1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2012-2014 Intel Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <sys/param.h>
30#include <sys/bus.h>
31#include <sys/conf.h>
32#include <sys/domainset.h>
33#include <sys/proc.h>
34
35#include <dev/pci/pcivar.h>
36
37#include "nvme_private.h"
38
39typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
40#define DO_NOT_RETRY	1
41
42static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
43					   struct nvme_request *req);
44static void	nvme_qpair_destroy(struct nvme_qpair *qpair);
45
46#define DEFAULT_INDEX	256
47#define DEFAULT_ENTRY(x)	[DEFAULT_INDEX] = x
48#define OPC_ENTRY(x)		[NVME_OPC_ ## x] = #x
49
50static const char *admin_opcode[DEFAULT_INDEX + 1] = {
51	OPC_ENTRY(DELETE_IO_SQ),
52	OPC_ENTRY(CREATE_IO_SQ),
53	OPC_ENTRY(GET_LOG_PAGE),
54	OPC_ENTRY(DELETE_IO_CQ),
55	OPC_ENTRY(CREATE_IO_CQ),
56	OPC_ENTRY(IDENTIFY),
57	OPC_ENTRY(ABORT),
58	OPC_ENTRY(SET_FEATURES),
59	OPC_ENTRY(GET_FEATURES),
60	OPC_ENTRY(ASYNC_EVENT_REQUEST),
61	OPC_ENTRY(NAMESPACE_MANAGEMENT),
62	OPC_ENTRY(FIRMWARE_ACTIVATE),
63	OPC_ENTRY(FIRMWARE_IMAGE_DOWNLOAD),
64	OPC_ENTRY(DEVICE_SELF_TEST),
65	OPC_ENTRY(NAMESPACE_ATTACHMENT),
66	OPC_ENTRY(KEEP_ALIVE),
67	OPC_ENTRY(DIRECTIVE_SEND),
68	OPC_ENTRY(DIRECTIVE_RECEIVE),
69	OPC_ENTRY(VIRTUALIZATION_MANAGEMENT),
70	OPC_ENTRY(NVME_MI_SEND),
71	OPC_ENTRY(NVME_MI_RECEIVE),
72	OPC_ENTRY(CAPACITY_MANAGEMENT),
73	OPC_ENTRY(LOCKDOWN),
74	OPC_ENTRY(DOORBELL_BUFFER_CONFIG),
75	OPC_ENTRY(FABRICS_COMMANDS),
76	OPC_ENTRY(FORMAT_NVM),
77	OPC_ENTRY(SECURITY_SEND),
78	OPC_ENTRY(SECURITY_RECEIVE),
79	OPC_ENTRY(SANITIZE),
80	OPC_ENTRY(GET_LBA_STATUS),
81	DEFAULT_ENTRY("ADMIN COMMAND"),
82};
83
84static const char *io_opcode[DEFAULT_INDEX + 1] = {
85	OPC_ENTRY(FLUSH),
86	OPC_ENTRY(WRITE),
87	OPC_ENTRY(READ),
88	OPC_ENTRY(WRITE_UNCORRECTABLE),
89	OPC_ENTRY(COMPARE),
90	OPC_ENTRY(WRITE_ZEROES),
91	OPC_ENTRY(DATASET_MANAGEMENT),
92	OPC_ENTRY(VERIFY),
93	OPC_ENTRY(RESERVATION_REGISTER),
94	OPC_ENTRY(RESERVATION_REPORT),
95	OPC_ENTRY(RESERVATION_ACQUIRE),
96	OPC_ENTRY(RESERVATION_RELEASE),
97	OPC_ENTRY(COPY),
98	DEFAULT_ENTRY("IO COMMAND"),
99};
100
101static const char *
102get_opcode_string(const char *op[DEFAULT_INDEX + 1], uint16_t opc)
103{
104	const char *nm = opc < DEFAULT_INDEX ? op[opc] : op[DEFAULT_INDEX];
105
106	return (nm != NULL ? nm : op[DEFAULT_INDEX]);
107}
108
109static const char *
110get_admin_opcode_string(uint16_t opc)
111{
112	return (get_opcode_string(admin_opcode, opc));
113}
114
115static const char *
116get_io_opcode_string(uint16_t opc)
117{
118	return (get_opcode_string(io_opcode, opc));
119}
120
121static void
122nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
123    struct nvme_command *cmd)
124{
125
126	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
127	    "cdw10:%08x cdw11:%08x\n",
128	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
129	    le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
130}
131
132static void
133nvme_io_qpair_print_command(struct nvme_qpair *qpair,
134    struct nvme_command *cmd)
135{
136
137	switch (cmd->opc) {
138	case NVME_OPC_WRITE:
139	case NVME_OPC_READ:
140	case NVME_OPC_WRITE_UNCORRECTABLE:
141	case NVME_OPC_COMPARE:
142	case NVME_OPC_WRITE_ZEROES:
143	case NVME_OPC_VERIFY:
144		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
145		    "lba:%llu len:%d\n",
146		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
147		    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
148		    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
149		break;
150	case NVME_OPC_FLUSH:
151	case NVME_OPC_DATASET_MANAGEMENT:
152	case NVME_OPC_RESERVATION_REGISTER:
153	case NVME_OPC_RESERVATION_REPORT:
154	case NVME_OPC_RESERVATION_ACQUIRE:
155	case NVME_OPC_RESERVATION_RELEASE:
156		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
157		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
158		break;
159	default:
160		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
161		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
162		    cmd->cid, le32toh(cmd->nsid));
163		break;
164	}
165}
166
167void
168nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
169{
170	if (qpair->id == 0)
171		nvme_admin_qpair_print_command(qpair, cmd);
172	else
173		nvme_io_qpair_print_command(qpair, cmd);
174	if (nvme_verbose_cmd_dump) {
175		nvme_printf(qpair->ctrlr,
176		    "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
177		    cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
178		    (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
179		nvme_printf(qpair->ctrlr,
180		    "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
181		    cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
182		    cmd->cdw15);
183	}
184}
185
186struct nvme_status_string {
187	uint16_t	sc;
188	const char *	str;
189};
190
191static struct nvme_status_string generic_status[] = {
192	{ NVME_SC_SUCCESS, "SUCCESS" },
193	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
194	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
195	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
196	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
197	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
198	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
199	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
200	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
201	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
202	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
203	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
204	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
205	{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
206	{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
207	{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
208	{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
209	{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
210	{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
211	{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
212	{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
213	{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
214	{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
215	{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
216	{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
217	{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
218	{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
219	{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
220	{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
221	{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
222	{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
223	{ NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
224	{ NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
225	{ NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
226
227	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
228	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
229	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
230	{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
231	{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
232	{ 0xFFFF, "GENERIC" }
233};
234
235static struct nvme_status_string command_specific_status[] = {
236	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
237	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
238	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
239	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
240	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
241	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
242	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
243	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
244	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
