1/*-
2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0
3 *
4 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
5 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
6 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
7 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
8 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
10 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
11 *
12 * This software is available to you under a choice of one of two
13 * licenses.  You may choose to be licensed under the terms of the GNU
14 * General Public License (GPL) Version 2, available from the file
15 * COPYING in the main directory of this source tree, or the
16 * OpenIB.org BSD license below:
17 *
18 *     Redistribution and use in source and binary forms, with or
19 *     without modification, are permitted provided that the following
20 *     conditions are met:
21 *
22 *      - Redistributions of source code must retain the above
23 *        copyright notice, this list of conditions and the following
24 *        disclaimer.
25 *
26 *      - Redistributions in binary form must reproduce the above
27 *        copyright notice, this list of conditions and the following
28 *        disclaimer in the documentation and/or other materials
29 *        provided with the distribution.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 * SOFTWARE.
39 */
40
41#include <sys/cdefs.h>
42#include <linux/errno.h>
43#include <linux/err.h>
44#include <linux/string.h>
45#include <linux/slab.h>
46#include <linux/in.h>
47#include <linux/in6.h>
48#include <linux/wait.h>
49
50#include <rdma/ib_verbs.h>
51#include <rdma/ib_cache.h>
52#include <rdma/ib_addr.h>
53
54#include <netinet/ip.h>
55#include <netinet/ip6.h>
56
57#include <machine/in_cksum.h>
58
59#include "core_priv.h"
60
61static const char * const ib_events[] = {
62	[IB_EVENT_CQ_ERR]		= "CQ error",
63	[IB_EVENT_QP_FATAL]		= "QP fatal error",
64	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
65	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
66	[IB_EVENT_COMM_EST]		= "communication established",
67	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
68	[IB_EVENT_PATH_MIG]		= "path migration successful",
69	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
70	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
71	[IB_EVENT_PORT_ACTIVE]		= "port active",
72	[IB_EVENT_PORT_ERR]		= "port error",
73	[IB_EVENT_LID_CHANGE]		= "LID change",
74	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
75	[IB_EVENT_SM_CHANGE]		= "SM change",
76	[IB_EVENT_SRQ_ERR]		= "SRQ error",
77	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
78	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
79	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
80	[IB_EVENT_GID_CHANGE]		= "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85	size_t index = event;
86
87	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88			ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93	[IB_WC_SUCCESS]			= "success",
94	[IB_WC_LOC_LEN_ERR]		= "local length error",
95	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
96	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
97	[IB_WC_LOC_PROT_ERR]		= "local protection error",
98	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
99	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
100	[IB_WC_BAD_RESP_ERR]		= "bad response error",
101	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
102	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
103	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
104	[IB_WC_REM_OP_ERR]		= "remote operation error",
105	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
106	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
107	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
108	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
109	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
110	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
111	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
112	[IB_WC_FATAL_ERR]		= "fatal error",
113	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
114	[IB_WC_GENERAL_ERR]		= "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119	size_t index = status;
120
121	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122			wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128	switch (rate) {
129	case IB_RATE_2_5_GBPS: return   1;
130	case IB_RATE_5_GBPS:   return   2;
131	case IB_RATE_10_GBPS:  return   4;
132	case IB_RATE_20_GBPS:  return   8;
133	case IB_RATE_30_GBPS:  return  12;
134	case IB_RATE_40_GBPS:  return  16;
135	case IB_RATE_60_GBPS:  return  24;
136	case IB_RATE_80_GBPS:  return  32;
137	case IB_RATE_120_GBPS: return  48;
138	case IB_RATE_14_GBPS:  return   6;
139	case IB_RATE_56_GBPS:  return  22;
140	case IB_RATE_112_GBPS: return  45;
141	case IB_RATE_168_GBPS: return  67;
142	case IB_RATE_25_GBPS:  return  10;
143	case IB_RATE_100_GBPS: return  40;
144	case IB_RATE_200_GBPS: return  80;
145	case IB_RATE_300_GBPS: return 120;
146	case IB_RATE_28_GBPS:  return  11;
147	case IB_RATE_50_GBPS:  return  20;
148	case IB_RATE_400_GBPS: return 160;
149	case IB_RATE_600_GBPS: return 240;
150	default:	       return  -1;
151	}
152}
153EXPORT_SYMBOL(ib_rate_to_mult);
154
155__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156{
157	switch (mult) {
158	case 1:   return IB_RATE_2_5_GBPS;
159	case 2:   return IB_RATE_5_GBPS;
160	case 4:   return IB_RATE_10_GBPS;
161	case 8:   return IB_RATE_20_GBPS;
162	case 12:  return IB_RATE_30_GBPS;
163	case 16:  return IB_RATE_40_GBPS;
164	case 24:  return IB_RATE_60_GBPS;
165	case 32:  return IB_RATE_80_GBPS;
166	case 48:  return IB_RATE_120_GBPS;
167	case 6:   return IB_RATE_14_GBPS;
168	case 22:  return IB_RATE_56_GBPS;
169	case 45:  return IB_RATE_112_GBPS;
170	case 67:  return IB_RATE_168_GBPS;
171	case 10:  return IB_RATE_25_GBPS;
172	case 40:  return IB_RATE_100_GBPS;
173	case 80:  return IB_RATE_200_GBPS;
174	case 120: return IB_RATE_300_GBPS;
175	case 11:  return IB_RATE_28_GBPS;
176	case 20:  return IB_RATE_50_GBPS;
177	case 160: return IB_RATE_400_GBPS;
178	case 240: return IB_RATE_600_GBPS;
179	default:  return IB_RATE_PORT_CURRENT;
180	}
181}
182EXPORT_SYMBOL(mult_to_ib_rate);
183
184__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185{
186	switch (rate) {
187	case IB_RATE_2_5_GBPS: return 2500;
188	case IB_RATE_5_GBPS:   return 5000;
189	case IB_RATE_10_GBPS:  return 10000;
190	case IB_RATE_20_GBPS:  return 20000;
191	case IB_RATE_30_GBPS:  return 30000;
192	case IB_RATE_40_GBPS:  return 40000;
193	case IB_RATE_60_GBPS:  return 60000;
194	case IB_RATE_80_GBPS:  return 80000;
195	case IB_RATE_120_GBPS: return 120000;
196	case IB_RATE_14_GBPS:  return 14062;
197	case IB_RATE_56_GBPS:  return 56250;
198	case IB_RATE_112_GBPS: return 112500;
199	case IB_RATE_168_GBPS: return 168750;
200	case IB_RATE_25_GBPS:  return 25781;
201	case IB_RATE_100_GBPS: return 103125;
202	case IB_RATE_200_GBPS: return 206250;
203	case IB_RATE_300_GBPS: return 309375;
204	case IB_RATE_28_GBPS:  return 28125;
205	case IB_RATE_50_GBPS:  return 53125;
206	case IB_RATE_400_GBPS: return 425000;
207	case IB_RATE_600_GBPS: return 637500;
208	default:	       return -1;
209	}
210}
211EXPORT_SYMBOL(ib_rate_to_mbps);
212
213__attribute_const__ enum rdma_transport_type
214rdma_node_get_transport(enum rdma_node_type node_type)
215{
216	switch (node_type) {
217	case RDMA_NODE_IB_CA:
218	case RDMA_NODE_IB_SWITCH:
219	case RDMA_NODE_IB_ROUTER:
220		return RDMA_TRANSPORT_IB;
221	case RDMA_NODE_RNIC:
222		return RDMA_TRANSPORT_IWARP;
223	case RDMA_NODE_USNIC:
224		return RDMA_TRANSPORT_USNIC;
225	case RDMA_NODE_USNIC_UDP:
226		return RDMA_TRANSPORT_USNIC_UDP;
227	default:
228		BUG();
229		return 0;
230	}
231}
232EXPORT_SYMBOL(rdma_node_get_transport);
233
234enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
235{
236	if (device->get_link_layer)
237		return device->get_link_layer(device, port_num);
238
239	switch (rdma_node_get_transport(device->node_type)) {
240	case RDMA_TRANSPORT_IB:
241		return IB_LINK_LAYER_INFINIBAND;
242	case RDMA_TRANSPORT_IWARP:
243	case RDMA_TRANSPORT_USNIC:
244	case RDMA_TRANSPORT_USNIC_UDP:
245		return IB_LINK_LAYER_ETHERNET;
246	default:
247		return IB_LINK_LAYER_UNSPECIFIED;
248	}
249}
250EXPORT_SYMBOL(rdma_port_get_link_layer);
251
252/* Protection domains */
253
254/**
255 * ib_alloc_pd - Allocates an unused protection domain.
256 * @device: The device on which to allocate the protection domain.
257 *
258 * A protection domain object provides an association between QPs, shared
259 * receive queues, address handles, memory regions, and memory windows.
260 *
261 * Every PD has a local_dma_lkey which can be used as the lkey value for local
262 * memory operations.
