1/*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * SPDX-License-Identifier: BSD-2-Clause AND BSD-3-Clause
6 *
7 * Copyright (c) 2000, 2001 by Greg Ansley
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice immediately at the beginning of the file, without modification,
14 *    this list of conditions, and the following disclaimer.
15 * 2. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30/*-
31 * Copyright (c) 2002, 2006 by Matthew Jacob
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions are
36 * met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
40 *    substantially similar to the "NO WARRANTY" disclaimer below
41 *    ("Disclaimer") and any redistribution must be conditioned upon including
42 *    a substantially similar Disclaimer requirement for further binary
43 *    redistribution.
44 * 3. Neither the names of the above listed copyright holders nor the names
45 *    of any contributors may be used to endorse or promote products derived
46 *    from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
49 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
52 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
58 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 *
60 * Support from Chris Ellsworth in order to make SAS adapters work
61 * is gratefully acknowledged.
62 *
63 *
64 * Support from LSI-Logic has also gone a great deal toward making this a
65 * workable subsystem and is gratefully acknowledged.
66 */
67/*-
68 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
69 * Copyright (c) 2005, WHEEL Sp. z o.o.
70 * Copyright (c) 2004, 2005 Justin T. Gibbs
71 * All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions are
75 * met:
76 * 1. Redistributions of source code must retain the above copyright
77 *    notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
79 *    substantially similar to the "NO WARRANTY" disclaimer below
80 *    ("Disclaimer") and any redistribution must be conditioned upon including
81 *    a substantially similar Disclaimer requirement for further binary
82 *    redistribution.
83 * 3. Neither the names of the above listed copyright holders nor the names
84 *    of any contributors may be used to endorse or promote products derived
85 *    from this software without specific prior written permission.
86 *
87 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
88 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
91 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
92 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
93 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
94 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
95 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
96 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
97 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
98 */
99
100#include <sys/cdefs.h>
101#include <dev/mpt/mpt.h>
102#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104
105#include <dev/mpt/mpilib/mpi.h>
106#include <dev/mpt/mpilib/mpi_ioc.h>
107#include <dev/mpt/mpilib/mpi_fc.h>
108#include <dev/mpt/mpilib/mpi_targ.h>
109
110#include <sys/sysctl.h>
111
112#define MPT_MAX_TRYS 3
113#define MPT_MAX_WAIT 300000
114
115static int maxwait_ack = 0;
116static int maxwait_int = 0;
117static int maxwait_state = 0;
118
119static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121
122static mpt_reply_handler_t mpt_default_reply_handler;
123static mpt_reply_handler_t mpt_config_reply_handler;
124static mpt_reply_handler_t mpt_handshake_reply_handler;
125static mpt_reply_handler_t mpt_event_reply_handler;
126static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129static int mpt_soft_reset(struct mpt_softc *mpt);
130static void mpt_hard_reset(struct mpt_softc *mpt);
131static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132static void mpt_dma_buf_free(struct mpt_softc *mpt);
133static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135
136/************************* Personality Module Support *************************/
137/*
138 * We include one extra entry that is guaranteed to be NULL
139 * to simplify our itterator.
140 */
141static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142static __inline struct mpt_personality*
143	mpt_pers_find(struct mpt_softc *, u_int);
144static __inline struct mpt_personality*
145	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146
147static __inline struct mpt_personality *
148mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149{
150	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151		("mpt_pers_find: starting position out of range"));
152
153	while (start_at < MPT_MAX_PERSONALITIES
154	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155		start_at++;
156	}
157	return (mpt_personalities[start_at]);
158}
159
160/*
161 * Used infrequently, so no need to optimize like a forward
162 * traversal where we use the MAX+1 is guaranteed to be NULL
163 * trick.
164 */
165static __inline struct mpt_personality *
166mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167{
168	while (start_at < MPT_MAX_PERSONALITIES
169	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170		start_at--;
171	}
172	if (start_at < MPT_MAX_PERSONALITIES)
173		return (mpt_personalities[start_at]);
174	return (NULL);
175}
176
177#define MPT_PERS_FOREACH(mpt, pers)				\
178	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179	     pers != NULL;					\
180	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181
182#define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184	     pers != NULL;						\
185	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186
187static mpt_load_handler_t      mpt_stdload;
188static mpt_probe_handler_t     mpt_stdprobe;
189static mpt_attach_handler_t    mpt_stdattach;
190static mpt_enable_handler_t    mpt_stdenable;
191static mpt_ready_handler_t     mpt_stdready;
192static mpt_event_handler_t     mpt_stdevent;
193static mpt_reset_handler_t     mpt_stdreset;
194static mpt_shutdown_handler_t  mpt_stdshutdown;
195static mpt_detach_handler_t    mpt_stddetach;
196static mpt_unload_handler_t    mpt_stdunload;
197static struct mpt_personality mpt_default_personality =
198{
199	.load		= mpt_stdload,
200	.probe		= mpt_stdprobe,
201	.attach		= mpt_stdattach,
202	.enable		= mpt_stdenable,
203	.ready		= mpt_stdready,
204	.event		= mpt_stdevent,
205	.reset		= mpt_stdreset,
206	.shutdown	= mpt_stdshutdown,
207	.detach		= mpt_stddetach,
208	.unload		= mpt_stdunload
209};
210
211static mpt_load_handler_t      mpt_core_load;
212static mpt_attach_handler_t    mpt_core_attach;
213static mpt_enable_handler_t    mpt_core_enable;
214static mpt_reset_handler_t     mpt_core_ioc_reset;
215static mpt_event_handler_t     mpt_core_event;
216static mpt_shutdown_handler_t  mpt_core_shutdown;
217static mpt_shutdown_handler_t  mpt_core_detach;
218static mpt_unload_handler_t    mpt_core_unload;
219static struct mpt_personality mpt_core_personality =
220{
221	.name		= "mpt_core",
222	.load		= mpt_core_load,
223//	.attach		= mpt_core_attach,
224//	.enable		= mpt_core_enable,
225	.event		= mpt_core_event,
226	.reset		= mpt_core_ioc_reset,
227	.shutdown	= mpt_core_shutdown,
228	.detach		= mpt_core_detach,
229	.unload		= mpt_core_unload,
230};
231
232/*
233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234 * ordering information.  We want the core to always register FIRST.
235 * other modules are set to SI_ORDER_SECOND.
236 */
237static moduledata_t mpt_core_mod = {
238	"mpt_core", mpt_modevent, &mpt_core_personality
239};
240DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241MODULE_VERSION(mpt_core, 1);
242
243#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244
245int
246mpt_modevent(module_t mod, int type, void *data)
247{
248	struct mpt_personality *pers;
249	int error;
250
251	pers = (struct mpt_personality *)data;
252
253	error = 0;
254	switch (type) {
255	case MOD_LOAD:
256	{
257		mpt_load_handler_t **def_handler;
258		mpt_load_handler_t **pers_handler;
259		int i;
260
261		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262			if (mpt_personalities[i] == NULL)
263				break;
264		}
265		if (i >= MPT_MAX_PERSONALITIES) {
266			error = ENOMEM;
267			break;
268		}
269		pers->id = i;
270		mpt_personalities[i] = pers;
271
272		/* Install standard/noop handlers for any NULL entries. */
273		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276			if (*pers_handler == NULL)
277				*pers_handler = *def_handler;
278			pers_handler++;
279			def_handler++;
280		}
281
282		error = (pers->load(pers));
283		if (error != 0)
284			mpt_personalities[i] = NULL;
285		break;
286	}
287	case MOD_SHUTDOWN:
288		break;
289	case MOD_QUIESCE:
290		break;
291	case MOD_UNLOAD:
292		error = pers->unload(pers);
293		mpt_personalities[pers->id] = NULL;
294		break;
295	default:
296		error = EINVAL;
297		break;
298	}
299	return (error);
300}
301
302static int
303mpt_stdload(struct mpt_personality *pers)
304{
305
306	/* Load is always successful. */
307	return (0);
308}
309
310static int
311mpt_stdprobe(struct mpt_softc *mpt)
312{
313
314	/* Probe is always successful. */
315	return (0);
316}
317
318static int
319mpt_stdattach(struct mpt_softc *mpt)
320{
321
322	/* Attach is always successful. */
323	return (0);
324}
325
326static int
327mpt_stdenable(struct mpt_softc *mpt)
328{
329
330	/* Enable is always successful. */
331	return (0);
332}
333
334static void
335mpt_stdready(struct mpt_softc *mpt)
336{
337
338}
339
340static int
341mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
342{
343
344	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
345	/* Event was not for us. */
346	return (0);
347}
348
349static void
350mpt_stdreset(struct mpt_softc *mpt, int type)
351{
352
353}
354
355static void
356mpt_stdshutdown(struct mpt_softc *mpt)
357{
358
359}
360
361static void
362mpt_stddetach(struct mpt_softc *mpt)
363{
364
365}
366
367static int
368mpt_stdunload(struct mpt_personality *pers)
369{
370
371	/* Unload is always successful. */
372	return (0);
373}
374
375/*
376 * Post driver attachment, we may want to perform some global actions.
377 * Here is the hook to do so.
378 */
379
380static void
381mpt_postattach(void *unused)
382{
383	struct mpt_softc *mpt;
384	struct mpt_personality *pers;
385
386	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
387		MPT_PERS_FOREACH(mpt, pers)
388			pers->ready(mpt);
389	}
390}
391SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
392
393/******************************* Bus DMA Support ******************************/
394void
395mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
396{
397	struct mpt_map_info *map_info;
398
399	map_info = (struct mpt_map_info *)arg;
400	map_info->error = error;
401	map_info->phys = segs->ds_addr;
402}
403
404/**************************** Reply/Event Handling ****************************/
405int
406mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
407		     mpt_handler_t handler, uint32_t *phandler_id)
408{
409
410	switch (type) {
411	case MPT_HANDLER_REPLY:
412	{
413		u_int cbi;
414		u_int free_cbi;
415
416		if (phandler_id == NULL)
417			return (EINVAL);
418
419		free_cbi = MPT_HANDLER_ID_NONE;
420		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
421			/*
422			 * If the same handler is registered multiple
423			 * times, don't error out.  Just return the
424			 * index of the original registration.
425			 */
426			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
427				*phandler_id = MPT_CBI_TO_HID(cbi);
428				return (0);
429			}
430
431			/*
432			 * Fill from the front in the hope that
433			 * all registered handlers consume only a
434			 * single cache line.
435			 *
436			 * We don't break on the first empty slot so
437			 * that the full table is checked to see if
438			 * this handler was previously registered.
