1/* SPDX-License-Identifier: BSD-3-Clause */
2/*  Copyright (c) 2024, Intel Corporation
3 *  All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions are met:
7 *
8 *   1. Redistributions of source code must retain the above copyright notice,
9 *      this list of conditions and the following disclaimer.
10 *
11 *   2. Redistributions in binary form must reproduce the above copyright
12 *      notice, this list of conditions and the following disclaimer in the
13 *      documentation and/or other materials provided with the distribution.
14 *
15 *   3. Neither the name of the Intel Corporation nor the names of its
16 *      contributors may be used to endorse or promote products derived from
17 *      this software without specific prior written permission.
18 *
19 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 *  POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/**
33 * @file ice_osdep.h
34 * @brief OS compatibility layer
35 *
36 * Contains various definitions and functions which are part of an OS
37 * compatibility layer for sharing code with other operating systems.
38 */
39#ifndef _ICE_OSDEP_H_
40#define _ICE_OSDEP_H_
41
42#include <sys/endian.h>
43#include <sys/param.h>
44#include <sys/kernel.h>
45#include <sys/malloc.h>
46#include <sys/proc.h>
47#include <sys/systm.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/bus.h>
51#include <machine/bus.h>
52#include <sys/bus_dma.h>
53#include <netinet/in.h>
54#include <sys/counter.h>
55#include <sys/sbuf.h>
56
57#include "ice_alloc.h"
58
59#define ICE_INTEL_VENDOR_ID 0x8086
60
61#define ICE_STR_BUF_LEN 32
62
63struct ice_hw;
64
65device_t ice_hw_to_dev(struct ice_hw *hw);
66
67/* configure hw->debug_mask to enable debug prints */
68void ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...) __printflike(3, 4);
69void ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize,
70		     uint32_t groupsize, uint8_t *buf, size_t len);
71void ice_info_fwlog(struct ice_hw *hw, uint32_t rowsize, uint32_t groupsize,
72		    uint8_t *buf, size_t len);
73
74#define ice_fls(_n) flsl(_n)
75
76#define ice_info(_hw, _fmt, args...) \
77	device_printf(ice_hw_to_dev(_hw), (_fmt), ##args)
78
79#define ice_warn(_hw, _fmt, args...) \
80	device_printf(ice_hw_to_dev(_hw), (_fmt), ##args)
81
82#define DIVIDE_AND_ROUND_UP howmany
83#define ROUND_UP roundup
84
85uint32_t rd32(struct ice_hw *hw, uint32_t reg);
86uint64_t rd64(struct ice_hw *hw, uint32_t reg);
87void wr32(struct ice_hw *hw, uint32_t reg, uint32_t val);
88void wr64(struct ice_hw *hw, uint32_t reg, uint64_t val);
89
90#define ice_flush(_hw) rd32((_hw), GLGEN_STAT)
91
92MALLOC_DECLARE(M_ICE_OSDEP);
93
94/**
95 * ice_calloc - Allocate an array of elementes
96 * @hw: the hardware private structure
97 * @count: number of elements to allocate
98 * @size: the size of each element
99 *
100 * Allocate memory for an array of items equal to size. Note that the OS
101 * compatibility layer assumes all allocation functions will provide zero'd
102 * memory.
103 */
104static inline void *
105ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size)
106{
107	return malloc(count * size, M_ICE_OSDEP, M_ZERO | M_NOWAIT);
108}
109
110/**
111 * ice_malloc - Allocate memory of a specified size
112 * @hw: the hardware private structure
113 * @size: the size to allocate
114 *
115 * Allocates memory of the specified size. Note that the OS compatibility
116 * layer assumes that all allocations will provide zero'd memory.
117 */
118static inline void *
119ice_malloc(struct ice_hw __unused *hw, size_t size)
120{
121	return malloc(size, M_ICE_OSDEP, M_ZERO | M_NOWAIT);
122}
123
124/**
125 * ice_memdup - Allocate a copy of some other memory
126 * @hw: private hardware structure
127 * @src: the source to copy from
128 * @size: allocation size
129 * @dir: the direction of copying
130 *
131 * Allocate memory of the specified size, and copy bytes from the src to fill
132 * it. We don't need to zero this memory as we immediately initialize it by
133 * copying from the src pointer.