245	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
246	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
247	{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
248	{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
249	{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
250	{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
251	{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
252	{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
253	{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
254	{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
255	{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
256	{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
257	{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
258	{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
259	{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
260	{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
261	{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
262	{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
263	{ NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" },
264	{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
265	{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
266	{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
267	{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
268	{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
269	{ NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
270	{ NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
271	{ NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
272
273	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
274	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
275	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
276	{ 0xFFFF, "COMMAND SPECIFIC" }
277};
278
279static struct nvme_status_string media_error_status[] = {
280	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
281	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
282	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
283	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
284	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
285	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
286	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
287	{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
288	{ 0xFFFF, "MEDIA ERROR" }
289};
290
291static struct nvme_status_string path_related_status[] = {
292	{ NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
293	{ NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
294	{ NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
295	{ NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
296	{ NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
297	{ NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
298	{ NVME_SC_COMMAND_ABORTED_BY_HOST, "COMMAND ABORTED BY HOST" },
299	{ 0xFFFF, "PATH RELATED" },
300};
301
302static const char *
303get_status_string(uint16_t sct, uint16_t sc)
304{
305	struct nvme_status_string *entry;
306
307	switch (sct) {
308	case NVME_SCT_GENERIC:
309		entry = generic_status;
310		break;
311	case NVME_SCT_COMMAND_SPECIFIC:
312		entry = command_specific_status;
313		break;
314	case NVME_SCT_MEDIA_ERROR:
315		entry = media_error_status;
316		break;
317	case NVME_SCT_PATH_RELATED:
318		entry = path_related_status;
319		break;
320	case NVME_SCT_VENDOR_SPECIFIC:
321		return ("VENDOR SPECIFIC");
322	default:
323		return ("RESERVED");
324	}
325
326	while (entry->sc != 0xFFFF) {
327		if (entry->sc == sc)
328			return (entry->str);
329		entry++;
330	}
331	return (entry->str);
332}
333
334void
335nvme_qpair_print_completion(struct nvme_qpair *qpair,
336    struct nvme_completion *cpl)
337{
338	uint8_t sct, sc, crd, m, dnr, p;
339
340	sct = NVME_STATUS_GET_SCT(cpl->status);
341	sc = NVME_STATUS_GET_SC(cpl->status);
342	crd = NVME_STATUS_GET_CRD(cpl->status);
343	m = NVME_STATUS_GET_M(cpl->status);
344	dnr = NVME_STATUS_GET_DNR(cpl->status);
345	p = NVME_STATUS_GET_P(cpl->status);
346
347	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) crd:%x m:%x dnr:%x p:%d "
348	    "sqid:%d cid:%d cdw0:%x\n",
349	    get_status_string(sct, sc), sct, sc, crd, m, dnr, p,
350	    cpl->sqid, cpl->cid, cpl->cdw0);
351}
352
353static bool
354nvme_completion_is_retry(const struct nvme_completion *cpl)
355{
356	uint8_t sct, sc, dnr;
357
358	sct = NVME_STATUS_GET_SCT(cpl->status);
359	sc = NVME_STATUS_GET_SC(cpl->status);
360	dnr = NVME_STATUS_GET_DNR(cpl->status);	/* Do Not Retry Bit */
361
362	/*
363	 * TODO: spec is not clear how commands that are aborted due
364	 *  to TLER will be marked.  So for now, it seems
365	 *  NAMESPACE_NOT_READY is the only case where we should
366	 *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
367	 *  set the DNR bit correctly since the driver controls that.
368	 */
369	switch (sct) {
370	case NVME_SCT_GENERIC:
371		switch (sc) {
372		case NVME_SC_ABORTED_BY_REQUEST:
373		case NVME_SC_NAMESPACE_NOT_READY:
374			if (dnr)
375				return (0);
376			else
377				return (1);
378		case NVME_SC_INVALID_OPCODE:
379		case NVME_SC_INVALID_FIELD:
380		case NVME_SC_COMMAND_ID_CONFLICT:
381		case NVME_SC_DATA_TRANSFER_ERROR:
382		case NVME_SC_ABORTED_POWER_LOSS:
383		case NVME_SC_INTERNAL_DEVICE_ERROR:
384		case NVME_SC_ABORTED_SQ_DELETION:
385		case NVME_SC_ABORTED_FAILED_FUSED:
386		case NVME_SC_ABORTED_MISSING_FUSED:
387		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
388		case NVME_SC_COMMAND_SEQUENCE_ERROR:
389		case NVME_SC_LBA_OUT_OF_RANGE:
390		case NVME_SC_CAPACITY_EXCEEDED:
391		default:
392			return (0);
393		}
394	case NVME_SCT_COMMAND_SPECIFIC:
395	case NVME_SCT_MEDIA_ERROR:
396		return (0);
397	case NVME_SCT_PATH_RELATED:
398		switch (sc) {
399		case NVME_SC_INTERNAL_PATH_ERROR:
400			if (dnr)
401				return (0);
402			else
403				return (1);
404		default:
405			return (0);
406		}
407	case NVME_SCT_VENDOR_SPECIFIC:
408	default:
409		return (0);
410	}
411}
412
413static void
414nvme_qpair_complete_tracker(struct nvme_tracker *tr,
415    struct nvme_completion *cpl, error_print_t print_on_error)
416{
417	struct nvme_qpair	*qpair = tr->qpair;
418	struct nvme_request	*req;
419	bool			retry, error, retriable;
420
421	mtx_assert(&qpair->lock, MA_NOTOWNED);
422
423	req = tr->req;
424	error = nvme_completion_is_error(cpl);
425	retriable = nvme_completion_is_retry(cpl);
426	retry = error && retriable && req->retries < nvme_retry_count;
427	if (retry)
428		qpair->num_retries++;
429	if (error && req->retries >= nvme_retry_count && retriable)
430		qpair->num_failures++;
431
432	if (error && (print_on_error == ERROR_PRINT_ALL ||
433		(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
434		nvme_qpair_print_command(qpair, &req->cmd);
435		nvme_qpair_print_completion(qpair, cpl);
436	}
437
438	qpair->act_tr[cpl->cid] = NULL;
439
440	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
441
442	if (!retry) {
443		if (req->payload_valid) {
444			bus_dmamap_sync(qpair->dma_tag_payload,
445			    tr->payload_dma_map,
446			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
447		}
448		if (req->cb_fn)
449			req->cb_fn(req->cb_arg, cpl);
450	}
451
452	mtx_lock(&qpair->lock);
453
454	if (retry) {
455		req->retries++;
456		nvme_qpair_submit_tracker(qpair, tr);
457	} else {
458		if (req->payload_valid) {
459			bus_dmamap_unload(qpair->dma_tag_payload,
460			    tr->payload_dma_map);
461		}
462
463		nvme_free_request(req);
464		tr->req = NULL;
465
466		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
467		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
468
469		/*
470		 * If the controller is in the middle of resetting, don't
471		 *  try to submit queued requests here - let the reset logic
472		 *  handle that instead.
