1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2004, 2005,
5 *	Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31#include "opt_param.h"
32#include "opt_kern_tls.h"
33
34#include <sys/param.h>
35#include <sys/conf.h>
36#include <sys/domainset.h>
37#include <sys/malloc.h>
38#include <sys/systm.h>
39#include <sys/mbuf.h>
40#include <sys/eventhandler.h>
41#include <sys/kernel.h>
42#include <sys/ktls.h>
43#include <sys/limits.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/refcount.h>
47#include <sys/sf_buf.h>
48#include <sys/smp.h>
49#include <sys/socket.h>
50#include <sys/sysctl.h>
51
52#include <net/if.h>
53#include <net/if_var.h>
54
55#include <vm/vm.h>
56#include <vm/vm_extern.h>
57#include <vm/vm_kern.h>
58#include <vm/vm_page.h>
59#include <vm/vm_pageout.h>
60#include <vm/vm_map.h>
61#include <vm/uma.h>
62#include <vm/uma_dbg.h>
63
64_Static_assert(MJUMPAGESIZE > MCLBYTES,
65    "Cluster must be smaller than a jumbo page");
66
67/*
68 * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
69 * Zones.
70 *
71 * Mbuf Clusters (2K, contiguous) are allocated from the Cluster
72 * Zone.  The Zone can be capped at kern.ipc.nmbclusters, if the
73 * administrator so desires.
74 *
75 * Mbufs are allocated from a UMA Primary Zone called the Mbuf
76 * Zone.
77 *
78 * Additionally, FreeBSD provides a Packet Zone, which it
79 * configures as a Secondary Zone to the Mbuf Primary Zone,
80 * thus sharing backend Slab kegs with the Mbuf Primary Zone.
81 *
82 * Thus common-case allocations and locking are simplified:
83 *
84 *  m_clget()                m_getcl()
85 *    |                         |
86 *    |   .------------>[(Packet Cache)]    m_get(), m_gethdr()
87 *    |   |             [     Packet   ]            |
88 *  [(Cluster Cache)]   [    Secondary ]   [ (Mbuf Cache)     ]
89 *  [ Cluster Zone  ]   [     Zone     ]   [ Mbuf Primary Zone ]
90 *        |                       \________         |
91 *  [ Cluster Keg   ]                      \       /
92 *        |	                         [ Mbuf Keg   ]
93 *  [ Cluster Slabs ]                         |
94 *        |                              [ Mbuf Slabs ]
95 *         \____________(VM)_________________/
96 *
97 *
98 * Whenever an object is allocated with uma_zalloc() out of
99 * one of the Zones its _ctor_ function is executed.  The same
100 * for any deallocation through uma_zfree() the _dtor_ function
101 * is executed.
102 *
103 * Caches are per-CPU and are filled from the Primary Zone.
104 *
105 * Whenever an object is allocated from the underlying global
106 * memory pool it gets pre-initialized with the _zinit_ functions.
107 * When the Keg's are overfull objects get decommissioned with
108 * _zfini_ functions and free'd back to the global memory pool.
109 *
110 */
111
112int nmbufs;			/* limits number of mbufs */
113int nmbclusters;		/* limits number of mbuf clusters */
114int nmbjumbop;			/* limits number of page size jumbo clusters */
115int nmbjumbo9;			/* limits number of 9k jumbo clusters */
116int nmbjumbo16;			/* limits number of 16k jumbo clusters */
117
118bool mb_use_ext_pgs = false;	/* use M_EXTPG mbufs for sendfile & TLS */
119
120static int
121sysctl_mb_use_ext_pgs(SYSCTL_HANDLER_ARGS)
122{
123	int error, extpg;
124
125	extpg = mb_use_ext_pgs;
126	error = sysctl_handle_int(oidp, &extpg, 0, req);
127	if (error == 0 && req->newptr != NULL) {
128		if (extpg != 0 && !PMAP_HAS_DMAP)
129			error = EOPNOTSUPP;
130		else
131			mb_use_ext_pgs = extpg != 0;
132	}
133	return (error);
134}
135SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_use_ext_pgs,
136    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
137    &mb_use_ext_pgs, 0, sysctl_mb_use_ext_pgs, "IU",
138    "Use unmapped mbufs for sendfile(2) and TLS offload");
139
140static quad_t maxmbufmem;	/* overall real memory limit for all mbufs */
141
142SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
143    "Maximum real memory allocatable to various mbuf types");
144
145static counter_u64_t snd_tag_count;
146SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW,
147    &snd_tag_count, "# of active mbuf send tags");
148
149/*
150 * tunable_mbinit() has to be run before any mbuf allocations are done.
151 */
152static void
153tunable_mbinit(void *dummy)
154{
155	quad_t realmem;
156	int extpg;
157
158	/*
159	 * The default limit for all mbuf related memory is 1/2 of all
160	 * available kernel memory (physical or kmem).
161	 * At most it can be 3/4 of available kernel memory.
162	 */
163	realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
164	maxmbufmem = realmem / 2;
165	TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
166	if (maxmbufmem > realmem / 4 * 3)
167		maxmbufmem = realmem / 4 * 3;
168
169	TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
170	if (nmbclusters == 0)
171		nmbclusters = maxmbufmem / MCLBYTES / 4;
172
173	TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
174	if (nmbjumbop == 0)
175		nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
176
177	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
178	if (nmbjumbo9 == 0)
179		nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
180
181	TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
182	if (nmbjumbo16 == 0)
183		nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
184
185	/*
186	 * We need at least as many mbufs as we have clusters of
187	 * the various types added together.
188	 */
189	TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
190	if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
191		nmbufs = lmax(maxmbufmem / MSIZE / 5,
192		    nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
193
194	/*
195	 * Unmapped mbufs can only safely be used on platforms with a direct
196	 * map.