439			 */
440			if (free_cbi == MPT_HANDLER_ID_NONE &&
441			    (mpt_reply_handlers[cbi]
442			  == mpt_default_reply_handler))
443				free_cbi = cbi;
444		}
445		if (free_cbi == MPT_HANDLER_ID_NONE) {
446			return (ENOMEM);
447		}
448		mpt_reply_handlers[free_cbi] = handler.reply_handler;
449		*phandler_id = MPT_CBI_TO_HID(free_cbi);
450		break;
451	}
452	default:
453		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
454		return (EINVAL);
455	}
456	return (0);
457}
458
459int
460mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
461		       mpt_handler_t handler, uint32_t handler_id)
462{
463
464	switch (type) {
465	case MPT_HANDLER_REPLY:
466	{
467		u_int cbi;
468
469		cbi = MPT_CBI(handler_id);
470		if (cbi >= MPT_NUM_REPLY_HANDLERS
471		 || mpt_reply_handlers[cbi] != handler.reply_handler)
472			return (ENOENT);
473		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
474		break;
475	}
476	default:
477		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
478		return (EINVAL);
479	}
480	return (0);
481}
482
483static int
484mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
485	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
486{
487
488	mpt_prt(mpt,
489	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
490	    req, req->serno, reply_desc, reply_frame);
491
492	if (reply_frame != NULL)
493		mpt_dump_reply_frame(mpt, reply_frame);
494
495	mpt_prt(mpt, "Reply Frame Ignored\n");
496
497	return (/*free_reply*/TRUE);
498}
499
500static int
501mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
502 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
503{
504
505	if (req != NULL) {
506		if (reply_frame != NULL) {
507			MSG_CONFIG *cfgp;
508			MSG_CONFIG_REPLY *reply;
509
510			cfgp = (MSG_CONFIG *)req->req_vbuf;
511			reply = (MSG_CONFIG_REPLY *)reply_frame;
512			req->IOCStatus = le16toh(reply_frame->IOCStatus);
513			bcopy(&reply->Header, &cfgp->Header,
514			      sizeof(cfgp->Header));
515			cfgp->ExtPageLength = reply->ExtPageLength;
516			cfgp->ExtPageType = reply->ExtPageType;
517		}
518		req->state &= ~REQ_STATE_QUEUED;
519		req->state |= REQ_STATE_DONE;
520		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
521		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
522			wakeup(req);
523		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
524			/*
525			 * Whew- we can free this request (late completion)
526			 */
527			mpt_free_request(mpt, req);
528		}
529	}
530
531	return (TRUE);
532}
533
534static int
535mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
536 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
537{
538
539	/* Nothing to be done. */
540	return (TRUE);
541}
542
543static int
544mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
545    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
546{
547	int free_reply;
548
549	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
550	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
551
552	free_reply = TRUE;
553	switch (reply_frame->Function) {
554	case MPI_FUNCTION_EVENT_NOTIFICATION:
555	{
556		MSG_EVENT_NOTIFY_REPLY *msg;
557		struct mpt_personality *pers;
558		u_int handled;
559
560		handled = 0;
561		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
562		msg->EventDataLength = le16toh(msg->EventDataLength);
563		msg->IOCStatus = le16toh(msg->IOCStatus);
564		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
565		msg->Event = le32toh(msg->Event);
566		MPT_PERS_FOREACH(mpt, pers)
567			handled += pers->event(mpt, req, msg);
568
569		if (handled == 0 && mpt->mpt_pers_mask == 0) {
570			mpt_lprt(mpt, MPT_PRT_INFO,
571				"No Handlers For Any Event Notify Frames. "
572				"Event %#x (ACK %sequired).\n",
573				msg->Event, msg->AckRequired? "r" : "not r");
574		} else if (handled == 0) {
575			mpt_lprt(mpt,
576				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
577				"Unhandled Event Notify Frame. Event %#x "
578				"(ACK %sequired).\n",
579				msg->Event, msg->AckRequired? "r" : "not r");
580		}
581
582		if (msg->AckRequired) {
583			request_t *ack_req;
584			uint32_t context;
585
586			context = req->index | MPT_REPLY_HANDLER_EVENTS;
587			ack_req = mpt_get_request(mpt, FALSE);
588			if (ack_req == NULL) {
589				struct mpt_evtf_record *evtf;
590
591				evtf = (struct mpt_evtf_record *)reply_frame;
592				evtf->context = context;
593				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
594				free_reply = FALSE;
595				break;
596			}
597			mpt_send_event_ack(mpt, ack_req, msg, context);
598			/*
599			 * Don't check for CONTINUATION_REPLY here
600			 */
601			return (free_reply);
602		}
603		break;
604	}
605	case MPI_FUNCTION_PORT_ENABLE:
606		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
607		break;
608	case MPI_FUNCTION_EVENT_ACK:
609		break;
610	default:
611		mpt_prt(mpt, "unknown event function: %x\n",
612			reply_frame->Function);
613		break;
614	}
615
616	/*
617	 * I'm not sure that this continuation stuff works as it should.
618	 *
619	 * I've had FC async events occur that free the frame up because
620	 * the continuation bit isn't set, and then additional async events
621	 * then occur using the same context. As you might imagine, this
622	 * leads to Very Bad Thing.
623	 *
624	 *  Let's just be safe for now and not free them up until we figure
625	 * out what's actually happening here.
626	 */
627#if	0
628	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
629		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
630		mpt_free_request(mpt, req);
631		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
632		    reply_frame->Function, req, req->serno);
633		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
634			MSG_EVENT_NOTIFY_REPLY *msg =
635			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
636			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
637			    msg->Event, msg->AckRequired);
638		}
639	} else {
640		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
641		    reply_frame->Function, req, req->serno);
642		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
643			MSG_EVENT_NOTIFY_REPLY *msg =
644			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
645			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
646			    msg->Event, msg->AckRequired);
647		}
648		mpt_prtc(mpt, "\n");
649	}
650#endif
651	return (free_reply);
652}
653
654/*
655 * Process an asynchronous event from the IOC.
656 */
657static int
658mpt_core_event(struct mpt_softc *mpt, request_t *req,
659	       MSG_EVENT_NOTIFY_REPLY *msg)
660{
661
662	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
663                 msg->Event & 0xFF);
664	switch(msg->Event & 0xFF) {
665	case MPI_EVENT_NONE:
666		break;
667	case MPI_EVENT_LOG_DATA:
668	{
669		int i;
670
671		/* Some error occurred that LSI wants logged */
672		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
673			msg->IOCLogInfo);
674		mpt_prt(mpt, "\tEvtLogData: Event Data:");
675		for (i = 0; i < msg->EventDataLength; i++)
676			mpt_prtc(mpt, "  %08x", msg->Data[i]);
677		mpt_prtc(mpt, "\n");
678		break;
679	}
680	case MPI_EVENT_EVENT_CHANGE:
681		/*
682		 * This is just an acknowledgement
683		 * of our mpt_send_event_request.
684		 */
685		break;
686	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
687		break;
688	default:
689		return (0);
690		break;
691	}
692	return (1);
693}
694
695static void
696mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
697		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
698{
699	MSG_EVENT_ACK *ackp;
700
701	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
702	memset(ackp, 0, sizeof (*ackp));
703	ackp->Function = MPI_FUNCTION_EVENT_ACK;
704	ackp->Event = htole32(msg->Event);
705	ackp->EventContext = htole32(msg->EventContext);
706	ackp->MsgContext = htole32(context);
707	mpt_check_doorbell(mpt);
708	mpt_send_cmd(mpt, ack_req);
709}
710
711/***************************** Interrupt Handling *****************************/
712void
713mpt_intr(void *arg)
714{
715	struct mpt_softc *mpt;
716	uint32_t reply_desc;
717	int ntrips = 0;
718
719	mpt = (struct mpt_softc *)arg;
720	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
721	MPT_LOCK_ASSERT(mpt);
722
723	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
724		request_t	  *req;
725		MSG_DEFAULT_REPLY *reply_frame;
726		uint32_t	   reply_baddr;
727		uint32_t           ctxt_idx;
728		u_int		   cb_index;
729		u_int		   req_index;
730		u_int		   offset;
731		int		   free_rf;
732
733		req = NULL;
734		reply_frame = NULL;
735		reply_baddr = 0;
736		offset = 0;
737		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
738			/*
739			 * Ensure that the reply frame is coherent.
740			 */
741			reply_baddr = MPT_REPLY_BADDR(reply_desc);
742			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
743			bus_dmamap_sync_range(mpt->reply_dmat,
744			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
745			    BUS_DMASYNC_POSTREAD);
746			reply_frame = MPT_REPLY_OTOV(mpt, offset);
747			ctxt_idx = le32toh(reply_frame->MsgContext);
748		} else {
749			uint32_t type;
750
751			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
752			ctxt_idx = reply_desc;
753			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
754				    reply_desc);
755
756			switch (type) {
757			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
758				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
759				break;
760			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
761				ctxt_idx = GET_IO_INDEX(reply_desc);
762				if (mpt->tgt_cmd_ptrs == NULL) {
763					mpt_prt(mpt,
764					    "mpt_intr: no target cmd ptrs\n");
765					reply_desc = MPT_REPLY_EMPTY;
766					break;
767				}
768				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
769					mpt_prt(mpt,
770					    "mpt_intr: bad tgt cmd ctxt %u\n",
771					    ctxt_idx);
772					reply_desc = MPT_REPLY_EMPTY;
773					ntrips = 1000;
774					break;
775				}
776				req = mpt->tgt_cmd_ptrs[ctxt_idx];
777				if (req == NULL) {
778					mpt_prt(mpt, "no request backpointer "
779					    "at index %u", ctxt_idx);
780					reply_desc = MPT_REPLY_EMPTY;
781					ntrips = 1000;
782					break;
783				}
784				/*
785				 * Reformulate ctxt_idx to be just as if
786				 * it were another type of context reply
787				 * so the code below will find the request
788				 * via indexing into the pool.