263 */
264struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
265		const char *caller)
266{
267	struct ib_pd *pd;
268	int mr_access_flags = 0;
269	int ret;
270
271	pd = rdma_zalloc_drv_obj(device, ib_pd);
272	if (!pd)
273		return ERR_PTR(-ENOMEM);
274
275	pd->device = device;
276	pd->uobject = NULL;
277	pd->__internal_mr = NULL;
278	atomic_set(&pd->usecnt, 0);
279	pd->flags = flags;
280
281	ret = device->alloc_pd(pd, NULL);
282	if (ret) {
283		kfree(pd);
284		return ERR_PTR(ret);
285	}
286
287	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
288		pd->local_dma_lkey = device->local_dma_lkey;
289	else
290		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293		pr_warn("%s: enabling unsafe global rkey\n", caller);
294		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295	}
296
297	if (mr_access_flags) {
298		struct ib_mr *mr;
299
300		mr = pd->device->get_dma_mr(pd, mr_access_flags);
301		if (IS_ERR(mr)) {
302			ib_dealloc_pd(pd);
303			return ERR_CAST(mr);
304		}
305
306		mr->device	= pd->device;
307		mr->pd		= pd;
308		mr->type        = IB_MR_TYPE_DMA;
309		mr->uobject	= NULL;
310		mr->need_inval	= false;
311
312		pd->__internal_mr = mr;
313
314		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
315			pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319	}
320
321	return pd;
322}
323EXPORT_SYMBOL(__ib_alloc_pd);
324
325/**
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
329 *
330 * It is an error to call this function while any resources in the pd still
331 * exist.  The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
333 */
334void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335{
336	int ret;
337
338	if (pd->__internal_mr) {
339		ret = pd->device->dereg_mr(pd->__internal_mr, NULL);
340		WARN_ON(ret);
341		pd->__internal_mr = NULL;
342	}
343
344	/* uverbs manipulates usecnt with proper locking, while the kabi
345	   requires the caller to guarantee we can't race here. */
346	WARN_ON(atomic_read(&pd->usecnt));
347
348	pd->device->dealloc_pd(pd, udata);
349	kfree(pd);
350}
351EXPORT_SYMBOL(ib_dealloc_pd_user);
352
353/* Address handles */
354
355static struct ib_ah *_ib_create_ah(struct ib_pd *pd,
356				     struct ib_ah_attr *ah_attr,
357				     u32 flags,
358				     struct ib_udata *udata)
359{
360	struct ib_device *device = pd->device;
361	struct ib_ah *ah;
362	int ret;
363
364	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
365
366	if (!device->create_ah)
367		return ERR_PTR(-EOPNOTSUPP);
368
369	ah = rdma_zalloc_drv_obj_gfp(
370		device, ib_ah,
371		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
372	if (!ah)
373		return ERR_PTR(-ENOMEM);
374
375	ah->device = device;
376	ah->pd = pd;
377
378	ret = device->create_ah(ah, ah_attr, flags, udata);
379	if (ret) {
380		kfree(ah);
381		return ERR_PTR(ret);
382	}
383
384	atomic_inc(&pd->usecnt);
385	return ah;
386}
387
388/**
389 * rdma_create_ah - Creates an address handle for the
390 * given address vector.
391 * @pd: The protection domain associated with the address handle.
392 * @ah_attr: The attributes of the address vector.
393 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
394 *
395 * It returns 0 on success and returns appropriate error code on error.
396 * The address handle is used to reference a local or global destination
397 * in all UD QP post sends.
398 */
399struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr,
400			   u32 flags)
401{
402	struct ib_ah *ah;
403
404	ah = _ib_create_ah(pd, ah_attr, flags, NULL);
405
406	return ah;
407}
408EXPORT_SYMBOL(ib_create_ah);
409
410/**
411 * ib_create_user_ah - Creates an address handle for the
412 * given address vector.
413 * It resolves destination mac address for ah attribute of RoCE type.
414 * @pd: The protection domain associated with the address handle.
415 * @ah_attr: The attributes of the address vector.
416 * @udata: pointer to user's input output buffer information need by
417 *         provider driver.
418 *
419 * It returns a valid address handle pointer on success and
420 * returns appropriate error code on error.
421 * The address handle is used to reference a local or global destination
422 * in all UD QP post sends.
423 */
424struct ib_ah *ib_create_user_ah(struct ib_pd *pd,
425				struct ib_ah_attr *ah_attr,
426				struct ib_udata *udata)
427{
428	int err;
429
430	if (rdma_protocol_roce(pd->device, ah_attr->port_num)) {
431		err = ib_resolve_eth_dmac(pd->device, ah_attr);
432		if (err)
433			return ERR_PTR(err);
434	}
435
436	return _ib_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
437}
438EXPORT_SYMBOL(ib_create_user_ah);
439
440static int ib_get_header_version(const union rdma_network_hdr *hdr)
441{
442	const struct ip *ip4h = (const struct ip *)&hdr->roce4grh;
443	struct ip ip4h_checked;
444	const struct ip6_hdr *ip6h = (const struct ip6_hdr *)&hdr->ibgrh;
445
446	/* If it's IPv6, the version must be 6, otherwise, the first
447	 * 20 bytes (before the IPv4 header) are garbled.
448	 */
449	if ((ip6h->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION)
450		return (ip4h->ip_v == 4) ? 4 : 0;
451	/* version may be 6 or 4 because the first 20 bytes could be garbled */
452
453	/* RoCE v2 requires no options, thus header length
454	 * must be 5 words
455	 */
456	if (ip4h->ip_hl != 5)
457		return 6;
458
459	/* Verify checksum.
460	 * We can't write on scattered buffers so we need to copy to
461	 * temp buffer.
462	 */
463	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
464	ip4h_checked.ip_sum = 0;
465#if defined(INET) || defined(INET6)
466	ip4h_checked.ip_sum = in_cksum_hdr(&ip4h_checked);
467#endif
468	/* if IPv4 header checksum is OK, believe it */
469	if (ip4h->ip_sum == ip4h_checked.ip_sum)
470		return 4;
471	return 6;
472}
473
474static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
475						     u8 port_num,
476						     const struct ib_grh *grh)
477{
478	int grh_version;
479
480	if (rdma_protocol_ib(device, port_num))
481		return RDMA_NETWORK_IB;
482
483	grh_version = ib_get_header_version((const union rdma_network_hdr *)grh);
484
485	if (grh_version == 4)
486		return RDMA_NETWORK_IPV4;
487
488	if (grh->next_hdr == IPPROTO_UDP)
489		return RDMA_NETWORK_IPV6;
490
491	return RDMA_NETWORK_ROCE_V1;
492}
493
494struct find_gid_index_context {
495	u16 vlan_id;
496	enum ib_gid_type gid_type;
497};
498
499
500/*
501 * This function will return true only if a inspected GID index
502 * matches the request based on the GID type and VLAN configuration
503 */
504static bool find_gid_index(const union ib_gid *gid,
505			   const struct ib_gid_attr *gid_attr,
506			   void *context)
507{
508	u16 vlan_diff;
509	struct find_gid_index_context *ctx =
510		(struct find_gid_index_context *)context;
511
512	if (ctx->gid_type != gid_attr->gid_type)
513		return false;
514
515	/*
516	 * The following will verify:
517	 * 1. VLAN ID matching for VLAN tagged requests.
518	 * 2. prio-tagged/untagged to prio-tagged/untagged matching.
519	 *
520	 * This XOR is valid, since 0x0 < vlan_id < 0x0FFF.
521	 */
522	vlan_diff = rdma_vlan_dev_vlan_id(gid_attr->ndev) ^ ctx->vlan_id;
523
524	return (vlan_diff == 0x0000 || vlan_diff == 0xFFFF);
525}
526
527static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
528				   u16 vlan_id, const union ib_gid *sgid,
529				   enum ib_gid_type gid_type,
530				   u16 *gid_index)
531{
532	struct find_gid_index_context context = {.vlan_id = vlan_id,
533						 .gid_type = gid_type};
534
535	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
536				     &context, gid_index);
537}
538
539static int get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
540				  enum rdma_network_type net_type,
541				  union ib_gid *sgid, union ib_gid *dgid)
542{
543	struct sockaddr_in  src_in;
544	struct sockaddr_in  dst_in;
545	__be32 src_saddr, dst_saddr;
546
547	if (!sgid || !dgid)
548		return -EINVAL;
549
550	if (net_type == RDMA_NETWORK_IPV4) {
551		memcpy(&src_in.sin_addr.s_addr,
552		       &hdr->roce4grh.ip_src, 4);
553		memcpy(&dst_in.sin_addr.s_addr,
554		       &hdr->roce4grh.ip_dst, 4);
555		src_saddr = src_in.sin_addr.s_addr;
556		dst_saddr = dst_in.sin_addr.s_addr;
557		ipv6_addr_set_v4mapped(src_saddr,
558				       (struct in6_addr *)sgid);
559		ipv6_addr_set_v4mapped(dst_saddr,
560				       (struct in6_addr *)dgid);
561		return 0;
562	} else if (net_type == RDMA_NETWORK_IPV6 ||
563		   net_type == RDMA_NETWORK_IB) {
564		*dgid = hdr->ibgrh.dgid;
565		*sgid = hdr->ibgrh.sgid;
566		return 0;
567	} else {
568		return -EINVAL;
569	}
570}
571
572int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
573		       const struct ib_wc *wc, const struct ib_grh *grh,
574		       struct ib_ah_attr *ah_attr)
575{
576	u32 flow_class;
577	u16 gid_index = 0;
578	int ret;
579	enum rdma_network_type net_type = RDMA_NETWORK_IB;
580	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
581	int hoplimit = 0xff;
582	union ib_gid dgid;
583	union ib_gid sgid;
584
585	memset(ah_attr, 0, sizeof *ah_attr);
586	if (rdma_cap_eth_ah(device, port_num)) {
587		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
588			net_type = wc->network_hdr_type;
589		else
590			net_type = ib_get_net_type_by_grh(device, port_num, grh);
591		gid_type = ib_network_to_gid_type(net_type);
592	}
593	ret = get_gids_from_rdma_hdr((const union rdma_network_hdr *)grh, net_type,
594				     &sgid, &dgid);
595	if (ret)
596		return ret;
597
598	if (rdma_protocol_roce(device, port_num)) {
599		struct ib_gid_attr dgid_attr;
600		const u16 vlan_id = (wc->wc_flags & IB_WC_WITH_VLAN) ?
