1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2010 Riccardo Panicucci, Universita` di Pisa
5 * Copyright (c) 2000-2002 Luigi Rizzo, Universita` di Pisa
6 * All rights reserved
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 */
32
33#ifdef _KERNEL
34#include <sys/malloc.h>
35#include <sys/socket.h>
36#include <sys/socketvar.h>
37#include <sys/kernel.h>
38#include <sys/lock.h>
39#include <sys/mbuf.h>
40#include <sys/module.h>
41#include <sys/rwlock.h>
42#include <net/if.h>	/* IFNAMSIZ */
43#include <netinet/in.h>
44#include <netinet/ip_var.h>		/* ipfw_rule_ref */
45#include <netinet/ip_fw.h>	/* flow_id */
46#include <netinet/ip_dummynet.h>
47#include <netpfil/ipfw/ip_fw_private.h>
48#include <netpfil/ipfw/dn_heap.h>
49#include <netpfil/ipfw/ip_dn_private.h>
50#ifdef NEW_AQM
51#include <netpfil/ipfw/dn_aqm.h>
52#endif
53#include <netpfil/ipfw/dn_sched.h>
54#else
55#include <dn_test.h>
56#endif
57
58#ifndef MAX64
59#define MAX64(x,y)  (( (int64_t) ( (y)-(x) )) > 0 ) ? (y) : (x)
60#endif
61
62/*
63 * timestamps are computed on 64 bit using fixed point arithmetic.
64 * LMAX_BITS, WMAX_BITS are the max number of bits for the packet len
65 * and sum of weights, respectively. FRAC_BITS is the number of
66 * fractional bits. We want FRAC_BITS >> WMAX_BITS to avoid too large
67 * errors when computing the inverse, FRAC_BITS < 32 so we can do 1/w
68 * using an unsigned 32-bit division, and to avoid wraparounds we need
69 * LMAX_BITS + WMAX_BITS + FRAC_BITS << 64
70 * As an example
71 * FRAC_BITS = 26, LMAX_BITS=14, WMAX_BITS = 19
72 */
73#ifndef FRAC_BITS
74#define FRAC_BITS    28 /* shift for fixed point arithmetic */
75#define	ONE_FP	(1UL << FRAC_BITS)
76#endif
77
78/*
79 * Private information for the scheduler instance:
80 * sch_heap (key is Finish time) returns the next queue to serve
81 * ne_heap (key is Start time) stores not-eligible queues
82 * idle_heap (key=start/finish time) stores idle flows. It must
83 *	support extract-from-middle.
84 * A flow is only in 1 of the three heaps.
85 * XXX todo: use a more efficient data structure, e.g. a tree sorted
86 * by F with min_subtree(S) in each node
87 */
88struct wf2qp_si {
89    struct dn_heap sch_heap;	/* top extract - key Finish  time */
90    struct dn_heap ne_heap;	/* top extract - key Start   time */
91    struct dn_heap idle_heap;	/* random extract - key Start=Finish time */
92    uint64_t V;			/* virtual time */
93    uint32_t inv_wsum;		/* inverse of sum of weights */
94    uint32_t wsum;		/* sum of weights */
95};
96
97struct wf2qp_queue {
98    struct dn_queue _q;
99    uint64_t S, F;		/* start time, finish time */
100    uint32_t inv_w;		/* ONE_FP / weight */
101    int32_t heap_pos;		/* position (index) of struct in heap */
102};
103
104/*
105 * This file implements a WF2Q+ scheduler as it has been in dummynet
106 * since 2000.
107 * The scheduler supports per-flow queues and has O(log N) complexity.
108 *
109 * WF2Q+ needs to drain entries from the idle heap so that we
110 * can keep the sum of weights up to date. We can do it whenever
111 * we get a chance, or periodically, or following some other
112 * strategy. The function idle_check() drains at most N elements
113 * from the idle heap.
114 */
115static void
116idle_check(struct wf2qp_si *si, int n, int force)
117{
118    struct dn_heap *h = &si->idle_heap;
119    while (n-- > 0 && h->elements > 0 &&
120		(force || DN_KEY_LT(HEAP_TOP(h)->key, si->V))) {
121	struct dn_queue *q = HEAP_TOP(h)->object;
122        struct wf2qp_queue *alg_fq = (struct wf2qp_queue *)q;
123
124        heap_extract(h, NULL);
125        /* XXX to let the flowset delete the queue we should
126	 * mark it as 'unused' by the scheduler.
