1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *   1. Redistributions of source code must retain the above copyright
10 *      notice, this list of conditions and the following disclaimer.
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include "opt_inet.h"
29#include "opt_inet6.h"
30
31#include <sys/param.h>
32#include <sys/module.h>
33#include <sys/errno.h>
34#include <sys/eventhandler.h>
35#include <sys/jail.h>
36#include <sys/poll.h>  /* POLLIN, POLLOUT */
37#include <sys/kernel.h> /* types used in module initialization */
38#include <sys/conf.h>	/* DEV_MODULE_ORDERED */
39#include <sys/endian.h>
40#include <sys/syscallsubr.h> /* kern_ioctl() */
41
42#include <sys/rwlock.h>
43
44#include <vm/vm.h>      /* vtophys */
45#include <vm/pmap.h>    /* vtophys */
46#include <vm/vm_param.h>
47#include <vm/vm_object.h>
48#include <vm/vm_page.h>
49#include <vm/vm_pager.h>
50#include <vm/uma.h>
51
52
53#include <sys/malloc.h>
54#include <sys/socket.h> /* sockaddrs */
55#include <sys/selinfo.h>
56#include <sys/kthread.h> /* kthread_add() */
57#include <sys/proc.h> /* PROC_LOCK() */
58#include <sys/unistd.h> /* RFNOWAIT */
59#include <sys/sched.h> /* sched_bind() */
60#include <sys/smp.h> /* mp_maxid */
61#include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
62#include <net/if.h>
63#include <net/if_var.h>
64#include <net/if_types.h> /* IFT_ETHER */
65#include <net/ethernet.h> /* ether_ifdetach */
66#include <net/if_dl.h> /* LLADDR */
67#include <machine/bus.h>        /* bus_dmamap_* */
68#include <netinet/in.h>		/* in6_cksum_pseudo() */
69#include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
70
71#include <net/netmap.h>
72#include <dev/netmap/netmap_kern.h>
73#include <net/netmap_virt.h>
74#include <dev/netmap/netmap_mem2.h>
75
76
77/* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
78
79static void
80nm_kqueue_notify(void *opaque, int pending)
81{
82	struct nm_selinfo *si = opaque;
83
84	/* We use a non-zero hint to distinguish this notification call
85	 * from the call done in kqueue_scan(), which uses hint=0.
86	 */
87	KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
88}
89
90int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
91	int err;
92
93	TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
94	si->ntfytq = taskqueue_create(name, M_NOWAIT,
95	    taskqueue_thread_enqueue, &si->ntfytq);
96	if (si->ntfytq == NULL)
97		return -ENOMEM;
98	err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
99	if (err) {
100		taskqueue_free(si->ntfytq);
101		si->ntfytq = NULL;
102		return err;
103	}
104
105	snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
106	mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
107	knlist_init_mtx(&si->si.si_note, &si->m);
108	si->kqueue_users = 0;
109
110	return (0);
111}
112
113void
114nm_os_selinfo_uninit(NM_SELINFO_T *si)
115{
116	if (si->ntfytq == NULL) {
117		return;	/* si was not initialized */
118	}
119	taskqueue_drain(si->ntfytq, &si->ntfytask);
120	taskqueue_free(si->ntfytq);
121	si->ntfytq = NULL;
122	knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
123	knlist_destroy(&si->si.si_note);
124	/* now we don't need the mutex anymore */
125	mtx_destroy(&si->m);
126}
127
128void *
129nm_os_malloc(size_t size)
130{
131	return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
132}
133
134void *
135nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
136{
137	return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
138}
139
140void
141nm_os_free(void *addr)
142{
143	free(addr, M_DEVBUF);
144}
145
146void
147nm_os_ifnet_lock(void)
148{
149	IFNET_RLOCK();
150}
151
152void
153nm_os_ifnet_unlock(void)
154{
155	IFNET_RUNLOCK();
156}
157
158static int netmap_use_count = 0;
159
160void
161nm_os_get_module(void)
162{
163	netmap_use_count++;
164}
165
166void
167nm_os_put_module(void)
168{
169	netmap_use_count--;
170}
171
172static void
173netmap_ifnet_arrival_handler(void *arg __unused, if_t ifp)
174{
175	netmap_undo_zombie(ifp);
176}
177
178static void
179netmap_ifnet_departure_handler(void *arg __unused, if_t ifp)
180{
181	netmap_make_zombie(ifp);
182}
183
184static eventhandler_tag nm_ifnet_ah_tag;
185static eventhandler_tag nm_ifnet_dh_tag;
186
187int
188nm_os_ifnet_init(void)
189{
190	nm_ifnet_ah_tag =
191		EVENTHANDLER_REGISTER(ifnet_arrival_event,
192				netmap_ifnet_arrival_handler,
193				NULL, EVENTHANDLER_PRI_ANY);
194	nm_ifnet_dh_tag =
195		EVENTHANDLER_REGISTER(ifnet_departure_event,
196				netmap_ifnet_departure_handler,
197				NULL, EVENTHANDLER_PRI_ANY);
198	return 0;
199}
200
201void
202nm_os_ifnet_fini(void)
203{
204	EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
205			nm_ifnet_ah_tag);
206	EVENTHANDLER_DEREGISTER(ifnet_departure_event,
207			nm_ifnet_dh_tag);
208}
209
210unsigned
211nm_os_ifnet_mtu(if_t ifp)
212{
213	return if_getmtu(ifp);
214}
215
216rawsum_t
217nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
218{
219	/* TODO XXX please use the FreeBSD implementation for this. */
220	uint16_t *words = (uint16_t *)data;
221	int nw = len / 2;
222	int i;
223
224	for (i = 0; i < nw; i++)
225		cur_sum += be16toh(words[i]);
226
227	if (len & 1)
228		cur_sum += (data[len-1] << 8);
229
230	return cur_sum;
231}
232
233/* Fold a raw checksum: 'cur_sum' is in host byte order, while the
234 * return value is in network byte order.
