1/*-
2 * Copyright (c) 2017 Oliver Pinter
3 * Copyright (c) 2017 W. Dean Freeman
4 * Copyright (c) 2000-2015 Mark R V Murray
5 * Copyright (c) 2013 Arthur Mesh
6 * Copyright (c) 2004 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer
14 *    in this position and unchanged.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 */
31
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/ck.h>
35#include <sys/conf.h>
36#include <sys/epoch.h>
37#include <sys/eventhandler.h>
38#include <sys/hash.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/linker.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/module.h>
45#include <sys/mutex.h>
46#include <sys/random.h>
47#include <sys/sbuf.h>
48#include <sys/sysctl.h>
49#include <sys/unistd.h>
50
51#include <machine/atomic.h>
52#include <machine/cpu.h>
53
54#include <crypto/rijndael/rijndael-api-fst.h>
55#include <crypto/sha2/sha256.h>
56
57#include <dev/random/hash.h>
58#include <dev/random/randomdev.h>
59#include <dev/random/random_harvestq.h>
60
61#if defined(RANDOM_ENABLE_ETHER)
62#define _RANDOM_HARVEST_ETHER_OFF 0
63#else
64#define _RANDOM_HARVEST_ETHER_OFF (1u << RANDOM_NET_ETHER)
65#endif
66#if defined(RANDOM_ENABLE_UMA)
67#define _RANDOM_HARVEST_UMA_OFF 0
68#else
69#define _RANDOM_HARVEST_UMA_OFF (1u << RANDOM_UMA)
70#endif
71
72/*
73 * Note that random_sources_feed() will also use this to try and split up
74 * entropy into a subset of pools per iteration with the goal of feeding
75 * HARVESTSIZE into every pool at least once per second.
76 */
77#define	RANDOM_KTHREAD_HZ	10
78
79static void random_kthread(void);
80static void random_sources_feed(void);
81
82/*
83 * Random must initialize much earlier than epoch, but we can initialize the
84 * epoch code before SMP starts.  Prior to SMP, we can safely bypass
85 * concurrency primitives.
86 */
87static __read_mostly bool epoch_inited;
88static __read_mostly epoch_t rs_epoch;
89
90/*
91 * How many events to queue up. We create this many items in
92 * an 'empty' queue, then transfer them to the 'harvest' queue with
93 * supplied junk. When used, they are transferred back to the
94 * 'empty' queue.
95 */
96#define	RANDOM_RING_MAX		1024
97#define	RANDOM_ACCUM_MAX	8
98
99/* 1 to let the kernel thread run, 0 to terminate, -1 to mark completion */
100volatile int random_kthread_control;
101
102
103/* Allow the sysadmin to select the broad category of
104 * entropy types to harvest.
105 */
106__read_frequently u_int hc_source_mask;
107
108struct random_sources {
109	CK_LIST_ENTRY(random_sources)	 rrs_entries;
110	struct random_source		*rrs_source;
111};
112
113static CK_LIST_HEAD(sources_head, random_sources) source_list =
114    CK_LIST_HEAD_INITIALIZER(source_list);
115
116SYSCTL_NODE(_kern_random, OID_AUTO, harvest, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
117    "Entropy Device Parameters");
118
119/*
120 * Put all the harvest queue context stuff in one place.
121 * this make is a bit easier to lock and protect.
122 */
123static struct harvest_context {
124	/* The harvest mutex protects all of harvest_context and
125	 * the related data.
126	 */
127	struct mtx hc_mtx;
128	/* Round-robin destination cache. */
129	u_int hc_destination[ENTROPYSOURCE];
130	/* The context of the kernel thread processing harvested entropy */
131	struct proc *hc_kthread_proc;
132	/*
133	 * Lockless ring buffer holding entropy events
134	 * If ring.in == ring.out,
135	 *     the buffer is empty.
136	 * If ring.in != ring.out,
137	 *     the buffer contains harvested entropy.
138	 * If (ring.in + 1) == ring.out (mod RANDOM_RING_MAX),
139	 *     the buffer is full.
140	 *
141	 * NOTE: ring.in points to the last added element,
142	 * and ring.out points to the last consumed element.
143	 *
144	 * The ring.in variable needs locking as there are multiple
145	 * sources to the ring. Only the sources may change ring.in,
146	 * but the consumer may examine it.