197	 */
198	if (PMAP_HAS_DMAP) {
199		extpg = 1;
200		TUNABLE_INT_FETCH("kern.ipc.mb_use_ext_pgs", &extpg);
201		mb_use_ext_pgs = extpg != 0;
202	}
203}
204SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
205
206static int
207sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
208{
209	int error, newnmbclusters;
210
211	newnmbclusters = nmbclusters;
212	error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
213	if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
214		if (newnmbclusters > nmbclusters &&
215		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
216			nmbclusters = newnmbclusters;
217			nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
218			EVENTHANDLER_INVOKE(nmbclusters_change);
219		} else
220			error = EINVAL;
221	}
222	return (error);
223}
224SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters,
225    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
226    &nmbclusters, 0, sysctl_nmbclusters, "IU",
227    "Maximum number of mbuf clusters allowed");
228
229static int
230sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
231{
232	int error, newnmbjumbop;
233
234	newnmbjumbop = nmbjumbop;
235	error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
236	if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
237		if (newnmbjumbop > nmbjumbop &&
238		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
239			nmbjumbop = newnmbjumbop;
240			nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
241		} else
242			error = EINVAL;
243	}
244	return (error);
245}
246SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop,
247    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
248    &nmbjumbop, 0, sysctl_nmbjumbop, "IU",
249    "Maximum number of mbuf page size jumbo clusters allowed");
250
251static int
252sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
253{
254	int error, newnmbjumbo9;
255
256	newnmbjumbo9 = nmbjumbo9;
257	error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
258	if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
259		if (newnmbjumbo9 > nmbjumbo9 &&
260		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
261			nmbjumbo9 = newnmbjumbo9;
262			nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
263		} else
264			error = EINVAL;
265	}
266	return (error);
267}
268SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9,
269    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
270    &nmbjumbo9, 0, sysctl_nmbjumbo9, "IU",
271    "Maximum number of mbuf 9k jumbo clusters allowed");
272
273static int
274sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
275{
276	int error, newnmbjumbo16;
277
278	newnmbjumbo16 = nmbjumbo16;
279	error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
280	if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
281		if (newnmbjumbo16 > nmbjumbo16 &&
282		    nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
283			nmbjumbo16 = newnmbjumbo16;
284			nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
285		} else
286			error = EINVAL;
287	}
288	return (error);
289}
290SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16,
291    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
292    &nmbjumbo16, 0, sysctl_nmbjumbo16, "IU",
293    "Maximum number of mbuf 16k jumbo clusters allowed");
294
295static int
296sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
297{
298	int error, newnmbufs;
299
300	newnmbufs = nmbufs;
301	error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
302	if (error == 0 && req->newptr && newnmbufs != nmbufs) {
303		if (newnmbufs > nmbufs) {
304			nmbufs = newnmbufs;
305			nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
306			EVENTHANDLER_INVOKE(nmbufs_change);
307		} else
308			error = EINVAL;
309	}
310	return (error);
311}
312SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs,
313    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
314    &nmbufs, 0, sysctl_nmbufs, "IU",
315    "Maximum number of mbufs allowed");
316
317/*
318 * Zones from which we allocate.
319 */
320uma_zone_t	zone_mbuf;
321uma_zone_t	zone_clust;
322uma_zone_t	zone_pack;
323uma_zone_t	zone_jumbop;
324uma_zone_t	zone_jumbo9;
325uma_zone_t	zone_jumbo16;
326
327/*
328 * Local prototypes.
329 */
330static int	mb_ctor_mbuf(void *, int, void *, int);
331static int	mb_ctor_clust(void *, int, void *, int);
332static int	mb_ctor_pack(void *, int, void *, int);
333static void	mb_dtor_mbuf(void *, int, void *);
334static void	mb_dtor_pack(void *, int, void *);
335static int	mb_zinit_pack(void *, int, int);
336static void	mb_zfini_pack(void *, int);
337static void	mb_reclaim(uma_zone_t, int);
338
339/* Ensure that MSIZE is a power of 2. */
340CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
341
342_Static_assert(sizeof(struct mbuf) <= MSIZE,
343    "size of mbuf exceeds MSIZE");
344/*
345 * Initialize FreeBSD Network buffer allocation.
346 */
347static void
348mbuf_init(void *dummy)
349{
350
351	/*
352	 * Configure UMA zones for Mbufs, Clusters, and Packets.
353	 */
354	zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
355	    mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
356	    MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET);
357	if (nmbufs > 0)
358		nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
359	uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
360	uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
361
362	zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
363	    mb_ctor_clust, NULL, NULL, NULL,
364	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
365	if (nmbclusters > 0)
366		nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
367	uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
368	uma_zone_set_maxaction(zone_clust, mb_reclaim);
369
370	zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
371	    mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
372
373	/* Make jumbo frame zone too. Page size, 9k and 16k. */
374	zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
375	    mb_ctor_clust, NULL, NULL, NULL,
376	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
377	if (nmbjumbop > 0)
378		nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
379	uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
380	uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
381
382	zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
383	    mb_ctor_clust, NULL, NULL, NULL,
384	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
385	if (nmbjumbo9 > 0)
386		nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
387	uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
388	uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
389
390	zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
391	    mb_ctor_clust, NULL, NULL, NULL,
392	    UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
393	if (nmbjumbo16 > 0)
394		nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
395	uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
396	uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
397
398	snd_tag_count = counter_u64_alloc(M_WAITOK);
399}
400SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
401
402#ifdef DEBUGNET
403/*
404 * debugnet makes use of a pre-allocated pool of mbufs and clusters.  When
405 * debugnet is configured, we initialize a set of UMA cache zones which return
406 * items from this pool.  At panic-time, the regular UMA zone pointers are
407 * overwritten with those of the cache zones so that drivers may allocate and
408 * free mbufs and clusters without attempting to allocate physical memory.
409 *
410 * We keep mbufs and clusters in a pair of mbuf queues.  In particular, for
411 * the purpose of caching clusters, we treat them as mbufs.
412 */
413static struct mbufq dn_mbufq =
414    { STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX };
415static struct mbufq dn_clustq =
416    { STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX };
417
418static int dn_clsize;
419static uma_zone_t dn_zone_mbuf;
420static uma_zone_t dn_zone_clust;
421static uma_zone_t dn_zone_pack;
422
423static struct debugnet_saved_zones {
424	uma_zone_t dsz_mbuf;
425	uma_zone_t dsz_clust;
426	uma_zone_t dsz_pack;
427	uma_zone_t dsz_jumbop;
428	uma_zone_t dsz_jumbo9;
429	uma_zone_t dsz_jumbo16;
430	bool dsz_debugnet_zones_enabled;
431} dn_saved_zones;
432
433static int
434dn_buf_import(void *arg, void **store, int count, int domain __unused,
435    int flags)
436{
437	struct mbufq *q;
438	struct mbuf *m;
439	int i;
440
441	q = arg;
442
443	for (i = 0; i < count; i++) {
444		m = mbufq_dequeue(q);
445		if (m == NULL)
446			break;
447		trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags);
448		store[i] = m;
449	}
450	KASSERT((flags & M_WAITOK) == 0 || i == count,
451	    ("%s: ran out of pre-allocated mbufs", __func__));
452	return (i);
453}
454
455static void
456dn_buf_release(void *arg, void **store, int count)
457{
458	struct mbufq *q;
459	struct mbuf *m;
460	int i;
461
462	q = arg;
463
464	for (i = 0; i < count; i++) {
465		m = store[i];
466		(void)mbufq_enqueue(q, m);
467	}
468}
469
470static int
471dn_pack_import(void *arg __unused, void **store, int count, int domain __unused,
472    int flags __unused)
473{
474	struct mbuf *m;
475	void *clust;
476	int i;
477
478	for (i = 0; i < count; i++) {
479		m = m_get(M_NOWAIT, MT_DATA);
480		if (m == NULL)
481			break;
482		clust = uma_zalloc(dn_zone_clust, M_NOWAIT);
483		if (clust == NULL) {
484			m_free(m);
485			break;
486		}
487		mb_ctor_clust(clust, dn_clsize, m, 0);
488		store[i] = m;
489	}
490	KASSERT((flags & M_WAITOK) == 0 || i == count,
491	    ("%s: ran out of pre-allocated mbufs", __func__));
492	return (i);
493}
494
495static void
496dn_pack_release(void *arg __unused, void **store, int count)
497{
498	struct mbuf *m;
499	void *clust;
500	int i;
501
502	for (i = 0; i < count; i++) {
503		m = store[i];
504		clust = m->m_ext.ext_buf;
505		uma_zfree(dn_zone_clust, clust);
506		uma_zfree(dn_zone_mbuf, m);
507	}
508}
509
510/*
511 * Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy
512 * the corresponding UMA cache zones.