235 */
236uint16_t
237nm_os_csum_fold(rawsum_t cur_sum)
238{
239	/* TODO XXX please use the FreeBSD implementation for this. */
240	while (cur_sum >> 16)
241		cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
242
243	return htobe16((~cur_sum) & 0xFFFF);
244}
245
246uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
247{
248#if 0
249	return in_cksum_hdr((void *)iph);
250#else
251	return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
252#endif
253}
254
255void
256nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
257					size_t datalen, uint16_t *check)
258{
259#ifdef INET
260	uint16_t pseudolen = datalen + iph->protocol;
261
262	/* Compute and insert the pseudo-header checksum. */
263	*check = in_pseudo(iph->saddr, iph->daddr,
264				 htobe16(pseudolen));
265	/* Compute the checksum on TCP/UDP header + payload
266	 * (includes the pseudo-header).
267	 */
268	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
269#else
270	static int notsupported = 0;
271	if (!notsupported) {
272		notsupported = 1;
273		nm_prerr("inet4 segmentation not supported");
274	}
275#endif
276}
277
278void
279nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
280					size_t datalen, uint16_t *check)
281{
282#ifdef INET6
283	*check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
284	*check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
285#else
286	static int notsupported = 0;
287	if (!notsupported) {
288		notsupported = 1;
289		nm_prerr("inet6 segmentation not supported");
290	}
291#endif
292}
293
294/* on FreeBSD we send up one packet at a time */
295void *
296nm_os_send_up(if_t ifp, struct mbuf *m, struct mbuf *prev)
297{
298	NA(ifp)->if_input(ifp, m);
299	return NULL;
300}
301
302int
303nm_os_mbuf_has_csum_offld(struct mbuf *m)
304{
305	return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
306					 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
307					 CSUM_SCTP_IPV6);
308}
309
310int
311nm_os_mbuf_has_seg_offld(struct mbuf *m)
312{
313	return m->m_pkthdr.csum_flags & CSUM_TSO;
314}
315
316static void
317freebsd_generic_rx_handler(if_t ifp, struct mbuf *m)
318{
319	int stolen;
320
321	if (unlikely(!NM_NA_VALID(ifp))) {
322		nm_prlim(1, "Warning: RX packet intercepted, but no"
323				" emulated adapter");
324		return;
325	}
326
327	do {
328		struct mbuf *n;
329
330		n = m->m_nextpkt;
331		m->m_nextpkt = NULL;
332		stolen = generic_rx_handler(ifp, m);
333		if (!stolen) {
334			NA(ifp)->if_input(ifp, m);
335		}
336		m = n;
337	} while (m != NULL);
338}
339
340/*
341 * Intercept the rx routine in the standard device driver.
342 * Second argument is non-zero to intercept, 0 to restore
343 */
344int
345nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
346{
347	struct netmap_adapter *na = &gna->up.up;
348	if_t ifp = na->ifp;
349	int ret = 0;
350
351	nm_os_ifnet_lock();
352	if (intercept) {
353		if_setcapenablebit(ifp, IFCAP_NETMAP, 0);
354		if_setinputfn(ifp, freebsd_generic_rx_handler);
355	} else {
356		if_setcapenablebit(ifp, 0, IFCAP_NETMAP);
357		if_setinputfn(ifp, na->if_input);
358	}
359	nm_os_ifnet_unlock();
360
361	return ret;
362}
363
364
365/*
366 * Intercept the packet steering routine in the tx path,
367 * so that we can decide which queue is used for an mbuf.
368 * Second argument is non-zero to intercept, 0 to restore.
369 * On freebsd we just intercept if_transmit.
370 */
371int
372nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
373{
374	struct netmap_adapter *na = &gna->up.up;
375	if_t ifp = netmap_generic_getifp(gna);
376
377	nm_os_ifnet_lock();
378	if (intercept) {
379		na->if_transmit = if_gettransmitfn(ifp);
380		if_settransmitfn(ifp, netmap_transmit);
381	} else {
382		if_settransmitfn(ifp, na->if_transmit);
383	}
384	nm_os_ifnet_unlock();
385
386	return 0;
387}
388
389
390/*
391 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
392 * and non-zero on error (which may be packet drops or other errors).
393 * addr and len identify the netmap buffer, m is the (preallocated)
394 * mbuf to use for transmissions.
395 *
396 * Zero-copy transmission is possible if netmap is attached directly to a
397 * hardware interface: when cleaning we simply wait for the mbuf cluster
398 * refcount to decrement to 1, indicating that the driver has completed
399 * transmission and is done with the buffer.  However, this approach can
400 * lead to queue deadlocks when attaching to software interfaces (e.g.,
401 * if_bridge) since we cannot rely on member ports to promptly reclaim
402 * transmitted mbufs.  Since there is no easy way to distinguish these
403 * cases, we currently always copy the buffer.