147	 *
148	 * The ring.out variable does not need locking as there is
149	 * only one consumer. Only the consumer may change ring.out,
150	 * but the sources may examine it.
151	 */
152	struct entropy_ring {
153		struct harvest_event ring[RANDOM_RING_MAX];
154		volatile u_int in;
155		volatile u_int out;
156	} hc_entropy_ring;
157	struct fast_entropy_accumulator {
158		volatile u_int pos;
159		uint32_t buf[RANDOM_ACCUM_MAX];
160	} hc_entropy_fast_accumulator;
161} harvest_context;
162
163static struct kproc_desc random_proc_kp = {
164	"rand_harvestq",
165	random_kthread,
166	&harvest_context.hc_kthread_proc,
167};
168
169/* Pass the given event straight through to Fortuna/Whatever. */
170static __inline void
171random_harvestq_fast_process_event(struct harvest_event *event)
172{
173	p_random_alg_context->ra_event_processor(event);
174	explicit_bzero(event, sizeof(*event));
175}
176
177static void
178random_kthread(void)
179{
180        u_int maxloop, ring_out, i;
181
182	/*
183	 * Locking is not needed as this is the only place we modify ring.out, and
184	 * we only examine ring.in without changing it. Both of these are volatile,
185	 * and this is a unique thread.
186	 */
187	for (random_kthread_control = 1; random_kthread_control;) {
188		/* Deal with events, if any. Restrict the number we do in one go. */
189		maxloop = RANDOM_RING_MAX;
190		while (harvest_context.hc_entropy_ring.out != harvest_context.hc_entropy_ring.in) {
191			ring_out = (harvest_context.hc_entropy_ring.out + 1)%RANDOM_RING_MAX;
192			random_harvestq_fast_process_event(harvest_context.hc_entropy_ring.ring + ring_out);
193			harvest_context.hc_entropy_ring.out = ring_out;
194			if (!--maxloop)
195				break;
196		}
197		random_sources_feed();
198		/* XXX: FIX!! Increase the high-performance data rate? Need some measurements first. */
199		for (i = 0; i < RANDOM_ACCUM_MAX; i++) {
200			if (harvest_context.hc_entropy_fast_accumulator.buf[i]) {
201				random_harvest_direct(harvest_context.hc_entropy_fast_accumulator.buf + i, sizeof(harvest_context.hc_entropy_fast_accumulator.buf[0]), RANDOM_UMA);
202				harvest_context.hc_entropy_fast_accumulator.buf[i] = 0;
203			}
204		}
205		/* XXX: FIX!! This is a *great* place to pass hardware/live entropy to random(9) */
206		tsleep_sbt(&harvest_context.hc_kthread_proc, 0, "-",
207		    SBT_1S/RANDOM_KTHREAD_HZ, 0, C_PREL(1));
208	}
209	random_kthread_control = -1;
210	wakeup(&harvest_context.hc_kthread_proc);
211	kproc_exit(0);
212	/* NOTREACHED */
213}
214/* This happens well after SI_SUB_RANDOM */
215SYSINIT(random_device_h_proc, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, kproc_start,
216    &random_proc_kp);
217
218static void
219rs_epoch_init(void *dummy __unused)
220{
221	rs_epoch = epoch_alloc("Random Sources", EPOCH_PREEMPT);
222	epoch_inited = true;
223}
224SYSINIT(rs_epoch_init, SI_SUB_EPOCH, SI_ORDER_ANY, rs_epoch_init, NULL);
225
226/*
227 * Run through all fast sources reading entropy for the given
228 * number of rounds, which should be a multiple of the number
229 * of entropy accumulation pools in use; it is 32 for Fortuna.
230 */
231static void
232random_sources_feed(void)
233{
234	uint32_t entropy[HARVESTSIZE];
235	struct epoch_tracker et;
236	struct random_sources *rrs;
237	u_int i, n, npools;
238	bool rse_warm;
239
240	rse_warm = epoch_inited;
241
242	/*
243	 * Evenly-ish distribute pool population across the second based on how
244	 * frequently random_kthread iterates.
