1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
5 * All rights reserved.
6 * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31#include "if_igc.h"
32
33#ifdef RSS
34#include <net/rss_config.h>
35#include <netinet/in_rss.h>
36#endif
37
38#ifdef VERBOSE_DEBUG
39#define DPRINTF device_printf
40#else
41#define DPRINTF(...)
42#endif
43
44/*********************************************************************
45 *  Local Function prototypes
46 *********************************************************************/
47static int igc_isc_txd_encap(void *arg, if_pkt_info_t pi);
48static void igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
49static int igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
50
51static void igc_isc_rxd_refill(void *arg, if_rxd_update_t iru);
52
53static void igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
54    qidx_t pidx);
55static int igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
56    qidx_t budget);
57
58static int igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
59
60static int igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi,
61    uint32_t *cmd_type_len, uint32_t *olinfo_status);
62static int igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi,
63    uint32_t *cmd_type_len, uint32_t *olinfo_status);
64
65static void igc_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype);
66static int igc_determine_rsstype(uint16_t pkt_info);
67
68extern void igc_if_enable_intr(if_ctx_t ctx);
69extern int igc_intr(void *arg);
70
71struct if_txrx igc_txrx = {
72	.ift_txd_encap = igc_isc_txd_encap,
73	.ift_txd_flush = igc_isc_txd_flush,
74	.ift_txd_credits_update = igc_isc_txd_credits_update,
75	.ift_rxd_available = igc_isc_rxd_available,
76	.ift_rxd_pkt_get = igc_isc_rxd_pkt_get,
77	.ift_rxd_refill = igc_isc_rxd_refill,
78	.ift_rxd_flush = igc_isc_rxd_flush,
79	.ift_legacy_intr = igc_intr
80};
81
82void
83igc_dump_rs(struct igc_adapter *adapter)
84{
85	if_softc_ctx_t scctx = adapter->shared;
86	struct igc_tx_queue *que;
87	struct tx_ring *txr;
88	qidx_t i, ntxd, qid, cur;
89	int16_t rs_cidx;
90	uint8_t status;
91
92	printf("\n");
93	ntxd = scctx->isc_ntxd[0];
94	for (qid = 0; qid < adapter->tx_num_queues; qid++) {
95		que = &adapter->tx_queues[qid];
96		txr =  &que->txr;
97		rs_cidx = txr->tx_rs_cidx;
98		if (rs_cidx != txr->tx_rs_pidx) {
99			cur = txr->tx_rsq[rs_cidx];
100			status = txr->tx_base[cur].upper.fields.status;
101			if (!(status & IGC_TXD_STAT_DD))
102				printf("qid[%d]->tx_rsq[%d]: %d clear ", qid, rs_cidx, cur);
103		} else {
104			rs_cidx = (rs_cidx-1)&(ntxd-1);
105			cur = txr->tx_rsq[rs_cidx];
106			printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d  ", qid, rs_cidx, cur);
107		}
108		printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed, txr->tx_rs_pidx);
109		for (i = 0; i < ntxd; i++) {
110			if (txr->tx_base[i].upper.fields.status & IGC_TXD_STAT_DD)
111				printf("%d set ", i);
112		}
113		printf("\n");
114	}
115}
116
117/**********************************************************************
118 *
119 *  Setup work for hardware segmentation offload (TSO) on
120 *  adapters using advanced tx descriptors
121 *
122 **********************************************************************/
123static int
124igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
125    uint32_t *olinfo_status)
126{
127	struct igc_adv_tx_context_desc *TXD;
128	uint32_t type_tucmd_mlhl = 0, vlan_macip_lens = 0;
129	uint32_t mss_l4len_idx = 0;
130	uint32_t paylen;
131
132	switch(pi->ipi_etype) {
133	case ETHERTYPE_IPV6:
134		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
135		break;
136	case ETHERTYPE_IP:
137		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
138		/* Tell transmit desc to also do IPv4 checksum. */
139		*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
140		break;
141	default:
142		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
143		      __func__, ntohs(pi->ipi_etype));
144		break;
145	}
146
147	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
148
149	/* This is used in the transmit desc in encap */
150	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
151
152	/* VLAN MACLEN IPLEN */
153	if (pi->ipi_mflags & M_VLANTAG) {
154		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
155	}
156
157	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
158	vlan_macip_lens |= pi->ipi_ip_hlen;
159	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
160
161	/* ADV DTYPE TUCMD */
162	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
163	type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
164	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
165
166	/* MSS L4LEN IDX */
167	mss_l4len_idx |= (pi->ipi_tso_segsz << IGC_ADVTXD_MSS_SHIFT);
168	mss_l4len_idx |= (pi->ipi_tcp_hlen << IGC_ADVTXD_L4LEN_SHIFT);
169	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
170
171	TXD->seqnum_seed = htole32(0);
172	*cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
173	*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
174	*olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
175
176	return (1);
177}
178
179/*********************************************************************
180 *
181 *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
182 *
183 **********************************************************************/
184static int
185igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
186    uint32_t *olinfo_status)
187{
188	struct igc_adv_tx_context_desc *TXD;
189	uint32_t vlan_macip_lens, type_tucmd_mlhl;
190	uint32_t mss_l4len_idx;
191	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
192
193	/* First check if TSO is to be used */
194	if (pi->ipi_csum_flags & CSUM_TSO)
195		return (igc_tso_setup(txr, pi, cmd_type_len, olinfo_status));
196
197	/* Indicate the whole packet as payload when not doing TSO */
198	*olinfo_status |= pi->ipi_len << IGC_ADVTXD_PAYLEN_SHIFT;
199
200	/* Now ready a context descriptor */
201	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
202
203	/*
204	** In advanced descriptors the vlan tag must
205	** be placed into the context descriptor. Hence
206	** we need to make one even if not doing offloads.