513 */
514void
515debugnet_mbuf_drain(void)
516{
517	struct mbuf *m;
518	void *item;
519
520	if (dn_zone_mbuf != NULL) {
521		uma_zdestroy(dn_zone_mbuf);
522		dn_zone_mbuf = NULL;
523	}
524	if (dn_zone_clust != NULL) {
525		uma_zdestroy(dn_zone_clust);
526		dn_zone_clust = NULL;
527	}
528	if (dn_zone_pack != NULL) {
529		uma_zdestroy(dn_zone_pack);
530		dn_zone_pack = NULL;
531	}
532
533	while ((m = mbufq_dequeue(&dn_mbufq)) != NULL)
534		m_free(m);
535	while ((item = mbufq_dequeue(&dn_clustq)) != NULL)
536		uma_zfree(m_getzone(dn_clsize), item);
537}
538
539/*
540 * Callback invoked immediately prior to starting a debugnet connection.
541 */
542void
543debugnet_mbuf_start(void)
544{
545
546	MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled);
547
548	/* Save the old zone pointers to restore when debugnet is closed. */
549	dn_saved_zones = (struct debugnet_saved_zones) {
550		.dsz_debugnet_zones_enabled = true,
551		.dsz_mbuf = zone_mbuf,
552		.dsz_clust = zone_clust,
553		.dsz_pack = zone_pack,
554		.dsz_jumbop = zone_jumbop,
555		.dsz_jumbo9 = zone_jumbo9,
556		.dsz_jumbo16 = zone_jumbo16,
557	};
558
559	/*
560	 * All cluster zones return buffers of the size requested by the
561	 * drivers.  It's up to the driver to reinitialize the zones if the
562	 * MTU of a debugnet-enabled interface changes.
563	 */
564	printf("debugnet: overwriting mbuf zone pointers\n");
565	zone_mbuf = dn_zone_mbuf;
566	zone_clust = dn_zone_clust;
567	zone_pack = dn_zone_pack;
568	zone_jumbop = dn_zone_clust;
569	zone_jumbo9 = dn_zone_clust;
570	zone_jumbo16 = dn_zone_clust;
571}
572
573/*
574 * Callback invoked when a debugnet connection is closed/finished.
575 */
576void
577debugnet_mbuf_finish(void)
578{
579
580	MPASS(dn_saved_zones.dsz_debugnet_zones_enabled);
581
582	printf("debugnet: restoring mbuf zone pointers\n");
583	zone_mbuf = dn_saved_zones.dsz_mbuf;
584	zone_clust = dn_saved_zones.dsz_clust;
585	zone_pack = dn_saved_zones.dsz_pack;
586	zone_jumbop = dn_saved_zones.dsz_jumbop;
587	zone_jumbo9 = dn_saved_zones.dsz_jumbo9;
588	zone_jumbo16 = dn_saved_zones.dsz_jumbo16;
589
590	memset(&dn_saved_zones, 0, sizeof(dn_saved_zones));
591}
592
593/*
594 * Reinitialize the debugnet mbuf+cluster pool and cache zones.
595 */
596void
597debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize)
598{
599	struct mbuf *m;
600	void *item;
601
602	debugnet_mbuf_drain();
603
604	dn_clsize = clsize;
605
606	dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME,
607	    MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
608	    dn_buf_import, dn_buf_release,
609	    &dn_mbufq, UMA_ZONE_NOBUCKET);
610
611	dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME,
612	    clsize, mb_ctor_clust, NULL, NULL, NULL,
613	    dn_buf_import, dn_buf_release,
614	    &dn_clustq, UMA_ZONE_NOBUCKET);
615
616	dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME,
617	    MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
618	    dn_pack_import, dn_pack_release,
619	    NULL, UMA_ZONE_NOBUCKET);
620
621	while (nmbuf-- > 0) {
622		m = m_get(M_WAITOK, MT_DATA);
623		uma_zfree(dn_zone_mbuf, m);
624	}
625	while (nclust-- > 0) {
626		item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK);
627		uma_zfree(dn_zone_clust, item);
628	}
629}
630#endif /* DEBUGNET */
631
632/*
633 * Constructor for Mbuf primary zone.
634 *
635 * The 'arg' pointer points to a mb_args structure which
636 * contains call-specific information required to support the
637 * mbuf allocation API.  See mbuf.h.
638 */
639static int
640mb_ctor_mbuf(void *mem, int size, void *arg, int how)
641{
642	struct mbuf *m;
643	struct mb_args *args;
644	int error;
645	int flags;
646	short type;
647
648	args = (struct mb_args *)arg;
649	type = args->type;
650
651	/*
652	 * The mbuf is initialized later.  The caller has the
653	 * responsibility to set up any MAC labels too.
654	 */
655	if (type == MT_NOINIT)
656		return (0);
657
658	m = (struct mbuf *)mem;
659	flags = args->flags;
660	MPASS((flags & M_NOFREE) == 0);
661
662	error = m_init(m, how, type, flags);
663
664	return (error);
665}
666
667/*
668 * The Mbuf primary zone destructor.
669 */
670static void
671mb_dtor_mbuf(void *mem, int size, void *arg)
672{
673	struct mbuf *m;
674	unsigned long flags __diagused;
675
676	m = (struct mbuf *)mem;
677	flags = (unsigned long)arg;
678
679	KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
680	KASSERT((flags & 0x1) == 0, ("%s: obsolete MB_DTOR_SKIP passed", __func__));
681	if ((m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
682		m_tag_delete_chain(m, NULL);
683}
684
685/*
686 * The Mbuf Packet zone destructor.
687 */
688static void
689mb_dtor_pack(void *mem, int size, void *arg)
690{
691	struct mbuf *m;
692
693	m = (struct mbuf *)mem;
694	if ((m->m_flags & M_PKTHDR) != 0)
695		m_tag_delete_chain(m, NULL);
696
697	/* Make sure we've got a clean cluster back. */
698	KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
699	KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
700	KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
701	KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
702	KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
703	KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
704	KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
705#if defined(INVARIANTS) && !defined(KMSAN)
706	trash_dtor(m->m_ext.ext_buf, MCLBYTES, zone_clust);
707#endif
708	/*
709	 * If there are processes blocked on zone_clust, waiting for pages
710	 * to be freed up, cause them to be woken up by draining the
711	 * packet zone.  We are exposed to a race here (in the check for
712	 * the UMA_ZFLAG_FULL) where we might miss the flag set, but that
713	 * is deliberate. We don't want to acquire the zone lock for every
714	 * mbuf free.
715	 */
716	if (uma_zone_exhausted(zone_clust))
717		uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
718}
719
720/*
721 * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
722 *
723 * Here the 'arg' pointer points to the Mbuf which we
724 * are configuring cluster storage for.  If 'arg' is
725 * empty we allocate just the cluster without setting
726 * the mbuf to it.  See mbuf.h.