404 *
405 * On multiqueue cards, we can force the queue using
406 *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
407 *              i = m->m_pkthdr.flowid % adapter->num_queues;
408 *      else
409 *              i = curcpu % adapter->num_queues;
410 */
411int
412nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
413{
414	int ret;
415	u_int len = a->len;
416	if_t ifp = a->ifp;
417	struct mbuf *m = a->m;
418
419	M_ASSERTPKTHDR(m);
420	KASSERT((m->m_flags & M_EXT) != 0,
421	    ("%s: mbuf %p has no cluster", __func__, m));
422
423	if (MBUF_REFCNT(m) != 1) {
424		nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
425		panic("in generic_xmit_frame");
426	}
427	if (unlikely(m->m_ext.ext_size < len)) {
428		nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
429		len = m->m_ext.ext_size;
430	}
431
432	m_copyback(m, 0, len, a->addr);
433	m->m_len = m->m_pkthdr.len = len;
434	SET_MBUF_REFCNT(m, 2);
435	M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
436	m->m_pkthdr.flowid = a->ring_nr;
437	m->m_pkthdr.rcvif = ifp; /* used for tx notification */
438	CURVNET_SET(if_getvnet(ifp));
439	ret = NA(ifp)->if_transmit(ifp, m);
440	CURVNET_RESTORE();
441	return ret ? -1 : 0;
442}
443
444struct netmap_adapter *
445netmap_getna(if_t ifp)
446{
447	return (NA(ifp));
448}
449
450/*
451 * The following two functions are empty until we have a generic
452 * way to extract the info from the ifp
453 */
454int
455nm_os_generic_find_num_desc(if_t ifp, unsigned int *tx, unsigned int *rx)
456{
457	return 0;
458}
459
460
461void
462nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq)
463{
464	unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
465
466	*txq = num_rings;
467	*rxq = num_rings;
468}
469
470void
471nm_os_generic_set_features(struct netmap_generic_adapter *gna)
472{
473
474	gna->rxsg = 1; /* Supported through m_copydata. */
475	gna->txqdisc = 0; /* Not supported. */
476}
477
478void
479nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
480{
481	mit->mit_pending = 0;
482	mit->mit_ring_idx = idx;
483	mit->mit_na = na;
484}
485
486
487void
488nm_os_mitigation_start(struct nm_generic_mit *mit)
489{
490}
491
492
493void
494nm_os_mitigation_restart(struct nm_generic_mit *mit)
495{
496}
497
498
499int
500nm_os_mitigation_active(struct nm_generic_mit *mit)
501{
502
503	return 0;
504}
505
506
507void
508nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
509{
510}
511
512static int
513nm_vi_dummy(if_t ifp, u_long cmd, caddr_t addr)
514{
515
516	return EINVAL;
517}
518
519static void
520nm_vi_start(if_t ifp)
521{
522	panic("nm_vi_start() must not be called");
523}
524
525/*
526 * Index manager of persistent virtual interfaces.
527 * It is used to decide the lowest byte of the MAC address.
528 * We use the same algorithm with management of bridge port index.
529 */
530#define NM_VI_MAX	255
531static struct {
532	uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
533	uint8_t active;
534	struct mtx lock;
535} nm_vi_indices;
536
537void
538nm_os_vi_init_index(void)
539{
540	int i;
541	for (i = 0; i < NM_VI_MAX; i++)
542		nm_vi_indices.index[i] = i;
543	nm_vi_indices.active = 0;
544	mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
545}
546
547/* return -1 if no index available */
548static int
549nm_vi_get_index(void)
550{
551	int ret;
552
553	mtx_lock(&nm_vi_indices.lock);
554	ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
555		nm_vi_indices.index[nm_vi_indices.active++];
556	mtx_unlock(&nm_vi_indices.lock);
557	return ret;
558}
559
560static void
561nm_vi_free_index(uint8_t val)
562{
563	int i, lim;
564
565	mtx_lock(&nm_vi_indices.lock);
566	lim = nm_vi_indices.active;
567	for (i = 0; i < lim; i++) {
568		if (nm_vi_indices.index[i] == val) {
569			/* swap index[lim-1] and j */
570			int tmp = nm_vi_indices.index[lim-1];
571			nm_vi_indices.index[lim-1] = val;
572			nm_vi_indices.index[i] = tmp;
573			nm_vi_indices.active--;
574			break;
575		}
576	}
577	if (lim == nm_vi_indices.active)
578		nm_prerr("Index %u not found", val);
579	mtx_unlock(&nm_vi_indices.lock);
580}
581#undef NM_VI_MAX
582
583/*
584 * Implementation of a netmap-capable virtual interface that
585 * registered to the system.
586 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
587 *
588 * Note: Linux sets refcount to 0 on allocation of net_device,
589 * then increments it on registration to the system.
590 * FreeBSD sets refcount to 1 on if_alloc(), and does not
591 * increment this refcount on if_attach().