601				wc->vlan_id : 0xffff;
602
603		if (!(wc->wc_flags & IB_WC_GRH))
604			return -EPROTOTYPE;
605
606		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
607					      &dgid, gid_type, &gid_index);
608		if (ret)
609			return ret;
610
611		ret = ib_get_cached_gid(device, port_num, gid_index, &dgid, &dgid_attr);
612		if (ret)
613			return ret;
614
615		if (dgid_attr.ndev == NULL)
616			return -ENODEV;
617
618		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, ah_attr->dmac,
619		    dgid_attr.ndev, &hoplimit);
620
621		dev_put(dgid_attr.ndev);
622		if (ret)
623			return ret;
624	}
625
626	ah_attr->dlid = wc->slid;
627	ah_attr->sl = wc->sl;
628	ah_attr->src_path_bits = wc->dlid_path_bits;
629	ah_attr->port_num = port_num;
630
631	if (wc->wc_flags & IB_WC_GRH) {
632		ah_attr->ah_flags = IB_AH_GRH;
633		ah_attr->grh.dgid = sgid;
634
635		if (!rdma_cap_eth_ah(device, port_num)) {
636			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
637				ret = ib_find_cached_gid_by_port(device, &dgid,
638								 IB_GID_TYPE_IB,
639								 port_num, NULL,
640								 &gid_index);
641				if (ret)
642					return ret;
643			}
644		}
645
646		ah_attr->grh.sgid_index = (u8) gid_index;
647		flow_class = be32_to_cpu(grh->version_tclass_flow);
648		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
649		ah_attr->grh.hop_limit = hoplimit;
650		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
651	}
652	return 0;
653}
654EXPORT_SYMBOL(ib_init_ah_from_wc);
655
656struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
657				   const struct ib_grh *grh, u8 port_num)
658{
659	struct ib_ah_attr ah_attr;
660	int ret;
661
662	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
663	if (ret)
664		return ERR_PTR(ret);
665
666	return ib_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
667}
668EXPORT_SYMBOL(ib_create_ah_from_wc);
669
670int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
671{
672	return ah->device->modify_ah ?
673		ah->device->modify_ah(ah, ah_attr) :
674		-ENOSYS;
675}
676EXPORT_SYMBOL(ib_modify_ah);
677
678int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
679{
680	return ah->device->query_ah ?
681		ah->device->query_ah(ah, ah_attr) :
682		-ENOSYS;
683}
684EXPORT_SYMBOL(ib_query_ah);
685
686int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
687{
688	struct ib_pd *pd;
689
690	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
691
692	pd = ah->pd;
693	ah->device->destroy_ah(ah, flags);
694	atomic_dec(&pd->usecnt);
695
696	kfree(ah);
697	return 0;
698}
699EXPORT_SYMBOL(ib_destroy_ah_user);
700
701/* Shared receive queues */
702
703struct ib_srq *ib_create_srq(struct ib_pd *pd,
704			     struct ib_srq_init_attr *srq_init_attr)
705{
706	struct ib_srq *srq;
707	int ret;
708
709	if (!pd->device->create_srq)
710		return ERR_PTR(-EOPNOTSUPP);
711
712	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
713	if (!srq)
714		return ERR_PTR(-ENOMEM);
715
716	srq->device = pd->device;
717	srq->pd = pd;
718	srq->event_handler = srq_init_attr->event_handler;
719	srq->srq_context = srq_init_attr->srq_context;
720	srq->srq_type = srq_init_attr->srq_type;
721
722	if (ib_srq_has_cq(srq->srq_type)) {
723		srq->ext.cq = srq_init_attr->ext.cq;
724		atomic_inc(&srq->ext.cq->usecnt);
725	}
726	if (srq->srq_type == IB_SRQT_XRC) {
727		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
728		atomic_inc(&srq->ext.xrc.xrcd->usecnt);
729	}
730	atomic_inc(&pd->usecnt);
731
732	ret = pd->device->create_srq(srq, srq_init_attr, NULL);
733	if (ret) {
734		atomic_dec(&srq->pd->usecnt);
735		if (srq->srq_type == IB_SRQT_XRC)
736			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
737		if (ib_srq_has_cq(srq->srq_type))
738			atomic_dec(&srq->ext.cq->usecnt);
739		kfree(srq);
740		return ERR_PTR(ret);
741	}
742
743	return srq;
744}
745EXPORT_SYMBOL(ib_create_srq);
746
747int ib_modify_srq(struct ib_srq *srq,
748		  struct ib_srq_attr *srq_attr,
749		  enum ib_srq_attr_mask srq_attr_mask)
750{
751	return srq->device->modify_srq ?
752		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
753		-ENOSYS;
754}
755EXPORT_SYMBOL(ib_modify_srq);
756
757int ib_query_srq(struct ib_srq *srq,
758		 struct ib_srq_attr *srq_attr)
759{
760	return srq->device->query_srq ?
761		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
762}
763EXPORT_SYMBOL(ib_query_srq);
764
765int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
766{
767	if (atomic_read(&srq->usecnt))
768		return -EBUSY;
769
770	srq->device->destroy_srq(srq, udata);
771
772	atomic_dec(&srq->pd->usecnt);
773	if (srq->srq_type == IB_SRQT_XRC)
774		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
775	if (ib_srq_has_cq(srq->srq_type))
776		atomic_dec(&srq->ext.cq->usecnt);
777	kfree(srq);
778
779	return 0;
780}
781EXPORT_SYMBOL(ib_destroy_srq_user);
782
783/* Queue pairs */
784
785static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
786{
787	struct ib_qp *qp = context;
788	unsigned long flags;
789
790	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
791	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
792		if (event->element.qp->event_handler)
793			event->element.qp->event_handler(event, event->element.qp->qp_context);
794	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
795}
796
797static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
798{
799	mutex_lock(&xrcd->tgt_qp_mutex);
800	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
801	mutex_unlock(&xrcd->tgt_qp_mutex);
802}
803
804static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
805				  void (*event_handler)(struct ib_event *, void *),
806				  void *qp_context)
807{
808	struct ib_qp *qp;
809	unsigned long flags;
810
811	qp = kzalloc(sizeof *qp, GFP_KERNEL);
812	if (!qp)
813		return ERR_PTR(-ENOMEM);
814
815	qp->real_qp = real_qp;
816	atomic_inc(&real_qp->usecnt);
817	qp->device = real_qp->device;
818	qp->event_handler = event_handler;
819	qp->qp_context = qp_context;
820	qp->qp_num = real_qp->qp_num;
821	qp->qp_type = real_qp->qp_type;
822
823	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
824	list_add(&qp->open_list, &real_qp->open_list);
825	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
826
827	return qp;
828}
829
830struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
831			 struct ib_qp_open_attr *qp_open_attr)
832{
833	struct ib_qp *qp, *real_qp;
834
835	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
836		return ERR_PTR(-EINVAL);
837
838	qp = ERR_PTR(-EINVAL);
839	mutex_lock(&xrcd->tgt_qp_mutex);
840	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
841		if (real_qp->qp_num == qp_open_attr->qp_num) {
842			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
843					  qp_open_attr->qp_context);
844			break;
845		}
846	}
847	mutex_unlock(&xrcd->tgt_qp_mutex);
848	return qp;
849}
850EXPORT_SYMBOL(ib_open_qp);
851
852static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
853		struct ib_qp_init_attr *qp_init_attr)
854{
855	struct ib_qp *real_qp = qp;
856
857	qp->event_handler = __ib_shared_qp_event_handler;
858	qp->qp_context = qp;
859	qp->pd = NULL;
860	qp->send_cq = qp->recv_cq = NULL;
861	qp->srq = NULL;
862	qp->xrcd = qp_init_attr->xrcd;
863	atomic_inc(&qp_init_attr->xrcd->usecnt);
864	INIT_LIST_HEAD(&qp->open_list);
865
866	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
867			  qp_init_attr->qp_context);
868	if (!IS_ERR(qp))
869		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
870	else
871		real_qp->device->destroy_qp(real_qp, NULL);
872	return qp;
873}
874
875struct ib_qp *ib_create_qp(struct ib_pd *pd,
876			   struct ib_qp_init_attr *qp_init_attr)
877{
878	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
879	struct ib_qp *qp;
880
881	if (qp_init_attr->rwq_ind_tbl &&
882	    (qp_init_attr->recv_cq ||
883	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
884	    qp_init_attr->cap.max_recv_sge))
885		return ERR_PTR(-EINVAL);
886
887	qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
888	if (IS_ERR(qp))
889		return qp;
890
891	qp->device     = device;
892	qp->real_qp    = qp;
893	qp->uobject    = NULL;
894	qp->qp_type    = qp_init_attr->qp_type;
895	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
896
897	atomic_set(&qp->usecnt, 0);
898	spin_lock_init(&qp->mr_lock);
899
900	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
901		return ib_create_xrc_qp(qp, qp_init_attr);
902
903	qp->event_handler = qp_init_attr->event_handler;
904	qp->qp_context = qp_init_attr->qp_context;
905	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
906		qp->recv_cq = NULL;
907		qp->srq = NULL;
908	} else {
909		qp->recv_cq = qp_init_attr->recv_cq;
910		if (qp_init_attr->recv_cq)
911			atomic_inc(&qp_init_attr->recv_cq->usecnt);
912		qp->srq = qp_init_attr->srq;
913		if (qp->srq)
914			atomic_inc(&qp_init_attr->srq->usecnt);
915	}
916
917	qp->pd	    = pd;
918	qp->send_cq = qp_init_attr->send_cq;
919	qp->xrcd    = NULL;
920
921	atomic_inc(&pd->usecnt);
922	if (qp_init_attr->send_cq)
923		atomic_inc(&qp_init_attr->send_cq->usecnt);
924	if (qp_init_attr->rwq_ind_tbl)
925		atomic_inc(&qp->rwq_ind_tbl->usecnt);
926
927	/*
928	 * Note: all hw drivers guarantee that max_send_sge is lower than
929	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
930	 * max_send_sge <= max_sge_rd.