789				 */
790				ctxt_idx =
791				    req->index | mpt->scsi_tgt_handler_id;
792				req = NULL;
793				break;
794			case MPI_CONTEXT_REPLY_TYPE_LAN:
795				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
796				    reply_desc);
797				reply_desc = MPT_REPLY_EMPTY;
798				break;
799			default:
800				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
801				reply_desc = MPT_REPLY_EMPTY;
802				break;
803			}
804			if (reply_desc == MPT_REPLY_EMPTY) {
805				if (ntrips++ > 1000) {
806					break;
807				}
808				continue;
809			}
810		}
811
812		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
813		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
814		if (req_index < MPT_MAX_REQUESTS(mpt)) {
815			req = &mpt->request_pool[req_index];
816		} else {
817			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
818			    " 0x%x)\n", req_index, reply_desc);
819		}
820
821		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
822		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
823		free_rf = mpt_reply_handlers[cb_index](mpt, req,
824		    reply_desc, reply_frame);
825
826		if (reply_frame != NULL && free_rf) {
827			bus_dmamap_sync_range(mpt->reply_dmat,
828			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
829			    BUS_DMASYNC_PREREAD);
830			mpt_free_reply(mpt, reply_baddr);
831		}
832
833		/*
834		 * If we got ourselves disabled, don't get stuck in a loop
835		 */
836		if (mpt->disabled) {
837			mpt_disable_ints(mpt);
838			break;
839		}
840		if (ntrips++ > 1000) {
841			break;
842		}
843	}
844	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
845}
846
847/******************************* Error Recovery *******************************/
848void
849mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
850			    u_int iocstatus)
851{
852	MSG_DEFAULT_REPLY  ioc_status_frame;
853	request_t	  *req;
854
855	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
856	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
857	ioc_status_frame.IOCStatus = iocstatus;
858	while((req = TAILQ_FIRST(chain)) != NULL) {
859		MSG_REQUEST_HEADER *msg_hdr;
860		u_int		    cb_index;
861
862		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
863		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
864		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
865		ioc_status_frame.Function = msg_hdr->Function;
866		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
867		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
868		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
869		    &ioc_status_frame);
870		if (mpt_req_on_pending_list(mpt, req) != 0)
871			TAILQ_REMOVE(chain, req, links);
872	}
873}
874
875/********************************* Diagnostics ********************************/
876/*
877 * Perform a diagnostic dump of a reply frame.
878 */
879void
880mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
881{
882
883	mpt_prt(mpt, "Address Reply:\n");
884	mpt_print_reply(reply_frame);
885}
886
887/******************************* Doorbell Access ******************************/
888static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
889static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
890
891static __inline uint32_t
892mpt_rd_db(struct mpt_softc *mpt)
893{
894
895	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
896}
897
898static __inline uint32_t
899mpt_rd_intr(struct mpt_softc *mpt)
900{
901
902	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
903}
904
905/* Busy wait for a door bell to be read by IOC */
906static int
907mpt_wait_db_ack(struct mpt_softc *mpt)
908{
909	int i;
910
911	for (i=0; i < MPT_MAX_WAIT; i++) {
912		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
913			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
914			return (MPT_OK);
915		}
916		DELAY(200);
917	}
918	return (MPT_FAIL);
919}
920
921/* Busy wait for a door bell interrupt */
922static int
923mpt_wait_db_int(struct mpt_softc *mpt)
924{
925	int i;
926
927	for (i = 0; i < MPT_MAX_WAIT; i++) {
928		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
929			maxwait_int = i > maxwait_int ? i : maxwait_int;
930			return MPT_OK;
931		}
932		DELAY(100);
933	}
934	return (MPT_FAIL);
935}
936
937/* Wait for IOC to transition to a give state */
938void
939mpt_check_doorbell(struct mpt_softc *mpt)
940{
941	uint32_t db = mpt_rd_db(mpt);
942
943	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
944		mpt_prt(mpt, "Device not running\n");
945		mpt_print_db(db);
946	}
947}
948
949/* Wait for IOC to transition to a give state */
950static int
951mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
952{
953	int i;
954
955	for (i = 0; i < MPT_MAX_WAIT; i++) {
956		uint32_t db = mpt_rd_db(mpt);
957		if (MPT_STATE(db) == state) {
958			maxwait_state = i > maxwait_state ? i : maxwait_state;
959			return (MPT_OK);
960		}
961		DELAY(100);
962	}
963	return (MPT_FAIL);
964}
965
966/************************* Initialization/Configuration ************************/
967static int mpt_download_fw(struct mpt_softc *mpt);
968
969/* Issue the reset COMMAND to the IOC */
970static int
971mpt_soft_reset(struct mpt_softc *mpt)
972{
973
974	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
975
976	/* Have to use hard reset if we are not in Running state */
977	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
978		mpt_prt(mpt, "soft reset failed: device not running\n");
979		return (MPT_FAIL);
980	}
981
982	/* If door bell is in use we don't have a chance of getting
983	 * a word in since the IOC probably crashed in message
984	 * processing. So don't waste our time.
985	 */
986	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
987		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
988		return (MPT_FAIL);
989	}
990
991	/* Send the reset request to the IOC */
992	mpt_write(mpt, MPT_OFFSET_DOORBELL,
993	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
994	if (mpt_wait_db_ack(mpt) != MPT_OK) {
995		mpt_prt(mpt, "soft reset failed: ack timeout\n");
996		return (MPT_FAIL);
997	}
998
999	/* Wait for the IOC to reload and come out of reset state */
1000	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1001		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1002		return (MPT_FAIL);
1003	}
1004
1005	return MPT_OK;
1006}
1007
1008static int
1009mpt_enable_diag_mode(struct mpt_softc *mpt)
1010{
1011	int try;
1012
1013	try = 20;
1014	while (--try) {
1015		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1016			break;
1017
1018		/* Enable diagnostic registers */
1019		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1020		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1021		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1022		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1023		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1024		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1025
1026		DELAY(100000);
1027	}
1028	if (try == 0)
1029		return (EIO);
1030	return (0);
1031}
1032
1033static void
1034mpt_disable_diag_mode(struct mpt_softc *mpt)
1035{
1036
1037	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1038}
1039
1040/* This is a magic diagnostic reset that resets all the ARM
1041 * processors in the chip.
1042 */
1043static void
1044mpt_hard_reset(struct mpt_softc *mpt)
1045{
1046	int error;
1047	int wait;
1048	uint32_t diagreg;
1049
1050	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1051
1052	if (mpt->is_1078) {
1053		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1054		DELAY(1000);
1055		return;
1056	}
1057
1058	error = mpt_enable_diag_mode(mpt);
1059	if (error) {
1060		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1061		mpt_prt(mpt, "Trying to reset anyway.\n");
1062	}
1063
1064	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1065
1066	/*
1067	 * This appears to be a workaround required for some
1068	 * firmware or hardware revs.
1069	 */
1070	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1071	DELAY(1000);
1072
1073	/* Diag. port is now active so we can now hit the reset bit */
1074	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1075
1076        /*
1077         * Ensure that the reset has finished.  We delay 1ms
1078         * prior to reading the register to make sure the chip
1079         * has sufficiently completed its reset to handle register
1080         * accesses.
1081         */
1082	wait = 5000;
1083	do {
1084		DELAY(1000);
1085		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1086	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1087
1088	if (wait == 0) {
1089		mpt_prt(mpt, "WARNING - Failed hard reset! "
1090			"Trying to initialize anyway.\n");
1091	}
1092
1093	/*
1094	 * If we have firmware to download, it must be loaded before
1095	 * the controller will become operational.  Do so now.
1096	 */
1097	if (mpt->fw_image != NULL) {
1098		error = mpt_download_fw(mpt);
1099
1100		if (error) {
1101			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1102			mpt_prt(mpt, "Trying to initialize anyway.\n");
1103		}
1104	}
1105
1106	/*
1107	 * Reseting the controller should have disabled write
1108	 * access to the diagnostic registers, but disable
1109	 * manually to be sure.
1110	 */
1111	mpt_disable_diag_mode(mpt);
1112}
1113
1114static void
1115mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1116{
1117
1118	/*
1119	 * Complete all pending requests with a status
1120	 * appropriate for an IOC reset.
1121	 */
1122	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1123				   MPI_IOCSTATUS_INVALID_STATE);
1124}
1125
1126/*
1127 * Reset the IOC when needed. Try software command first then if needed
1128 * poke at the magic diagnostic reset. Note that a hard reset resets
1129 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1130 * fouls up the PCI configuration registers.
1131 */
1132int
1133mpt_reset(struct mpt_softc *mpt, int reinit)
1134{
1135	struct	mpt_personality *pers;
1136	int	ret;
1137	int	retry_cnt = 0;
1138
1139	/*
1140	 * Try a soft reset. If that fails, get out the big hammer.
1141	 */
1142 again:
1143	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1144		int	cnt;
1145		for (cnt = 0; cnt < 5; cnt++) {
1146			/* Failed; do a hard reset */
1147			mpt_hard_reset(mpt);
1148
1149			/*
1150			 * Wait for the IOC to reload
1151			 * and come out of reset state
1152			 */
1153			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1154			if (ret == MPT_OK) {
1155				break;
1156			}
1157			/*
1158			 * Okay- try to check again...
1159			 */
1160			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1161			if (ret == MPT_OK) {
1162				break;
1163			}
1164			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1165			    retry_cnt, cnt);
1166		}
1167	}
1168
1169	if (retry_cnt == 0) {
1170		/*
1171		 * Invoke reset handlers.  We bump the reset count so
1172		 * that mpt_wait_req() understands that regardless of
1173		 * the specified wait condition, it should stop its wait.
1174		 */
1175		mpt->reset_cnt++;
1176		MPT_PERS_FOREACH(mpt, pers)
1177			pers->reset(mpt, ret);
1178	}
1179
1180	if (reinit) {
1181		ret = mpt_enable_ioc(mpt, 1);
1182		if (ret == MPT_OK) {
1183			mpt_enable_ints(mpt);
1184		}
1185	}
1186	if (ret != MPT_OK && retry_cnt++ < 2) {
1187		goto again;
1188	}
1189	return ret;
1190}
1191
1192/* Return a command buffer to the free queue */
1193void
1194mpt_free_request(struct mpt_softc *mpt, request_t *req)
1195{
1196	request_t *nxt;
1197	struct mpt_evtf_record *record;
1198	uint32_t offset, reply_baddr;
1199
1200	if (req == NULL || req != &mpt->request_pool[req->index]) {
1201		panic("mpt_free_request: bad req ptr");
1202	}
1203	if ((nxt = req->chain) != NULL) {
1204		req->chain = NULL;
1205		mpt_free_request(mpt, nxt);	/* NB: recursion */
1206	}
1207	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1208	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1209	MPT_LOCK_ASSERT(mpt);
1210	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1211	    ("mpt_free_request: req %p:%u func %x already on freelist",
1212	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1213	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1214	    ("mpt_free_request: req %p:%u func %x on pending list",
1215	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1216#ifdef	INVARIANTS
1217	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1218#endif
1219
1220	req->ccb = NULL;
1221	if (LIST_EMPTY(&mpt->ack_frames)) {
1222		/*
1223		 * Insert free ones at the tail
1224		 */
1225		req->serno = 0;
1226		req->state = REQ_STATE_FREE;
1227#ifdef	INVARIANTS
1228		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1229#endif
1230		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1231		if (mpt->getreqwaiter != 0) {
1232			mpt->getreqwaiter = 0;
1233			wakeup(&mpt->request_free_list);
1234		}
1235		return;
1236	}
1237
1238	/*
1239	 * Process an ack frame deferred due to resource shortage.