592 */
593int
594nm_os_vi_persist(const char *name, if_t *ret)
595{
596	if_t ifp;
597	u_short macaddr_hi;
598	uint32_t macaddr_mid;
599	u_char eaddr[6];
600	int unit = nm_vi_get_index(); /* just to decide MAC address */
601
602	if (unit < 0)
603		return EBUSY;
604	/*
605	 * We use the same MAC address generation method with tap
606	 * except for the highest octet is 00:be instead of 00:bd
607	 */
608	macaddr_hi = htons(0x00be); /* XXX tap + 1 */
609	macaddr_mid = (uint32_t) ticks;
610	bcopy(&macaddr_hi, eaddr, sizeof(short));
611	bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
612	eaddr[5] = (uint8_t)unit;
613
614	ifp = if_alloc(IFT_ETHER);
615	if (ifp == NULL) {
616		nm_prerr("if_alloc failed");
617		return ENOMEM;
618	}
619	if_initname(ifp, name, IF_DUNIT_NONE);
620	if_setflags(ifp, IFF_UP | IFF_SIMPLEX | IFF_MULTICAST);
621	if_setinitfn(ifp, (void *)nm_vi_dummy);
622	if_setioctlfn(ifp, nm_vi_dummy);
623	if_setstartfn(ifp, nm_vi_start);
624	if_setmtu(ifp, ETHERMTU);
625	if_setsendqlen(ifp, ifqmaxlen);
626	if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
627	if_setcapenablebit(ifp, IFCAP_LINKSTATE, 0);
628
629	ether_ifattach(ifp, eaddr);
630	*ret = ifp;
631	return 0;
632}
633
634/* unregister from the system and drop the final refcount */
635void
636nm_os_vi_detach(if_t ifp)
637{
638	nm_vi_free_index(((char *)if_getlladdr(ifp))[5]);
639	ether_ifdetach(ifp);
640	if_free(ifp);
641}
642
643#ifdef WITH_EXTMEM
644#include <vm/vm_map.h>
645#include <vm/vm_extern.h>
646#include <vm/vm_kern.h>
647struct nm_os_extmem {
648	vm_object_t obj;
649	vm_offset_t kva;
650	vm_offset_t size;
651	uintptr_t scan;
652};
653
654void
655nm_os_extmem_delete(struct nm_os_extmem *e)
656{
657	nm_prinf("freeing %zx bytes", (size_t)e->size);
658	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
659	nm_os_free(e);
660}
661
662char *
663nm_os_extmem_nextpage(struct nm_os_extmem *e)
664{
665	char *rv = NULL;
666	if (e->scan < e->kva + e->size) {
667		rv = (char *)e->scan;
668		e->scan += PAGE_SIZE;
669	}
670	return rv;
671}
672
673int
674nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
675{
676	return (e1->obj == e2->obj);
677}
678
679int
680nm_os_extmem_nr_pages(struct nm_os_extmem *e)
681{
682	return e->size >> PAGE_SHIFT;
683}
684
685struct nm_os_extmem *
686nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
687{
688	vm_map_t map;
689	vm_map_entry_t entry;
690	vm_object_t obj;
691	vm_prot_t prot;
692	vm_pindex_t index;
693	boolean_t wired;
694	struct nm_os_extmem *e = NULL;
695	int rv, error = 0;
696
697	e = nm_os_malloc(sizeof(*e));
698	if (e == NULL) {
699		error = ENOMEM;
700		goto out;
701	}
702
703	map = &curthread->td_proc->p_vmspace->vm_map;
704	rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
705			&obj, &index, &prot, &wired);
706	if (rv != KERN_SUCCESS) {
707		nm_prerr("address %lx not found", p);
708		error = vm_mmap_to_errno(rv);
709		goto out_free;
710	}
711	vm_object_reference(obj);
712
713	/* check that we are given the whole vm_object ? */
714	vm_map_lookup_done(map, entry);
715
716	e->obj = obj;
717	/* Wire the memory and add the vm_object to the kernel map,
718	 * to make sure that it is not freed even if all the processes
719	 * that are mmap()ing should munmap() it.
720	 */
721	e->kva = vm_map_min(kernel_map);
722	e->size = obj->size << PAGE_SHIFT;
723	rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
724			VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
725			VM_PROT_READ | VM_PROT_WRITE, 0);
726	if (rv != KERN_SUCCESS) {
727		nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
728		error = vm_mmap_to_errno(rv);
729		goto out_rel;
730	}
731	rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
732			VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
733	if (rv != KERN_SUCCESS) {
734		nm_prerr("vm_map_wire failed");
735		error = vm_mmap_to_errno(rv);
736		goto out_rem;
737	}
738
739	e->scan = e->kva;
740
741	return e;
742
743out_rem:
744	vm_map_remove(kernel_map, e->kva, e->kva + e->size);
745out_rel:
746	vm_object_deallocate(e->obj);
747	e->obj = NULL;
748out_free:
749	nm_os_free(e);
750out:
751	if (perror)
752		*perror = error;
753	return NULL;
754}
755#endif /* WITH_EXTMEM */
756
757/* ================== PTNETMAP GUEST SUPPORT ==================== */
758
759#ifdef WITH_PTNETMAP
760#include <sys/bus.h>
761#include <sys/rman.h>
762#include <machine/bus.h>        /* bus_dmamap_* */
763#include <machine/resource.h>
764#include <dev/pci/pcivar.h>
765#include <dev/pci/pcireg.h>
766/*
767 * ptnetmap memory device (memdev) for freebsd guest,
768 * ssed to expose host netmap memory to the guest through a PCI BAR.
769 */
770
771/*
772 * ptnetmap memdev private data structure
773 */
774struct ptnetmap_memdev {
775	device_t dev;
776	struct resource *pci_io;
777	struct resource *pci_mem;
778	struct netmap_mem_d *nm_mem;
779};
780
781static int	ptn_memdev_probe(device_t);
782static int	ptn_memdev_attach(device_t);
783static int	ptn_memdev_detach(device_t);
784static int	ptn_memdev_shutdown(device_t);
785
786static device_method_t ptn_memdev_methods[] = {
787	DEVMETHOD(device_probe, ptn_memdev_probe),
788	DEVMETHOD(device_attach, ptn_memdev_attach),
789	DEVMETHOD(device_detach, ptn_memdev_detach),
790	DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
791	DEVMETHOD_END
792};
793
794static driver_t ptn_memdev_driver = {
795	PTNETMAP_MEMDEV_NAME,
796	ptn_memdev_methods,
797	sizeof(struct ptnetmap_memdev),
798};
799
800/* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
801 * below. */
802DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, NULL, NULL,
803		      SI_ORDER_MIDDLE + 1);
804
805/*
806 * Map host netmap memory through PCI-BAR in the guest OS,
807 * returning physical (nm_paddr) and virtual (nm_addr) addresses
808 * of the netmap memory mapped in the guest.