473		 */
474		if (!STAILQ_EMPTY(&qpair->queued_req) &&
475		    !qpair->ctrlr->is_resetting) {
476			req = STAILQ_FIRST(&qpair->queued_req);
477			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
478			_nvme_qpair_submit_request(qpair, req);
479		}
480	}
481
482	mtx_unlock(&qpair->lock);
483}
484
485static void
486nvme_qpair_manual_complete_tracker(
487    struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
488    error_print_t print_on_error)
489{
490	struct nvme_completion	cpl;
491	struct nvme_qpair * qpair = tr->qpair;
492
493	mtx_assert(&qpair->lock, MA_NOTOWNED);
494
495	memset(&cpl, 0, sizeof(cpl));
496
497	cpl.sqid = qpair->id;
498	cpl.cid = tr->cid;
499	cpl.status |= NVMEF(NVME_STATUS_SCT, sct);
500	cpl.status |= NVMEF(NVME_STATUS_SC, sc);
501	cpl.status |= NVMEF(NVME_STATUS_DNR, dnr);
502	/* M=0 : this is artificial so no data in error log page */
503	/* CRD=0 : this is artificial and no delayed retry support anyway */
504	/* P=0 : phase not checked */
505	nvme_qpair_complete_tracker(tr, &cpl, print_on_error);
506}
507
508void
509nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
510    struct nvme_request *req, uint32_t sct, uint32_t sc)
511{
512	struct nvme_completion	cpl;
513	bool			error;
514
515	memset(&cpl, 0, sizeof(cpl));
516	cpl.sqid = qpair->id;
517	cpl.status |= NVMEF(NVME_STATUS_SCT, sct);
518	cpl.status |= NVMEF(NVME_STATUS_SC, sc);
519
520	error = nvme_completion_is_error(&cpl);
521
522	if (error) {
523		nvme_qpair_print_command(qpair, &req->cmd);
524		nvme_qpair_print_completion(qpair, &cpl);
525	}
526
527	if (req->cb_fn)
528		req->cb_fn(req->cb_arg, &cpl);
529
530	nvme_free_request(req);
531}
532
533/* Locked version of completion processor */
534static bool
535_nvme_qpair_process_completions(struct nvme_qpair *qpair)
536{
537	struct nvme_tracker	*tr;
538	struct nvme_completion	cpl;
539	bool done = false;
540	bool in_panic = dumping || SCHEDULER_STOPPED();
541
542	mtx_assert(&qpair->recovery, MA_OWNED);
543
544	/*
545	 * qpair is not enabled, likely because a controller reset is in
546	 * progress.  Ignore the interrupt - any I/O that was associated with
547	 * this interrupt will get retried when the reset is complete. Any
548	 * pending completions for when we're in startup will be completed
549	 * as soon as initialization is complete and we start sending commands
550	 * to the device.
551	 */
552	if (qpair->recovery_state != RECOVERY_NONE) {
553		qpair->num_ignored++;
554		return (false);
555	}
556
557	/*
558	 * Sanity check initialization. After we reset the hardware, the phase
559	 * is defined to be 1. So if we get here with zero prior calls and the
560	 * phase is 0, it means that we've lost a race between the
561	 * initialization and the ISR running. With the phase wrong, we'll
562	 * process a bunch of completions that aren't really completions leading
563	 * to a KASSERT below.
564	 */
565	KASSERT(!(qpair->num_intr_handler_calls == 0 && qpair->phase == 0),
566	    ("%s: Phase wrong for first interrupt call.",
567		device_get_nameunit(qpair->ctrlr->dev)));
568
569	qpair->num_intr_handler_calls++;
570
571	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
572	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
573	/*
574	 * A panic can stop the CPU this routine is running on at any point.  If
575	 * we're called during a panic, complete the sq_head wrap protocol for
576	 * the case where we are interrupted just after the increment at 1
577	 * below, but before we can reset cq_head to zero at 2. Also cope with
578	 * the case where we do the zero at 2, but may or may not have done the
579	 * phase adjustment at step 3. The panic machinery flushes all pending
580	 * memory writes, so we can make these strong ordering assumptions
581	 * that would otherwise be unwise if we were racing in real time.
582	 */
583	if (__predict_false(in_panic)) {
584		if (qpair->cq_head == qpair->num_entries) {
585			/*
586			 * Here we know that we need to zero cq_head and then negate
587			 * the phase, which hasn't been assigned if cq_head isn't
588			 * zero due to the atomic_store_rel.
589			 */
590			qpair->cq_head = 0;
591			qpair->phase = !qpair->phase;
592		} else if (qpair->cq_head == 0) {
593			/*
594			 * In this case, we know that the assignment at 2
595			 * happened below, but we don't know if it 3 happened or
596			 * not. To do this, we look at the last completion
597			 * entry and set the phase to the opposite phase
598			 * that it has. This gets us back in sync
599			 */
600			cpl = qpair->cpl[qpair->num_entries - 1];
601			nvme_completion_swapbytes(&cpl);
602			qpair->phase = !NVME_STATUS_GET_P(cpl.status);
603		}
604	}
605
606	while (1) {
607		uint16_t status;
608
609		/*
610		 * We need to do this dance to avoid a race between the host and
611		 * the device where the device overtakes the host while the host
612		 * is reading this record, leaving the status field 'new' and
613		 * the sqhd and cid fields potentially stale. If the phase
614		 * doesn't match, that means status hasn't yet been updated and
615		 * we'll get any pending changes next time. It also means that
616		 * the phase must be the same the second time. We have to sync
617		 * before reading to ensure any bouncing completes.