207	*/
208	if (pi->ipi_mflags & M_VLANTAG) {
209		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
210	} else if ((pi->ipi_csum_flags & IGC_CSUM_OFFLOAD) == 0) {
211		return (0);
212	}
213
214	/* Set the ether header length */
215	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
216
217	switch(pi->ipi_etype) {
218	case ETHERTYPE_IP:
219		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
220		break;
221	case ETHERTYPE_IPV6:
222		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
223		break;
224	default:
225		break;
226	}
227
228	vlan_macip_lens |= pi->ipi_ip_hlen;
229	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
230
231	switch (pi->ipi_ipproto) {
232	case IPPROTO_TCP:
233		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
234			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
235			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
236		}
237		break;
238	case IPPROTO_UDP:
239		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
240			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
241			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
242		}
243		break;
244	case IPPROTO_SCTP:
245		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
246			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_SCTP;
247			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
248		}
249		break;
250	default:
251		break;
252	}
253
254	/* Now copy bits into descriptor */
255	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
256	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
257	TXD->seqnum_seed = htole32(0);
258	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
259
260	return (1);
261}
262
263static int
264igc_isc_txd_encap(void *arg, if_pkt_info_t pi)
265{
266	struct igc_adapter *sc = arg;
267	if_softc_ctx_t scctx = sc->shared;
268	struct igc_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
269	struct tx_ring *txr = &que->txr;
270	int nsegs = pi->ipi_nsegs;
271	bus_dma_segment_t *segs = pi->ipi_segs;
272	union igc_adv_tx_desc *txd = NULL;
273	int i, j, pidx_last;
274	uint32_t olinfo_status, cmd_type_len, txd_flags;
275	qidx_t ntxd;
276
277	pidx_last = olinfo_status = 0;
278	/* Basic descriptor defines */
279	cmd_type_len = (IGC_ADVTXD_DTYP_DATA |
280			IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DCMD_DEXT);
281
282	if (pi->ipi_mflags & M_VLANTAG)
283		cmd_type_len |= IGC_ADVTXD_DCMD_VLE;
284
285	i = pi->ipi_pidx;
286	ntxd = scctx->isc_ntxd[0];
287	txd_flags = pi->ipi_flags & IPI_TX_INTR ? IGC_ADVTXD_DCMD_RS : 0;
288	/* Consume the first descriptor */
289	i += igc_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
290	if (i == scctx->isc_ntxd[0])
291		i = 0;
292
293	for (j = 0; j < nsegs; j++) {
294		bus_size_t seglen;
295		bus_addr_t segaddr;
296
297		txd = (union igc_adv_tx_desc *)&txr->tx_base[i];
298		seglen = segs[j].ds_len;
299		segaddr = htole64(segs[j].ds_addr);
300
301		txd->read.buffer_addr = segaddr;
302		txd->read.cmd_type_len = htole32(IGC_ADVTXD_DCMD_IFCS |
303		    cmd_type_len | seglen);
304		txd->read.olinfo_status = htole32(olinfo_status);
305		pidx_last = i;
306		if (++i == scctx->isc_ntxd[0]) {
307			i = 0;
308		}
309	}
310	if (txd_flags) {
311		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
312		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
313		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
314	}
315
316	txd->read.cmd_type_len |= htole32(IGC_ADVTXD_DCMD_EOP | txd_flags);
317	pi->ipi_new_pidx = i;
318
319	return (0);
320}
321
322static void
323igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
324{
325	struct igc_adapter *adapter	= arg;
326	struct igc_tx_queue *que	= &adapter->tx_queues[txqid];
327	struct tx_ring *txr	= &que->txr;
328
329	IGC_WRITE_REG(&adapter->hw, IGC_TDT(txr->me), pidx);
330}
331
332static int
333igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
334{
335	struct igc_adapter *adapter = arg;
336	if_softc_ctx_t scctx = adapter->shared;
337	struct igc_tx_queue *que = &adapter->tx_queues[txqid];
338	struct tx_ring *txr = &que->txr;
339
340	qidx_t processed = 0;
341	int updated;
342	qidx_t cur, prev, ntxd, rs_cidx;
343	int32_t delta;
344	uint8_t status;
345
346	rs_cidx = txr->tx_rs_cidx;
347	if (rs_cidx == txr->tx_rs_pidx)
348		return (0);
349	cur = txr->tx_rsq[rs_cidx];
350	status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
351	updated = !!(status & IGC_TXD_STAT_DD);
352
353	if (!updated)
354		return (0);
355
356	/* If clear is false just let caller know that there
357	 * are descriptors to reclaim */
358	if (!clear)
359		return (1);
360
361	prev = txr->tx_cidx_processed;
362	ntxd = scctx->isc_ntxd[0];
363	do {
364		MPASS(prev != cur);
365		delta = (int32_t)cur - (int32_t)prev;
366		if (delta < 0)
367			delta += ntxd;
368		MPASS(delta > 0);
369
370		processed += delta;
371		prev  = cur;
372		rs_cidx = (rs_cidx + 1) & (ntxd-1);
373		if (rs_cidx  == txr->tx_rs_pidx)
374			break;
375		cur = txr->tx_rsq[rs_cidx];
376		status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
377	} while ((status & IGC_TXD_STAT_DD));
378
379	txr->tx_rs_cidx = rs_cidx;
380	txr->tx_cidx_processed = prev;
381	return (processed);
382}
383
384static void
385igc_isc_rxd_refill(void *arg, if_rxd_update_t iru)
386{
387	struct igc_adapter *sc = arg;
388	if_softc_ctx_t scctx = sc->shared;
389	uint16_t rxqid = iru->iru_qsidx;
390	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
391	union igc_adv_rx_desc *rxd;
392	struct rx_ring *rxr = &que->rxr;
393	uint64_t *paddrs;
394	uint32_t next_pidx, pidx;
395	uint16_t count;
396	int i;
397
398	paddrs = iru->iru_paddrs;
399	pidx = iru->iru_pidx;
400	count = iru->iru_count;
401
402	for (i = 0, next_pidx = pidx; i < count; i++) {
403		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[next_pidx];
404
405		rxd->read.pkt_addr = htole64(paddrs[i]);
406		if (++next_pidx == scctx->isc_nrxd[0])
407			next_pidx = 0;
408	}
409}
410
411static void
412igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
413{
414	struct igc_adapter *sc = arg;
415	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
416	struct rx_ring *rxr = &que->rxr;
417
418	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), pidx);
419}
420
421static int
422igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
423{
424	struct igc_adapter *sc = arg;
425	if_softc_ctx_t scctx = sc->shared;
426	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
427	struct rx_ring *rxr = &que->rxr;
428	union igc_adv_rx_desc *rxd;
429	uint32_t staterr = 0;
430	int cnt, i;
431
432	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
433		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[i];
434		staterr = le32toh(rxd->wb.upper.status_error);
435
436		if ((staterr & IGC_RXD_STAT_DD) == 0)
437			break;
438		if (++i == scctx->isc_nrxd[0])
439			i = 0;
440		if (staterr & IGC_RXD_STAT_EOP)
441			cnt++;
442	}
443	return (cnt);
444}
445
446/****************************************************************
447 * Routine sends data which has been dma'ed into host memory
448 * to upper layer. Initialize ri structure.