245	 *
246	 * For Fortuna, the math currently works out as such:
247	 *
248	 * 64 bits * 4 pools = 256 bits per iteration
249	 * 256 bits * 10 Hz = 2560 bits per second, 320 B/s
250	 *
251	 */
252	npools = howmany(p_random_alg_context->ra_poolcount, RANDOM_KTHREAD_HZ);
253
254	/*-
255	 * If we're not seeded yet, attempt to perform a "full seed", filling
256	 * all of the PRNG's pools with entropy; if there is enough entropy
257	 * available from "fast" entropy sources this will allow us to finish
258	 * seeding and unblock the boot process immediately rather than being
259	 * stuck for a few seconds with random_kthread gradually collecting a
260	 * small chunk of entropy every 1 / RANDOM_KTHREAD_HZ seconds.
261	 *
262	 * The value 64 below is RANDOM_FORTUNA_DEFPOOLSIZE, i.e. chosen to
263	 * fill Fortuna's pools in the default configuration.  With another
264	 * PRNG or smaller pools for Fortuna, we might collect more entropy
265	 * than needed to fill the pools, but this is harmless; alternatively,
266	 * a different PRNG, larger pools, or fast entropy sources which are
267	 * not able to provide as much entropy as we request may result in the
268	 * not being fully seeded (and thus remaining blocked) but in that
269	 * case we will return here after 1 / RANDOM_KTHREAD_HZ seconds and
270	 * try again for a large amount of entropy.
271	 */
272	if (!p_random_alg_context->ra_seeded())
273		npools = howmany(p_random_alg_context->ra_poolcount * 64,
274		    sizeof(entropy));
275
276	/*
277	 * Step over all of live entropy sources, and feed their output
278	 * to the system-wide RNG.
279	 */
280	if (rse_warm)
281		epoch_enter_preempt(rs_epoch, &et);
282	CK_LIST_FOREACH(rrs, &source_list, rrs_entries) {
283		for (i = 0; i < npools; i++) {
284			n = rrs->rrs_source->rs_read(entropy, sizeof(entropy));
285			KASSERT((n <= sizeof(entropy)), ("%s: rs_read returned too much data (%u > %zu)", __func__, n, sizeof(entropy)));
286			/*
287			 * Sometimes the HW entropy source doesn't have anything
288			 * ready for us.  This isn't necessarily untrustworthy.
289			 * We don't perform any other verification of an entropy
290			 * source (i.e., length is allowed to be anywhere from 1
291			 * to sizeof(entropy), quality is unchecked, etc), so
292			 * don't balk verbosely at slow random sources either.
293			 * There are reports that RDSEED on x86 metal falls
294			 * behind the rate at which we query it, for example.
295			 * But it's still a better entropy source than RDRAND.
296			 */
297			if (n == 0)
298				continue;
299			random_harvest_direct(entropy, n, rrs->rrs_source->rs_source);
300		}
301	}
302	if (rse_warm)
303		epoch_exit_preempt(rs_epoch, &et);
304	explicit_bzero(entropy, sizeof(entropy));
305}
306
307/* ARGSUSED */
308static int
309random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS)
310{
311	static const u_int user_immutable_mask =
312	    (((1 << ENTROPYSOURCE) - 1) & (-1UL << RANDOM_PURE_START)) |
313	    _RANDOM_HARVEST_ETHER_OFF | _RANDOM_HARVEST_UMA_OFF;
314
315	int error;
316	u_int value, orig_value;
317
318	orig_value = value = hc_source_mask;
319	error = sysctl_handle_int(oidp, &value, 0, req);
320	if (error != 0 || req->newptr == NULL)
321		return (error);
322
323	if (flsl(value) > ENTROPYSOURCE)
324		return (EINVAL);
325
326	/*
327	 * Disallow userspace modification of pure entropy sources.