618		 */
619		status = le16toh(qpair->cpl[qpair->cq_head].status);
620		if (NVME_STATUS_GET_P(status) != qpair->phase)
621			break;
622
623		bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
624		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
625		cpl = qpair->cpl[qpair->cq_head];
626		nvme_completion_swapbytes(&cpl);
627
628		KASSERT(
629		    NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status),
630		    ("Phase unexpectedly inconsistent"));
631
632		if (cpl.cid < qpair->num_trackers)
633			tr = qpair->act_tr[cpl.cid];
634		else
635			tr = NULL;
636
637		done = true;
638		if (tr != NULL) {
639			nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL);
640			qpair->sq_head = cpl.sqhd;
641		} else if (!in_panic) {
642			/*
643			 * A missing tracker is normally an error.  However, a
644			 * panic can stop the CPU this routine is running on
645			 * after completing an I/O but before updating
646			 * qpair->cq_head at 1 below.  Later, we re-enter this
647			 * routine to poll I/O associated with the kernel
648			 * dump. We find that the tr has been set to null before
649			 * calling the completion routine.  If it hasn't
650			 * completed (or it triggers a panic), then '1' below
651			 * won't have updated cq_head. Rather than panic again,
652			 * ignore this condition because it's not unexpected.
653			 */
654			nvme_printf(qpair->ctrlr,
655			    "cpl (cid = %u) does not map to outstanding cmd\n",
656				cpl.cid);
657			nvme_qpair_print_completion(qpair,
658			    &qpair->cpl[qpair->cq_head]);
659			KASSERT(0, ("received completion for unknown cmd"));
660		}
661
662		/*
663		 * There's a number of races with the following (see above) when
664		 * the system panics. We compensate for each one of them by
665		 * using the atomic store to force strong ordering (at least when
666		 * viewed in the aftermath of a panic).
667		 */
668		if (++qpair->cq_head == qpair->num_entries) {		/* 1 */
669			atomic_store_rel_int(&qpair->cq_head, 0);	/* 2 */
670			qpair->phase = !qpair->phase;			/* 3 */
671		}
672	}
673
674	if (done) {
675		bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
676		    qpair->cq_hdbl_off, qpair->cq_head);
677	}
678
679	return (done);
680}
681
682bool
683nvme_qpair_process_completions(struct nvme_qpair *qpair)
684{
685	bool done;
686
687	/*
688	 * Interlock with reset / recovery code. This is an usually uncontended
689	 * to make sure that we drain out of the ISRs before we reset the card
690	 * and to prevent races with the recovery process called from a timeout
691	 * context.
692	 */
693	if (!mtx_trylock(&qpair->recovery)) {
694		qpair->num_recovery_nolock++;
695		return (false);
696	}
697
698	done = _nvme_qpair_process_completions(qpair);
699
700	mtx_unlock(&qpair->recovery);
701
702	return (done);
703}
704
705static void
706nvme_qpair_msi_handler(void *arg)
707{
708	struct nvme_qpair *qpair = arg;
709
710	nvme_qpair_process_completions(qpair);
711}
712
713int
714nvme_qpair_construct(struct nvme_qpair *qpair,
715    uint32_t num_entries, uint32_t num_trackers,
716    struct nvme_controller *ctrlr)
717{
718	struct nvme_tracker	*tr;
719	size_t			cmdsz, cplsz, prpsz, allocsz, prpmemsz;
720	uint64_t		queuemem_phys, prpmem_phys, list_phys;
721	uint8_t			*queuemem, *prpmem, *prp_list;
722	int			i, err;
723
724	qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0;
725	qpair->num_entries = num_entries;
726	qpair->num_trackers = num_trackers;
727	qpair->ctrlr = ctrlr;
728
729	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
730	mtx_init(&qpair->recovery, "nvme qpair recovery", NULL, MTX_DEF);
731
732	callout_init_mtx(&qpair->timer, &qpair->recovery, 0);
733	qpair->timer_armed = false;
734	qpair->recovery_state = RECOVERY_WAITING;
735
736	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
737	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
738	    4, ctrlr->page_size, BUS_SPACE_MAXADDR,
739	    BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size,
740	    howmany(ctrlr->max_xfer_size, ctrlr->page_size) + 1,
741	    ctrlr->page_size, 0,
742	    NULL, NULL, &qpair->dma_tag_payload);
743	if (err != 0) {
744		nvme_printf(ctrlr, "payload tag create failed %d\n", err);
745		goto out;
746	}
747
748	/*
749	 * Each component must be page aligned, and individual PRP lists
750	 * cannot cross a page boundary.
751	 */
752	cmdsz = qpair->num_entries * sizeof(struct nvme_command);
753	cmdsz = roundup2(cmdsz, ctrlr->page_size);
754	cplsz = qpair->num_entries * sizeof(struct nvme_completion);
755	cplsz = roundup2(cplsz, ctrlr->page_size);
756	/*
757	 * For commands requiring more than 2 PRP entries, one PRP will be
758	 * embedded in the command (prp1), and the rest of the PRP entries
759	 * will be in a list pointed to by the command (prp2).
760	 */
761	prpsz = sizeof(uint64_t) *
762	    howmany(ctrlr->max_xfer_size, ctrlr->page_size);
763	prpmemsz = qpair->num_trackers * prpsz;
764	allocsz = cmdsz + cplsz + prpmemsz;
765
766	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
767	    ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
768	    allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
769	if (err != 0) {
770		nvme_printf(ctrlr, "tag create failed %d\n", err);
771		goto out;
772	}
773	bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
774
775	if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
776	     BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
777		nvme_printf(ctrlr, "failed to alloc qpair memory\n");
778		goto out;
779	}
780
781	if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
782	    queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
783		nvme_printf(ctrlr, "failed to load qpair memory\n");
784		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
785		    qpair->queuemem_map);
786		goto out;
787	}
788
789	qpair->num_cmds = 0;
790	qpair->num_intr_handler_calls = 0;
791	qpair->num_retries = 0;
792	qpair->num_failures = 0;
793	qpair->num_ignored = 0;
794	qpair->cmd = (struct nvme_command *)queuemem;
795	qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
796	prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
797	qpair->cmd_bus_addr = queuemem_phys;
798	qpair->cpl_bus_addr = queuemem_phys + cmdsz;
799	prpmem_phys = queuemem_phys + cmdsz + cplsz;
800
801	/*
802	 * Calcuate the stride of the doorbell register. Many emulators set this
803	 * value to correspond to a cache line. However, some hardware has set
804	 * it to various small values.