931	 */
932	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
933	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
934				 device->attrs.max_sge_rd);
935
936	return qp;
937}
938EXPORT_SYMBOL(ib_create_qp);
939
940static const struct {
941	int			valid;
942	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
943	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
944} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
945	[IB_QPS_RESET] = {
946		[IB_QPS_RESET] = { .valid = 1 },
947		[IB_QPS_INIT]  = {
948			.valid = 1,
949			.req_param = {
950				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
951						IB_QP_PORT			|
952						IB_QP_QKEY),
953				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
954				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
955						IB_QP_PORT			|
956						IB_QP_ACCESS_FLAGS),
957				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
958						IB_QP_PORT			|
959						IB_QP_ACCESS_FLAGS),
960				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
961						IB_QP_PORT			|
962						IB_QP_ACCESS_FLAGS),
963				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
964						IB_QP_PORT			|
965						IB_QP_ACCESS_FLAGS),
966				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
967						IB_QP_QKEY),
968				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
969						IB_QP_QKEY),
970			}
971		},
972	},
973	[IB_QPS_INIT]  = {
974		[IB_QPS_RESET] = { .valid = 1 },
975		[IB_QPS_ERR] =   { .valid = 1 },
976		[IB_QPS_INIT]  = {
977			.valid = 1,
978			.opt_param = {
979				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
980						IB_QP_PORT			|
981						IB_QP_QKEY),
982				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
983						IB_QP_PORT			|
984						IB_QP_ACCESS_FLAGS),
985				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
986						IB_QP_PORT			|
987						IB_QP_ACCESS_FLAGS),
988				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
989						IB_QP_PORT			|
990						IB_QP_ACCESS_FLAGS),
991				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
992						IB_QP_PORT			|
993						IB_QP_ACCESS_FLAGS),
994				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
995						IB_QP_QKEY),
996				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
997						IB_QP_QKEY),
998			}
999		},
1000		[IB_QPS_RTR]   = {
1001			.valid = 1,
1002			.req_param = {
1003				[IB_QPT_UC]  = (IB_QP_AV			|
1004						IB_QP_PATH_MTU			|
1005						IB_QP_DEST_QPN			|
1006						IB_QP_RQ_PSN),
1007				[IB_QPT_RC]  = (IB_QP_AV			|
1008						IB_QP_PATH_MTU			|
1009						IB_QP_DEST_QPN			|
1010						IB_QP_RQ_PSN			|
1011						IB_QP_MAX_DEST_RD_ATOMIC	|
1012						IB_QP_MIN_RNR_TIMER),
1013				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1014						IB_QP_PATH_MTU			|
1015						IB_QP_DEST_QPN			|
1016						IB_QP_RQ_PSN),
1017				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1018						IB_QP_PATH_MTU			|
1019						IB_QP_DEST_QPN			|
1020						IB_QP_RQ_PSN			|
1021						IB_QP_MAX_DEST_RD_ATOMIC	|
1022						IB_QP_MIN_RNR_TIMER),
1023			},
1024			.opt_param = {
1025				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1026						 IB_QP_QKEY),
1027				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1028						 IB_QP_ACCESS_FLAGS		|
1029						 IB_QP_PKEY_INDEX),
1030				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1031						 IB_QP_ACCESS_FLAGS		|
1032						 IB_QP_PKEY_INDEX),
1033				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1034						 IB_QP_ACCESS_FLAGS		|
1035						 IB_QP_PKEY_INDEX),
1036				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1037						 IB_QP_ACCESS_FLAGS		|
1038						 IB_QP_PKEY_INDEX),
1039				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1040						 IB_QP_QKEY),
1041				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1042						 IB_QP_QKEY),
1043			 },
1044		},
1045	},
1046	[IB_QPS_RTR]   = {
1047		[IB_QPS_RESET] = { .valid = 1 },
1048		[IB_QPS_ERR] =   { .valid = 1 },
1049		[IB_QPS_RTS]   = {
1050			.valid = 1,
1051			.req_param = {
1052				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1053				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1054				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1055						IB_QP_RETRY_CNT			|
1056						IB_QP_RNR_RETRY			|
1057						IB_QP_SQ_PSN			|
1058						IB_QP_MAX_QP_RD_ATOMIC),
1059				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1060						IB_QP_RETRY_CNT			|
1061						IB_QP_RNR_RETRY			|
1062						IB_QP_SQ_PSN			|
1063						IB_QP_MAX_QP_RD_ATOMIC),
1064				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1065						IB_QP_SQ_PSN),
1066				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1067				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1068			},
1069			.opt_param = {
1070				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1071						 IB_QP_QKEY),
1072				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1073						 IB_QP_ALT_PATH			|
1074						 IB_QP_ACCESS_FLAGS		|
1075						 IB_QP_PATH_MIG_STATE),
1076				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1077						 IB_QP_ALT_PATH			|
1078						 IB_QP_ACCESS_FLAGS		|
1079						 IB_QP_MIN_RNR_TIMER		|
1080						 IB_QP_PATH_MIG_STATE),
1081				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1082						 IB_QP_ALT_PATH			|
1083						 IB_QP_ACCESS_FLAGS		|
1084						 IB_QP_PATH_MIG_STATE),
1085				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1086						 IB_QP_ALT_PATH			|
1087						 IB_QP_ACCESS_FLAGS		|
1088						 IB_QP_MIN_RNR_TIMER		|
1089						 IB_QP_PATH_MIG_STATE),
1090				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1091						 IB_QP_QKEY),
1092				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1093						 IB_QP_QKEY),
1094				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1095			 }
1096		}
1097	},
1098	[IB_QPS_RTS]   = {
1099		[IB_QPS_RESET] = { .valid = 1 },
1100		[IB_QPS_ERR] =   { .valid = 1 },
1101		[IB_QPS_RTS]   = {
1102			.valid = 1,
1103			.opt_param = {
1104				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1105						IB_QP_QKEY),
1106				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1107						IB_QP_ACCESS_FLAGS		|
1108						IB_QP_ALT_PATH			|
1109						IB_QP_PATH_MIG_STATE),
1110				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1111						IB_QP_ACCESS_FLAGS		|
1112						IB_QP_ALT_PATH			|
1113						IB_QP_PATH_MIG_STATE		|
1114						IB_QP_MIN_RNR_TIMER),
1115				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1116						IB_QP_ACCESS_FLAGS		|
1117						IB_QP_ALT_PATH			|
1118						IB_QP_PATH_MIG_STATE),
1119				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1120						IB_QP_ACCESS_FLAGS		|
1121						IB_QP_ALT_PATH			|
1122						IB_QP_PATH_MIG_STATE		|
1123						IB_QP_MIN_RNR_TIMER),
1124				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1125						IB_QP_QKEY),
1126				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1127						IB_QP_QKEY),
1128				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1129			}
1130		},
1131		[IB_QPS_SQD]   = {
1132			.valid = 1,
1133			.opt_param = {
1134				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1135				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1136				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1137				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1138				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1139				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1140				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1141			}
1142		},
1143	},
1144	[IB_QPS_SQD]   = {
1145		[IB_QPS_RESET] = { .valid = 1 },