328	 */
329	hc_source_mask = (value & ~user_immutable_mask) |
330	    (orig_value & user_immutable_mask);
331	return (0);
332}
333SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask,
334    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
335    random_check_uint_harvestmask, "IU",
336    "Entropy harvesting mask");
337
338/* ARGSUSED */
339static int
340random_print_harvestmask(SYSCTL_HANDLER_ARGS)
341{
342	struct sbuf sbuf;
343	int error, i;
344
345	error = sysctl_wire_old_buffer(req, 0);
346	if (error == 0) {
347		sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
348		for (i = ENTROPYSOURCE - 1; i >= 0; i--)
349			sbuf_cat(&sbuf, (hc_source_mask & (1 << i)) ? "1" : "0");
350		error = sbuf_finish(&sbuf);
351		sbuf_delete(&sbuf);
352	}
353	return (error);
354}
355SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_bin,
356    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
357    random_print_harvestmask, "A",
358    "Entropy harvesting mask (printable)");
359
360static const char *random_source_descr[ENTROPYSOURCE] = {
361	[RANDOM_CACHED] = "CACHED",
362	[RANDOM_ATTACH] = "ATTACH",
363	[RANDOM_KEYBOARD] = "KEYBOARD",
364	[RANDOM_MOUSE] = "MOUSE",
365	[RANDOM_NET_TUN] = "NET_TUN",
366	[RANDOM_NET_ETHER] = "NET_ETHER",
367	[RANDOM_NET_NG] = "NET_NG",
368	[RANDOM_INTERRUPT] = "INTERRUPT",
369	[RANDOM_SWI] = "SWI",
370	[RANDOM_FS_ATIME] = "FS_ATIME",
371	[RANDOM_UMA] = "UMA",
372	[RANDOM_CALLOUT] = "CALLOUT", /* ENVIRONMENTAL_END */
373	[RANDOM_PURE_OCTEON] = "PURE_OCTEON", /* PURE_START */
374	[RANDOM_PURE_SAFE] = "PURE_SAFE",
375	[RANDOM_PURE_GLXSB] = "PURE_GLXSB",
376	[RANDOM_PURE_HIFN] = "PURE_HIFN",
377	[RANDOM_PURE_RDRAND] = "PURE_RDRAND",
378	[RANDOM_PURE_NEHEMIAH] = "PURE_NEHEMIAH",
379	[RANDOM_PURE_RNDTEST] = "PURE_RNDTEST",
380	[RANDOM_PURE_VIRTIO] = "PURE_VIRTIO",
381	[RANDOM_PURE_BROADCOM] = "PURE_BROADCOM",
382	[RANDOM_PURE_CCP] = "PURE_CCP",
383	[RANDOM_PURE_DARN] = "PURE_DARN",
384	[RANDOM_PURE_TPM] = "PURE_TPM",
385	[RANDOM_PURE_VMGENID] = "PURE_VMGENID",
386	[RANDOM_PURE_QUALCOMM] = "PURE_QUALCOMM",
387	[RANDOM_PURE_ARMV8] = "PURE_ARMV8",
388	/* "ENTROPYSOURCE" */
389};
390
391/* ARGSUSED */
392static int
393random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS)
394{
395	struct sbuf sbuf;
396	int error, i;
397	bool first;
398
399	first = true;
400	error = sysctl_wire_old_buffer(req, 0);
401	if (error == 0) {
402		sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
403		for (i = ENTROPYSOURCE - 1; i >= 0; i--) {
404			if (i >= RANDOM_PURE_START &&
405			    (hc_source_mask & (1 << i)) == 0)
406				continue;
407			if (!first)
408				sbuf_cat(&sbuf, ",");
409			sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "[" : "");
410			sbuf_cat(&sbuf, random_source_descr[i]);
411			sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "]" : "");
412			first = false;
413		}
414		error = sbuf_finish(&sbuf);
415		sbuf_delete(&sbuf);
416	}
417	return (error);
418}
419SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_symbolic,
420    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
421    random_print_harvestmask_symbolic, "A",
422    "Entropy harvesting mask (symbolic)");
423
424/* ARGSUSED */
425static void
426random_harvestq_init(void *unused __unused)
427{
428	static const u_int almost_everything_mask =
429	    (((1 << (RANDOM_ENVIRONMENTAL_END + 1)) - 1) &
430	    ~_RANDOM_HARVEST_ETHER_OFF & ~_RANDOM_HARVEST_UMA_OFF);
431
432	hc_source_mask = almost_everything_mask;
433	RANDOM_HARVEST_INIT_LOCK();
434	harvest_context.hc_entropy_ring.in = harvest_context.hc_entropy_ring.out = 0;
435}
436SYSINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_init, NULL);
437
438/*
439 * Subroutine to slice up a contiguous chunk of 'entropy' and feed it into the
440 * underlying algorithm.  Returns number of bytes actually fed into underlying
441 * algorithm.