727 */
728static int
729mb_ctor_clust(void *mem, int size, void *arg, int how)
730{
731	struct mbuf *m;
732
733	m = (struct mbuf *)arg;
734	if (m != NULL) {
735		m->m_ext.ext_buf = (char *)mem;
736		m->m_data = m->m_ext.ext_buf;
737		m->m_flags |= M_EXT;
738		m->m_ext.ext_free = NULL;
739		m->m_ext.ext_arg1 = NULL;
740		m->m_ext.ext_arg2 = NULL;
741		m->m_ext.ext_size = size;
742		m->m_ext.ext_type = m_gettype(size);
743		m->m_ext.ext_flags = EXT_FLAG_EMBREF;
744		m->m_ext.ext_count = 1;
745	}
746
747	return (0);
748}
749
750/*
751 * The Packet secondary zone's init routine, executed on the
752 * object's transition from mbuf keg slab to zone cache.
753 */
754static int
755mb_zinit_pack(void *mem, int size, int how)
756{
757	struct mbuf *m;
758
759	m = (struct mbuf *)mem;		/* m is virgin. */
760	if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
761	    m->m_ext.ext_buf == NULL)
762		return (ENOMEM);
763	m->m_ext.ext_type = EXT_PACKET;	/* Override. */
764#if defined(INVARIANTS) && !defined(KMSAN)
765	trash_init(m->m_ext.ext_buf, MCLBYTES, how);
766#endif
767	return (0);
768}
769
770/*
771 * The Packet secondary zone's fini routine, executed on the
772 * object's transition from zone cache to keg slab.
773 */
774static void
775mb_zfini_pack(void *mem, int size)
776{
777	struct mbuf *m;
778
779	m = (struct mbuf *)mem;
780#if defined(INVARIANTS) && !defined(KMSAN)
781	trash_fini(m->m_ext.ext_buf, MCLBYTES);
782#endif
783	uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
784#if defined(INVARIANTS) && !defined(KMSAN)
785	trash_dtor(mem, size, zone_clust);
786#endif
787}
788
789/*
790 * The "packet" keg constructor.
791 */
792static int
793mb_ctor_pack(void *mem, int size, void *arg, int how)
794{
795	struct mbuf *m;
796	struct mb_args *args;
797	int error, flags;
798	short type;
799
800	m = (struct mbuf *)mem;
801	args = (struct mb_args *)arg;
802	flags = args->flags;
803	type = args->type;
804	MPASS((flags & M_NOFREE) == 0);
805
806#if defined(INVARIANTS) && !defined(KMSAN)
807	trash_ctor(m->m_ext.ext_buf, MCLBYTES, zone_clust, how);
808#endif
809
810	error = m_init(m, how, type, flags);
811
812	/* m_ext is already initialized. */
813	m->m_data = m->m_ext.ext_buf;
814 	m->m_flags = (flags | M_EXT);
815
816	return (error);
817}
818
819/*
820 * This is the protocol drain routine.  Called by UMA whenever any of the
821 * mbuf zones is closed to its limit.
822 */
823static void
824mb_reclaim(uma_zone_t zone __unused, int pending __unused)
825{
826
827	EVENTHANDLER_INVOKE(mbuf_lowmem, VM_LOW_MBUFS);
828}
829
830/*
831 * Free "count" units of I/O from an mbuf chain.  They could be held
832 * in M_EXTPG or just as a normal mbuf.  This code is intended to be
833 * called in an error path (I/O error, closed connection, etc).
834 */
835void
836mb_free_notready(struct mbuf *m, int count)
837{
838	int i;
839
840	for (i = 0; i < count && m != NULL; i++) {
841		if ((m->m_flags & M_EXTPG) != 0) {
842			m->m_epg_nrdy--;
843			if (m->m_epg_nrdy != 0)
844				continue;
845		}
846		m = m_free(m);
847	}
848	KASSERT(i == count, ("Removed only %d items from %p", i, m));
849}
850
851/*
852 * Compress an unmapped mbuf into a simple mbuf when it holds a small
853 * amount of data.  This is used as a DOS defense to avoid having
854 * small packets tie up wired pages, an ext_pgs structure, and an
855 * mbuf.  Since this converts the existing mbuf in place, it can only
856 * be used if there are no other references to 'm'.
857 */
858int
859mb_unmapped_compress(struct mbuf *m)
860{
861	volatile u_int *refcnt;
862	char buf[MLEN];
863
864	/*
865	 * Assert that 'm' does not have a packet header.  If 'm' had
866	 * a packet header, it would only be able to hold MHLEN bytes
867	 * and m_data would have to be initialized differently.
868	 */
869	KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXTPG),
870            ("%s: m %p !M_EXTPG or M_PKTHDR", __func__, m));
871	KASSERT(m->m_len <= MLEN, ("m_len too large %p", m));
872
873	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
874		refcnt = &m->m_ext.ext_count;
875	} else {
876		KASSERT(m->m_ext.ext_cnt != NULL,
877		    ("%s: no refcounting pointer on %p", __func__, m));
878		refcnt = m->m_ext.ext_cnt;
879	}
880
881	if (*refcnt != 1)
882		return (EBUSY);
883
884	m_copydata(m, 0, m->m_len, buf);
885
886	/* Free the backing pages. */
887	m->m_ext.ext_free(m);
888
889	/* Turn 'm' into a "normal" mbuf. */
890	m->m_flags &= ~(M_EXT | M_RDONLY | M_EXTPG);
891	m->m_data = m->m_dat;
892
893	/* Copy data back into m. */
894	bcopy(buf, mtod(m, char *), m->m_len);
895
896	return (0);
897}
898
899/*
900 * These next few routines are used to permit downgrading an unmapped
901 * mbuf to a chain of mapped mbufs.  This is used when an interface
902 * doesn't supported unmapped mbufs or if checksums need to be
903 * computed in software.
904 *
905 * Each unmapped mbuf is converted to a chain of mbufs.  First, any
906 * TLS header data is stored in a regular mbuf.  Second, each page of
907 * unmapped data is stored in an mbuf with an EXT_SFBUF external
908 * cluster.  These mbufs use an sf_buf to provide a valid KVA for the
909 * associated physical page.  They also hold a reference on the
910 * original M_EXTPG mbuf to ensure the physical page doesn't go away.
911 * Finally, any TLS trailer data is stored in a regular mbuf.
912 *
913 * mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF
914 * mbufs.  It frees the associated sf_buf and releases its reference
915 * on the original M_EXTPG mbuf.
916 *
917 * _mb_unmapped_to_ext() is a helper function that converts a single
918 * unmapped mbuf into a chain of mbufs.
919 *
920 * mb_unmapped_to_ext() is the public function that walks an mbuf
921 * chain converting any unmapped mbufs to mapped mbufs.  It returns
922 * the new chain of unmapped mbufs on success.  On failure it frees
923 * the original mbuf chain and returns NULL.