127	 */
128        alg_fq->S = alg_fq->F + 1; /* Mark timestamp as invalid. */
129        si->wsum -= q->fs->fs.par[0];	/* adjust sum of weights */
130	if (si->wsum > 0)
131		si->inv_wsum = ONE_FP/si->wsum;
132    }
133}
134
135static int
136wf2qp_enqueue(struct dn_sch_inst *_si, struct dn_queue *q, struct mbuf *m)
137{
138    struct dn_fsk *fs = q->fs;
139    struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
140    struct wf2qp_queue *alg_fq;
141    uint64_t len = m->m_pkthdr.len;
142
143    if (m != q->mq.head) {
144	if (dn_enqueue(q, m, 0)) /* packet was dropped */
145	    return 1;
146	if (m != q->mq.head)	/* queue was already busy */
147	    return 0;
148    }
149
150    /* If reach this point, queue q was idle */
151    alg_fq = (struct wf2qp_queue *)q;
152
153    if (DN_KEY_LT(alg_fq->F, alg_fq->S)) {
154        /* F<S means timestamps are invalid ->brand new queue. */
155        alg_fq->S = si->V;		/* init start time */
156        si->wsum += fs->fs.par[0];	/* add weight of new queue. */
157	si->inv_wsum = ONE_FP/si->wsum;
158    } else { /* if it was idle then it was in the idle heap */
159        if (! heap_extract(&si->idle_heap, q))
160		return 1;
161        alg_fq->S = MAX64(alg_fq->F, si->V);	/* compute new S */
162    }
163    alg_fq->F = alg_fq->S + len * alg_fq->inv_w;
164
165    /* if nothing is backlogged, make sure this flow is eligible */
166    if (si->ne_heap.elements == 0 && si->sch_heap.elements == 0)
167        si->V = MAX64(alg_fq->S, si->V);
168
169    /*
170     * Look at eligibility. A flow is not eligibile if S>V (when
171     * this happens, it means that there is some other flow already
172     * scheduled for the same pipe, so the sch_heap cannot be
173     * empty). If the flow is not eligible we just store it in the
174     * ne_heap. Otherwise, we store in the sch_heap.
175     * Note that for all flows in sch_heap (SCH), S_i <= V,
176     * and for all flows in ne_heap (NEH), S_i > V.
177     * So when we need to compute max(V, min(S_i)) forall i in
178     * SCH+NEH, we only need to look into NEH.
179     */
180    if (DN_KEY_LT(si->V, alg_fq->S)) {
181        /* S>V means flow Not eligible. */
182        if (si->sch_heap.elements == 0)
183            D("++ ouch! not eligible but empty scheduler!");
184        heap_insert(&si->ne_heap, alg_fq->S, q);
185    } else {
186        heap_insert(&si->sch_heap, alg_fq->F, q);
187    }
188    return 0;
189}
190
191/* XXX invariant: sch > 0 || V >= min(S in neh) */
192static struct mbuf *
193wf2qp_dequeue(struct dn_sch_inst *_si)
194{
195	/* Access scheduler instance private data */
196	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
197	struct mbuf *m;
198	struct dn_queue *q;
199	struct dn_heap *sch = &si->sch_heap;
200	struct dn_heap *neh = &si->ne_heap;
201	struct wf2qp_queue *alg_fq;
202
203	if (sch->elements == 0 && neh->elements == 0) {
204		/* we have nothing to do. We could kill the idle heap
205		 * altogether and reset V
206		 */
207		idle_check(si, 0x7fffffff, 1);
208		si->V = 0;
209		si->wsum = 0;	/* should be set already */
210		return NULL;	/* quick return if nothing to do */
211	}
212	idle_check(si, 1, 0);	/* drain something from the idle heap */
213
214	/* make sure at least one element is eligible, bumping V
215	 * and moving entries that have become eligible.
216	 * We need to repeat the first part twice, before and
217	 * after extracting the candidate, or enqueue() will
218	 * find the data structure in a wrong state.
219	 */
220  m = NULL;
221  for(;;) {
222	/*
223	 * Compute V = max(V, min(S_i)). Remember that all elements
224	 * in sch have by definition S_i <= V so if sch is not empty,
225	 * V is surely the max and we must not update it. Conversely,
226	 * if sch is empty we only need to look at neh.