809 */
810int
811nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
812		      void **nm_addr, uint64_t *mem_size)
813{
814	int rid;
815
816	nm_prinf("ptn_memdev_driver iomap");
817
818	rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
819	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
820	*mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
821			(*mem_size << 32);
822
823	/* map memory allocator */
824	ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
825			&rid, 0, ~0, *mem_size, RF_ACTIVE);
826	if (ptn_dev->pci_mem == NULL) {
827		*nm_paddr = 0;
828		*nm_addr = NULL;
829		return ENOMEM;
830	}
831
832	*nm_paddr = rman_get_start(ptn_dev->pci_mem);
833	*nm_addr = rman_get_virtual(ptn_dev->pci_mem);
834
835	nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
836			PTNETMAP_MEM_PCI_BAR,
837			(unsigned long)(*nm_paddr),
838			(unsigned long)rman_get_size(ptn_dev->pci_mem),
839			(unsigned long)*mem_size);
840	return (0);
841}
842
843uint32_t
844nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
845{
846	return bus_read_4(ptn_dev->pci_io, reg);
847}
848
849/* Unmap host netmap memory. */
850void
851nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
852{
853	nm_prinf("ptn_memdev_driver iounmap");
854
855	if (ptn_dev->pci_mem) {
856		bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
857			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
858		ptn_dev->pci_mem = NULL;
859	}
860}
861
862/* Device identification routine, return BUS_PROBE_DEFAULT on success,
863 * positive on failure */
864static int
865ptn_memdev_probe(device_t dev)
866{
867	char desc[256];
868
869	if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
870		return (ENXIO);
871	if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
872		return (ENXIO);
873
874	snprintf(desc, sizeof(desc), "%s PCI adapter",
875			PTNETMAP_MEMDEV_NAME);
876	device_set_desc_copy(dev, desc);
877
878	return (BUS_PROBE_DEFAULT);
879}
880
881/* Device initialization routine. */
882static int
883ptn_memdev_attach(device_t dev)
884{
885	struct ptnetmap_memdev *ptn_dev;
886	int rid;
887	uint16_t mem_id;
888
889	ptn_dev = device_get_softc(dev);
890	ptn_dev->dev = dev;
891
892	pci_enable_busmaster(dev);
893
894	rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
895	ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
896						 RF_ACTIVE);
897	if (ptn_dev->pci_io == NULL) {
898	        device_printf(dev, "cannot map I/O space\n");
899	        return (ENXIO);
900	}
901
902	mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
903
904	/* create guest allocator */
905	ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
906	if (ptn_dev->nm_mem == NULL) {
907		ptn_memdev_detach(dev);
908	        return (ENOMEM);
909	}
910	netmap_mem_get(ptn_dev->nm_mem);
911
912	nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
913
914	return (0);
915}
916
917/* Device removal routine. */
918static int
919ptn_memdev_detach(device_t dev)
920{
921	struct ptnetmap_memdev *ptn_dev;
922
923	ptn_dev = device_get_softc(dev);
924
925	if (ptn_dev->nm_mem) {
926		nm_prinf("ptnetmap memdev detached, host memid %u",
927			netmap_mem_get_id(ptn_dev->nm_mem));
928		netmap_mem_put(ptn_dev->nm_mem);
929		ptn_dev->nm_mem = NULL;
930	}
931	if (ptn_dev->pci_mem) {
932		bus_release_resource(dev, SYS_RES_MEMORY,
933			PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
934		ptn_dev->pci_mem = NULL;
935	}
936	if (ptn_dev->pci_io) {
937		bus_release_resource(dev, SYS_RES_IOPORT,
938			PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
939		ptn_dev->pci_io = NULL;
940	}
941
942	return (0);
943}
944
945static int
946ptn_memdev_shutdown(device_t dev)
947{
948	return bus_generic_shutdown(dev);
949}
950
951#endif /* WITH_PTNETMAP */
952
953/*
954 * In order to track whether pages are still mapped, we hook into
955 * the standard cdev_pager and intercept the constructor and
956 * destructor.
957 */
958
959struct netmap_vm_handle_t {
960	struct cdev 		*dev;
961	struct netmap_priv_d	*priv;
962};
963
964
965static int
966netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
967		vm_ooffset_t foff, struct ucred *cred, u_short *color)
968{
969	struct netmap_vm_handle_t *vmh = handle;
970
971	if (netmap_verbose)
972		nm_prinf("handle %p size %jd prot %d foff %jd",
973			handle, (intmax_t)size, prot, (intmax_t)foff);
974	if (color)
975		*color = 0;
976	dev_ref(vmh->dev);
977	return 0;
978}
979
980
981static void
982netmap_dev_pager_dtor(void *handle)
983{
984	struct netmap_vm_handle_t *vmh = handle;
985	struct cdev *dev = vmh->dev;
986	struct netmap_priv_d *priv = vmh->priv;
987
988	if (netmap_verbose)
989		nm_prinf("handle %p", handle);
990	netmap_dtor(priv);
991	free(vmh, M_DEVBUF);
992	dev_rel(dev);
993}
994
995
996static int
997netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
998	int prot, vm_page_t *mres)
999{
1000	struct netmap_vm_handle_t *vmh = object->handle;
1001	struct netmap_priv_d *priv = vmh->priv;
1002	struct netmap_adapter *na = priv->np_na;
1003	vm_paddr_t paddr;
1004	vm_page_t page;
1005	vm_memattr_t memattr;
1006
1007	nm_prdis("object %p offset %jd prot %d mres %p",
1008			object, (intmax_t)offset, prot, mres);
1009	memattr = object->memattr;
1010	paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1011	if (paddr == 0)
1012		return VM_PAGER_FAIL;
1013
1014	if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1015		/*
1016		 * If the passed in result page is a fake page, update it with
1017		 * the new physical address.