1146		[IB_QPS_ERR] =   { .valid = 1 },
1147		[IB_QPS_RTS]   = {
1148			.valid = 1,
1149			.opt_param = {
1150				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1151						IB_QP_QKEY),
1152				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1153						IB_QP_ALT_PATH			|
1154						IB_QP_ACCESS_FLAGS		|
1155						IB_QP_PATH_MIG_STATE),
1156				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1157						IB_QP_ALT_PATH			|
1158						IB_QP_ACCESS_FLAGS		|
1159						IB_QP_MIN_RNR_TIMER		|
1160						IB_QP_PATH_MIG_STATE),
1161				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1162						IB_QP_ALT_PATH			|
1163						IB_QP_ACCESS_FLAGS		|
1164						IB_QP_PATH_MIG_STATE),
1165				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1166						IB_QP_ALT_PATH			|
1167						IB_QP_ACCESS_FLAGS		|
1168						IB_QP_MIN_RNR_TIMER		|
1169						IB_QP_PATH_MIG_STATE),
1170				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1171						IB_QP_QKEY),
1172				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1173						IB_QP_QKEY),
1174			}
1175		},
1176		[IB_QPS_SQD]   = {
1177			.valid = 1,
1178			.opt_param = {
1179				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1180						IB_QP_QKEY),
1181				[IB_QPT_UC]  = (IB_QP_AV			|
1182						IB_QP_ALT_PATH			|
1183						IB_QP_ACCESS_FLAGS		|
1184						IB_QP_PKEY_INDEX		|
1185						IB_QP_PATH_MIG_STATE),
1186				[IB_QPT_RC]  = (IB_QP_PORT			|
1187						IB_QP_AV			|
1188						IB_QP_TIMEOUT			|
1189						IB_QP_RETRY_CNT			|
1190						IB_QP_RNR_RETRY			|
1191						IB_QP_MAX_QP_RD_ATOMIC		|
1192						IB_QP_MAX_DEST_RD_ATOMIC	|
1193						IB_QP_ALT_PATH			|
1194						IB_QP_ACCESS_FLAGS		|
1195						IB_QP_PKEY_INDEX		|
1196						IB_QP_MIN_RNR_TIMER		|
1197						IB_QP_PATH_MIG_STATE),
1198				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1199						IB_QP_AV			|
1200						IB_QP_TIMEOUT			|
1201						IB_QP_RETRY_CNT			|
1202						IB_QP_RNR_RETRY			|
1203						IB_QP_MAX_QP_RD_ATOMIC		|
1204						IB_QP_ALT_PATH			|
1205						IB_QP_ACCESS_FLAGS		|
1206						IB_QP_PKEY_INDEX		|
1207						IB_QP_PATH_MIG_STATE),
1208				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1209						IB_QP_AV			|
1210						IB_QP_TIMEOUT			|
1211						IB_QP_MAX_DEST_RD_ATOMIC	|
1212						IB_QP_ALT_PATH			|
1213						IB_QP_ACCESS_FLAGS		|
1214						IB_QP_PKEY_INDEX		|
1215						IB_QP_MIN_RNR_TIMER		|
1216						IB_QP_PATH_MIG_STATE),
1217				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1218						IB_QP_QKEY),
1219				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1220						IB_QP_QKEY),
1221			}
1222		}
1223	},
1224	[IB_QPS_SQE]   = {
1225		[IB_QPS_RESET] = { .valid = 1 },
1226		[IB_QPS_ERR] =   { .valid = 1 },
1227		[IB_QPS_RTS]   = {
1228			.valid = 1,
1229			.opt_param = {
1230				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1231						IB_QP_QKEY),
1232				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1233						IB_QP_ACCESS_FLAGS),
1234				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1235						IB_QP_QKEY),
1236				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1237						IB_QP_QKEY),
1238			}
1239		}
1240	},
1241	[IB_QPS_ERR] = {
1242		[IB_QPS_RESET] = { .valid = 1 },
1243		[IB_QPS_ERR] =   { .valid = 1 }
1244	}
1245};
1246
1247bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1248			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1249{
1250	enum ib_qp_attr_mask req_param, opt_param;
1251
1252	if (mask & IB_QP_CUR_STATE  &&
1253	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1254	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1255		return false;
1256
1257	if (!qp_state_table[cur_state][next_state].valid)
1258		return false;
1259
1260	req_param = qp_state_table[cur_state][next_state].req_param[type];
1261	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1262
1263	if ((mask & req_param) != req_param)
1264		return false;
1265
1266	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1267		return false;
1268
1269	return true;
1270}
1271EXPORT_SYMBOL(ib_modify_qp_is_ok);
1272
1273int ib_resolve_eth_dmac(struct ib_device *device,
1274			struct ib_ah_attr *ah_attr)
1275{
1276	struct ib_gid_attr sgid_attr;
1277	union ib_gid sgid;
1278	int hop_limit;
1279	int ret;
1280
1281	if (ah_attr->port_num < rdma_start_port(device) ||
1282	    ah_attr->port_num > rdma_end_port(device))
1283		return -EINVAL;
1284
1285	if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1286		return 0;
1287
1288	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1289		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1290			__be32 addr = 0;
1291
1292			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1293			ip_eth_mc_map(addr, (char *)ah_attr->dmac);
1294		} else {
1295			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1296					(char *)ah_attr->dmac);
1297		}
1298		return 0;
1299	}
1300
1301	ret = ib_query_gid(device,
1302			   ah_attr->port_num,
1303			   ah_attr->grh.sgid_index,
1304			   &sgid, &sgid_attr);
1305	if (ret != 0)
1306		return (ret);
1307	if (!sgid_attr.ndev)
1308		return -ENXIO;
1309
1310	ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1311					   &ah_attr->grh.dgid,
1312					   ah_attr->dmac,
1313					   sgid_attr.ndev, &hop_limit);
1314	dev_put(sgid_attr.ndev);
1315
1316	ah_attr->grh.hop_limit = hop_limit;
1317	return ret;
1318}
1319EXPORT_SYMBOL(ib_resolve_eth_dmac);
1320
1321static bool is_qp_type_connected(const struct ib_qp *qp)
1322{
1323	return (qp->qp_type == IB_QPT_UC ||
1324		qp->qp_type == IB_QPT_RC ||
1325		qp->qp_type == IB_QPT_XRC_INI ||
1326		qp->qp_type == IB_QPT_XRC_TGT);
1327}
1328
1329/**
1330 * IB core internal function to perform QP attributes modification.
1331 */
1332static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1333			 int attr_mask, struct ib_udata *udata)
1334{
1335	u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1336	int ret;
1337
1338	if (port < rdma_start_port(qp->device) ||
1339	    port > rdma_end_port(qp->device))
1340		return -EINVAL;
1341
1342	if (attr_mask & IB_QP_ALT_PATH) {
1343		/*
1344		 * Today the core code can only handle alternate paths and APM
1345		 * for IB. Ban them in roce mode.
1346		 */
1347		if (!(rdma_protocol_ib(qp->device,
1348		      attr->alt_ah_attr.port_num) &&
1349		      rdma_protocol_ib(qp->device, port))) {
1350			ret = EINVAL;
1351			goto out;
1352		}
1353	}
1354
1355	/*
1356	 * If the user provided the qp_attr then we have to resolve it. Kernel
1357	 * users have to provide already resolved rdma_ah_attr's
1358	 */
1359	if (udata && (attr_mask & IB_QP_AV) &&
1360	    rdma_protocol_roce(qp->device, port) &&
1361	    is_qp_type_connected(qp)) {
1362		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1363		if (ret)
1364			goto out;
1365	}
1366
1367	if (rdma_ib_or_roce(qp->device, port)) {
1368		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1369			dev_warn(&qp->device->dev,
1370				 "%s rq_psn overflow, masking to 24 bits\n",
1371				 __func__);
1372			attr->rq_psn &= 0xffffff;
1373		}
1374
1375		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1376			dev_warn(&qp->device->dev,
1377				 " %s sq_psn overflow, masking to 24 bits\n",
1378				 __func__);
1379			attr->sq_psn &= 0xffffff;
1380		}
1381	}
1382
1383	ret = qp->device->modify_qp(qp, attr, attr_mask, udata);
1384	if (ret)
1385		goto out;
1386
1387	if (attr_mask & IB_QP_PORT)
1388		qp->port = attr->port_num;
1389out:
1390	return ret;
1391}
1392
1393/**
1394 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1395 * @ib_qp: The QP to modify.