805	 */
806	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
807	    (qpair->id << (ctrlr->dstrd + 1));
808	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
809	    (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
810
811	TAILQ_INIT(&qpair->free_tr);
812	TAILQ_INIT(&qpair->outstanding_tr);
813	STAILQ_INIT(&qpair->queued_req);
814
815	list_phys = prpmem_phys;
816	prp_list = prpmem;
817	for (i = 0; i < qpair->num_trackers; i++) {
818		if (list_phys + prpsz > prpmem_phys + prpmemsz) {
819			qpair->num_trackers = i;
820			break;
821		}
822
823		/*
824		 * Make sure that the PRP list for this tracker doesn't
825		 * overflow to another nvme page.
826		 */
827		if (trunc_page(list_phys) !=
828		    trunc_page(list_phys + prpsz - 1)) {
829			list_phys = roundup2(list_phys, ctrlr->page_size);
830			prp_list =
831			    (uint8_t *)roundup2((uintptr_t)prp_list, ctrlr->page_size);
832		}
833
834		tr = malloc_domainset(sizeof(*tr), M_NVME,
835		    DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
836		bus_dmamap_create(qpair->dma_tag_payload, 0,
837		    &tr->payload_dma_map);
838		tr->cid = i;
839		tr->qpair = qpair;
840		tr->prp = (uint64_t *)prp_list;
841		tr->prp_bus_addr = list_phys;
842		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
843		list_phys += prpsz;
844		prp_list += prpsz;
845	}
846
847	if (qpair->num_trackers == 0) {
848		nvme_printf(ctrlr, "failed to allocate enough trackers\n");
849		goto out;
850	}
851
852	qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
853	    qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
854	    M_ZERO | M_WAITOK);
855
856	if (ctrlr->msi_count > 1) {
857		/*
858		 * MSI-X vector resource IDs start at 1, so we add one to
859		 *  the queue's vector to get the corresponding rid to use.
860		 */
861		qpair->rid = qpair->vector + 1;
862
863		qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
864		    &qpair->rid, RF_ACTIVE);
865		if (qpair->res == NULL) {
866			nvme_printf(ctrlr, "unable to allocate MSI\n");
867			goto out;
868		}
869		if (bus_setup_intr(ctrlr->dev, qpair->res,
870		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
871		    nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) {
872			nvme_printf(ctrlr, "unable to setup MSI\n");
873			goto out;
874		}
875		if (qpair->id == 0) {
876			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
877			    "admin");
878		} else {
879			bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
880			    "io%d", qpair->id - 1);
881		}
882	}
883
884	return (0);
885
886out:
887	nvme_qpair_destroy(qpair);
888	return (ENOMEM);
889}
890
891static void
892nvme_qpair_destroy(struct nvme_qpair *qpair)
893{
894	struct nvme_tracker	*tr;
895
896	mtx_lock(&qpair->recovery);
897	qpair->timer_armed = false;
898	mtx_unlock(&qpair->recovery);
899	callout_drain(&qpair->timer);
900
901	if (qpair->tag) {
902		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
903		qpair->tag = NULL;
904	}
905
906	if (qpair->act_tr) {
907		free(qpair->act_tr, M_NVME);
908		qpair->act_tr = NULL;
909	}
910
911	while (!TAILQ_EMPTY(&qpair->free_tr)) {
912		tr = TAILQ_FIRST(&qpair->free_tr);
913		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
914		bus_dmamap_destroy(qpair->dma_tag_payload,
915		    tr->payload_dma_map);
916		free(tr, M_NVME);
917	}
918
919	if (qpair->cmd != NULL) {
920		bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
921		bus_dmamem_free(qpair->dma_tag, qpair->cmd,
922		    qpair->queuemem_map);
923		qpair->cmd = NULL;
924	}
925
926	if (qpair->dma_tag) {
927		bus_dma_tag_destroy(qpair->dma_tag);
928		qpair->dma_tag = NULL;
929	}
930
931	if (qpair->dma_tag_payload) {
932		bus_dma_tag_destroy(qpair->dma_tag_payload);
933		qpair->dma_tag_payload = NULL;
934	}
935
936	if (mtx_initialized(&qpair->lock))
937		mtx_destroy(&qpair->lock);
938	if (mtx_initialized(&qpair->recovery))
939		mtx_destroy(&qpair->recovery);
940
941	if (qpair->res) {
942		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
943		    rman_get_rid(qpair->res), qpair->res);
944		qpair->res = NULL;
945	}
946}
947
948static void
949nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
950{
951	struct nvme_tracker	*tr;
952
953	/*
954	 * nvme_complete_tracker must be called without the qpair lock held. It
955	 * takes the lock to adjust outstanding_tr list, so make sure we don't
956	 * have it yet. We need the lock to make the list traverse safe, but
957	 * have to drop the lock to complete any AER. We restart the list scan
958	 * when we do this to make this safe. There's interlock with the ISR so
959	 * we know this tracker won't be completed twice.
960	 */
961	mtx_assert(&qpair->lock, MA_NOTOWNED);
962
963	mtx_lock(&qpair->lock);
964	tr = TAILQ_FIRST(&qpair->outstanding_tr);
965	while (tr != NULL) {
966		if (tr->req->cmd.opc != NVME_OPC_ASYNC_EVENT_REQUEST) {
967			tr = TAILQ_NEXT(tr, tailq);
968			continue;
969		}
970		mtx_unlock(&qpair->lock);
971		nvme_qpair_manual_complete_tracker(tr,
972		    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
973		    ERROR_PRINT_NONE);
974		mtx_lock(&qpair->lock);
975		tr = TAILQ_FIRST(&qpair->outstanding_tr);
976	}
977	mtx_unlock(&qpair->lock);
978}
979
980void
981nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
982{
983	mtx_assert(&qpair->lock, MA_NOTOWNED);
984
985	nvme_admin_qpair_abort_aers(qpair);
986	nvme_qpair_destroy(qpair);
987}
988
989void
990nvme_io_qpair_destroy(struct nvme_qpair *qpair)
991{
992
993	nvme_qpair_destroy(qpair);
994}
995
996static void
997nvme_abort_complete(void *arg, const struct nvme_completion *status)
998{
999	struct nvme_tracker     *tr = arg;
1000
1001	/*
1002	 * If cdw0 == 1, the controller was not able to abort the command
1003	 *  we requested.  We still need to check the active tracker array,
1004	 *  to cover race where I/O timed out at same time controller was
1005	 *  completing the I/O.