1018		 */
1019		page = *mres;
1020		vm_page_updatefake(page, paddr, memattr);
1021	} else {
1022		/*
1023		 * Replace the passed in reqpage page with our own fake page and
1024		 * free up the all of the original pages.
1025		 */
1026		VM_OBJECT_WUNLOCK(object);
1027		page = vm_page_getfake(paddr, memattr);
1028		VM_OBJECT_WLOCK(object);
1029		vm_page_replace(page, object, (*mres)->pindex, *mres);
1030		*mres = page;
1031	}
1032	page->valid = VM_PAGE_BITS_ALL;
1033	return (VM_PAGER_OK);
1034}
1035
1036
1037static struct cdev_pager_ops netmap_cdev_pager_ops = {
1038	.cdev_pg_ctor = netmap_dev_pager_ctor,
1039	.cdev_pg_dtor = netmap_dev_pager_dtor,
1040	.cdev_pg_fault = netmap_dev_pager_fault,
1041};
1042
1043
1044static int
1045netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1046	vm_size_t objsize,  vm_object_t *objp, int prot)
1047{
1048	int error;
1049	struct netmap_vm_handle_t *vmh;
1050	struct netmap_priv_d *priv;
1051	vm_object_t obj;
1052
1053	if (netmap_verbose)
1054		nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1055		    (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1056
1057	vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1058			      M_NOWAIT | M_ZERO);
1059	if (vmh == NULL)
1060		return ENOMEM;
1061	vmh->dev = cdev;
1062
1063	NMG_LOCK();
1064	error = devfs_get_cdevpriv((void**)&priv);
1065	if (error)
1066		goto err_unlock;
1067	if (priv->np_nifp == NULL) {
1068		error = EINVAL;
1069		goto err_unlock;
1070	}
1071	vmh->priv = priv;
1072	priv->np_refs++;
1073	NMG_UNLOCK();
1074
1075	obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1076		&netmap_cdev_pager_ops, objsize, prot,
1077		*foff, NULL);
1078	if (obj == NULL) {
1079		nm_prerr("cdev_pager_allocate failed");
1080		error = EINVAL;
1081		goto err_deref;
1082	}
1083
1084	*objp = obj;
1085	return 0;
1086
1087err_deref:
1088	NMG_LOCK();
1089	priv->np_refs--;
1090err_unlock:
1091	NMG_UNLOCK();
1092// err:
1093	free(vmh, M_DEVBUF);
1094	return error;
1095}
1096
1097/*
1098 * On FreeBSD the close routine is only called on the last close on
1099 * the device (/dev/netmap) so we cannot do anything useful.
1100 * To track close() on individual file descriptors we pass netmap_dtor() to
1101 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1102 * when the last fd pointing to the device is closed.
1103 *
1104 * Note that FreeBSD does not even munmap() on close() so we also have
1105 * to track mmap() ourselves, and postpone the call to
1106 * netmap_dtor() is called when the process has no open fds and no active
1107 * memory maps on /dev/netmap, as in linux.
1108 */
1109static int
1110netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1111{
1112	if (netmap_verbose)
1113		nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1114			dev, fflag, devtype, td);
1115	return 0;
1116}
1117
1118
1119static int
1120netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1121{
1122	struct netmap_priv_d *priv;
1123	int error;
1124
1125	(void)dev;
1126	(void)oflags;
1127	(void)devtype;
1128	(void)td;
1129
1130	NMG_LOCK();
1131	priv = netmap_priv_new();
1132	if (priv == NULL) {
1133		error = ENOMEM;
1134		goto out;
1135	}
1136	error = devfs_set_cdevpriv(priv, netmap_dtor);
1137	if (error) {
1138		netmap_priv_delete(priv);
1139	}
1140out:
1141	NMG_UNLOCK();
1142	return error;
1143}
1144
1145/******************** kthread wrapper ****************/
1146#include <sys/sysproto.h>
1147u_int
1148nm_os_ncpus(void)
1149{
1150	return mp_maxid + 1;
1151}
1152
1153struct nm_kctx_ctx {
1154	/* Userspace thread (kthread creator). */
1155	struct thread *user_td;
1156
1157	/* worker function and parameter */
1158	nm_kctx_worker_fn_t worker_fn;
1159	void *worker_private;
1160
1161	struct nm_kctx *nmk;
1162
1163	/* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1164	long type;
1165};
1166
1167struct nm_kctx {
1168	struct thread *worker;
1169	struct mtx worker_lock;
1170	struct nm_kctx_ctx worker_ctx;
1171	int run;			/* used to stop kthread */
1172	int attach_user;		/* kthread attached to user_process */
1173	int affinity;
1174};
1175
1176static void
1177nm_kctx_worker(void *data)
1178{
1179	struct nm_kctx *nmk = data;
1180	struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1181
1182	if (nmk->affinity >= 0) {
1183		thread_lock(curthread);
1184		sched_bind(curthread, nmk->affinity);
1185		thread_unlock(curthread);
1186	}
1187
1188	while (nmk->run) {
1189		/*
1190		 * check if the parent process dies
1191		 * (when kthread is attached to user process)
1192		 */
1193		if (ctx->user_td) {
1194			PROC_LOCK(curproc);
1195			thread_suspend_check(0);
1196			PROC_UNLOCK(curproc);
1197		} else {
1198			kthread_suspend_check();
1199		}
1200
1201		/* Continuously execute worker process. */
1202		ctx->worker_fn(ctx->worker_private); /* worker body */
1203	}
1204
1205	kthread_exit();
1206}
1207
1208void
1209nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1210{
1211	nmk->affinity = affinity;
1212}
1213
1214struct nm_kctx *
1215nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1216{
1217	struct nm_kctx *nmk = NULL;
1218
1219	nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1220	if (!nmk)
1221		return NULL;
1222
1223	mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1224	nmk->worker_ctx.worker_fn = cfg->worker_fn;
1225	nmk->worker_ctx.worker_private = cfg->worker_private;
1226	nmk->worker_ctx.type = cfg->type;
1227	nmk->affinity = -1;
1228
1229	/* attach kthread to user process (ptnetmap) */