1396 * @attr: On input, specifies the QP attributes to modify.  On output,
1397 *   the current values of selected QP attributes are returned.
1398 * @attr_mask: A bit-mask used to specify which attributes of the QP
1399 *   are being modified.
1400 * @udata: pointer to user's input output buffer information
1401 *   are being modified.
1402 * It returns 0 on success and returns appropriate error code on error.
1403 */
1404int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1405			    int attr_mask, struct ib_udata *udata)
1406{
1407	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1408}
1409EXPORT_SYMBOL(ib_modify_qp_with_udata);
1410
1411int ib_modify_qp(struct ib_qp *qp,
1412		 struct ib_qp_attr *qp_attr,
1413		 int qp_attr_mask)
1414{
1415	if (qp_attr_mask & IB_QP_AV) {
1416		int ret;
1417
1418		ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1419		if (ret)
1420			return ret;
1421	}
1422
1423	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1424}
1425EXPORT_SYMBOL(ib_modify_qp);
1426
1427int ib_query_qp(struct ib_qp *qp,
1428		struct ib_qp_attr *qp_attr,
1429		int qp_attr_mask,
1430		struct ib_qp_init_attr *qp_init_attr)
1431{
1432	return qp->device->query_qp ?
1433		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1434		-ENOSYS;
1435}
1436EXPORT_SYMBOL(ib_query_qp);
1437
1438int ib_close_qp(struct ib_qp *qp)
1439{
1440	struct ib_qp *real_qp;
1441	unsigned long flags;
1442
1443	real_qp = qp->real_qp;
1444	if (real_qp == qp)
1445		return -EINVAL;
1446
1447	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1448	list_del(&qp->open_list);
1449	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1450
1451	atomic_dec(&real_qp->usecnt);
1452	kfree(qp);
1453
1454	return 0;
1455}
1456EXPORT_SYMBOL(ib_close_qp);
1457
1458static int __ib_destroy_shared_qp(struct ib_qp *qp)
1459{
1460	struct ib_xrcd *xrcd;
1461	struct ib_qp *real_qp;
1462	int ret;
1463
1464	real_qp = qp->real_qp;
1465	xrcd = real_qp->xrcd;
1466
1467	mutex_lock(&xrcd->tgt_qp_mutex);
1468	ib_close_qp(qp);
1469	if (atomic_read(&real_qp->usecnt) == 0)
1470		list_del(&real_qp->xrcd_list);
1471	else
1472		real_qp = NULL;
1473	mutex_unlock(&xrcd->tgt_qp_mutex);
1474
1475	if (real_qp) {
1476		ret = ib_destroy_qp(real_qp);
1477		if (!ret)
1478			atomic_dec(&xrcd->usecnt);
1479		else
1480			__ib_insert_xrcd_qp(xrcd, real_qp);
1481	}
1482
1483	return 0;
1484}
1485
1486int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1487{
1488	struct ib_pd *pd;
1489	struct ib_cq *scq, *rcq;
1490	struct ib_srq *srq;
1491	struct ib_rwq_ind_table *ind_tbl;
1492	int ret;
1493
1494	if (atomic_read(&qp->usecnt))
1495		return -EBUSY;
1496
1497	if (qp->real_qp != qp)
1498		return __ib_destroy_shared_qp(qp);
1499
1500	pd   = qp->pd;
1501	scq  = qp->send_cq;
1502	rcq  = qp->recv_cq;
1503	srq  = qp->srq;
1504	ind_tbl = qp->rwq_ind_tbl;
1505
1506	ret = qp->device->destroy_qp(qp, udata);
1507	if (!ret) {
1508		if (pd)
1509			atomic_dec(&pd->usecnt);
1510		if (scq)
1511			atomic_dec(&scq->usecnt);
1512		if (rcq)
1513			atomic_dec(&rcq->usecnt);
1514		if (srq)
1515			atomic_dec(&srq->usecnt);
1516		if (ind_tbl)
1517			atomic_dec(&ind_tbl->usecnt);
1518	}
1519
1520	return ret;
1521}
1522EXPORT_SYMBOL(ib_destroy_qp_user);
1523
1524/* Completion queues */
1525
1526struct ib_cq *__ib_create_cq(struct ib_device *device,
1527			     ib_comp_handler comp_handler,
1528			     void (*event_handler)(struct ib_event *, void *),
1529			     void *cq_context,
1530			     const struct ib_cq_init_attr *cq_attr,
1531			     const char *caller)
1532{
1533	struct ib_cq *cq;
1534	int ret;
1535
1536	cq = rdma_zalloc_drv_obj(device, ib_cq);
1537	if (!cq)
1538		return ERR_PTR(-ENOMEM);
1539
1540	cq->device = device;
1541	cq->uobject = NULL;
1542	cq->comp_handler = comp_handler;
1543	cq->event_handler = event_handler;
1544	cq->cq_context = cq_context;
1545	atomic_set(&cq->usecnt, 0);
1546
1547	ret = device->create_cq(cq, cq_attr, NULL);
1548	if (ret) {
1549		kfree(cq);
1550		return ERR_PTR(ret);
1551	}
1552
1553	return cq;
1554}
1555EXPORT_SYMBOL(__ib_create_cq);
1556
1557int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1558{
1559	return cq->device->modify_cq ?
1560		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1561}
1562EXPORT_SYMBOL(ib_modify_cq);
1563
1564int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1565{
1566	if (atomic_read(&cq->usecnt))
1567		return -EBUSY;
1568
1569	cq->device->destroy_cq(cq, udata);
1570	kfree(cq);
1571	return 0;
1572}
1573EXPORT_SYMBOL(ib_destroy_cq_user);
1574
1575int ib_resize_cq(struct ib_cq *cq, int cqe)
1576{
1577	return cq->device->resize_cq ?
1578		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1579}
1580EXPORT_SYMBOL(ib_resize_cq);
1581
1582/* Memory regions */
1583
1584int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1585{
1586	struct ib_pd *pd = mr->pd;
1587	struct ib_dm *dm = mr->dm;
1588	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1589	int ret;
1590
1591	ret = mr->device->dereg_mr(mr, udata);
1592	if (!ret) {
1593		atomic_dec(&pd->usecnt);
1594		if (dm)
1595			atomic_dec(&dm->usecnt);
1596		kfree(sig_attrs);
1597	}
1598
1599	return ret;
1600}
1601EXPORT_SYMBOL(ib_dereg_mr_user);
1602
1603/**
1604 * ib_alloc_mr_user() - Allocates a memory region
1605 * @pd:            protection domain associated with the region
1606 * @mr_type:       memory region type
1607 * @max_num_sg:    maximum sg entries available for registration.
1608 * @udata:	   user data or null for kernel objects
1609 *
1610 * Notes:
1611 * Memory registeration page/sg lists must not exceed max_num_sg.
1612 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1613 * max_num_sg * used_page_size.
1614 *
1615 */
1616struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
1617			       u32 max_num_sg, struct ib_udata *udata)
1618{
1619	struct ib_mr *mr;
1620
1621	if (!pd->device->alloc_mr) {
1622		mr = ERR_PTR(-EOPNOTSUPP);
1623		goto out;
1624	}
1625
1626	if (mr_type == IB_MR_TYPE_INTEGRITY) {
1627		WARN_ON_ONCE(1);
1628		mr = ERR_PTR(-EINVAL);
1629		goto out;
1630	}
1631
1632	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg, udata);
1633	if (!IS_ERR(mr)) {
1634		mr->device  = pd->device;
1635		mr->pd      = pd;
1636		mr->dm      = NULL;
1637		mr->uobject = NULL;
1638		atomic_inc(&pd->usecnt);
1639		mr->need_inval = false;
1640		mr->type = mr_type;
1641		mr->sig_attrs = NULL;
1642	}
1643
1644out:
1645	return mr;
1646}
1647EXPORT_SYMBOL(ib_alloc_mr_user);
1648
1649/* "Fast" memory regions */
1650
1651struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1652			    int mr_access_flags,
1653			    struct ib_fmr_attr *fmr_attr)
1654{
1655	struct ib_fmr *fmr;
1656
1657	if (!pd->device->alloc_fmr)
1658		return ERR_PTR(-ENOSYS);
1659
1660	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1661	if (!IS_ERR(fmr)) {
1662		fmr->device = pd->device;
1663		fmr->pd     = pd;
1664		atomic_inc(&pd->usecnt);
1665	}
1666
1667	return fmr;
1668}
1669EXPORT_SYMBOL(ib_alloc_fmr);
1670
1671int ib_unmap_fmr(struct list_head *fmr_list)
1672{
1673	struct ib_fmr *fmr;
1674
1675	if (list_empty(fmr_list))
1676		return 0;
1677
1678	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1679	return fmr->device->unmap_fmr(fmr_list);
1680}
1681EXPORT_SYMBOL(ib_unmap_fmr);
1682
1683int ib_dealloc_fmr(struct ib_fmr *fmr)
1684{
1685	struct ib_pd *pd;
1686	int ret;
1687
1688	pd = fmr->pd;
1689	ret = fmr->device->dealloc_fmr(fmr);
1690	if (!ret)
1691		atomic_dec(&pd->usecnt);
1692
1693	return ret;
1694}
1695EXPORT_SYMBOL(ib_dealloc_fmr);
1696
1697/* Multicast groups */
1698
1699static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1700{
1701	struct ib_qp_init_attr init_attr = {};
1702	struct ib_qp_attr attr = {};
1703	int num_eth_ports = 0;
1704	int port;
1705
1706	/* If QP state >= init, it is assigned to a port and we can check this
1707	 * port only.