1006	 */
1007	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
1008		/*
1009		 * An I/O has timed out, and the controller was unable to
1010		 *  abort it for some reason.  Construct a fake completion
1011		 *  status, and then complete the I/O's tracker manually.
1012		 */
1013		nvme_printf(tr->qpair->ctrlr,
1014		    "abort command failed, aborting command manually\n");
1015		nvme_qpair_manual_complete_tracker(tr,
1016		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
1017	}
1018}
1019
1020static void
1021nvme_qpair_timeout(void *arg)
1022{
1023	struct nvme_qpair	*qpair = arg;
1024	struct nvme_controller	*ctrlr = qpair->ctrlr;
1025	struct nvme_tracker	*tr;
1026	sbintime_t		now;
1027	bool			idle = false;
1028	bool			needs_reset;
1029	uint32_t		csts;
1030	uint8_t			cfs;
1031
1032	mtx_assert(&qpair->recovery, MA_OWNED);
1033
1034	/*
1035	 * If the controller is failed, then stop polling. This ensures that any
1036	 * failure processing that races with the qpair timeout will fail
1037	 * safely.
1038	 */
1039	if (qpair->ctrlr->is_failed) {
1040		nvme_printf(qpair->ctrlr,
1041		    "Failed controller, stopping watchdog timeout.\n");
1042		qpair->timer_armed = false;
1043		return;
1044	}
1045
1046	/*
1047	 * Shutdown condition: We set qpair->timer_armed to false in
1048	 * nvme_qpair_destroy before calling callout_drain. When we call that,
1049	 * this routine might get called one last time. Exit w/o setting a
1050	 * timeout. None of the watchdog stuff needs to be done since we're
1051	 * destroying the qpair.
1052	 */
1053	if (!qpair->timer_armed) {
1054		nvme_printf(qpair->ctrlr,
1055		    "Timeout fired during nvme_qpair_destroy\n");
1056		return;
1057	}
1058
1059	switch (qpair->recovery_state) {
1060	case RECOVERY_NONE:
1061		/*
1062		 * Read csts to get value of cfs - controller fatal status.  If
1063		 * we are in the hot-plug or controller failed status proceed
1064		 * directly to reset. We also bail early if the status reads all
1065		 * 1's or the control fatal status bit is now 1. The latter is
1066		 * always true when the former is true, but not vice versa.  The
1067		 * intent of the code is that if the card is gone (all 1's) or
1068		 * we've failed, then try to do a reset (which someitmes
1069		 * unwedges a card reading all 1's that's not gone away, but
1070		 * usually doesn't).
1071		 */
1072		csts = nvme_mmio_read_4(ctrlr, csts);
1073		cfs = NVMEV(NVME_CSTS_REG_CFS, csts);
1074		if (csts == NVME_GONE || cfs == 1)
1075			goto do_reset;
1076
1077		/*
1078		 * Process completions. We already have the recovery lock, so
1079		 * call the locked version.
1080		 */
1081		_nvme_qpair_process_completions(qpair);
1082
1083		/*
1084		 * Check to see if we need to timeout any commands. If we do, then
1085		 * we also enter a recovery phase.
1086		 */
1087		now = getsbinuptime();
1088		needs_reset = false;
1089		idle = true;
1090		mtx_lock(&qpair->lock);
1091		TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) {
1092			/*
1093			 * Skip async commands, they are posted to the card for
1094			 * an indefinite amount of time and have no deadline.
1095			 */
1096			if (tr->deadline == SBT_MAX)
1097				continue;
1098			if (now > tr->deadline) {
1099				if (tr->req->cb_fn != nvme_abort_complete &&
1100				    ctrlr->enable_aborts) {
1101					/*
1102					 * This isn't an abort command, ask
1103					 * for a hardware abort.
1104					 */
1105					nvme_ctrlr_cmd_abort(ctrlr, tr->cid,
1106					    qpair->id, nvme_abort_complete, tr);
1107				} else {
1108					/*
1109					 * Otherwise we have a live command in
1110					 * the card (either one we couldn't
1111					 * abort, or aborts weren't enabled).
1112					 * The only safe way to proceed is to do
1113					 * a reset.
1114					 */
1115					needs_reset = true;
1116				}
1117			} else {
1118				idle = false;
1119			}
1120		}
1121		mtx_unlock(&qpair->lock);
1122		if (!needs_reset)
1123			break;
1124
1125		/*
1126		 * We've had a command timeout that we weren't able to abort
1127		 *
1128		 * If we get here due to a possible surprise hot-unplug event,
1129		 * then we let nvme_ctrlr_reset confirm and fail the
1130		 * controller.
1131		 */
1132	do_reset:
1133		nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
1134		    (csts == 0xffffffff) ? " and possible hot unplug" :
1135		    (cfs ? " and fatal error status" : ""));
1136		qpair->recovery_state = RECOVERY_WAITING;
1137		nvme_ctrlr_reset(ctrlr);
1138		idle = false;			/* We want to keep polling */
1139		break;
1140	case RECOVERY_WAITING:
1141		/*
1142		 * These messages aren't interesting while we're suspended. We
1143		 * put the queues into waiting state while
1144		 * suspending. Suspending takes a while, so we'll see these
1145		 * during that time and they aren't diagnostic. At other times,
1146		 * they indicate a problem that's worth complaining about.
1147		 */
1148		if (!device_is_suspended(ctrlr->dev))
1149			nvme_printf(ctrlr, "Waiting for reset to complete\n");
1150		idle = false;		/* We want to keep polling */
1151		break;
1152	}
1153
1154	/*
1155	 * Rearm the timeout.
1156	 */
1157	if (!idle) {
1158		callout_schedule_sbt(&qpair->timer, SBT_1S / 2, SBT_1S / 2, 0);
1159	} else {
1160		qpair->timer_armed = false;
1161	}
1162}
1163
1164/*
1165 * Submit the tracker to the hardware. Must already be in the
1166 * outstanding queue when called.