1240	 */
1241	record = LIST_FIRST(&mpt->ack_frames);
1242	LIST_REMOVE(record, links);
1243	req->state = REQ_STATE_ALLOCATED;
1244	mpt_assign_serno(mpt, req);
1245	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1246	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1247	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1248	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1249	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1250	mpt_free_reply(mpt, reply_baddr);
1251}
1252
1253/* Get a command buffer from the free queue */
1254request_t *
1255mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1256{
1257	request_t *req;
1258
1259retry:
1260	MPT_LOCK_ASSERT(mpt);
1261	req = TAILQ_FIRST(&mpt->request_free_list);
1262	if (req != NULL) {
1263		KASSERT(req == &mpt->request_pool[req->index],
1264		    ("mpt_get_request: corrupted request free list"));
1265		KASSERT(req->state == REQ_STATE_FREE,
1266		    ("req %p:%u not free on free list %x index %d function %x",
1267		    req, req->serno, req->state, req->index,
1268		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1269		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1270		req->state = REQ_STATE_ALLOCATED;
1271		req->chain = NULL;
1272		mpt_assign_serno(mpt, req);
1273	} else if (sleep_ok != 0) {
1274		mpt->getreqwaiter = 1;
1275		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1276		goto retry;
1277	}
1278	return (req);
1279}
1280
1281/* Pass the command to the IOC */
1282void
1283mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1284{
1285
1286	if (mpt->verbose > MPT_PRT_DEBUG2) {
1287		mpt_dump_request(mpt, req);
1288	}
1289	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1290	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1291	req->state |= REQ_STATE_QUEUED;
1292	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1293	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1294	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1295	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1296	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1297	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1298	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1299	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1300}
1301
1302/*
1303 * Wait for a request to complete.
1304 *
1305 * Inputs:
1306 *	mpt		softc of controller executing request
1307 *	req		request to wait for
1308 *	sleep_ok	nonzero implies may sleep in this context
1309 *	time_ms		timeout in ms.  0 implies no timeout.
1310 *
1311 * Return Values:
1312 *	0		Request completed
1313 *	non-0		Timeout fired before request completion.
1314 */
1315int
1316mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1317	     mpt_req_state_t state, mpt_req_state_t mask,
1318	     int sleep_ok, int time_ms)
1319{
1320	int   timeout;
1321	u_int saved_cnt;
1322	sbintime_t sbt;
1323
1324	/*
1325	 * time_ms is in ms, 0 indicates infinite wait.
1326	 * Convert to sbintime_t or 500us units depending on
1327	 * our sleep mode.
1328	 */
1329	if (sleep_ok != 0) {
1330		sbt = SBT_1MS * time_ms;
1331		/* Set timeout as well so final timeout check works. */
1332		timeout = time_ms;
1333	} else {
1334		sbt = 0; /* Squelch bogus gcc warning. */
1335		timeout = time_ms * 2;
1336	}
1337	req->state |= REQ_STATE_NEED_WAKEUP;
1338	mask &= ~REQ_STATE_NEED_WAKEUP;
1339	saved_cnt = mpt->reset_cnt;
1340	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1341		if (sleep_ok != 0) {
1342			if (mpt_sleep(mpt, req, PUSER, "mptreq", sbt) ==
1343			    EWOULDBLOCK) {
1344				timeout = 0;
1345				break;
1346			}
1347		} else {
1348			if (time_ms != 0 && --timeout == 0) {
1349				break;
1350			}
1351			DELAY(500);
1352			mpt_intr(mpt);
1353		}
1354	}
1355	req->state &= ~REQ_STATE_NEED_WAKEUP;
1356	if (mpt->reset_cnt != saved_cnt) {
1357		return (EIO);
1358	}
1359	if (time_ms && timeout <= 0) {
1360		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1361		req->state |= REQ_STATE_TIMEDOUT;
1362		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1363		return (ETIMEDOUT);
1364	}
1365	return (0);
1366}
1367
1368/*
1369 * Send a command to the IOC via the handshake register.
1370 *
1371 * Only done at initialization time and for certain unusual
1372 * commands such as device/bus reset as specified by LSI.
1373 */
1374int
1375mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1376{
1377	int i;
1378	uint32_t data, *data32;
1379
1380	/* Check condition of the IOC */
1381	data = mpt_rd_db(mpt);
1382	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1383	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1384	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1385	 || MPT_DB_IS_IN_USE(data)) {
1386		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1387		mpt_print_db(data);
1388		return (EBUSY);
1389	}
1390
1391	/* We move things in 32 bit chunks */
1392	len = (len + 3) >> 2;
1393	data32 = cmd;
1394
1395	/* Clear any left over pending doorbell interrupts */
1396	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1397		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1398
1399	/*
1400	 * Tell the handshake reg. we are going to send a command
1401         * and how long it is going to be.
1402	 */
1403	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1404	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1405	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1406
1407	/* Wait for the chip to notice */
1408	if (mpt_wait_db_int(mpt) != MPT_OK) {
1409		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1410		return (ETIMEDOUT);
1411	}
1412
1413	/* Clear the interrupt */
1414	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1415
1416	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1417		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1418		return (ETIMEDOUT);
1419	}
1420
1421	/* Send the command */
1422	for (i = 0; i < len; i++) {
1423		mpt_write_stream(mpt, MPT_OFFSET_DOORBELL, *data32++);
1424		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1425			mpt_prt(mpt,
1426			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1427			return (ETIMEDOUT);
1428		}
1429	}
1430	return MPT_OK;
1431}
1432
1433/* Get the response from the handshake register */
1434int
1435mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1436{
1437	int left, reply_left;
1438	u_int16_t *data16;
1439	uint32_t data;
1440	MSG_DEFAULT_REPLY *hdr;
1441
1442	/* We move things out in 16 bit chunks */
1443	reply_len >>= 1;
1444	data16 = (u_int16_t *)reply;
1445
1446	hdr = (MSG_DEFAULT_REPLY *)reply;
1447
1448	/* Get first word */
1449	if (mpt_wait_db_int(mpt) != MPT_OK) {
1450		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1451		return ETIMEDOUT;
1452	}
1453	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1454	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1455	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1456
1457	/* Get second word */
1458	if (mpt_wait_db_int(mpt) != MPT_OK) {
1459		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1460		return ETIMEDOUT;
1461	}
1462	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1463	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1464	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1465
1466	/*
1467	 * With the second word, we can now look at the length.
1468	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1469	 */
1470	if ((reply_len >> 1) != hdr->MsgLength &&
1471	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1472		mpt_prt(mpt, "reply length does not match message length: "
1473			"got %x; expected %zx for function %x\n",
1474			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1475	}
1476
1477	/* Get rest of the reply; but don't overflow the provided buffer */
1478	left = (hdr->MsgLength << 1) - 2;
1479	reply_left =  reply_len - 2;
1480	while (left--) {
1481		if (mpt_wait_db_int(mpt) != MPT_OK) {
1482			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1483			return ETIMEDOUT;
1484		}
1485		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1486		if (reply_left-- > 0)
1487			*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1488		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1489	}
1490
1491	/* One more wait & clear at the end */
1492	if (mpt_wait_db_int(mpt) != MPT_OK) {
1493		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1494		return ETIMEDOUT;
1495	}
1496	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1497
1498	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1499		if (mpt->verbose >= MPT_PRT_TRACE)
1500			mpt_print_reply(hdr);
1501		return (MPT_FAIL | hdr->IOCStatus);
1502	}
1503
1504	return (0);
1505}
1506
1507static int
1508mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1509{
1510	MSG_IOC_FACTS f_req;
1511	int error;
1512
1513	memset(&f_req, 0, sizeof f_req);
1514	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1515	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1516	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1517	if (error) {
1518		return(error);
1519	}
1520	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1521	return (error);
1522}
1523
1524static int
1525mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1526{
1527	MSG_PORT_FACTS f_req;
1528	int error;
1529
1530	memset(&f_req, 0, sizeof f_req);
1531	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1532	f_req.PortNumber = port;
1533	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1534	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1535	if (error) {
1536		return(error);
1537	}
1538	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1539	return (error);
1540}
1541
1542/*
1543 * Send the initialization request. This is where we specify how many
1544 * SCSI buses and how many devices per bus we wish to emulate.
1545 * This is also the command that specifies the max size of the reply
1546 * frames from the IOC that we will be allocating.
1547 */
1548static int
1549mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1550{
1551	int error = 0;
1552	MSG_IOC_INIT init;
1553	MSG_IOC_INIT_REPLY reply;
1554
1555	memset(&init, 0, sizeof init);
1556	init.WhoInit = who;
1557	init.Function = MPI_FUNCTION_IOC_INIT;
1558	init.MaxDevices = 0;	/* at least 256 devices per bus */
1559	init.MaxBuses = 16;	/* at least 16 buses */
1560
1561	init.MsgVersion = htole16(MPI_VERSION);
1562	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1563	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1564	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1565
1566	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1567		return(error);
1568	}
1569
1570	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1571	return (error);
1572}
1573
1574/*
1575 * Utiltity routine to read configuration headers and pages
1576 */
1577int
1578mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1579		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1580{
1581	MSG_CONFIG *cfgp;
1582	SGE_SIMPLE32 *se;
1583
1584	cfgp = req->req_vbuf;
1585	memset(cfgp, 0, sizeof *cfgp);
1586	cfgp->Action = params->Action;
1587	cfgp->Function = MPI_FUNCTION_CONFIG;
1588	cfgp->Header.PageVersion = params->PageVersion;
1589	cfgp->Header.PageNumber = params->PageNumber;
1590	cfgp->PageAddress = htole32(params->PageAddress);
1591	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1592	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1593		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1594		cfgp->Header.PageLength = 0;
1595		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1596		cfgp->ExtPageType = params->ExtPageType;
1597	} else {
1598		cfgp->Header.PageType = params->PageType;
1599		cfgp->Header.PageLength = params->PageLength;
1600	}
1601	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1602	se->Address = htole32(addr);
1603	MPI_pSGE_SET_LENGTH(se, len);
1604	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1605	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1606	    MPI_SGE_FLAGS_END_OF_LIST |
1607	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1608	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1609	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1610	se->FlagsLength = htole32(se->FlagsLength);
1611	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1612
1613	mpt_check_doorbell(mpt);
1614	mpt_send_cmd(mpt, req);
1615	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1616			     sleep_ok, timeout_ms));
1617}
1618
1619int
1620mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1621		       uint32_t PageAddress, int ExtPageType,
1622		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1623		       int sleep_ok, int timeout_ms)
1624{
1625	request_t  *req;
1626	cfgparms_t params;
1627	MSG_CONFIG_REPLY *cfgp;
1628	int	    error;
1629
1630	req = mpt_get_request(mpt, sleep_ok);
1631	if (req == NULL) {
1632		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1633		return (ENOMEM);
1634	}
1635
1636	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1637	params.PageVersion = PageVersion;
1638	params.PageLength = 0;
1639	params.PageNumber = PageNumber;
1640	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1641	params.PageAddress = PageAddress;
1642	params.ExtPageType = ExtPageType;
1643	params.ExtPageLength = 0;
1644	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1645				  sleep_ok, timeout_ms);
1646	if (error != 0) {
1647		/*
1648		 * Leave the request. Without resetting the chip, it's
1649		 * still owned by it and we'll just get into trouble
1650		 * freeing it now. Mark it as abandoned so that if it
1651		 * shows up later it can be freed.
