *, int);
1398int		 m_tag_copy_chain(struct mbuf *, const struct mbuf *, int);
1399void		 m_tag_delete_nonpersistent(struct mbuf *);
1400
1401/*
1402 * Initialize the list of tags associated with an mbuf.
1403 */
1404static __inline void
1405m_tag_init(struct mbuf *m)
1406{
1407
1408	SLIST_INIT(&m->m_pkthdr.tags);
1409}
1410
1411/*
1412 * Set up the contents of a tag.  Note that this does not fill in the free
1413 * method; the caller is expected to do that.
1414 *
1415 * XXX probably should be called m_tag_init, but that was already taken.
1416 */
1417static __inline void
1418m_tag_setup(struct m_tag *t, uint32_t cookie, uint16_t type, int len)
1419{
1420
1421	t->m_tag_id = type;
1422	t->m_tag_len = len;
1423	t->m_tag_cookie = cookie;
1424}
1425
1426/*
1427 * Reclaim resources associated with a tag.
1428 */
1429static __inline void
1430m_tag_free(struct m_tag *t)
1431{
1432
1433	(*t->m_tag_free)(t);
1434}
1435
1436/*
1437 * Return the first tag associated with an mbuf.
1438 */
1439static __inline struct m_tag *
1440m_tag_first(struct mbuf *m)
1441{
1442
1443	return (SLIST_FIRST(&m->m_pkthdr.tags));
1444}
1445
1446/*
1447 * Return the next tag in the list of tags associated with an mbuf.
1448 */
1449static __inline struct m_tag *
1450m_tag_next(struct mbuf *m __unused, struct m_tag *t)
1451{
1452
1453	return (SLIST_NEXT(t, m_tag_link));
1454}
1455
1456/*
1457 * Prepend a tag to the list of tags associated with an mbuf.
1458 */
1459static __inline void
1460m_tag_prepend(struct mbuf *m, struct m_tag *t)
1461{
1462
1463	SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link);
1464}
1465
1466/*
1467 * Unlink a tag from the list of tags associated with an mbuf.
1468 */
1469static __inline void
1470m_tag_unlink(struct mbuf *m, struct m_tag *t)
1471{
1472
1473	SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link);
1474}
1475
1476/* These are for OpenBSD compatibility. */
1477#define	MTAG_ABI_COMPAT		0		/* compatibility ABI */
1478
1479static __inline struct m_tag *
1480m_tag_get(uint16_t type, int length, int wait)
1481{
1482	return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait));
1483}
1484
1485static __inline struct m_tag *
1486m_tag_find(struct mbuf *m, uint16_t type, struct m_tag *start)
1487{
1488	return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL :
1489	    m_tag_locate(m, MTAG_ABI_COMPAT, type, start));
1490}
1491
1492static inline struct m_snd_tag *
1493m_snd_tag_ref(struct m_snd_tag *mst)
1494{
1495
1496	refcount_acquire(&mst->refcount);
1497	return (mst);
1498}
1499
1500static inline void
1501m_snd_tag_rele(struct m_snd_tag *mst)
1502{
1503
1504	if (refcount_release(&mst->refcount))
1505		m_snd_tag_destroy(mst);
1506}
1507
1508static __inline struct mbuf *
1509m_free(struct mbuf *m)
1510{
1511	struct mbuf *n = m->m_next;
1512
1513	MBUF_PROBE1(m__free, m);
1514	if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE))
1515		m_tag_delete_chain(m, NULL);
1516	if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG)
1517		m_snd_tag_rele(m->m_pkthdr.snd_tag);
1518	if (m->m_flags & M_EXTPG)
1519		mb_free_extpg(m);
1520	else if (m->m_flags & M_EXT)
1521		mb_free_ext(m);
1522	else if ((m->m_flags & M_NOFREE) == 0)
1523		uma_zfree(zone_mbuf, m);
1524	return (n);
1525}
1526
1527static __inline int
1528rt_m_getfib(struct mbuf *m)
1529{
1530	KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf."));
1531	return (m->m_pkthdr.fibnum);
1532}
1533
1534#define M_GETFIB(_m)   rt_m_getfib(_m)
1535
1536#define M_SETFIB(_m, _fib) do {						\
1537        KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf."));	\
1538	((_m)->m_pkthdr.fibnum) = (_fib);				\
1539} while (0)
1540
1541/* flags passed as first argument for "m_xxx_tcpip_hash()" */
1542#define	MBUF_HASHFLAG_L2	(1 << 2)
1543#define	MBUF_HASHFLAG_L3	(1 << 3)
1544#define	MBUF_HASHFLAG_L4	(1 << 4)
1545
1546/* mbuf hashing helper routines */
1547uint32_t	m_ether_tcpip_hash_init(void);
1548uint32_t	m_ether_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t);
1549uint32_t	m_infiniband_tcpip_hash_init(void);
1550uint32_t	m_infiniband_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t);
1551
1552#ifdef MBUF_PROFILING
1553 void m_profile(struct mbuf *m);
1554 #define M_PROFILE(m) m_profile(m)
1555#else
1556 #define M_PROFILE(m)
1557#endif
1558
1559/*
1560 * Structure describing a packet queue: mbufs linked by m_stailqpkt.