1167 */
1168void
1169nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
1170{
1171	struct nvme_request	*req;
1172	struct nvme_controller	*ctrlr;
1173	int timeout;
1174
1175	mtx_assert(&qpair->lock, MA_OWNED);
1176
1177	req = tr->req;
1178	req->cmd.cid = tr->cid;
1179	qpair->act_tr[tr->cid] = tr;
1180	ctrlr = qpair->ctrlr;
1181
1182	if (req->timeout) {
1183		if (req->cb_fn == nvme_completion_poll_cb)
1184			timeout = 1;
1185		else if (qpair->id == 0)
1186			timeout = ctrlr->admin_timeout_period;
1187		else
1188			timeout = ctrlr->timeout_period;
1189		tr->deadline = getsbinuptime() + timeout * SBT_1S;
1190		if (!qpair->timer_armed) {
1191			qpair->timer_armed = true;
1192			callout_reset_sbt_on(&qpair->timer, SBT_1S / 2, SBT_1S / 2,
1193			    nvme_qpair_timeout, qpair, qpair->cpu, 0);
1194		}
1195	} else
1196		tr->deadline = SBT_MAX;
1197
1198	/* Copy the command from the tracker to the submission queue. */
1199	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
1200
1201	if (++qpair->sq_tail == qpair->num_entries)
1202		qpair->sq_tail = 0;
1203
1204	bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
1205	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1206	bus_space_write_4(ctrlr->bus_tag, ctrlr->bus_handle,
1207	    qpair->sq_tdbl_off, qpair->sq_tail);
1208	qpair->num_cmds++;
1209}
1210
1211static void
1212nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1213{
1214	struct nvme_tracker 	*tr = arg;
1215	uint32_t		cur_nseg;
1216
1217	/*
1218	 * If the mapping operation failed, return immediately.  The caller
1219	 *  is responsible for detecting the error status and failing the
1220	 *  tracker manually.
1221	 */
1222	if (error != 0) {
1223		nvme_printf(tr->qpair->ctrlr,
1224		    "nvme_payload_map err %d\n", error);
1225		return;
1226	}
1227
1228	/*
1229	 * Note that we specified ctrlr->page_size for alignment and max
1230	 * segment size when creating the bus dma tags.  So here we can safely
1231	 * just transfer each segment to its associated PRP entry.
1232	 */
1233	tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
1234
1235	if (nseg == 2) {
1236		tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
1237	} else if (nseg > 2) {
1238		cur_nseg = 1;
1239		tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
1240		while (cur_nseg < nseg) {
1241			tr->prp[cur_nseg-1] =
1242			    htole64((uint64_t)seg[cur_nseg].ds_addr);
1243			cur_nseg++;
1244		}
1245	} else {
1246		/*
1247		 * prp2 should not be used by the controller
1248		 *  since there is only one segment, but set
1249		 *  to 0 just to be safe.
1250		 */
1251		tr->req->cmd.prp2 = 0;
1252	}
1253
1254	bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1255	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1256	nvme_qpair_submit_tracker(tr->qpair, tr);
1257}
1258
1259static void
1260_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1261{
1262	struct nvme_tracker	*tr;
1263	int			err = 0;
1264
1265	mtx_assert(&qpair->lock, MA_OWNED);
1266
1267	tr = TAILQ_FIRST(&qpair->free_tr);
1268	req->qpair = qpair;
1269
1270	if (tr == NULL || qpair->recovery_state != RECOVERY_NONE) {
1271		/*
1272		 * No tracker is available, or the qpair is disabled due to an
1273		 * in-progress controller-level reset. If we lose the race with
1274		 * recovery_state, then we may add an extra request to the queue
1275		 * which will be resubmitted later.  We only set recovery_state
1276		 * to NONE with qpair->lock also held, so if we observe that the
1277		 * state is not NONE, we know it can't transition to NONE below
1278		 * when we've submitted the request to hardware.
1279		 *
1280		 * Also, as part of the failure process, we set recovery_state
1281		 * to RECOVERY_WAITING, so we check here to see if we've failed
1282		 * the controller. We set it before we call the qpair_fail
1283		 * functions, which take out the lock lock before messing with
1284		 * queued_req. Since we hold that lock, we know it's safe to
1285		 * either fail directly, or queue the failure should is_failed
1286		 * be stale. If we lose the race reading is_failed, then
1287		 * nvme_qpair_fail will fail the queued request.
1288		 */
1289
1290		if (qpair->ctrlr->is_failed) {
1291			/*
1292			 * The controller has failed, so fail the request.
1293			 */
1294			nvme_qpair_manual_complete_request(qpair, req,
1295			    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
1296		} else {
1297			/*
1298			 * Put the request on the qpair's request queue to be
1299			 *  processed when a tracker frees up via a command
1300			 *  completion or when the controller reset is
1301			 *  completed.
1302			 */
1303			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1304		}
1305		return;
1306	}
1307
1308	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1309	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1310	tr->deadline = SBT_MAX;
1311	tr->req = req;
1312
1313	if (!req->payload_valid) {
1314		nvme_qpair_submit_tracker(tr->qpair, tr);
1315		return;
1316	}
1317
1318	/*
1319	 * tr->deadline updating when nvme_payload_map calls
1320	 * nvme_qpair_submit_tracker (we call it above directly
1321	 * when there's no map to load).
1322	 */
1323	err = bus_dmamap_load_mem(tr->qpair->dma_tag_payload,
1324	    tr->payload_dma_map, &req->payload, nvme_payload_map, tr, 0);
1325	if (err != 0) {
1326		/*
1327		 * The dmamap operation failed, so we manually fail the
1328		 *  tracker here with DATA_TRANSFER_ERROR status.
1329		 *
1330		 * nvme_qpair_manual_complete_tracker must not be called
1331		 *  with the qpair lock held.