1652		 */
1653		mpt_prt(mpt, "read_extcfg_header timed out\n");
1654		return (ETIMEDOUT);
1655	}
1656
1657        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1658	case MPI_IOCSTATUS_SUCCESS:
1659		cfgp = req->req_vbuf;
1660		rslt->PageVersion = cfgp->Header.PageVersion;
1661		rslt->PageNumber = cfgp->Header.PageNumber;
1662		rslt->PageType = cfgp->Header.PageType;
1663		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1664		rslt->ExtPageType = cfgp->ExtPageType;
1665		error = 0;
1666		break;
1667	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1668		mpt_lprt(mpt, MPT_PRT_DEBUG,
1669		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1670		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1671		error = EINVAL;
1672		break;
1673	default:
1674		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1675			req->IOCStatus);
1676		error = EIO;
1677		break;
1678	}
1679	mpt_free_request(mpt, req);
1680	return (error);
1681}
1682
1683int
1684mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1685		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1686		     int sleep_ok, int timeout_ms)
1687{
1688	request_t    *req;
1689	cfgparms_t    params;
1690	int	      error;
1691
1692	req = mpt_get_request(mpt, sleep_ok);
1693	if (req == NULL) {
1694		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1695		return (-1);
1696	}
1697
1698	params.Action = Action;
1699	params.PageVersion = hdr->PageVersion;
1700	params.PageLength = 0;
1701	params.PageNumber = hdr->PageNumber;
1702	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1703	params.PageAddress = PageAddress;
1704	params.ExtPageType = hdr->ExtPageType;
1705	params.ExtPageLength = hdr->ExtPageLength;
1706	error = mpt_issue_cfg_req(mpt, req, &params,
1707				  req->req_pbuf + MPT_RQSL(mpt),
1708				  len, sleep_ok, timeout_ms);
1709	if (error != 0) {
1710		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1711		return (-1);
1712	}
1713
1714	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1715		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1716			req->IOCStatus);
1717		mpt_free_request(mpt, req);
1718		return (-1);
1719	}
1720	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1721	mpt_free_request(mpt, req);
1722	return (0);
1723}
1724
1725int
1726mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1727		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1728		    int sleep_ok, int timeout_ms)
1729{
1730	request_t  *req;
1731	cfgparms_t params;
1732	MSG_CONFIG *cfgp;
1733	int	    error;
1734
1735	req = mpt_get_request(mpt, sleep_ok);
1736	if (req == NULL) {
1737		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1738		return (ENOMEM);
1739	}
1740
1741	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1742	params.PageVersion = 0;
1743	params.PageLength = 0;
1744	params.PageNumber = PageNumber;
1745	params.PageType = PageType;
1746	params.PageAddress = PageAddress;
1747	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1748				  sleep_ok, timeout_ms);
1749	if (error != 0) {
1750		/*
1751		 * Leave the request. Without resetting the chip, it's
1752		 * still owned by it and we'll just get into trouble
1753		 * freeing it now. Mark it as abandoned so that if it
1754		 * shows up later it can be freed.
1755		 */
1756		mpt_prt(mpt, "read_cfg_header timed out\n");
1757		return (ETIMEDOUT);
1758	}
1759
1760        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1761	case MPI_IOCSTATUS_SUCCESS:
1762		cfgp = req->req_vbuf;
1763		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1764		error = 0;
1765		break;
1766	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1767		mpt_lprt(mpt, MPT_PRT_DEBUG,
1768		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1769		    PageType, PageNumber, PageAddress);
1770		error = EINVAL;
1771		break;
1772	default:
1773		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1774			req->IOCStatus);
1775		error = EIO;
1776		break;
1777	}
1778	mpt_free_request(mpt, req);
1779	return (error);
1780}
1781
1782int
1783mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1784		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1785		  int timeout_ms)
1786{
1787	request_t    *req;
1788	cfgparms_t    params;
1789	int	      error;
1790
1791	req = mpt_get_request(mpt, sleep_ok);
1792	if (req == NULL) {
1793		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1794		return (-1);
1795	}
1796
1797	params.Action = Action;
1798	params.PageVersion = hdr->PageVersion;
1799	params.PageLength = hdr->PageLength;
1800	params.PageNumber = hdr->PageNumber;
1801	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1802	params.PageAddress = PageAddress;
1803	error = mpt_issue_cfg_req(mpt, req, &params,
1804				  req->req_pbuf + MPT_RQSL(mpt),
1805				  len, sleep_ok, timeout_ms);
1806	if (error != 0) {
1807		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1808		return (-1);
1809	}
1810
1811	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1812		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1813			req->IOCStatus);
1814		mpt_free_request(mpt, req);
1815		return (-1);
1816	}
1817	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1818	mpt_free_request(mpt, req);
1819	return (0);
1820}
1821
1822int
1823mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1824		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1825		   int timeout_ms)
1826{
1827	request_t    *req;
1828	cfgparms_t    params;
1829	u_int	      hdr_attr;
1830	int	      error;
1831
1832	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1833	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1834	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1835		mpt_prt(mpt, "page type 0x%x not changeable\n",
1836			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1837		return (-1);
1838	}
1839
1840#if	0
1841	/*
1842	 * We shouldn't mask off other bits here.
1843	 */
1844	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1845#endif
1846
1847	req = mpt_get_request(mpt, sleep_ok);
1848	if (req == NULL)
1849		return (-1);
1850
1851	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1852
1853	/*
1854	 * There isn't any point in restoring stripped out attributes
1855	 * if you then mask them going down to issue the request.
1856	 */
1857
1858	params.Action = Action;
1859	params.PageVersion = hdr->PageVersion;
1860	params.PageLength = hdr->PageLength;
1861	params.PageNumber = hdr->PageNumber;
1862	params.PageAddress = PageAddress;
1863#if	0
1864	/* Restore stripped out attributes */
1865	hdr->PageType |= hdr_attr;
1866	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1867#else
1868	params.PageType = hdr->PageType;
1869#endif
1870	error = mpt_issue_cfg_req(mpt, req, &params,
1871				  req->req_pbuf + MPT_RQSL(mpt),
1872				  len, sleep_ok, timeout_ms);
1873	if (error != 0) {
1874		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1875		return (-1);
1876	}
1877
1878        if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1879		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1880			req->IOCStatus);
1881		mpt_free_request(mpt, req);
1882		return (-1);
1883	}
1884	mpt_free_request(mpt, req);
1885	return (0);
1886}
1887
1888/*
1889 * Read IOC configuration information
1890 */
1891static int
1892mpt_read_config_info_ioc(struct mpt_softc *mpt)
1893{
1894	CONFIG_PAGE_HEADER hdr;
1895	struct mpt_raid_volume *mpt_raid;
1896	int rv;
1897	int i;
1898	size_t len;
1899
1900	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1901		2, 0, &hdr, FALSE, 5000);
1902	/*
1903	 * If it's an invalid page, so what? Not a supported function....
1904	 */
1905	if (rv == EINVAL) {
1906		return (0);
1907	}
1908	if (rv) {
1909		return (rv);
1910	}
1911
1912	mpt_lprt(mpt, MPT_PRT_DEBUG,
1913	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1914	    hdr.PageVersion, hdr.PageLength << 2,
1915	    hdr.PageNumber, hdr.PageType);
1916
1917	len = hdr.PageLength * sizeof(uint32_t);
1918	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1919	if (mpt->ioc_page2 == NULL) {
1920		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1921		mpt_raid_free_mem(mpt);
1922		return (ENOMEM);
1923	}
1924	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1925	rv = mpt_read_cur_cfg_page(mpt, 0,
1926	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1927	if (rv) {
1928		mpt_prt(mpt, "failed to read IOC Page 2\n");
1929		mpt_raid_free_mem(mpt);
1930		return (EIO);
1931	}
1932	mpt2host_config_page_ioc2(mpt->ioc_page2);
1933
1934	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1935		uint32_t mask;
1936
1937		mpt_prt(mpt, "Capabilities: (");
1938		for (mask = 1; mask != 0; mask <<= 1) {
1939			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1940				continue;
1941			}
1942			switch (mask) {
1943			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1944				mpt_prtc(mpt, " RAID-0");
1945				break;
1946			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1947				mpt_prtc(mpt, " RAID-1E");
1948				break;
1949			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1950				mpt_prtc(mpt, " RAID-1");
1951				break;
1952			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1953				mpt_prtc(mpt, " SES");
1954				break;
1955			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1956				mpt_prtc(mpt, " SAFTE");
1957				break;
1958			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1959				mpt_prtc(mpt, " Multi-Channel-Arrays");
1960			default:
1961				break;
1962			}
1963		}
1964		mpt_prtc(mpt, " )\n");
1965		if ((mpt->ioc_page2->CapabilitiesFlags
1966		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1967		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1968		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1969			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1970				mpt->ioc_page2->NumActiveVolumes,
1971				mpt->ioc_page2->NumActiveVolumes != 1
1972			      ? "s " : " ",
1973				mpt->ioc_page2->MaxVolumes);
1974			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1975				mpt->ioc_page2->NumActivePhysDisks,
1976				mpt->ioc_page2->NumActivePhysDisks != 1
1977			      ? "s " : " ",
1978				mpt->ioc_page2->MaxPhysDisks);
1979		}
1980	}
1981
1982	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1983	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1984	if (mpt->raid_volumes == NULL) {
1985		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1986		mpt_raid_free_mem(mpt);
1987		return (ENOMEM);
1988	}
1989
1990	/*
1991	 * Copy critical data out of ioc_page2 so that we can
1992	 * safely refresh the page without windows of unreliable
1993	 * data.