924 */
925static void
926mb_unmapped_free_mext(struct mbuf *m)
927{
928	struct sf_buf *sf;
929	struct mbuf *old_m;
930
931	sf = m->m_ext.ext_arg1;
932	sf_buf_free(sf);
933
934	/* Drop the reference on the backing M_EXTPG mbuf. */
935	old_m = m->m_ext.ext_arg2;
936	mb_free_extpg(old_m);
937}
938
939static struct mbuf *
940_mb_unmapped_to_ext(struct mbuf *m)
941{
942	struct mbuf *m_new, *top, *prev, *mref;
943	struct sf_buf *sf;
944	vm_page_t pg;
945	int i, len, off, pglen, pgoff, seglen, segoff;
946	volatile u_int *refcnt;
947	u_int ref_inc = 0;
948
949	M_ASSERTEXTPG(m);
950	len = m->m_len;
951	KASSERT(m->m_epg_tls == NULL, ("%s: can't convert TLS mbuf %p",
952	    __func__, m));
953
954	/* See if this is the mbuf that holds the embedded refcount. */
955	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
956		refcnt = &m->m_ext.ext_count;
957		mref = m;
958	} else {
959		KASSERT(m->m_ext.ext_cnt != NULL,
960		    ("%s: no refcounting pointer on %p", __func__, m));
961		refcnt = m->m_ext.ext_cnt;
962		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
963	}
964
965	/* Skip over any data removed from the front. */
966	off = mtod(m, vm_offset_t);
967
968	top = NULL;
969	if (m->m_epg_hdrlen != 0) {
970		if (off >= m->m_epg_hdrlen) {
971			off -= m->m_epg_hdrlen;
972		} else {
973			seglen = m->m_epg_hdrlen - off;
974			segoff = off;
975			seglen = min(seglen, len);
976			off = 0;
977			len -= seglen;
978			m_new = m_get(M_NOWAIT, MT_DATA);
979			if (m_new == NULL)
980				goto fail;
981			m_new->m_len = seglen;
982			prev = top = m_new;
983			memcpy(mtod(m_new, void *), &m->m_epg_hdr[segoff],
984			    seglen);
985		}
986	}
987	pgoff = m->m_epg_1st_off;
988	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
989		pglen = m_epg_pagelen(m, i, pgoff);
990		if (off >= pglen) {
991			off -= pglen;
992			pgoff = 0;
993			continue;
994		}
995		seglen = pglen - off;
996		segoff = pgoff + off;
997		off = 0;
998		seglen = min(seglen, len);
999		len -= seglen;
1000
1001		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1002		m_new = m_get(M_NOWAIT, MT_DATA);
1003		if (m_new == NULL)
1004			goto fail;
1005		if (top == NULL) {
1006			top = prev = m_new;
1007		} else {
1008			prev->m_next = m_new;
1009			prev = m_new;
1010		}
1011		sf = sf_buf_alloc(pg, SFB_NOWAIT);
1012		if (sf == NULL)
1013			goto fail;
1014
1015		ref_inc++;
1016		m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE,
1017		    mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF);
1018		m_new->m_data += segoff;
1019		m_new->m_len = seglen;
1020
1021		pgoff = 0;
1022	};
1023	if (len != 0) {
1024		KASSERT((off + len) <= m->m_epg_trllen,
1025		    ("off + len > trail (%d + %d > %d)", off, len,
1026		    m->m_epg_trllen));
1027		m_new = m_get(M_NOWAIT, MT_DATA);
1028		if (m_new == NULL)
1029			goto fail;
1030		if (top == NULL)
1031			top = m_new;
1032		else
1033			prev->m_next = m_new;
1034		m_new->m_len = len;
1035		memcpy(mtod(m_new, void *), &m->m_epg_trail[off], len);
1036	}
1037
1038	if (ref_inc != 0) {
1039		/*
1040		 * Obtain an additional reference on the old mbuf for
1041		 * each created EXT_SFBUF mbuf.  They will be dropped
1042		 * in mb_unmapped_free_mext().
1043		 */
1044		if (*refcnt == 1)
1045			*refcnt += ref_inc;
1046		else
1047			atomic_add_int(refcnt, ref_inc);
1048	}
1049	m_free(m);
1050	return (top);
1051
1052fail:
1053	if (ref_inc != 0) {
1054		/*
1055		 * Obtain an additional reference on the old mbuf for
1056		 * each created EXT_SFBUF mbuf.  They will be
1057		 * immediately dropped when these mbufs are freed
1058		 * below.
1059		 */
1060		if (*refcnt == 1)
1061			*refcnt += ref_inc;
1062		else
1063			atomic_add_int(refcnt, ref_inc);
1064	}
1065	m_free(m);
1066	m_freem(top);
1067	return (NULL);
1068}
1069
1070struct mbuf *
1071mb_unmapped_to_ext(struct mbuf *top)
1072{
1073	struct mbuf *m, *next, *prev = NULL;
1074
1075	prev = NULL;
1076	for (m = top; m != NULL; m = next) {
1077		/* m might be freed, so cache the next pointer. */
1078		next = m->m_next;
1079		if (m->m_flags & M_EXTPG) {
1080			if (prev != NULL) {
1081				/*
1082				 * Remove 'm' from the new chain so
1083				 * that the 'top' chain terminates
1084				 * before 'm' in case 'top' is freed
1085				 * due to an error.
1086				 */
1087				prev->m_next = NULL;
1088			}
1089			m = _mb_unmapped_to_ext(m);
1090			if (m == NULL) {
1091				m_freem(top);
1092				m_freem(next);
1093				return (NULL);
1094			}
1095			if (prev == NULL) {
1096				top = m;
1097			} else {
1098				prev->m_next = m;
1099			}
1100
1101			/*
1102			 * Replaced one mbuf with a chain, so we must
1103			 * find the end of chain.
1104			 */
1105			prev = m_last(m);
1106		} else {
1107			if (prev != NULL) {
1108				prev->m_next = m;
1109			}
1110			prev = m;
1111		}
1112	}
1113	return (top);
1114}
1115
1116/*
1117 * Allocate an empty M_EXTPG mbuf.  The ext_free routine is
1118 * responsible for freeing any pages backing this mbuf when it is
1119 * freed.
1120 */
1121struct mbuf *
1122mb_alloc_ext_pgs(int how, m_ext_free_t ext_free)
1123{
1124	struct mbuf *m;
1125
1126	m = m_get(how, MT_DATA);
1127	if (m == NULL)
1128		return (NULL);
1129
1130	m->m_epg_npgs = 0;
1131	m->m_epg_nrdy = 0;
1132	m->m_epg_1st_off = 0;
1133	m->m_epg_last_len = 0;
1134	m->m_epg_flags = 0;
1135	m->m_epg_hdrlen = 0;
1136	m->m_epg_trllen = 0;
1137	m->m_epg_tls = NULL;
1138	m->m_epg_so = NULL;
1139	m->m_data = NULL;
1140	m->m_flags |= (M_EXT | M_RDONLY | M_EXTPG);
1141	m->m_ext.ext_flags = EXT_FLAG_EMBREF;
1142	m->m_ext.ext_count = 1;
1143	m->m_ext.ext_size = 0;
1144	m->m_ext.ext_free = ext_free;
1145	return (m);
1146}
1147
1148/*
1149 * Clean up after mbufs with M_EXT storage attached to them if the
1150 * reference count hits 1.