1332		 */
1333		nvme_printf(qpair->ctrlr,
1334		    "bus_dmamap_load_mem returned 0x%x!\n", err);
1335		mtx_unlock(&qpair->lock);
1336		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1337		    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1338		mtx_lock(&qpair->lock);
1339	}
1340}
1341
1342void
1343nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1344{
1345
1346	mtx_lock(&qpair->lock);
1347	_nvme_qpair_submit_request(qpair, req);
1348	mtx_unlock(&qpair->lock);
1349}
1350
1351static void
1352nvme_qpair_enable(struct nvme_qpair *qpair)
1353{
1354	if (mtx_initialized(&qpair->recovery))
1355		mtx_assert(&qpair->recovery, MA_OWNED);
1356	if (mtx_initialized(&qpair->lock))
1357		mtx_assert(&qpair->lock, MA_OWNED);
1358	KASSERT(!qpair->ctrlr->is_failed,
1359	    ("Enabling a failed qpair\n"));
1360
1361	qpair->recovery_state = RECOVERY_NONE;
1362}
1363
1364void
1365nvme_qpair_reset(struct nvme_qpair *qpair)
1366{
1367
1368	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1369
1370	/*
1371	 * First time through the completion queue, HW will set phase
1372	 *  bit on completions to 1.  So set this to 1 here, indicating
1373	 *  we're looking for a 1 to know which entries have completed.
1374	 *  we'll toggle the bit each time when the completion queue
1375	 *  rolls over.
1376	 */
1377	qpair->phase = 1;
1378
1379	memset(qpair->cmd, 0,
1380	    qpair->num_entries * sizeof(struct nvme_command));
1381	memset(qpair->cpl, 0,
1382	    qpair->num_entries * sizeof(struct nvme_completion));
1383}
1384
1385void
1386nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1387{
1388	struct nvme_tracker		*tr;
1389	struct nvme_tracker		*tr_temp;
1390	bool				rpt;
1391
1392	/*
1393	 * Manually abort each outstanding admin command.  Do not retry
1394	 * admin commands found here, since they will be left over from
1395	 * a controller reset and its likely the context in which the
1396	 * command was issued no longer applies.
1397	 */
1398	rpt = !TAILQ_EMPTY(&qpair->outstanding_tr);
1399	if (rpt)
1400		nvme_printf(qpair->ctrlr,
1401		    "aborting outstanding admin command\n");
1402	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1403		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1404		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1405	}
1406	if (rpt)
1407		nvme_printf(qpair->ctrlr,
1408		    "done aborting outstanding admin\n");
1409
1410	mtx_lock(&qpair->recovery);
1411	mtx_lock(&qpair->lock);
1412	nvme_qpair_enable(qpair);
1413	mtx_unlock(&qpair->lock);
1414	mtx_unlock(&qpair->recovery);
1415}
1416
1417void
1418nvme_io_qpair_enable(struct nvme_qpair *qpair)
1419{
1420	STAILQ_HEAD(, nvme_request)	temp;
1421	struct nvme_tracker		*tr;
1422	struct nvme_tracker		*tr_temp;
1423	struct nvme_request		*req;
1424	bool				report;
1425
1426	/*
1427	 * Manually abort each outstanding I/O.  This normally results in a
1428	 * retry, unless the retry count on the associated request has
1429	 * reached its limit.
1430	 */
1431	report = !TAILQ_EMPTY(&qpair->outstanding_tr);
1432	if (report)
1433		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1434	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1435		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1436		    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1437	}
1438	if (report)
1439		nvme_printf(qpair->ctrlr, "done aborting outstanding i/o\n");
1440
1441	mtx_lock(&qpair->recovery);
1442	mtx_lock(&qpair->lock);
1443	nvme_qpair_enable(qpair);
1444
1445	STAILQ_INIT(&temp);
1446	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1447
1448	report = !STAILQ_EMPTY(&temp);
1449	if (report)
1450		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1451	while (!STAILQ_EMPTY(&temp)) {
1452		req = STAILQ_FIRST(&temp);
1453		STAILQ_REMOVE_HEAD(&temp, stailq);
1454		nvme_qpair_print_command(qpair, &req->cmd);
1455		_nvme_qpair_submit_request(qpair, req);
1456	}
1457	if (report)
1458		nvme_printf(qpair->ctrlr, "done resubmitting i/o\n");
1459
1460	mtx_unlock(&qpair->lock);
1461	mtx_unlock(&qpair->recovery);
1462}
1463
1464static void
1465nvme_qpair_disable(struct nvme_qpair *qpair)
1466{
1467	struct nvme_tracker	*tr, *tr_temp;
1468
1469	if (mtx_initialized(&qpair->recovery))
1470		mtx_assert(&qpair->recovery, MA_OWNED);
1471	if (mtx_initialized(&qpair->lock))
1472		mtx_assert(&qpair->lock, MA_OWNED);
1473
1474	qpair->recovery_state = RECOVERY_WAITING;
1475	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1476		tr->deadline = SBT_MAX;
1477	}
1478}
1479
1480void
1481nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1482{
1483	mtx_lock(&qpair->recovery);
1484
1485	mtx_lock(&qpair->lock);
1486	nvme_qpair_disable(qpair);
1487	mtx_unlock(&qpair->lock);
1488
1489	nvme_admin_qpair_abort_aers(qpair);
1490
1491	mtx_unlock(&qpair->recovery);
1492}
1493
1494void
1495nvme_io_qpair_disable(struct nvme_qpair *qpair)
1496{
1497	mtx_lock(&qpair->recovery);
1498	mtx_lock(&qpair->lock);
1499
1500	nvme_qpair_disable(qpair);
1501
1502	mtx_unlock(&qpair->lock);
1503	mtx_unlock(&qpair->recovery);
1504}
1505
1506void
1507nvme_qpair_fail(struct nvme_qpair *qpair)
1508{
1509	struct nvme_tracker		*tr;
1510	struct nvme_request		*req;
1511
1512	if (!mtx_initialized(&qpair->lock))
1513		return;
1514
1515	mtx_lock(&qpair->lock);
1516
1517	if (!STAILQ_EMPTY(&qpair->queued_req)) {
1518		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1519	}
1520	while (!STAILQ_EMPTY(&qpair->queued_req)) {
1521		req = STAILQ_FIRST(&qpair->queued_req);
1522		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1523		mtx_unlock(&qpair->lock);
1524		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1525		    NVME_SC_ABORTED_BY_REQUEST);
1526		mtx_lock(&qpair->lock);
1527	}
1528
1529	if (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1530		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1531	}
1532	/* Manually abort each outstanding I/O. */
1533	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1534		tr = TAILQ_FIRST(&qpair->outstanding_tr);
1535		/*
1536		 * Do not remove the tracker.  The abort_tracker path will
1537		 *  do that for us.
1538		 */
1539		mtx_unlock(&qpair->lock);
1540		nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC,
1541		    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1542		mtx_lock(&qpair->lock);
1543	}
1544
1545	mtx_unlock(&qpair->lock);
1546}
1547