1994	 */
1995	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
1996
1997	len = sizeof(*mpt->raid_volumes->config_page) +
1998	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
1999	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2000		mpt_raid = &mpt->raid_volumes[i];
2001		mpt_raid->config_page =
2002		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2003		if (mpt_raid->config_page == NULL) {
2004			mpt_prt(mpt, "Could not allocate RAID page data\n");
2005			mpt_raid_free_mem(mpt);
2006			return (ENOMEM);
2007		}
2008	}
2009	mpt->raid_page0_len = len;
2010
2011	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2012	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2013	if (mpt->raid_disks == NULL) {
2014		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2015		mpt_raid_free_mem(mpt);
2016		return (ENOMEM);
2017	}
2018	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2019
2020	/*
2021	 * Load page 3.
2022	 */
2023	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2024	    3, 0, &hdr, FALSE, 5000);
2025	if (rv) {
2026		mpt_raid_free_mem(mpt);
2027		return (EIO);
2028	}
2029
2030	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2031	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2032
2033	len = hdr.PageLength * sizeof(uint32_t);
2034	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2035	if (mpt->ioc_page3 == NULL) {
2036		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2037		mpt_raid_free_mem(mpt);
2038		return (ENOMEM);
2039	}
2040	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2041	rv = mpt_read_cur_cfg_page(mpt, 0,
2042	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2043	if (rv) {
2044		mpt_raid_free_mem(mpt);
2045		return (EIO);
2046	}
2047	mpt2host_config_page_ioc3(mpt->ioc_page3);
2048	mpt_raid_wakeup(mpt);
2049	return (0);
2050}
2051
2052/*
2053 * Enable IOC port
2054 */
2055static int
2056mpt_send_port_enable(struct mpt_softc *mpt, int port)
2057{
2058	request_t	*req;
2059	MSG_PORT_ENABLE *enable_req;
2060	int		 error;
2061
2062	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2063	if (req == NULL)
2064		return (-1);
2065
2066	enable_req = req->req_vbuf;
2067	memset(enable_req, 0,  MPT_RQSL(mpt));
2068
2069	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2070	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2071	enable_req->PortNumber = port;
2072
2073	mpt_check_doorbell(mpt);
2074	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2075
2076	mpt_send_cmd(mpt, req);
2077	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2078	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2079	if (error != 0) {
2080		mpt_prt(mpt, "port %d enable timed out\n", port);
2081		return (-1);
2082	}
2083	mpt_free_request(mpt, req);
2084	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2085	return (0);
2086}
2087
2088/*
2089 * Enable/Disable asynchronous event reporting.
2090 */
2091static int
2092mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2093{
2094	request_t *req;
2095	MSG_EVENT_NOTIFY *enable_req;
2096
2097	req = mpt_get_request(mpt, FALSE);
2098	if (req == NULL) {
2099		return (ENOMEM);
2100	}
2101	enable_req = req->req_vbuf;
2102	memset(enable_req, 0, sizeof *enable_req);
2103
2104	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2105	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2106	enable_req->Switch     = onoff;
2107
2108	mpt_check_doorbell(mpt);
2109	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2110	    onoff ? "en" : "dis");
2111	/*
2112	 * Send the command off, but don't wait for it.
2113	 */
2114	mpt_send_cmd(mpt, req);
2115	return (0);
2116}
2117
2118/*
2119 * Un-mask the interrupts on the chip.
2120 */
2121void
2122mpt_enable_ints(struct mpt_softc *mpt)
2123{
2124
2125	/* Unmask every thing except door bell int */
2126	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2127}
2128
2129/*
2130 * Mask the interrupts on the chip.
2131 */
2132void
2133mpt_disable_ints(struct mpt_softc *mpt)
2134{
2135
2136	/* Mask all interrupts */
2137	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2138	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2139}
2140
2141static void
2142mpt_sysctl_attach(struct mpt_softc *mpt)
2143{
2144	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2145	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2146
2147	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2148		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2149		       "Debugging/Verbose level");
2150	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2151		       "role", CTLFLAG_RD, &mpt->role, 0,
2152		       "HBA role");
2153#ifdef	MPT_TEST_MULTIPATH
2154	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2155		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2156		       "Next Target to Fail");
2157#endif
2158}
2159
2160int
2161mpt_attach(struct mpt_softc *mpt)
2162{
2163	struct mpt_personality *pers;
2164	int i;
2165	int error;
2166
2167	mpt_core_attach(mpt);
2168	mpt_core_enable(mpt);
2169
2170	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2171	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2172		pers = mpt_personalities[i];
2173		if (pers == NULL) {
2174			continue;
2175		}
2176		if (pers->probe(mpt) == 0) {
2177			error = pers->attach(mpt);
2178			if (error != 0) {
2179				mpt_detach(mpt);
2180				return (error);
2181			}
2182			mpt->mpt_pers_mask |= (0x1 << pers->id);
2183			pers->use_count++;
2184		}
2185	}
2186
2187	/*
2188	 * Now that we've attached everything, do the enable function
2189	 * for all of the personalities. This allows the personalities
2190	 * to do setups that are appropriate for them prior to enabling
2191	 * any ports.
2192	 */
2193	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2194		pers = mpt_personalities[i];
2195		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2196			error = pers->enable(mpt);
2197			if (error != 0) {
2198				mpt_prt(mpt, "personality %s attached but would"
2199				    " not enable (%d)\n", pers->name, error);
2200				mpt_detach(mpt);
2201				return (error);
2202			}
2203		}
2204	}
2205	return (0);
2206}
2207
2208int
2209mpt_shutdown(struct mpt_softc *mpt)
2210{
2211	struct mpt_personality *pers;
2212
2213	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2214		pers->shutdown(mpt);
2215	}
2216	return (0);
2217}
2218
2219int
2220mpt_detach(struct mpt_softc *mpt)
2221{
2222	struct mpt_personality *pers;
2223
2224	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2225		pers->detach(mpt);
2226		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2227		pers->use_count--;
2228	}
2229	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2230	return (0);
2231}
2232
2233static int
2234mpt_core_load(struct mpt_personality *pers)
2235{
2236	int i;
2237
2238	/*
2239	 * Setup core handlers and insert the default handler
2240	 * into all "empty slots".
2241	 */
2242	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2243		mpt_reply_handlers[i] = mpt_default_reply_handler;
2244	}
2245
2246	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2247	    mpt_event_reply_handler;
2248	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2249	    mpt_config_reply_handler;
2250	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2251	    mpt_handshake_reply_handler;
2252	return (0);
2253}
2254
2255/*
2256 * Initialize per-instance driver data and perform
2257 * initial controller configuration.
2258 */
2259static int
2260mpt_core_attach(struct mpt_softc *mpt)
2261{
2262        int val, error;
2263
2264	LIST_INIT(&mpt->ack_frames);
2265	/* Put all request buffers on the free list */
2266	TAILQ_INIT(&mpt->request_pending_list);
2267	TAILQ_INIT(&mpt->request_free_list);
2268	TAILQ_INIT(&mpt->request_timeout_list);
2269	for (val = 0; val < MPT_MAX_LUNS; val++) {
2270		STAILQ_INIT(&mpt->trt[val].atios);
2271		STAILQ_INIT(&mpt->trt[val].inots);
2272	}
2273	STAILQ_INIT(&mpt->trt_wildcard.atios);
2274	STAILQ_INIT(&mpt->trt_wildcard.inots);
2275#ifdef	MPT_TEST_MULTIPATH
2276	mpt->failure_id = -1;
2277#endif
2278	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2279	mpt_sysctl_attach(mpt);
2280	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2281	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2282
2283	MPT_LOCK(mpt);
2284	error = mpt_configure_ioc(mpt, 0, 0);
2285	MPT_UNLOCK(mpt);
2286
2287	return (error);
2288}
2289
2290static int
2291mpt_core_enable(struct mpt_softc *mpt)
2292{
2293
2294	/*
2295	 * We enter with the IOC enabled, but async events
2296	 * not enabled, ports not enabled and interrupts
2297	 * not enabled.
2298	 */
2299	MPT_LOCK(mpt);
2300
2301	/*
2302	 * Enable asynchronous event reporting- all personalities
2303	 * have attached so that they should be able to now field
2304	 * async events.
2305	 */
2306	mpt_send_event_request(mpt, 1);
2307
2308	/*
2309	 * Catch any pending interrupts
2310	 *
2311	 * This seems to be crucial- otherwise
2312	 * the portenable below times out.
2313	 */
2314	mpt_intr(mpt);
2315
2316	/*
2317	 * Enable Interrupts
2318	 */
2319	mpt_enable_ints(mpt);
2320
2321	/*
2322	 * Catch any pending interrupts
2323	 *
2324	 * This seems to be crucial- otherwise
2325	 * the portenable below times out.
2326	 */
2327	mpt_intr(mpt);
2328
2329	/*
2330	 * Enable the port.