227	 * We don't need to move the queues, as it will be done at the
228	 * next enqueue
229	 */
230	if (sch->elements == 0 && neh->elements > 0) {
231		si->V = MAX64(si->V, HEAP_TOP(neh)->key);
232	}
233	while (neh->elements > 0 &&
234		    DN_KEY_LEQ(HEAP_TOP(neh)->key, si->V)) {
235		q = HEAP_TOP(neh)->object;
236		alg_fq = (struct wf2qp_queue *)q;
237		heap_extract(neh, NULL);
238		heap_insert(sch, alg_fq->F, q);
239	}
240	if (m) /* pkt found in previous iteration */
241		break;
242	/* ok we have at least one eligible pkt */
243	q = HEAP_TOP(sch)->object;
244	alg_fq = (struct wf2qp_queue *)q;
245	m = dn_dequeue(q);
246	if (m == NULL)
247		return NULL;
248	heap_extract(sch, NULL); /* Remove queue from heap. */
249	si->V += (uint64_t)(m->m_pkthdr.len) * si->inv_wsum;
250	alg_fq->S = alg_fq->F;  /* Update start time. */
251	if (q->mq.head == 0) {	/* not backlogged any more. */
252		heap_insert(&si->idle_heap, alg_fq->F, q);
253	} else {			/* Still backlogged. */
254		/* Update F, store in neh or sch */
255		uint64_t len = q->mq.head->m_pkthdr.len;
256		alg_fq->F += len * alg_fq->inv_w;
257		if (DN_KEY_LEQ(alg_fq->S, si->V)) {
258			heap_insert(sch, alg_fq->F, q);
259		} else {
260			heap_insert(neh, alg_fq->S, q);
261		}
262	}
263    }
264	return m;
265}
266
267static int
268wf2qp_new_sched(struct dn_sch_inst *_si)
269{
270	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
271	int ofs = offsetof(struct wf2qp_queue, heap_pos);
272
273	/* all heaps support extract from middle */
274	if (heap_init(&si->idle_heap, 16, ofs) ||
275	    heap_init(&si->sch_heap, 16, ofs) ||
276	    heap_init(&si->ne_heap, 16, ofs)) {
277		heap_free(&si->ne_heap);
278		heap_free(&si->sch_heap);
279		heap_free(&si->idle_heap);
280		return ENOMEM;
281	}
282	return 0;
283}
284
285static int
286wf2qp_free_sched(struct dn_sch_inst *_si)
287{
288	struct wf2qp_si *si = (struct wf2qp_si *)(_si + 1);
289
290	heap_free(&si->sch_heap);
291	heap_free(&si->ne_heap);
292	heap_free(&si->idle_heap);
293
294	return 0;
295}
296
297static int
298wf2qp_new_fsk(struct dn_fsk *fs)
299{
300	ipdn_bound_var(&fs->fs.par[0], 1,
301		1, 100, "WF2Q+ weight");
302	return 0;
303}
304
305static int
306wf2qp_new_queue(struct dn_queue *_q)
307{
308	struct wf2qp_queue *q = (struct wf2qp_queue *)_q;
309
310	_q->ni.oid.subtype = DN_SCHED_WF2QP;
311	q->F = 0;	/* not strictly necessary */
312	q->S = q->F + 1;    /* mark timestamp as invalid. */
313        q->inv_w = ONE_FP / _q->fs->fs.par[0];
314	if (_q->mq.head != NULL) {
315		wf2qp_enqueue(_q->_si, _q, _q->mq.head);
316	}
317	return 0;
318}
319
320/*
321 * Called when the infrastructure removes a queue (e.g. flowset
322 * is reconfigured). Nothing to do if we did not 'own' the queue,
323 * otherwise remove it from the right heap and adjust the sum
324 * of weights.
325 */
326static int
327wf2qp_free_queue(struct dn_queue *q)
328{
329	struct wf2qp_queue *alg_fq = (struct wf2qp_queue *)q;
330	struct wf2qp_si *si = (struct wf2qp_si *)(q->_si + 1);
331
332	if (alg_fq->S >= alg_fq->F + 1)
333		return 0;	/* nothing to do, not in any heap */
334	si->wsum -= q->fs->fs.par[0];
335	if (si->wsum > 0)
336		si->inv_wsum = ONE_FP/si->wsum;
337
338	/* extract from the heap. XXX TODO we may need to adjust V
339	 * to make sure the invariants hold.
340	 */
341	heap_extract(&si->idle_heap, q);
342	heap_extract(&si->ne_heap, q);
343	heap_extract(&si->sch_heap, q);
344
345	return 0;
346}
347
348/*
349 * WF2Q+ scheduler descriptor
350 * contains the type of the scheduler, the name, the size of the
351 * structures and function pointers.
352 */
353static struct dn_alg wf2qp_desc = {
354	_SI( .type = ) DN_SCHED_WF2QP,
355	_SI( .name = ) "WF2Q+",
356	_SI( .flags = ) DN_MULTIQUEUE,
357
358	/* we need extra space in the si and the queue */
359	_SI( .schk_datalen = ) 0,
360	_SI( .si_datalen = ) sizeof(struct wf2qp_si),
361	_SI( .q_datalen = ) sizeof(struct wf2qp_queue) -
362				sizeof(struct dn_queue),
363
364	_SI( .enqueue = ) wf2qp_enqueue,
365	_SI( .dequeue = ) wf2qp_dequeue,
366
367	_SI( .config = )  NULL,
368	_SI( .destroy = )  NULL,
369	_SI( .new_sched = ) wf2qp_new_sched,
370	_SI( .free_sched = ) wf2qp_free_sched,
371
372	_SI( .new_fsk = ) wf2qp_new_fsk,
373	_SI( .free_fsk = )  NULL,
374
375	_SI( .new_queue = ) wf2qp_new_queue,
376	_SI( .free_queue = ) wf2qp_free_queue,
377#ifdef NEW_AQM
378	_SI( .getconfig = )  NULL,
379#endif
380
381};
382
383DECLARE_DNSCHED_MODULE(dn_wf2qp, &wf2qp_desc);
384