1708	 */
1709	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1710		if (attr.qp_state >= IB_QPS_INIT) {
1711			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1712			    IB_LINK_LAYER_INFINIBAND)
1713				return true;
1714			goto lid_check;
1715		}
1716	}
1717
1718	/* Can't get a quick answer, iterate over all ports */
1719	for (port = 0; port < qp->device->phys_port_cnt; port++)
1720		if (rdma_port_get_link_layer(qp->device, port) !=
1721		    IB_LINK_LAYER_INFINIBAND)
1722			num_eth_ports++;
1723
1724	/* If we have at lease one Ethernet port, RoCE annex declares that
1725	 * multicast LID should be ignored. We can't tell at this step if the
1726	 * QP belongs to an IB or Ethernet port.
1727	 */
1728	if (num_eth_ports)
1729		return true;
1730
1731	/* If all the ports are IB, we can check according to IB spec. */
1732lid_check:
1733	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1734		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1735}
1736
1737int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1738{
1739	int ret;
1740
1741	if (!qp->device->attach_mcast)
1742		return -ENOSYS;
1743
1744	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1745	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1746		return -EINVAL;
1747
1748	ret = qp->device->attach_mcast(qp, gid, lid);
1749	if (!ret)
1750		atomic_inc(&qp->usecnt);
1751	return ret;
1752}
1753EXPORT_SYMBOL(ib_attach_mcast);
1754
1755int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1756{
1757	int ret;
1758
1759	if (!qp->device->detach_mcast)
1760		return -ENOSYS;
1761
1762	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1763	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1764		return -EINVAL;
1765
1766	ret = qp->device->detach_mcast(qp, gid, lid);
1767	if (!ret)
1768		atomic_dec(&qp->usecnt);
1769	return ret;
1770}
1771EXPORT_SYMBOL(ib_detach_mcast);
1772
1773struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
1774{
1775	struct ib_xrcd *xrcd;
1776
1777	if (!device->alloc_xrcd)
1778		return ERR_PTR(-EOPNOTSUPP);
1779
1780	xrcd = device->alloc_xrcd(device, NULL);
1781	if (!IS_ERR(xrcd)) {
1782		xrcd->device = device;
1783		xrcd->inode = NULL;
1784		atomic_set(&xrcd->usecnt, 0);
1785		mutex_init(&xrcd->tgt_qp_mutex);
1786		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1787	}
1788
1789	return xrcd;
1790}
1791EXPORT_SYMBOL(__ib_alloc_xrcd);
1792
1793int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
1794{
1795	struct ib_qp *qp;
1796	int ret;
1797
1798	if (atomic_read(&xrcd->usecnt))
1799		return -EBUSY;
1800
1801	while (!list_empty(&xrcd->tgt_qp_list)) {
1802		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1803		ret = ib_destroy_qp(qp);
1804		if (ret)
1805			return ret;
1806	}
1807	mutex_destroy(&xrcd->tgt_qp_mutex);
1808
1809	return xrcd->device->dealloc_xrcd(xrcd, udata);
1810}
1811EXPORT_SYMBOL(ib_dealloc_xrcd);
1812
1813/**
1814 * ib_create_wq - Creates a WQ associated with the specified protection
1815 * domain.
1816 * @pd: The protection domain associated with the WQ.
1817 * @wq_init_attr: A list of initial attributes required to create the
1818 * WQ. If WQ creation succeeds, then the attributes are updated to
1819 * the actual capabilities of the created WQ.
1820 *
1821 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1822 * the requested size of the WQ, and set to the actual values allocated
1823 * on return.
1824 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1825 * at least as large as the requested values.
1826 */
1827struct ib_wq *ib_create_wq(struct ib_pd *pd,
1828			   struct ib_wq_init_attr *wq_attr)
1829{
1830	struct ib_wq *wq;
1831
1832	if (!pd->device->create_wq)
1833		return ERR_PTR(-ENOSYS);
1834
1835	wq = pd->device->create_wq(pd, wq_attr, NULL);
1836	if (!IS_ERR(wq)) {
1837		wq->event_handler = wq_attr->event_handler;
1838		wq->wq_context = wq_attr->wq_context;
1839		wq->wq_type = wq_attr->wq_type;
1840		wq->cq = wq_attr->cq;
1841		wq->device = pd->device;
1842		wq->pd = pd;
1843		wq->uobject = NULL;
1844		atomic_inc(&pd->usecnt);
1845		atomic_inc(&wq_attr->cq->usecnt);
1846		atomic_set(&wq->usecnt, 0);
1847	}
1848	return wq;
1849}
1850EXPORT_SYMBOL(ib_create_wq);
1851
1852/**
1853 * ib_destroy_wq - Destroys the specified user WQ.
1854 * @wq: The WQ to destroy.
1855 * @udata: Valid user data
1856 */
1857int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
1858{
1859	struct ib_cq *cq = wq->cq;
1860	struct ib_pd *pd = wq->pd;
1861
1862	if (atomic_read(&wq->usecnt))
1863		return -EBUSY;
1864
1865	wq->device->destroy_wq(wq, udata);
1866	atomic_dec(&pd->usecnt);
1867	atomic_dec(&cq->usecnt);
1868
1869	return 0;
1870}
1871EXPORT_SYMBOL(ib_destroy_wq);
1872
1873/**
1874 * ib_modify_wq - Modifies the specified WQ.
1875 * @wq: The WQ to modify.
1876 * @wq_attr: On input, specifies the WQ attributes to modify.
1877 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1878 *   are being modified.
1879 * On output, the current values of selected WQ attributes are returned.
1880 */
1881int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1882		 u32 wq_attr_mask)
1883{
1884	int err;
1885
1886	if (!wq->device->modify_wq)
1887		return -ENOSYS;
1888
1889	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1890	return err;
1891}
1892EXPORT_SYMBOL(ib_modify_wq);
1893
1894/*
1895 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1896 * @device: The device on which to create the rwq indirection table.
1897 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1898 * create the Indirection Table.
1899 *
1900 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1901 *	than the created ib_rwq_ind_table object and the caller is responsible
1902 *	for its memory allocation/free.
1903 */
1904struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1905						 struct ib_rwq_ind_table_init_attr *init_attr)
1906{
1907	struct ib_rwq_ind_table *rwq_ind_table;
1908	int i;
1909	u32 table_size;
1910
1911	if (!device->create_rwq_ind_table)
1912		return ERR_PTR(-ENOSYS);
1913
1914	table_size = (1 << init_attr->log_ind_tbl_size);
1915	rwq_ind_table = device->create_rwq_ind_table(device,
1916				init_attr, NULL);
1917	if (IS_ERR(rwq_ind_table))
1918		return rwq_ind_table;
1919
1920	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1921	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1922	rwq_ind_table->device = device;
1923	rwq_ind_table->uobject = NULL;
1924	atomic_set(&rwq_ind_table->usecnt, 0);
1925
1926	for (i = 0; i < table_size; i++)
1927		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1928
1929	return rwq_ind_table;
1930}
1931EXPORT_SYMBOL(ib_create_rwq_ind_table);
1932
1933/*
1934 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1935 * @wq_ind_table: The Indirection Table to destroy.
1936*/
1937int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1938{
1939	int err, i;
1940	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1941	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1942
1943	if (atomic_read(&rwq_ind_table->usecnt))
1944		return -EBUSY;
1945
1946	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1947	if (!err) {
1948		for (i = 0; i < table_size; i++)
1949			atomic_dec(&ind_tbl[i]->usecnt);
1950	}
1951
1952	return err;
1953}
1954EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1955
1956int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1957		       struct ib_mr_status *mr_status)
1958{
1959	return mr->device->check_mr_status ?
1960		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1961}
1962EXPORT_SYMBOL(ib_check_mr_status);
1963
1964int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1965			 int state)
1966{
1967	if (!device->set_vf_link_state)
1968		return -ENOSYS;
1969
1970	return device->set_vf_link_state(device, vf, port, state);
1971}
1972EXPORT_SYMBOL(ib_set_vf_link_state);
1973
1974int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1975		     struct ifla_vf_info *info)
1976{
1977	if (!device->get_vf_config)
1978		return -ENOSYS;
1979
1980	return device->get_vf_config(device, vf, port, info);
1981}
1982EXPORT_SYMBOL(ib_get_vf_config);
1983
1984int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1985		    struct ifla_vf_stats *stats)
1986{
1987	if (!device->get_vf_stats)
1988		return -ENOSYS;
1989
1990	return device->get_vf_stats(device, vf, port, stats);
1991}
1992EXPORT_SYMBOL(ib_get_vf_stats);
1993
1994int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1995		   int type)
1996{
1997	if (!device->set_vf_guid)
1998		return -ENOSYS;
1999
2000	return device->set_vf_guid(device, vf, port, guid, type);
2001}
2002EXPORT_SYMBOL(ib_set_vf_guid);
2003
2004/**
2005 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2006 *     and set it the memory region.