1230	nmk->attach_user = cfg->attach_user;
1231
1232	return nmk;
1233}
1234
1235int
1236nm_os_kctx_worker_start(struct nm_kctx *nmk)
1237{
1238	struct proc *p = NULL;
1239	int error = 0;
1240
1241	/* Temporarily disable this function as it is currently broken
1242	 * and causes kernel crashes. The failure can be triggered by
1243	 * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1244	return EOPNOTSUPP;
1245
1246	if (nmk->worker)
1247		return EBUSY;
1248
1249	/* check if we want to attach kthread to user process */
1250	if (nmk->attach_user) {
1251		nmk->worker_ctx.user_td = curthread;
1252		p = curthread->td_proc;
1253	}
1254
1255	/* enable kthread main loop */
1256	nmk->run = 1;
1257	/* create kthread */
1258	if((error = kthread_add(nm_kctx_worker, nmk, p,
1259			&nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1260			nmk->worker_ctx.type))) {
1261		goto err;
1262	}
1263
1264	nm_prinf("nm_kthread started td %p", nmk->worker);
1265
1266	return 0;
1267err:
1268	nm_prerr("nm_kthread start failed err %d", error);
1269	nmk->worker = NULL;
1270	return error;
1271}
1272
1273void
1274nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1275{
1276	if (!nmk->worker)
1277		return;
1278
1279	/* tell to kthread to exit from main loop */
1280	nmk->run = 0;
1281
1282	/* wake up kthread if it sleeps */
1283	kthread_resume(nmk->worker);
1284
1285	nmk->worker = NULL;
1286}
1287
1288void
1289nm_os_kctx_destroy(struct nm_kctx *nmk)
1290{
1291	if (!nmk)
1292		return;
1293
1294	if (nmk->worker)
1295		nm_os_kctx_worker_stop(nmk);
1296
1297	free(nmk, M_DEVBUF);
1298}
1299
1300/******************** kqueue support ****************/
1301
1302/*
1303 * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1304 * needs to call knote() to wake up kqueue listeners.
1305 * This operation is deferred to a taskqueue in order to avoid possible
1306 * lock order reversals; these may happen because knote() grabs a
1307 * private lock associated to the 'si' (see struct selinfo,
1308 * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1309 * can be called while holding the lock associated to a different
1310 * 'si'.
1311 * When calling knote() we use a non-zero 'hint' argument to inform
1312 * the netmap_knrw() function that it is being called from
1313 * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1314 * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1315 * call netmap_poll().
1316 *
1317 * The netmap_kqfilter() function registers one or another f_event
1318 * depending on read or write mode. A pointer to the struct
1319 * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1320 * be passed to netmap_poll(). We pass NULL as a third argument to
1321 * netmap_poll(), so that the latter only runs the txsync/rxsync
1322 * (if necessary), and skips the nm_os_selrecord() calls.
1323 */
1324
1325
1326void
1327nm_os_selwakeup(struct nm_selinfo *si)
1328{
1329	selwakeuppri(&si->si, PI_NET);
1330	if (si->kqueue_users > 0) {
1331		taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1332	}
1333}
1334
1335void
1336nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1337{
1338	selrecord(td, &si->si);
1339}
1340
1341static void
1342netmap_knrdetach(struct knote *kn)
1343{
1344	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1345	struct nm_selinfo *si = priv->np_si[NR_RX];
1346
1347	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1348	NMG_LOCK();
1349	KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
1350	    si->mtxname));
1351	si->kqueue_users--;
1352	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1353	NMG_UNLOCK();
1354}
1355
1356static void
1357netmap_knwdetach(struct knote *kn)
1358{
1359	struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1360	struct nm_selinfo *si = priv->np_si[NR_TX];
1361
1362	knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1363	NMG_LOCK();
1364	si->kqueue_users--;
1365	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1366	NMG_UNLOCK();
1367}
1368
1369/*
1370 * Callback triggered by netmap notifications (see netmap_notify()),
1371 * and by the application calling kevent(). In the former case we
1372 * just return 1 (events ready), since we are not able to do better.
1373 * In the latter case we use netmap_poll() to see which events are
1374 * ready.
1375 */
1376static int
1377netmap_knrw(struct knote *kn, long hint, int events)
1378{
1379	struct netmap_priv_d *priv;
1380	int revents;
1381
1382	if (hint != 0) {
1383		/* Called from netmap_notify(), typically from a
1384		 * thread different from the one issuing kevent().
1385		 * Assume we are ready. */
1386		return 1;
1387	}
1388
1389	/* Called from kevent(). */
1390	priv = kn->kn_hook;
1391	revents = netmap_poll(priv, events, /*thread=*/NULL);
1392
1393	return (events & revents) ? 1 : 0;
1394}
1395
1396static int
1397netmap_knread(struct knote *kn, long hint)
1398{
1399	return netmap_knrw(kn, hint, POLLIN);
1400}
1401
1402static int
1403netmap_knwrite(struct knote *kn, long hint)
1404{
1405	return netmap_knrw(kn, hint, POLLOUT);
1406}
1407
1408static struct filterops netmap_rfiltops = {
1409	.f_isfd = 1,
1410	.f_detach = netmap_knrdetach,
1411	.f_event = netmap_knread,
1412};
1413
1414static struct filterops netmap_wfiltops = {
1415	.f_isfd = 1,
1416	.f_detach = netmap_knwdetach,
1417	.f_event = netmap_knwrite,
1418};
1419
1420
1421/*
1422 * This is called when a thread invokes kevent() to record
1423 * a change in the configuration of the kqueue().