2331	 */
2332	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2333		mpt_prt(mpt, "failed to enable port 0\n");
2334		MPT_UNLOCK(mpt);
2335		return (ENXIO);
2336	}
2337	MPT_UNLOCK(mpt);
2338	return (0);
2339}
2340
2341static void
2342mpt_core_shutdown(struct mpt_softc *mpt)
2343{
2344
2345	mpt_disable_ints(mpt);
2346}
2347
2348static void
2349mpt_core_detach(struct mpt_softc *mpt)
2350{
2351	int val;
2352
2353	/*
2354	 * XXX: FREE MEMORY
2355	 */
2356	mpt_disable_ints(mpt);
2357
2358	/* Make sure no request has pending timeouts. */
2359	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2360		request_t *req = &mpt->request_pool[val];
2361		mpt_callout_drain(mpt, &req->callout);
2362	}
2363
2364	mpt_dma_buf_free(mpt);
2365}
2366
2367static int
2368mpt_core_unload(struct mpt_personality *pers)
2369{
2370
2371	/* Unload is always successful. */
2372	return (0);
2373}
2374
2375#define FW_UPLOAD_REQ_SIZE				\
2376	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2377       + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2378
2379static int
2380mpt_upload_fw(struct mpt_softc *mpt)
2381{
2382	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2383	MSG_FW_UPLOAD_REPLY fw_reply;
2384	MSG_FW_UPLOAD *fw_req;
2385	FW_UPLOAD_TCSGE *tsge;
2386	SGE_SIMPLE32 *sge;
2387	uint32_t flags;
2388	int error;
2389
2390	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2391	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2392	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2393	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2394	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2395	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2396	tsge->DetailsLength = 12;
2397	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2398	tsge->ImageSize = htole32(mpt->fw_image_size);
2399	sge = (SGE_SIMPLE32 *)(tsge + 1);
2400	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2401	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2402	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2403	flags <<= MPI_SGE_FLAGS_SHIFT;
2404	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2405	sge->Address = htole32(mpt->fw_phys);
2406	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2407	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2408	if (error)
2409		return(error);
2410	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2411	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2412	return (error);
2413}
2414
2415static void
2416mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2417	       uint32_t *data, bus_size_t len)
2418{
2419	uint32_t *data_end;
2420
2421	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2422	if (mpt->is_sas) {
2423		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2424	}
2425	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2426	while (data != data_end) {
2427		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2428		data++;
2429	}
2430	if (mpt->is_sas) {
2431		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2432	}
2433}
2434
2435static int
2436mpt_download_fw(struct mpt_softc *mpt)
2437{
2438	MpiFwHeader_t *fw_hdr;
2439	int error;
2440	uint32_t ext_offset;
2441	uint32_t data;
2442
2443	if (mpt->pci_pio_reg == NULL) {
2444		mpt_prt(mpt, "No PIO resource!\n");
2445		return (ENXIO);
2446	}
2447
2448	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2449		mpt->fw_image_size);
2450
2451	error = mpt_enable_diag_mode(mpt);
2452	if (error != 0) {
2453		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2454		return (EIO);
2455	}
2456
2457	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2458		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2459
2460	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2461	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2462	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2463		       fw_hdr->ImageSize);
2464	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2465
2466	ext_offset = fw_hdr->NextImageHeaderOffset;
2467	while (ext_offset != 0) {
2468		MpiExtImageHeader_t *ext;
2469
2470		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2471		ext_offset = ext->NextImageHeaderOffset;
2472		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2473		    BUS_DMASYNC_PREWRITE);
2474		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2475			       ext->ImageSize);
2476		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2477		    BUS_DMASYNC_POSTWRITE);
2478	}
2479
2480	if (mpt->is_sas) {
2481		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2482	}
2483	/* Setup the address to jump to on reset. */
2484	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2485	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2486
2487	/*
2488	 * The controller sets the "flash bad" status after attempting
2489	 * to auto-boot from flash.  Clear the status so that the controller
2490	 * will continue the boot process with our newly installed firmware.
2491	 */
2492	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2493	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2494	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2495	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2496
2497	if (mpt->is_sas) {
2498		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2499	}
2500
2501	/*
2502	 * Re-enable the processor and clear the boot halt flag.
2503	 */
2504	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2505	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2506	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2507
2508	mpt_disable_diag_mode(mpt);
2509	return (0);
2510}
2511
2512static int
2513mpt_dma_buf_alloc(struct mpt_softc *mpt)
2514{
2515	struct mpt_map_info mi;
2516	uint8_t *vptr;
2517	uint32_t pptr, end;
2518	int i, error;
2519
2520	/* Create a child tag for data buffers */
2521	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2522	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2523	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2524	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2525	    &mpt->buffer_dmat) != 0) {
2526		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2527		return (1);
2528	}
2529
2530	/* Create a child tag for request buffers */
2531	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2532	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2533	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2534	    &mpt->request_dmat) != 0) {
2535		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2536		return (1);
2537	}
2538
2539	/* Allocate some DMA accessible memory for requests */
2540	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2541	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2542		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2543		    MPT_REQ_MEM_SIZE(mpt));
2544		return (1);
2545	}
2546
2547	mi.mpt = mpt;
2548	mi.error = 0;
2549
2550	/* Load and lock it into "bus space" */
2551	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2552	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2553
2554	if (mi.error) {
2555		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2556		    mi.error);
2557		return (1);
2558	}
2559	mpt->request_phys = mi.phys;
2560
2561	/*
2562	 * Now create per-request dma maps
2563	 */
2564	i = 0;
2565	pptr =  mpt->request_phys;
2566	vptr =  mpt->request;
2567	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2568	while(pptr < end) {
2569		request_t *req = &mpt->request_pool[i];
2570		req->index = i++;
2571
2572		/* Store location of Request Data */
2573		req->req_pbuf = pptr;
2574		req->req_vbuf = vptr;
2575
2576		pptr += MPT_REQUEST_AREA;
2577		vptr += MPT_REQUEST_AREA;
2578
2579		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2580		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2581
2582		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2583		if (error) {
2584			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2585			    error);
2586			return (1);
2587		}
2588	}
2589
2590	return (0);
2591}
2592
2593static void
2594mpt_dma_buf_free(struct mpt_softc *mpt)
2595{
2596	int i;
2597
2598	if (mpt->request_dmat == 0) {
2599		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2600		return;
2601	}
2602	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2603		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2604	}
2605	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2606	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2607	bus_dma_tag_destroy(mpt->request_dmat);
2608	mpt->request_dmat = 0;
2609	bus_dma_tag_destroy(mpt->buffer_dmat);
2610}
2611
2612/*
2613 * Allocate/Initialize data structures for the controller.  Called
2614 * once at instance startup.
2615 */
2616static int
2617mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2618{
2619	PTR_MSG_PORT_FACTS_REPLY pfp;
2620	int error, port, val;
2621	size_t len;
2622
2623	if (tn == MPT_MAX_TRYS) {
2624		return (-1);
2625	}
2626
2627	/*
2628	 * No need to reset if the IOC is already in the READY state.
2629	 *
2630	 * Force reset if initialization failed previously.
2631	 * Note that a hard_reset of the second channel of a '929
2632	 * will stop operation of the first channel.  Hopefully, if the
2633	 * first channel is ok, the second will not require a hard
2634	 * reset.
2635	 */
2636	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2637		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2638			return (mpt_configure_ioc(mpt, tn++, 1));
2639		}
2640		needreset = 0;
2641	}
2642
2643	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2644		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2645		return (mpt_configure_ioc(mpt, tn++, 1));
2646	}
2647	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2648
2649	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2650	    mpt->ioc_facts.MsgVersion >> 8,
2651	    mpt->ioc_facts.MsgVersion & 0xFF,
2652	    mpt->ioc_facts.HeaderVersion >> 8,
2653	    mpt->ioc_facts.HeaderVersion & 0xFF);
2654
2655	/*
2656	 * Now that we know request frame size, we can calculate
2657	 * the actual (reasonable) segment limit for read/write I/O.
2658	 *
2659	 * This limit is constrained by:
2660	 *
2661	 *  + The size of each area we allocate per command (and how
2662	 *    many chain segments we can fit into it).
2663	 *  + The total number of areas we've set up.
2664	 *  + The actual chain depth the card will allow.
2665	 *
2666	 * The first area's segment count is limited by the I/O request
2667	 * at the head of it. We cannot allocate realistically more
2668	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2669	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2670	 *
2671	 */
2672	/* total number of request areas we (can) allocate */
2673	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2674
2675	/* converted to the number of chain areas possible */
2676	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2677
2678	/* limited by the number of chain areas the card will support */
2679	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2680		mpt_lprt(mpt, MPT_PRT_INFO,
2681		    "chain depth limited to %u (from %u)\n",
2682		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2683		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2684	}
2685
2686	/* converted to the number of simple sges in chain segments. */
2687	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2688
2689	/*
2690	 * Use this as the basis for reporting the maximum I/O size to CAM.
2691	 */
2692	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, btoc(maxphys) + 1);
2693
2694	/* XXX Lame Locking! */
2695	MPT_UNLOCK(mpt);
2696	error = mpt_dma_buf_alloc(mpt);
2697	MPT_LOCK(mpt);
2698
2699	if (error != 0) {
2700		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2701		return (EIO);
2702	}
2703
2704	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2705		request_t *req = &mpt->request_pool[val];
2706		req->state = REQ_STATE_ALLOCATED;
2707		mpt_callout_init(mpt, &req->callout);
2708		mpt_free_request(mpt, req);
2709	}
2710
2711	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2712		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2713		 mpt->max_cam_seg_cnt);
2714
2715	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2716	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2717	mpt_lprt(mpt, MPT_PRT_INFO,
2718	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2719	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2720	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2721	    mpt->ioc_facts.RequestFrameSize << 2,
2722	    mpt->ioc_facts.MaxChainDepth);
2723	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2724	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2725	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2726
2727	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2728	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2729	if (mpt->port_facts == NULL) {
2730		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2731		return (ENOMEM);
2732	}
2733
2734	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2735	    (mpt->fw_uploaded == 0)) {
2736		struct mpt_map_info mi;
2737
2738		/*
2739		 * In some configurations, the IOC's firmware is
2740		 * stored in a shared piece of system NVRAM that
2741		 * is only accessible via the BIOS.  In this
2742		 * case, the firmware keeps a copy of firmware in
2743		 * RAM until the OS driver retrieves it.  Once
2744		 * retrieved, we are responsible for re-downloading
2745		 * the firmware after any hard-reset.