442 */
443static size_t
444random_early_prime(char *entropy, size_t len)
445{
446	struct harvest_event event;
447	size_t i;
448
449	len = rounddown(len, sizeof(event.he_entropy));
450	if (len == 0)
451		return (0);
452
453	for (i = 0; i < len; i += sizeof(event.he_entropy)) {
454		event.he_somecounter = (uint32_t)get_cyclecount();
455		event.he_size = sizeof(event.he_entropy);
456		event.he_source = RANDOM_CACHED;
457		event.he_destination =
458		    harvest_context.hc_destination[RANDOM_CACHED]++;
459		memcpy(event.he_entropy, entropy + i, sizeof(event.he_entropy));
460		random_harvestq_fast_process_event(&event);
461	}
462	explicit_bzero(entropy, len);
463	return (len);
464}
465
466/*
467 * Subroutine to search for known loader-loaded files in memory and feed them
468 * into the underlying algorithm early in boot.  Returns the number of bytes
469 * loaded (zero if none were loaded).
470 */
471static size_t
472random_prime_loader_file(const char *type)
473{
474	uint8_t *keyfile, *data;
475	size_t size;
476
477	keyfile = preload_search_by_type(type);
478	if (keyfile == NULL)
479		return (0);
480
481	data = preload_fetch_addr(keyfile);
482	size = preload_fetch_size(keyfile);
483	if (data == NULL)
484		return (0);
485
486	return (random_early_prime(data, size));
487}
488
489/*
490 * This is used to prime the RNG by grabbing any early random stuff
491 * known to the kernel, and inserting it directly into the hashing
492 * module, currently Fortuna.
493 */
494/* ARGSUSED */
495static void
496random_harvestq_prime(void *unused __unused)
497{
498	size_t size;
499
500	/*
501	 * Get entropy that may have been preloaded by loader(8)
502	 * and use it to pre-charge the entropy harvest queue.
503	 */
504	size = random_prime_loader_file(RANDOM_CACHED_BOOT_ENTROPY_MODULE);
505	if (bootverbose) {
506		if (size > 0)
507			printf("random: read %zu bytes from preloaded cache\n",
508			    size);
509		else
510			printf("random: no preloaded entropy cache\n");
511	}
512	size = random_prime_loader_file(RANDOM_PLATFORM_BOOT_ENTROPY_MODULE);
513	if (bootverbose) {
514		if (size > 0)
515			printf("random: read %zu bytes from platform bootloader\n",
516			    size);
517		else
518			printf("random: no platform bootloader entropy\n");
519	}
520}
521SYSINIT(random_device_prime, SI_SUB_RANDOM, SI_ORDER_MIDDLE, random_harvestq_prime, NULL);
522
523/* ARGSUSED */
524static void
525random_harvestq_deinit(void *unused __unused)
526{
527
528	/* Command the hash/reseed thread to end and wait for it to finish */
529	random_kthread_control = 0;
530	while (random_kthread_control >= 0)
531		tsleep(&harvest_context.hc_kthread_proc, 0, "harvqterm", hz/5);
532}
533SYSUNINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_deinit, NULL);
534
535/*-
536 * Entropy harvesting queue routine.
537 *
538 * This is supposed to be fast; do not do anything slow in here!
539 * It is also illegal (and morally reprehensible) to insert any
540 * high-rate data here. "High-rate" is defined as a data source
541 * that will usually cause lots of failures of the "Lockless read"
542 * check a few lines below. This includes the "always-on" sources
543 * like the Intel "rdrand" or the VIA Nehamiah "xstore" sources.
544 */
545/* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle
546 * counters are built in, but on older hardware it will do a real time clock
547 * read which can be quite expensive.
548 */
549void
550random_harvest_queue_(const void *entropy, u_int size, enum random_entropy_source origin)
551{
552	struct harvest_event *event;
553	u_int ring_in;
554
555	KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin));
556	RANDOM_HARVEST_LOCK();
557	ring_in = (harvest_context.hc_entropy_ring.in + 1)%RANDOM_RING_MAX;
558	if (ring_in != harvest_context.hc_entropy_ring.out) {
559		/* The ring is not full */
560		event = harvest_context.hc_entropy_ring.ring + ring_in;
561		event->he_somecounter = (uint32_t)get_cyclecount();
562		event->he_source = origin;
563		event->he_destination = harvest_context.hc_destination[origin]++;
564		if (size <= sizeof(event->he_entropy)) {
565			event->he_size = size;
566			memcpy(event->he_entropy, entropy, size);
567		}
568		else {
569			/* Big event, so squash it */
570			event->he_size = sizeof(event->he_entropy[0]);
571			event->he_entropy[0] = jenkins_hash(entropy, size, (uint32_t)(uintptr_t)event);
572		}
573		harvest_context.hc_entropy_ring.in = ring_in;
574	}
575	RANDOM_HARVEST_UNLOCK();
576}
577
578/*-
579 * Entropy harvesting fast routine.