1424 * The 'priv' is the one associated to the open netmap device.
1425 */
1426static int
1427netmap_kqfilter(struct cdev *dev, struct knote *kn)
1428{
1429	struct netmap_priv_d *priv;
1430	int error;
1431	struct netmap_adapter *na;
1432	struct nm_selinfo *si;
1433	int ev = kn->kn_filter;
1434
1435	if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1436		nm_prerr("bad filter request %d", ev);
1437		return 1;
1438	}
1439	error = devfs_get_cdevpriv((void**)&priv);
1440	if (error) {
1441		nm_prerr("device not yet setup");
1442		return 1;
1443	}
1444	na = priv->np_na;
1445	if (na == NULL) {
1446		nm_prerr("no netmap adapter for this file descriptor");
1447		return 1;
1448	}
1449	/* the si is indicated in the priv */
1450	si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1451	kn->kn_fop = (ev == EVFILT_WRITE) ?
1452		&netmap_wfiltops : &netmap_rfiltops;
1453	kn->kn_hook = priv;
1454	NMG_LOCK();
1455	si->kqueue_users++;
1456	nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1457	NMG_UNLOCK();
1458	knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1459
1460	return 0;
1461}
1462
1463static int
1464freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1465{
1466	struct netmap_priv_d *priv;
1467	if (devfs_get_cdevpriv((void **)&priv)) {
1468		return POLLERR;
1469	}
1470	return netmap_poll(priv, events, td);
1471}
1472
1473static int
1474freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1475		int ffla __unused, struct thread *td)
1476{
1477	int error;
1478	struct netmap_priv_d *priv;
1479
1480	CURVNET_SET(TD_TO_VNET(td));
1481	error = devfs_get_cdevpriv((void **)&priv);
1482	if (error) {
1483		/* XXX ENOENT should be impossible, since the priv
1484		 * is now created in the open */
1485		if (error == ENOENT)
1486			error = ENXIO;
1487		goto out;
1488	}
1489	error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1490out:
1491	CURVNET_RESTORE();
1492
1493	return error;
1494}
1495
1496void
1497nm_os_onattach(if_t ifp)
1498{
1499	if_setcapabilitiesbit(ifp, IFCAP_NETMAP, 0);
1500}
1501
1502void
1503nm_os_onenter(if_t ifp)
1504{
1505	struct netmap_adapter *na = NA(ifp);
1506
1507	na->if_transmit = if_gettransmitfn(ifp);
1508	if_settransmitfn(ifp, netmap_transmit);
1509	if_setcapenablebit(ifp, IFCAP_NETMAP, 0);
1510}
1511
1512void
1513nm_os_onexit(if_t ifp)
1514{
1515	struct netmap_adapter *na = NA(ifp);
1516
1517	if_settransmitfn(ifp, na->if_transmit);
1518	if_setcapenablebit(ifp, 0, IFCAP_NETMAP);
1519}
1520
1521extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1522struct cdevsw netmap_cdevsw = {
1523	.d_version = D_VERSION,
1524	.d_name = "netmap",
1525	.d_open = netmap_open,
1526	.d_mmap_single = netmap_mmap_single,
1527	.d_ioctl = freebsd_netmap_ioctl,
1528	.d_poll = freebsd_netmap_poll,
1529	.d_kqfilter = netmap_kqfilter,
1530	.d_close = netmap_close,
1531};
1532/*--- end of kqueue support ----*/
1533
1534/*
1535 * Kernel entry point.
1536 *
1537 * Initialize/finalize the module and return.
1538 *
1539 * Return 0 on success, errno on failure.
1540 */
1541static int
1542netmap_loader(__unused struct module *module, int event, __unused void *arg)
1543{
1544	int error = 0;
1545
1546	switch (event) {
1547	case MOD_LOAD:
1548		error = netmap_init();
1549		break;
1550
1551	case MOD_UNLOAD:
1552		/*
1553		 * if some one is still using netmap,
1554		 * then the module can not be unloaded.
1555		 */
1556		if (netmap_use_count) {
1557			nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1558					netmap_use_count);
1559			error = EBUSY;
1560			break;
1561		}
1562		netmap_fini();
1563		break;
1564
1565	default:
1566		error = EOPNOTSUPP;
1567		break;
1568	}
1569
1570	return (error);
1571}
1572
1573#ifdef DEV_MODULE_ORDERED
1574/*
1575 * The netmap module contains three drivers: (i) the netmap character device
1576 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1577 * device driver. The attach() routines of both (ii) and (iii) need the
1578 * lock of the global allocator, and such lock is initialized in netmap_init(),
1579 * which is part of (i).
1580 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1581 * the 'order' parameter of driver declaration macros. For (i), we specify
1582 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1583 * macros for (ii) and (iii).
1584 */
1585DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1586#else /* !DEV_MODULE_ORDERED */
1587DEV_MODULE(netmap, netmap_loader, NULL);
1588#endif /* DEV_MODULE_ORDERED  */
1589MODULE_DEPEND(netmap, pci, 1, 1, 1);
1590MODULE_VERSION(netmap, 1);
1591/* reduce conditional code */
1592// linux API, use for the knlist in FreeBSD
1593/* use a private mutex for the knlist */
1594