2746		 */
2747		MPT_UNLOCK(mpt);
2748		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2749		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2750		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2751		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2752		    &mpt->fw_dmat);
2753		if (error != 0) {
2754			mpt_prt(mpt, "cannot create firmware dma tag\n");
2755			MPT_LOCK(mpt);
2756			return (ENOMEM);
2757		}
2758		error = bus_dmamem_alloc(mpt->fw_dmat,
2759		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2760		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2761		if (error != 0) {
2762			mpt_prt(mpt, "cannot allocate firmware memory\n");
2763			bus_dma_tag_destroy(mpt->fw_dmat);
2764			MPT_LOCK(mpt);
2765			return (ENOMEM);
2766		}
2767		mi.mpt = mpt;
2768		mi.error = 0;
2769		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2770		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2771		mpt->fw_phys = mi.phys;
2772
2773		MPT_LOCK(mpt);
2774		error = mpt_upload_fw(mpt);
2775		if (error != 0) {
2776			mpt_prt(mpt, "firmware upload failed.\n");
2777			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2778			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2779			    mpt->fw_dmap);
2780			bus_dma_tag_destroy(mpt->fw_dmat);
2781			mpt->fw_image = NULL;
2782			return (EIO);
2783		}
2784		mpt->fw_uploaded = 1;
2785	}
2786
2787	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2788		pfp = &mpt->port_facts[port];
2789		error = mpt_get_portfacts(mpt, 0, pfp);
2790		if (error != MPT_OK) {
2791			mpt_prt(mpt,
2792			    "mpt_get_portfacts on port %d failed\n", port);
2793			free(mpt->port_facts, M_DEVBUF);
2794			mpt->port_facts = NULL;
2795			return (mpt_configure_ioc(mpt, tn++, 1));
2796		}
2797		mpt2host_portfacts_reply(pfp);
2798
2799		if (port > 0) {
2800			error = MPT_PRT_INFO;
2801		} else {
2802			error = MPT_PRT_DEBUG;
2803		}
2804		mpt_lprt(mpt, error,
2805		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2806		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2807		    pfp->MaxDevices);
2808	}
2809
2810	/*
2811	 * XXX: Not yet supporting more than port 0
2812	 */
2813	pfp = &mpt->port_facts[0];
2814	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2815		mpt->is_fc = 1;
2816		mpt->is_sas = 0;
2817		mpt->is_spi = 0;
2818	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2819		mpt->is_fc = 0;
2820		mpt->is_sas = 1;
2821		mpt->is_spi = 0;
2822	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2823		mpt->is_fc = 0;
2824		mpt->is_sas = 0;
2825		mpt->is_spi = 1;
2826		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2827			mpt->mpt_ini_id = pfp->PortSCSIID;
2828	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2829		mpt_prt(mpt, "iSCSI not supported yet\n");
2830		return (ENXIO);
2831	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2832		mpt_prt(mpt, "Inactive Port\n");
2833		return (ENXIO);
2834	} else {
2835		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2836		return (ENXIO);
2837	}
2838
2839	/*
2840	 * Set our role with what this port supports.
2841	 *
2842	 * Note this might be changed later in different modules
2843	 * if this is different from what is wanted.
2844	 */
2845	mpt->role = MPT_ROLE_NONE;
2846	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2847		mpt->role |= MPT_ROLE_INITIATOR;
2848	}
2849	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2850		mpt->role |= MPT_ROLE_TARGET;
2851	}
2852
2853	/*
2854	 * Enable the IOC
2855	 */
2856	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2857		mpt_prt(mpt, "unable to initialize IOC\n");
2858		return (ENXIO);
2859	}
2860
2861	/*
2862	 * Read IOC configuration information.
2863	 *
2864	 * We need this to determine whether or not we have certain
2865	 * settings for Integrated Mirroring (e.g.).
2866	 */
2867	mpt_read_config_info_ioc(mpt);
2868
2869	return (0);
2870}
2871
2872static int
2873mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2874{
2875	uint32_t pptr;
2876	int val;
2877
2878	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2879		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2880		return (EIO);
2881	}
2882
2883	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2884
2885	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2886		mpt_prt(mpt, "IOC failed to go to run state\n");
2887		return (ENXIO);
2888	}
2889	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2890
2891	/*
2892	 * Give it reply buffers
2893	 *
2894	 * Do *not* exceed global credits.
2895	 */
2896	for (val = 0, pptr = mpt->reply_phys;
2897	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2898	     pptr += MPT_REPLY_SIZE) {
2899		mpt_free_reply(mpt, pptr);
2900		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2901			break;
2902	}
2903
2904	/*
2905	 * Enable the port if asked. This is only done if we're resetting
2906	 * the IOC after initial startup.
2907	 */
2908	if (portenable) {
2909		/*
2910		 * Enable asynchronous event reporting
2911		 */
2912		mpt_send_event_request(mpt, 1);
2913
2914		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2915			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2916			return (ENXIO);
2917		}
2918	}
2919	return (MPT_OK);
2920}
2921
2922/*
2923 * Endian Conversion Functions- only used on Big Endian machines
2924 */
2925#if	_BYTE_ORDER == _BIG_ENDIAN
2926void
2927mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2928{
2929
2930	MPT_2_HOST32(sge, FlagsLength);
2931	MPT_2_HOST32(sge, u.Address64.Low);
2932	MPT_2_HOST32(sge, u.Address64.High);
2933}
2934
2935void
2936mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2937{
2938
2939	MPT_2_HOST16(rp, MsgVersion);
2940	MPT_2_HOST16(rp, HeaderVersion);
2941	MPT_2_HOST32(rp, MsgContext);
2942	MPT_2_HOST16(rp, IOCExceptions);
2943	MPT_2_HOST16(rp, IOCStatus);
2944	MPT_2_HOST32(rp, IOCLogInfo);
2945	MPT_2_HOST16(rp, ReplyQueueDepth);
2946	MPT_2_HOST16(rp, RequestFrameSize);
2947	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2948	MPT_2_HOST16(rp, ProductID);
2949	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2950	MPT_2_HOST16(rp, GlobalCredits);
2951	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2952	MPT_2_HOST16(rp, CurReplyFrameSize);
2953	MPT_2_HOST32(rp, FWImageSize);
2954	MPT_2_HOST32(rp, IOCCapabilities);
2955	MPT_2_HOST32(rp, FWVersion.Word);
2956	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2957	MPT_2_HOST16(rp, Reserved2);
2958	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2959	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2960}
2961
2962void
2963mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2964{
2965
2966	MPT_2_HOST16(pfp, Reserved);
2967	MPT_2_HOST16(pfp, Reserved1);
2968	MPT_2_HOST32(pfp, MsgContext);
2969	MPT_2_HOST16(pfp, Reserved2);
2970	MPT_2_HOST16(pfp, IOCStatus);
2971	MPT_2_HOST32(pfp, IOCLogInfo);
2972	MPT_2_HOST16(pfp, MaxDevices);
2973	MPT_2_HOST16(pfp, PortSCSIID);
2974	MPT_2_HOST16(pfp, ProtocolFlags);
2975	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2976	MPT_2_HOST16(pfp, MaxPersistentIDs);
2977	MPT_2_HOST16(pfp, MaxLanBuckets);
2978	MPT_2_HOST16(pfp, Reserved4);
2979	MPT_2_HOST32(pfp, Reserved5);
2980}
2981
2982void
2983mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2984{
2985	int i;
2986
2987	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2988	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2989		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2990	}
2991}
2992
2993void
2994mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2995{
2996
2997	MPT_2_HOST16(ioc3, Reserved2);
2998}
2999
3000void
3001mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3002{
3003
3004	MPT_2_HOST32(sp0, Capabilities);
3005	MPT_2_HOST32(sp0, PhysicalInterface);
3006}
3007
3008void
3009mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3010{
3011
3012	MPT_2_HOST32(sp1, Configuration);
3013	MPT_2_HOST32(sp1, OnBusTimerValue);
3014	MPT_2_HOST16(sp1, IDConfig);
3015}
3016
3017void
3018host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3019{
3020
3021	HOST_2_MPT32(sp1, Configuration);
3022	HOST_2_MPT32(sp1, OnBusTimerValue);
3023	HOST_2_MPT16(sp1, IDConfig);
3024}
3025
3026void
3027mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3028{
3029	int i;
3030
3031	MPT_2_HOST32(sp2, PortFlags);
3032	MPT_2_HOST32(sp2, PortSettings);
3033	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3034	    sizeof(*sp2->DeviceSettings); i++) {
3035		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3036	}
3037}
3038
3039void
3040mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3041{
3042
3043	MPT_2_HOST32(sd0, NegotiatedParameters);
3044	MPT_2_HOST32(sd0, Information);
3045}
3046
3047void
3048mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3049{
3050
3051	MPT_2_HOST32(sd1, RequestedParameters);
3052	MPT_2_HOST32(sd1, Reserved);
3053	MPT_2_HOST32(sd1, Configuration);
3054}
3055
3056void
3057host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3058{
3059
3060	HOST_2_MPT32(sd1, RequestedParameters);
3061	HOST_2_MPT32(sd1, Reserved);
3062	HOST_2_MPT32(sd1, Configuration);
3063}
3064
3065void
3066mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3067{
3068
3069	MPT_2_HOST32(fp0, Flags);
3070	MPT_2_HOST32(fp0, PortIdentifier);
3071	MPT_2_HOST32(fp0, WWNN.Low);
3072	MPT_2_HOST32(fp0, WWNN.High);
3073	MPT_2_HOST32(fp0, WWPN.Low);
3074	MPT_2_HOST32(fp0, WWPN.High);
3075	MPT_2_HOST32(fp0, SupportedServiceClass);
3076	MPT_2_HOST32(fp0, SupportedSpeeds);
3077	MPT_2_HOST32(fp0, CurrentSpeed);
3078	MPT_2_HOST32(fp0, MaxFrameSize);
3079	MPT_2_HOST32(fp0, FabricWWNN.Low);
3080	MPT_2_HOST32(fp0, FabricWWNN.High);
3081	MPT_2_HOST32(fp0, FabricWWPN.Low);
3082	MPT_2_HOST32(fp0, FabricWWPN.High);
3083	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3084	MPT_2_HOST32(fp0, MaxInitiators);
3085}
3086
3087void
3088mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3089{
3090
3091	MPT_2_HOST32(fp1, Flags);
3092	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3093	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3094	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3095	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3096}
3097
3098void
3099host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3100{
3101
3102	HOST_2_MPT32(fp1, Flags);
3103	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3104	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3105	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3106	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3107}
3108
3109void
3110mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3111{
3112	int i;
3113
3114	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3115	MPT_2_HOST16(volp, VolumeSettings.Settings);
3116	MPT_2_HOST32(volp, MaxLBA);
3117	MPT_2_HOST32(volp, MaxLBAHigh);
3118	MPT_2_HOST32(volp, StripeSize);
3119	MPT_2_HOST32(volp, Reserved2);
3120	MPT_2_HOST32(volp, Reserved3);
3121	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3122		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3123	}
3124}
3125
3126void
3127mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3128{
3129
3130	MPT_2_HOST32(rpd0, Reserved1);
3131	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3132	MPT_2_HOST32(rpd0, MaxLBA);
3133	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3134	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3135	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3136}
3137
3138void
3139mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3140{
3141
3142	MPT_2_HOST16(vi, TotalBlocks.High);
3143	MPT_2_HOST16(vi, TotalBlocks.Low);
3144	MPT_2_HOST16(vi, BlocksRemaining.High);
3145	MPT_2_HOST16(vi, BlocksRemaining.Low);
3146}
3147#endif
3148