2007 * @mr:            memory region
2008 * @sg:            dma mapped scatterlist
2009 * @sg_nents:      number of entries in sg
2010 * @sg_offset:     offset in bytes into sg
2011 * @page_size:     page vector desired page size
2012 *
2013 * Constraints:
2014 * - The first sg element is allowed to have an offset.
2015 * - Each sg element must either be aligned to page_size or virtually
2016 *   contiguous to the previous element. In case an sg element has a
2017 *   non-contiguous offset, the mapping prefix will not include it.
2018 * - The last sg element is allowed to have length less than page_size.
2019 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2020 *   then only max_num_sg entries will be mapped.
2021 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2022 *   constraints holds and the page_size argument is ignored.
2023 *
2024 * Returns the number of sg elements that were mapped to the memory region.
2025 *
2026 * After this completes successfully, the  memory region
2027 * is ready for registration.
2028 */
2029int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2030		 unsigned int *sg_offset, unsigned int page_size)
2031{
2032	if (unlikely(!mr->device->map_mr_sg))
2033		return -ENOSYS;
2034
2035	mr->page_size = page_size;
2036
2037	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2038}
2039EXPORT_SYMBOL(ib_map_mr_sg);
2040
2041/**
2042 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2043 *     to a page vector
2044 * @mr:            memory region
2045 * @sgl:           dma mapped scatterlist
2046 * @sg_nents:      number of entries in sg
2047 * @sg_offset_p:   IN:  start offset in bytes into sg
2048 *                 OUT: offset in bytes for element n of the sg of the first
2049 *                      byte that has not been processed where n is the return
2050 *                      value of this function.
2051 * @set_page:      driver page assignment function pointer
2052 *
2053 * Core service helper for drivers to convert the largest
2054 * prefix of given sg list to a page vector. The sg list
2055 * prefix converted is the prefix that meet the requirements
2056 * of ib_map_mr_sg.
2057 *
2058 * Returns the number of sg elements that were assigned to
2059 * a page vector.
2060 */
2061int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2062		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2063{
2064	struct scatterlist *sg;
2065	u64 last_end_dma_addr = 0;
2066	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2067	unsigned int last_page_off = 0;
2068	u64 page_mask = ~((u64)mr->page_size - 1);
2069	int i, ret;
2070
2071	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2072		return -EINVAL;
2073
2074	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2075	mr->length = 0;
2076
2077	for_each_sg(sgl, sg, sg_nents, i) {
2078		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2079		u64 prev_addr = dma_addr;
2080		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2081		u64 end_dma_addr = dma_addr + dma_len;
2082		u64 page_addr = dma_addr & page_mask;
2083
2084		/*
2085		 * For the second and later elements, check whether either the
2086		 * end of element i-1 or the start of element i is not aligned
2087		 * on a page boundary.
2088		 */
2089		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2090			/* Stop mapping if there is a gap. */
2091			if (last_end_dma_addr != dma_addr)
2092				break;
2093
2094			/*
2095			 * Coalesce this element with the last. If it is small
2096			 * enough just update mr->length. Otherwise start
2097			 * mapping from the next page.
2098			 */
2099			goto next_page;
2100		}
2101
2102		do {
2103			ret = set_page(mr, page_addr);
2104			if (unlikely(ret < 0)) {
2105				sg_offset = prev_addr - sg_dma_address(sg);
2106				mr->length += prev_addr - dma_addr;
2107				if (sg_offset_p)
2108					*sg_offset_p = sg_offset;
2109				return i || sg_offset ? i : ret;
2110			}
2111			prev_addr = page_addr;
2112next_page:
2113			page_addr += mr->page_size;
2114		} while (page_addr < end_dma_addr);
2115
2116		mr->length += dma_len;
2117		last_end_dma_addr = end_dma_addr;
2118		last_page_off = end_dma_addr & ~page_mask;
2119
2120		sg_offset = 0;
2121	}
2122
2123	if (sg_offset_p)
2124		*sg_offset_p = 0;
2125	return i;
2126}
2127EXPORT_SYMBOL(ib_sg_to_pages);
2128
2129struct ib_drain_cqe {
2130	struct ib_cqe cqe;
2131	struct completion done;
2132};
2133
2134static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2135{
2136	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2137						cqe);
2138
2139	complete(&cqe->done);
2140}
2141
2142/*
2143 * Post a WR and block until its completion is reaped for the SQ.
2144 */
2145static void __ib_drain_sq(struct ib_qp *qp)
2146{
2147	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2148	struct ib_drain_cqe sdrain;
2149	const struct ib_send_wr *bad_swr;
2150	struct ib_rdma_wr swr = {
2151		.wr = {
2152			.opcode	= IB_WR_RDMA_WRITE,
2153			.wr_cqe	= &sdrain.cqe,
2154		},
2155	};
2156	int ret;
2157
2158	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
2159		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
2160			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2161		return;
2162	}
2163
2164	sdrain.cqe.done = ib_drain_qp_done;
2165	init_completion(&sdrain.done);
2166
2167	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2168	if (ret) {
2169		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2170		return;
2171	}
2172
2173	ret = ib_post_send(qp, &swr.wr, &bad_swr);
2174	if (ret) {
2175		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2176		return;
2177	}
2178
2179	wait_for_completion(&sdrain.done);
2180}
2181
2182/*
2183 * Post a WR and block until its completion is reaped for the RQ.
2184 */
2185static void __ib_drain_rq(struct ib_qp *qp)
2186{
2187	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2188	struct ib_drain_cqe rdrain;
2189	struct ib_recv_wr rwr = {};
2190	const struct ib_recv_wr *bad_rwr;
2191	int ret;
2192
2193	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
2194		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
2195			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
2196		return;
2197	}
2198
2199	rwr.wr_cqe = &rdrain.cqe;
2200	rdrain.cqe.done = ib_drain_qp_done;
2201	init_completion(&rdrain.done);
2202
2203	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2204	if (ret) {
2205		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2206		return;
2207	}
2208
2209	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2210	if (ret) {
2211		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2212		return;
2213	}
2214
2215	wait_for_completion(&rdrain.done);
2216}
2217
2218/**
2219 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2220 *		   application.
2221 * @qp:            queue pair to drain
2222 *
2223 * If the device has a provider-specific drain function, then
2224 * call that.  Otherwise call the generic drain function
2225 * __ib_drain_sq().
2226 *
2227 * The caller must:
2228 *
2229 * ensure there is room in the CQ and SQ for the drain work request and
2230 * completion.
2231 *
2232 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2233 * IB_POLL_DIRECT.
2234 *
2235 * ensure that there are no other contexts that are posting WRs concurrently.
2236 * Otherwise the drain is not guaranteed.
2237 */
2238void ib_drain_sq(struct ib_qp *qp)
2239{
2240	if (qp->device->drain_sq)
2241		qp->device->drain_sq(qp);
2242	else
2243		__ib_drain_sq(qp);
2244}
2245EXPORT_SYMBOL(ib_drain_sq);
2246
2247/**
2248 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2249 *		   application.
2250 * @qp:            queue pair to drain
2251 *
2252 * If the device has a provider-specific drain function, then
2253 * call that.  Otherwise call the generic drain function
2254 * __ib_drain_rq().
2255 *
2256 * The caller must:
2257 *
2258 * ensure there is room in the CQ and RQ for the drain work request and
2259 * completion.
2260 *
2261 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2262 * IB_POLL_DIRECT.
2263 *
2264 * ensure that there are no other contexts that are posting WRs concurrently.
2265 * Otherwise the drain is not guaranteed.
2266 */
2267void ib_drain_rq(struct ib_qp *qp)
2268{
2269	if (qp->device->drain_rq)
2270		qp->device->drain_rq(qp);
2271	else
2272		__ib_drain_rq(qp);
2273}
2274EXPORT_SYMBOL(ib_drain_rq);
2275
2276/**
2277 * ib_drain_qp() - Block until all CQEs have been consumed by the
2278 *		   application on both the RQ and SQ.
2279 * @qp:            queue pair to drain
2280 *
2281 * The caller must:
2282 *
2283 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2284 * and completions.
2285 *
2286 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2287 * IB_POLL_DIRECT.
2288 *
2289 * ensure that there are no other contexts that are posting WRs concurrently.
2290 * Otherwise the drain is not guaranteed.
2291 */
2292void ib_drain_qp(struct ib_qp *qp)
2293{
2294	ib_drain_sq(qp);
2295	if (!qp->srq)
2296		ib_drain_rq(qp);
2297}
2298EXPORT_SYMBOL(ib_drain_qp);
2299