1151 */
1152void
1153mb_free_ext(struct mbuf *m)
1154{
1155	volatile u_int *refcnt;
1156	struct mbuf *mref;
1157	int freembuf;
1158
1159	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
1160
1161	/* See if this is the mbuf that holds the embedded refcount. */
1162	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
1163		refcnt = &m->m_ext.ext_count;
1164		mref = m;
1165	} else {
1166		KASSERT(m->m_ext.ext_cnt != NULL,
1167		    ("%s: no refcounting pointer on %p", __func__, m));
1168		refcnt = m->m_ext.ext_cnt;
1169		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
1170	}
1171
1172	/*
1173	 * Check if the header is embedded in the cluster.  It is
1174	 * important that we can't touch any of the mbuf fields
1175	 * after we have freed the external storage, since mbuf
1176	 * could have been embedded in it.  For now, the mbufs
1177	 * embedded into the cluster are always of type EXT_EXTREF,
1178	 * and for this type we won't free the mref.
1179	 */
1180	if (m->m_flags & M_NOFREE) {
1181		freembuf = 0;
1182		KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
1183		    m->m_ext.ext_type == EXT_RXRING,
1184		    ("%s: no-free mbuf %p has wrong type", __func__, m));
1185	} else
1186		freembuf = 1;
1187
1188	/* Free attached storage if this mbuf is the only reference to it. */
1189	if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
1190		switch (m->m_ext.ext_type) {
1191		case EXT_PACKET:
1192			/* The packet zone is special. */
1193			if (*refcnt == 0)
1194				*refcnt = 1;
1195			uma_zfree(zone_pack, mref);
1196			break;
1197		case EXT_CLUSTER:
1198			uma_zfree(zone_clust, m->m_ext.ext_buf);
1199			m_free_raw(mref);
1200			break;
1201		case EXT_JUMBOP:
1202			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
1203			m_free_raw(mref);
1204			break;
1205		case EXT_JUMBO9:
1206			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
1207			m_free_raw(mref);
1208			break;
1209		case EXT_JUMBO16:
1210			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
1211			m_free_raw(mref);
1212			break;
1213		case EXT_SFBUF:
1214		case EXT_NET_DRV:
1215		case EXT_CTL:
1216		case EXT_MOD_TYPE:
1217		case EXT_DISPOSABLE:
1218			KASSERT(mref->m_ext.ext_free != NULL,
1219			    ("%s: ext_free not set", __func__));
1220			mref->m_ext.ext_free(mref);
1221			m_free_raw(mref);
1222			break;
1223		case EXT_EXTREF:
1224			KASSERT(m->m_ext.ext_free != NULL,
1225			    ("%s: ext_free not set", __func__));
1226			m->m_ext.ext_free(m);
1227			break;
1228		case EXT_RXRING:
1229			KASSERT(m->m_ext.ext_free == NULL,
1230			    ("%s: ext_free is set", __func__));
1231			break;
1232		default:
1233			KASSERT(m->m_ext.ext_type == 0,
1234			    ("%s: unknown ext_type", __func__));
1235		}
1236	}
1237
1238	if (freembuf && m != mref)
1239		m_free_raw(m);
1240}
1241
1242/*
1243 * Clean up after mbufs with M_EXTPG storage attached to them if the
1244 * reference count hits 1.
1245 */
1246void
1247mb_free_extpg(struct mbuf *m)
1248{
1249	volatile u_int *refcnt;
1250	struct mbuf *mref;
1251
1252	M_ASSERTEXTPG(m);
1253
1254	/* See if this is the mbuf that holds the embedded refcount. */
1255	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
1256		refcnt = &m->m_ext.ext_count;
1257		mref = m;
1258	} else {
1259		KASSERT(m->m_ext.ext_cnt != NULL,
1260		    ("%s: no refcounting pointer on %p", __func__, m));
1261		refcnt = m->m_ext.ext_cnt;
1262		mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
1263	}
1264
1265	/* Free attached storage if this mbuf is the only reference to it. */
1266	if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
1267		KASSERT(mref->m_ext.ext_free != NULL,
1268		    ("%s: ext_free not set", __func__));
1269
1270		mref->m_ext.ext_free(mref);
1271#ifdef KERN_TLS
1272		if (mref->m_epg_tls != NULL &&
1273		    !refcount_release_if_not_last(&mref->m_epg_tls->refcount))
1274			ktls_enqueue_to_free(mref);
1275		else
1276#endif
1277			m_free_raw(mref);
1278	}
1279
1280	if (m != mref)
1281		m_free_raw(m);
1282}
1283
1284/*
1285 * Official mbuf(9) allocation KPI for stack and drivers:
1286 *
1287 * m_get()	- a single mbuf without any attachments, sys/mbuf.h.
1288 * m_gethdr()	- a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
1289 * m_getcl()	- an mbuf + 2k cluster, sys/mbuf.h.
1290 * m_clget()	- attach cluster to already allocated mbuf.
1291 * m_cljget()	- attach jumbo cluster to already allocated mbuf.
1292 * m_get2()	- allocate minimum mbuf that would fit size argument.
1293 * m_getm2()	- allocate a chain of mbufs/clusters.
1294 * m_extadd()	- attach external cluster to mbuf.
1295 *
1296 * m_free()	- free single mbuf with its tags and ext, sys/mbuf.h.
1297 * m_freem()	- free chain of mbufs.
1298 */
1299
1300int
1301m_clget(struct mbuf *m, int how)
1302{
1303
1304	KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1305	    __func__, m));
1306	m->m_ext.ext_buf = (char *)NULL;
1307	uma_zalloc_arg(zone_clust, m, how);
1308	/*
1309	 * On a cluster allocation failure, drain the packet zone and retry,
1310	 * we might be able to loosen a few clusters up on the drain.
1311	 */
1312	if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
1313		uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
1314		uma_zalloc_arg(zone_clust, m, how);
1315	}
1316	MBUF_PROBE2(m__clget, m, how);
1317	return (m->m_flags & M_EXT);
1318}
1319
1320/*
1321 * m_cljget() is different from m_clget() as it can allocate clusters without
1322 * attaching them to an mbuf.  In that case the return value is the pointer
1323 * to the cluster of the requested size.  If an mbuf was specified, it gets
1324 * the cluster attached to it and the return value can be safely ignored.
1325 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1326 */
1327void *
1328m_cljget(struct mbuf *m, int how, int size)
1329{
1330	uma_zone_t zone;
1331	void *retval;
1332
1333	if (m != NULL) {
1334		KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
1335		    __func__, m));
1336		m->m_ext.ext_buf = NULL;
1337	}
1338
1339	zone = m_getzone(size);
1340	retval = uma_zalloc_arg(zone, m, how);
1341
1342	MBUF_PROBE4(m__cljget, m, how, size, retval);
1343
1344	return (retval);
1345}
1346
1347/*
1348 * m_get2() allocates minimum mbuf that would fit "size" argument.