1561 * Does accounting of number of packets and has a cap.
1562 */
1563struct mbufq {
1564	STAILQ_HEAD(, mbuf)	mq_head;
1565	int			mq_len;
1566	int			mq_maxlen;
1567};
1568
1569static inline void
1570mbufq_init(struct mbufq *mq, int maxlen)
1571{
1572
1573	STAILQ_INIT(&mq->mq_head);
1574	mq->mq_maxlen = maxlen;
1575	mq->mq_len = 0;
1576}
1577
1578static inline struct mbuf *
1579mbufq_flush(struct mbufq *mq)
1580{
1581	struct mbuf *m;
1582
1583	m = STAILQ_FIRST(&mq->mq_head);
1584	STAILQ_INIT(&mq->mq_head);
1585	mq->mq_len = 0;
1586	return (m);
1587}
1588
1589static inline void
1590mbufq_drain(struct mbufq *mq)
1591{
1592	struct mbuf *m, *n;
1593
1594	n = mbufq_flush(mq);
1595	while ((m = n) != NULL) {
1596		n = STAILQ_NEXT(m, m_stailqpkt);
1597		m_freem(m);
1598	}
1599}
1600
1601static inline struct mbuf *
1602mbufq_first(const struct mbufq *mq)
1603{
1604
1605	return (STAILQ_FIRST(&mq->mq_head));
1606}
1607
1608static inline struct mbuf *
1609mbufq_last(const struct mbufq *mq)
1610{
1611
1612	return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt));
1613}
1614
1615static inline bool
1616mbufq_empty(const struct mbufq *mq)
1617{
1618	return (mq->mq_len == 0);
1619}
1620
1621static inline int
1622mbufq_full(const struct mbufq *mq)
1623{
1624
1625	return (mq->mq_maxlen > 0 && mq->mq_len >= mq->mq_maxlen);
1626}
1627
1628static inline int
1629mbufq_len(const struct mbufq *mq)
1630{
1631
1632	return (mq->mq_len);
1633}
1634
1635static inline int
1636mbufq_enqueue(struct mbufq *mq, struct mbuf *m)
1637{
1638
1639	if (mbufq_full(mq))
1640		return (ENOBUFS);
1641	STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt);
1642	mq->mq_len++;
1643	return (0);
1644}
1645
1646static inline struct mbuf *
1647mbufq_dequeue(struct mbufq *mq)
1648{
1649	struct mbuf *m;
1650
1651	m = STAILQ_FIRST(&mq->mq_head);
1652	if (m) {
1653		STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt);
1654		m->m_nextpkt = NULL;
1655		mq->mq_len--;
1656	}
1657	return (m);
1658}
1659
1660static inline void
1661mbufq_prepend(struct mbufq *mq, struct mbuf *m)
1662{
1663
1664	STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt);
1665	mq->mq_len++;
1666}
1667
1668/*
1669 * Note: this doesn't enforce the maximum list size for dst.
1670 */
1671static inline void
1672mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src)
1673{
1674
1675	mq_dst->mq_len += mq_src->mq_len;
1676	STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head);
1677	mq_src->mq_len = 0;
1678}
1679
1680/*
1681 * Structure describing a chain of mbufs linked by m_stailq, also tracking
1682 * the pointer to the last.  Also does accounting of data length and memory
1683 * usage.
1684 * To be used as an argument to mbuf chain allocation and manipulation KPIs,
1685 * and can be allocated on the stack of a caller.  Kernel facilities may use
1686 * it internally as a most simple implementation of a stream data buffer.