449 *
450 * Returns 0 upon success, errno on failure
451 ***************************************************************/
452
453static int
454igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
455{
456	struct igc_adapter *adapter = arg;
457	if_softc_ctx_t scctx = adapter->shared;
458	struct igc_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
459	struct rx_ring *rxr = &que->rxr;
460	union igc_adv_rx_desc *rxd;
461
462	uint16_t pkt_info, len;
463	uint32_t ptype, staterr;
464	int i, cidx;
465	bool eop;
466
467	staterr = i = 0;
468	cidx = ri->iri_cidx;
469
470	do {
471		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[cidx];
472		staterr = le32toh(rxd->wb.upper.status_error);
473		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
474
475		MPASS ((staterr & IGC_RXD_STAT_DD) != 0);
476
477		len = le16toh(rxd->wb.upper.length);
478		ptype = le32toh(rxd->wb.lower.lo_dword.data) &  IGC_PKTTYPE_MASK;
479
480		ri->iri_len += len;
481		rxr->rx_bytes += ri->iri_len;
482
483		rxd->wb.upper.status_error = 0;
484		eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
485
486		/* Make sure bad packets are discarded */
487		if (eop && ((staterr & IGC_RXDEXT_STATERR_RXE) != 0)) {
488			adapter->dropped_pkts++;
489			++rxr->rx_discarded;
490			return (EBADMSG);
491		}
492		ri->iri_frags[i].irf_flid = 0;
493		ri->iri_frags[i].irf_idx = cidx;
494		ri->iri_frags[i].irf_len = len;
495
496		if (++cidx == scctx->isc_nrxd[0])
497			cidx = 0;
498#ifdef notyet
499		if (rxr->hdr_split == true) {
500			ri->iri_frags[i].irf_flid = 1;
501			ri->iri_frags[i].irf_idx = cidx;
502			if (++cidx == scctx->isc_nrxd[0])
503				cidx = 0;
504		}
505#endif
506		i++;
507	} while (!eop);
508
509	rxr->rx_packets++;
510
511	if ((scctx->isc_capenable & IFCAP_RXCSUM) != 0)
512		igc_rx_checksum(staterr, ri, ptype);
513
514	if (staterr & IGC_RXD_STAT_VP) {
515		ri->iri_vtag = le16toh(rxd->wb.upper.vlan);
516		ri->iri_flags |= M_VLANTAG;
517	}
518
519	ri->iri_flowid =
520		le32toh(rxd->wb.lower.hi_dword.rss);
521	ri->iri_rsstype = igc_determine_rsstype(pkt_info);
522	ri->iri_nfrags = i;
523
524	return (0);
525}
526
527/*********************************************************************
528 *
529 *  Verify that the hardware indicated that the checksum is valid.
530 *  Inform the stack about the status of checksum so that stack
531 *  doesn't spend time verifying the checksum.
532 *
533 *********************************************************************/
534static void
535igc_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype)
536{
537	uint16_t status = (uint16_t)staterr;
538	uint8_t errors = (uint8_t)(staterr >> 24);
539
540	if (__predict_false(status & IGC_RXD_STAT_IXSM))
541		return;
542
543	/* If there is a layer 3 or 4 error we are done */
544	if (__predict_false(errors & (IGC_RXD_ERR_IPE | IGC_RXD_ERR_TCPE)))
545		return;
546
547	/* IP Checksum Good */
548	if (status & IGC_RXD_STAT_IPCS)
549		ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
550
551	/* Valid L4E checksum */
552	if (__predict_true(status &
553	    (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS))) {
554		/* SCTP header present */
555		if (__predict_false((ptype & IGC_RXDADV_PKTTYPE_ETQF) == 0 &&
556		    (ptype & IGC_RXDADV_PKTTYPE_SCTP) != 0)) {
557			ri->iri_csum_flags |= CSUM_SCTP_VALID;
558		} else {
559			ri->iri_csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
560			ri->iri_csum_data = htons(0xffff);
561		}
562	}
563}
564
565/********************************************************************
566 *
567 *  Parse the packet type to determine the appropriate hash
568 *
569 ******************************************************************/
570static int
571igc_determine_rsstype(uint16_t pkt_info)
572{
573	switch (pkt_info & IGC_RXDADV_RSSTYPE_MASK) {
574	case IGC_RXDADV_RSSTYPE_IPV4_TCP:
575		return M_HASHTYPE_RSS_TCP_IPV4;
576	case IGC_RXDADV_RSSTYPE_IPV4:
577		return M_HASHTYPE_RSS_IPV4;
578	case IGC_RXDADV_RSSTYPE_IPV6_TCP:
579		return M_HASHTYPE_RSS_TCP_IPV6;
580	case IGC_RXDADV_RSSTYPE_IPV6_EX:
581		return M_HASHTYPE_RSS_IPV6_EX;
582	case IGC_RXDADV_RSSTYPE_IPV6:
583		return M_HASHTYPE_RSS_IPV6;
584	case IGC_RXDADV_RSSTYPE_IPV6_TCP_EX:
585		return M_HASHTYPE_RSS_TCP_IPV6_EX;
586	default:
587		return M_HASHTYPE_OPAQUE;
588	}
589}
590