1349 */
1350struct mbuf *
1351m_get2(int size, int how, short type, int flags)
1352{
1353	struct mb_args args;
1354	struct mbuf *m, *n;
1355
1356	args.flags = flags;
1357	args.type = type;
1358
1359	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
1360		return (uma_zalloc_arg(zone_mbuf, &args, how));
1361	if (size <= MCLBYTES)
1362		return (uma_zalloc_arg(zone_pack, &args, how));
1363
1364	if (size > MJUMPAGESIZE)
1365		return (NULL);
1366
1367	m = uma_zalloc_arg(zone_mbuf, &args, how);
1368	if (m == NULL)
1369		return (NULL);
1370
1371	n = uma_zalloc_arg(zone_jumbop, m, how);
1372	if (n == NULL) {
1373		m_free_raw(m);
1374		return (NULL);
1375	}
1376
1377	return (m);
1378}
1379
1380/*
1381 * m_get3() allocates minimum mbuf that would fit "size" argument.
1382 * Unlike m_get2() it can allocate clusters up to MJUM16BYTES.
1383 */
1384struct mbuf *
1385m_get3(int size, int how, short type, int flags)
1386{
1387	struct mb_args args;
1388	struct mbuf *m, *n;
1389	uma_zone_t zone;
1390
1391	if (size <= MJUMPAGESIZE)
1392		return (m_get2(size, how, type, flags));
1393
1394	if (size > MJUM16BYTES)
1395		return (NULL);
1396
1397	args.flags = flags;
1398	args.type = type;
1399
1400	m = uma_zalloc_arg(zone_mbuf, &args, how);
1401	if (m == NULL)
1402		return (NULL);
1403
1404	if (size <= MJUM9BYTES)
1405		zone = zone_jumbo9;
1406	else
1407		zone = zone_jumbo16;
1408
1409	n = uma_zalloc_arg(zone, m, how);
1410	if (n == NULL) {
1411		m_free_raw(m);
1412		return (NULL);
1413	}
1414
1415	return (m);
1416}
1417
1418/*
1419 * m_getjcl() returns an mbuf with a cluster of the specified size attached.
1420 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
1421 */
1422struct mbuf *
1423m_getjcl(int how, short type, int flags, int size)
1424{
1425	struct mb_args args;
1426	struct mbuf *m, *n;
1427	uma_zone_t zone;
1428
1429	if (size == MCLBYTES)
1430		return m_getcl(how, type, flags);
1431
1432	args.flags = flags;
1433	args.type = type;
1434
1435	m = uma_zalloc_arg(zone_mbuf, &args, how);
1436	if (m == NULL)
1437		return (NULL);
1438
1439	zone = m_getzone(size);
1440	n = uma_zalloc_arg(zone, m, how);
1441	if (n == NULL) {
1442		m_free_raw(m);
1443		return (NULL);
1444	}
1445	MBUF_PROBE5(m__getjcl, how, type, flags, size, m);
1446	return (m);
1447}
1448
1449/*
1450 * Allocate mchain of a given length of mbufs and/or clusters (whatever fits
1451 * best).  May fail due to ENOMEM.  In case of failure state of mchain is
1452 * inconsistent.
1453 */
1454int
1455mc_get(struct mchain *mc, u_int length, int how, short type, int flags)
1456{
1457	struct mbuf *mb;
1458	u_int progress;
1459
1460	MPASS(length >= 0);
1461
1462	*mc = MCHAIN_INITIALIZER(mc);
1463	flags &= (M_PKTHDR | M_EOR);
1464	progress = 0;
1465
1466	/* Loop and append maximum sized mbufs to the chain tail. */
1467	do {
1468		if (length - progress > MCLBYTES) {
1469			/*
1470			 * M_NOWAIT here is intentional, it avoids blocking if
1471			 * the jumbop zone is exhausted. See 796d4eb89e2c and
1472			 * D26150 for more detail.
1473			 */
1474			mb = m_getjcl(M_NOWAIT, type, (flags & M_PKTHDR),
1475			    MJUMPAGESIZE);
1476		} else
1477			mb = NULL;
1478		if (mb == NULL) {
1479			if (length - progress >= MINCLSIZE)
1480				mb = m_getcl(how, type, (flags & M_PKTHDR));
1481			else if (flags & M_PKTHDR)
1482				mb = m_gethdr(how, type);
1483			else
1484				mb = m_get(how, type);
1485
1486			/*
1487			 * Fail the whole operation if one mbuf can't be
1488			 * allocated.
1489			 */
1490			if (mb == NULL) {
1491				m_freem(mc_first(mc));
1492				return (ENOMEM);
1493			}
1494		}
1495
1496		progress += M_SIZE(mb);
1497		mc_append(mc, mb);
1498		/* Only valid on the first mbuf. */
1499		flags &= ~M_PKTHDR;
1500	} while (progress < length);
1501	if (flags & M_EOR)
1502		/* Only valid on the last mbuf. */
1503		mc_last(mc)->m_flags |= M_EOR;
1504
1505	return (0);
1506}
1507
1508/*
1509 * Allocate a given length worth of mbufs and/or clusters (whatever fits
1510 * best) and return a pointer to the top of the allocated chain.  If an
1511 * existing mbuf chain is provided, then we will append the new chain
1512 * to the existing one and return a pointer to the provided mbuf.
1513 */
1514struct mbuf *
1515m_getm2(struct mbuf *m, int len, int how, short type, int flags)
1516{
1517	struct mchain mc;
1518
1519	/* Packet header mbuf must be first in chain. */
1520	if (m != NULL && (flags & M_PKTHDR))
1521		flags &= ~M_PKTHDR;
1522
1523	if (__predict_false(mc_get(&mc, len, how, type, flags) != 0))
1524		return (NULL);
1525
1526	/* If mbuf was supplied, append new chain to the end of it. */
1527	if (m != NULL) {
1528		struct mbuf *mtail;
1529
1530		mtail = m_last(m);
1531		mtail->m_next = mc_first(&mc);
1532		mtail->m_flags &= ~M_EOR;
1533	} else
1534		m = mc_first(&mc);
1535
1536	return (m);
1537}
1538
1539/*-
1540 * Configure a provided mbuf to refer to the provided external storage
1541 * buffer and setup a reference count for said buffer.
1542 *
1543 * Arguments:
1544 *    mb     The existing mbuf to which to attach the provided buffer.
1545 *    buf    The address of the provided external storage buffer.
1546 *    size   The size of the provided buffer.
1547 *    freef  A pointer to a routine that is responsible for freeing the
1548 *           provided external storage buffer.
1549 *    args   A pointer to an argument structure (of any type) to be passed
1550 *           to the provided freef routine (may be NULL).
1551 *    flags  Any other flags to be passed to the provided mbuf.
1552 *    type   The type that the external storage buffer should be
1553 *           labeled with.
1554 *
1555 * Returns:
1556 *    Nothing.
1557 */
1558void
1559m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
1560    void *arg1, void *arg2, int flags, int type)
1561{
1562
1563	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
1564
1565	mb->m_flags |= (M_EXT | flags);
1566	mb->m_ext.ext_buf = buf;
1567	mb->m_data = mb->m_ext.ext_buf;
1568	mb->m_ext.ext_size = size;
1569	mb->m_ext.ext_free = freef;
1570	mb->m_ext.ext_arg1 = arg1;
1571	mb->m_ext.ext_arg2 = arg2;
1572	mb->m_ext.ext_type = type;
1573
1574	if (type != EXT_EXTREF) {
1575		mb->m_ext.ext_count = 1;
1576		mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
1577	} else
1578		mb->m_ext.ext_flags = 0;
1579}
1580
1581/*
1582 * Free an entire chain of mbufs and associated external buffers, if
1583 * applicable.