580 *
581 * This is supposed to be very fast; do not do anything slow in here!
582 * This is the right place for high-rate harvested data.
583 */
584void
585random_harvest_fast_(const void *entropy, u_int size)
586{
587	u_int pos;
588
589	pos = harvest_context.hc_entropy_fast_accumulator.pos;
590	harvest_context.hc_entropy_fast_accumulator.buf[pos] ^= jenkins_hash(entropy, size, (uint32_t)get_cyclecount());
591	harvest_context.hc_entropy_fast_accumulator.pos = (pos + 1)%RANDOM_ACCUM_MAX;
592}
593
594/*-
595 * Entropy harvesting direct routine.
596 *
597 * This is not supposed to be fast, but will only be used during
598 * (e.g.) booting when initial entropy is being gathered.
599 */
600void
601random_harvest_direct_(const void *entropy, u_int size, enum random_entropy_source origin)
602{
603	struct harvest_event event;
604
605	KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin));
606	size = MIN(size, sizeof(event.he_entropy));
607	event.he_somecounter = (uint32_t)get_cyclecount();
608	event.he_size = size;
609	event.he_source = origin;
610	event.he_destination = harvest_context.hc_destination[origin]++;
611	memcpy(event.he_entropy, entropy, size);
612	random_harvestq_fast_process_event(&event);
613}
614
615void
616random_harvest_register_source(enum random_entropy_source source)
617{
618
619	hc_source_mask |= (1 << source);
620}
621
622void
623random_harvest_deregister_source(enum random_entropy_source source)
624{
625
626	hc_source_mask &= ~(1 << source);
627}
628
629void
630random_source_register(struct random_source *rsource)
631{
632	struct random_sources *rrs;
633
634	KASSERT(rsource != NULL, ("invalid input to %s", __func__));
635
636	rrs = malloc(sizeof(*rrs), M_ENTROPY, M_WAITOK);
637	rrs->rrs_source = rsource;
638
639	random_harvest_register_source(rsource->rs_source);
640
641	printf("random: registering fast source %s\n", rsource->rs_ident);
642
643	RANDOM_HARVEST_LOCK();
644	CK_LIST_INSERT_HEAD(&source_list, rrs, rrs_entries);
645	RANDOM_HARVEST_UNLOCK();
646}
647
648void
649random_source_deregister(struct random_source *rsource)
650{
651	struct random_sources *rrs = NULL;
652
653	KASSERT(rsource != NULL, ("invalid input to %s", __func__));
654
655	random_harvest_deregister_source(rsource->rs_source);
656
657	RANDOM_HARVEST_LOCK();
658	CK_LIST_FOREACH(rrs, &source_list, rrs_entries)
659		if (rrs->rrs_source == rsource) {
660			CK_LIST_REMOVE(rrs, rrs_entries);
661			break;
662		}
663	RANDOM_HARVEST_UNLOCK();
664
665	if (rrs != NULL && epoch_inited)
666		epoch_wait_preempt(rs_epoch);
667	free(rrs, M_ENTROPY);
668}
669
670static int
671random_source_handler(SYSCTL_HANDLER_ARGS)
672{
673	struct epoch_tracker et;
674	struct random_sources *rrs;
675	struct sbuf sbuf;
676	int error, count;
677
678	error = sysctl_wire_old_buffer(req, 0);
679	if (error != 0)
680		return (error);
681
682	sbuf_new_for_sysctl(&sbuf, NULL, 64, req);
683	count = 0;
684	epoch_enter_preempt(rs_epoch, &et);
685	CK_LIST_FOREACH(rrs, &source_list, rrs_entries) {
686		sbuf_cat(&sbuf, (count++ ? ",'" : "'"));
687		sbuf_cat(&sbuf, rrs->rrs_source->rs_ident);
688		sbuf_cat(&sbuf, "'");
689	}
690	epoch_exit_preempt(rs_epoch, &et);
691	error = sbuf_finish(&sbuf);
692	sbuf_delete(&sbuf);
693	return (error);
694}
695SYSCTL_PROC(_kern_random, OID_AUTO, random_sources, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
696	    NULL, 0, random_source_handler, "A",
697	    "List of active fast entropy sources.");
698
699MODULE_VERSION(random_harvestq, 1);
700