1687 */
1688struct mchain {
1689	STAILQ_HEAD(, mbuf) mc_q;
1690	u_int mc_len;
1691	u_int mc_mlen;
1692};
1693
1694#define	MCHAIN_INITIALIZER(mc)	\
1695	(struct mchain){ .mc_q = STAILQ_HEAD_INITIALIZER((mc)->mc_q) }
1696
1697static inline struct mbuf *
1698mc_first(struct mchain *mc)
1699{
1700	return (STAILQ_FIRST(&mc->mc_q));
1701}
1702
1703static inline struct mbuf *
1704mc_last(struct mchain *mc)
1705{
1706	return (STAILQ_LAST(&mc->mc_q, mbuf, m_stailq));
1707}
1708
1709static inline bool
1710mc_empty(struct mchain *mc)
1711{
1712	return (STAILQ_EMPTY(&mc->mc_q));
1713}
1714
1715/* Account addition of m to mc. */
1716static inline void
1717mc_inc(struct mchain *mc, struct mbuf *m)
1718{
1719	mc->mc_len += m->m_len;
1720	mc->mc_mlen += MSIZE;
1721	if (m->m_flags & M_EXT)
1722		mc->mc_mlen += m->m_ext.ext_size;
1723}
1724
1725/* Account removal of m from mc. */
1726static inline void
1727mc_dec(struct mchain *mc, struct mbuf *m)
1728{
1729	MPASS(mc->mc_len >= m->m_len);
1730	mc->mc_len -= m->m_len;
1731	MPASS(mc->mc_mlen >= MSIZE);
1732	mc->mc_mlen -= MSIZE;
1733	if (m->m_flags & M_EXT) {
1734		MPASS(mc->mc_mlen >= m->m_ext.ext_size);
1735		mc->mc_mlen -= m->m_ext.ext_size;
1736	}
1737}
1738
1739/*
1740 * Get mchain from a classic mbuf chain linked by m_next.  Two hacks here:
1741 * we use the fact that m_next is alias to m_stailq, we use internal queue(3)
1742 * fields.
1743 */
1744static inline void
1745mc_init_m(struct mchain *mc, struct mbuf *m)
1746{
1747	struct mbuf *last;
1748
1749	STAILQ_FIRST(&mc->mc_q) = m;
1750	mc->mc_len = mc->mc_mlen = 0;
1751	STAILQ_FOREACH(m, &mc->mc_q, m_stailq) {
1752		mc_inc(mc, m);
1753		last = m;
1754	}
1755	mc->mc_q.stqh_last = &STAILQ_NEXT(last, m_stailq);
1756}
1757
1758static inline void
1759mc_freem(struct mchain *mc)
1760{
1761	if (!mc_empty(mc))
1762		m_freem(mc_first(mc));
1763}
1764
1765static inline void
1766mc_prepend(struct mchain *mc, struct mbuf *m)
1767{
1768	STAILQ_INSERT_HEAD(&mc->mc_q, m, m_stailq);
1769	mc_inc(mc, m);
1770}
1771
1772static inline void
1773mc_append(struct mchain *mc, struct mbuf *m)
1774{
1775	STAILQ_INSERT_TAIL(&mc->mc_q, m, m_stailq);
1776	mc_inc(mc, m);
1777}
1778
1779static inline void
1780mc_concat(struct mchain *head, struct mchain *tail)
1781{
1782	STAILQ_CONCAT(&head->mc_q, &tail->mc_q);
1783	head->mc_len += tail->mc_len;
1784	head->mc_mlen += tail->mc_mlen;
1785	tail->mc_len = tail->mc_mlen = 0;
1786}
1787
1788/*
1789 * Note: STAILQ_REMOVE() is expensive. mc_remove_after() needs to be provided
1790 * as long as there consumers that would benefit from it.
1791 */
1792static inline void
1793mc_remove(struct mchain *mc, struct mbuf *m)
1794{
1795	STAILQ_REMOVE(&mc->mc_q, m, mbuf, m_stailq);
1796	mc_dec(mc, m);
1797}
1798
1799int mc_get(struct mchain *, u_int, int, short, int);
1800int mc_split(struct mchain *, struct mchain *, u_int, int);
1801int mc_uiotomc(struct mchain *, struct uio *, u_int, u_int, int, int);
1802
1803#ifdef _SYS_TIMESPEC_H_
1804static inline void
1805mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts)
1806{
1807
1808	KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m));
1809	KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0,
1810	    ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m));
1811	ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000;
1812	ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000;
1813}
1814#endif
1815
1816static inline void
1817mbuf_tstmp2timeval(struct mbuf *m, struct timeval *tv)
1818{
1819
1820	KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m));
1821	KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0,
1822	    ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m));
1823	tv->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000;
1824	tv->tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000) / 1000;
1825}
1826
1827#ifdef DEBUGNET
1828/* Invoked from the debugnet client code. */
1829void	debugnet_mbuf_drain(void);
1830void	debugnet_mbuf_start(void);
1831void	debugnet_mbuf_finish(void);
1832void	debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize);
1833#endif
1834
1835static inline bool
1836mbuf_has_tls_session(struct mbuf *m)
1837{
1838
1839	if (m->m_flags & M_EXTPG) {
1840		if (m->m_epg_tls != NULL) {
1841			return (true);
1842		}
1843	}
1844	return (false);
1845}
1846
1847#endif /* _KERNEL */
1848#endif /* !_SYS_MBUF_H_ */
1849