1584 */
1585void
1586m_freem(struct mbuf *mb)
1587{
1588
1589	MBUF_PROBE1(m__freem, mb);
1590	while (mb != NULL)
1591		mb = m_free(mb);
1592}
1593
1594/*
1595 * Temporary primitive to allow freeing without going through m_free.
1596 */
1597void
1598m_free_raw(struct mbuf *mb)
1599{
1600
1601	uma_zfree(zone_mbuf, mb);
1602}
1603
1604int
1605m_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
1606    struct m_snd_tag **mstp)
1607{
1608
1609	return (if_snd_tag_alloc(ifp, params, mstp));
1610}
1611
1612void
1613m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp,
1614    const struct if_snd_tag_sw *sw)
1615{
1616
1617	if_ref(ifp);
1618	mst->ifp = ifp;
1619	refcount_init(&mst->refcount, 1);
1620	mst->sw = sw;
1621	counter_u64_add(snd_tag_count, 1);
1622}
1623
1624void
1625m_snd_tag_destroy(struct m_snd_tag *mst)
1626{
1627	struct ifnet *ifp;
1628
1629	ifp = mst->ifp;
1630	mst->sw->snd_tag_free(mst);
1631	if_rele(ifp);
1632	counter_u64_add(snd_tag_count, -1);
1633}
1634
1635void
1636m_rcvif_serialize(struct mbuf *m)
1637{
1638	u_short idx, gen;
1639
1640	M_ASSERTPKTHDR(m);
1641	idx = if_getindex(m->m_pkthdr.rcvif);
1642	gen = if_getidxgen(m->m_pkthdr.rcvif);
1643	m->m_pkthdr.rcvidx = idx;
1644	m->m_pkthdr.rcvgen = gen;
1645	if (__predict_false(m->m_pkthdr.leaf_rcvif != NULL)) {
1646		idx = if_getindex(m->m_pkthdr.leaf_rcvif);
1647		gen = if_getidxgen(m->m_pkthdr.leaf_rcvif);
1648	} else {
1649		idx = -1;
1650		gen = 0;
1651	}
1652	m->m_pkthdr.leaf_rcvidx = idx;
1653	m->m_pkthdr.leaf_rcvgen = gen;
1654}
1655
1656struct ifnet *
1657m_rcvif_restore(struct mbuf *m)
1658{
1659	struct ifnet *ifp, *leaf_ifp;
1660
1661	M_ASSERTPKTHDR(m);
1662	NET_EPOCH_ASSERT();
1663
1664	ifp = ifnet_byindexgen(m->m_pkthdr.rcvidx, m->m_pkthdr.rcvgen);
1665	if (ifp == NULL || (if_getflags(ifp) & IFF_DYING))
1666		return (NULL);
1667
1668	if (__predict_true(m->m_pkthdr.leaf_rcvidx == (u_short)-1)) {
1669		leaf_ifp = NULL;
1670	} else {
1671		leaf_ifp = ifnet_byindexgen(m->m_pkthdr.leaf_rcvidx,
1672		    m->m_pkthdr.leaf_rcvgen);
1673		if (__predict_false(leaf_ifp != NULL && (if_getflags(leaf_ifp) & IFF_DYING)))
1674			leaf_ifp = NULL;
1675	}
1676
1677	m->m_pkthdr.leaf_rcvif = leaf_ifp;
1678	m->m_pkthdr.rcvif = ifp;
1679
1680	return (ifp);
1681}
1682
1683/*
1684 * Allocate an mbuf with anonymous external pages.
1685 */
1686struct mbuf *
1687mb_alloc_ext_plus_pages(int len, int how)
1688{
1689	struct mbuf *m;
1690	vm_page_t pg;
1691	int i, npgs;
1692
1693	m = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1694	if (m == NULL)
1695		return (NULL);
1696	m->m_epg_flags |= EPG_FLAG_ANON;
1697	npgs = howmany(len, PAGE_SIZE);
1698	for (i = 0; i < npgs; i++) {
1699		do {
1700			pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
1701			    VM_ALLOC_WIRED);
1702			if (pg == NULL) {
1703				if (how == M_NOWAIT) {
1704					m->m_epg_npgs = i;
1705					m_free(m);
1706					return (NULL);
1707				}
1708				vm_wait(NULL);
1709			}
1710		} while (pg == NULL);
1711		m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg);
1712	}
1713	m->m_epg_npgs = npgs;
1714	return (m);
1715}
1716
1717/*
1718 * Copy the data in the mbuf chain to a chain of mbufs with anonymous external
1719 * unmapped pages.
1720 * len is the length of data in the input mbuf chain.
1721 * mlen is the maximum number of bytes put into each ext_page mbuf.
1722 */
1723struct mbuf *
1724mb_mapped_to_unmapped(struct mbuf *mp, int len, int mlen, int how,
1725    struct mbuf **mlast)
1726{
1727	struct mbuf *m, *mout;
1728	char *pgpos, *mbpos;
1729	int i, mblen, mbufsiz, pglen, xfer;
1730
1731	if (len == 0)
1732		return (NULL);
1733	mbufsiz = min(mlen, len);
1734	m = mout = mb_alloc_ext_plus_pages(mbufsiz, how);
1735	if (m == NULL)
1736		return (m);
1737	pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[0]);
1738	pglen = PAGE_SIZE;
1739	mblen = 0;
1740	i = 0;
1741	do {
1742		if (pglen == 0) {
1743			if (++i == m->m_epg_npgs) {
1744				m->m_epg_last_len = PAGE_SIZE;
1745				mbufsiz = min(mlen, len);
1746				m->m_next = mb_alloc_ext_plus_pages(mbufsiz,
1747				    how);
1748				m = m->m_next;
1749				if (m == NULL) {
1750					m_freem(mout);
1751					return (m);
1752				}
1753				i = 0;
1754			}
1755			pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]);
1756			pglen = PAGE_SIZE;
1757		}
1758		while (mblen == 0) {
1759			if (mp == NULL) {
1760				m_freem(mout);
1761				return (NULL);
1762			}
1763			KASSERT((mp->m_flags & M_EXTPG) == 0,
1764			    ("mb_copym_ext_pgs: ext_pgs input mbuf"));
1765			mbpos = mtod(mp, char *);
1766			mblen = mp->m_len;
1767			mp = mp->m_next;
1768		}
1769		xfer = min(mblen, pglen);
1770		memcpy(pgpos, mbpos, xfer);
1771		pgpos += xfer;
1772		mbpos += xfer;
1773		pglen -= xfer;
1774		mblen -= xfer;
1775		len -= xfer;
1776		m->m_len += xfer;
1777	} while (len > 0);
1778	m->m_epg_last_len = PAGE_SIZE - pglen;
1779	if (mlast != NULL)
1780		*mlast = m;
1781	return (mout);
1782}
1783