134 */
135static inline void *
136ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size,
137	   enum ice_memcpy_type __unused dir)
138{
139	void *dst = malloc(size, M_ICE_OSDEP, M_NOWAIT);
140
141	if (dst != NULL)
142		memcpy(dst, src, size);
143
144	return dst;
145}
146
147/**
148 * ice_free - Free previously allocated memory
149 * @hw: the hardware private structure
150 * @mem: pointer to the memory to free
151 *
152 * Free memory that was previously allocated by ice_calloc, ice_malloc, or
153 * ice_memdup.
154 */
155static inline void
156ice_free(struct ice_hw __unused *hw, void *mem)
157{
158	free(mem, M_ICE_OSDEP);
159}
160
161/* These are macros in order to drop the unused direction enumeration constant */
162#define ice_memset(addr, c, len, unused) memset((addr), (c), (len))
163#define ice_memcpy(dst, src, len, unused) memcpy((dst), (src), (len))
164
165void ice_usec_delay(uint32_t time, bool sleep);
166void ice_msec_delay(uint32_t time, bool sleep);
167void ice_msec_pause(uint32_t time);
168void ice_msec_spin(uint32_t time);
169
170#define UNREFERENCED_PARAMETER(_p) _p = _p
171#define UNREFERENCED_1PARAMETER(_p) do {			\
172	UNREFERENCED_PARAMETER(_p);				\
173} while (0)
174#define UNREFERENCED_2PARAMETER(_p, _q) do {			\
175	UNREFERENCED_PARAMETER(_p);				\
176	UNREFERENCED_PARAMETER(_q);				\
177} while (0)
178#define UNREFERENCED_3PARAMETER(_p, _q, _r) do {		\
179	UNREFERENCED_PARAMETER(_p);				\
180	UNREFERENCED_PARAMETER(_q);				\
181	UNREFERENCED_PARAMETER(_r);				\
182} while (0)
183#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) do {		\
184	UNREFERENCED_PARAMETER(_p);				\
185	UNREFERENCED_PARAMETER(_q);				\
186	UNREFERENCED_PARAMETER(_r);				\
187	UNREFERENCED_PARAMETER(_s);				\
188} while (0)
189#define UNREFERENCED_5PARAMETER(_p, _q, _r, _s, _t) do {	\
190	UNREFERENCED_PARAMETER(_p);				\
191	UNREFERENCED_PARAMETER(_q);				\
192	UNREFERENCED_PARAMETER(_r);				\
193	UNREFERENCED_PARAMETER(_s);				\
194	UNREFERENCED_PARAMETER(_t);				\
195} while (0)
196
197#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
198#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
199#define MAKEMASK(_m, _s) ((_m) << (_s))
200
201#define LIST_HEAD_TYPE ice_list_head
202#define LIST_ENTRY_TYPE ice_list_node
203
204/**
205 * @struct ice_list_node
206 * @brief simplified linked list node API
207 *
208 * Represents a node in a linked list, which can be embedded into a structure
209 * to allow that structure to be inserted into a linked list. Access to the
210 * contained structure is done via __containerof
211 */
212struct ice_list_node {
213	LIST_ENTRY(ice_list_node) entries;
214};
215
216/**
217 * @struct ice_list_head
218 * @brief simplified linked list head API
219 *
220 * Represents the head of a linked list. The linked list should consist of
221 * a series of ice_list_node structures embedded into another structure
222 * accessed using __containerof. This way, the ice_list_head doesn't need to
223 * know the type of the structure it contains.
224 */
225LIST_HEAD(ice_list_head, ice_list_node);
226
227#define INIT_LIST_HEAD LIST_INIT
228/* LIST_EMPTY doesn't need to be changed */
229#define LIST_ADD(entry, head) LIST_INSERT_HEAD(head, entry, entries)
230#define LIST_ADD_AFTER(entry, elem) LIST_INSERT_AFTER(elem, entry, entries)
231#define LIST_DEL(entry) LIST_REMOVE(entry, entries)
232#define _osdep_LIST_ENTRY(ptr, type, member) \
233	__containerof(ptr, type, member)
234#define LIST_FIRST_ENTRY(head, type, member) \
235	_osdep_LIST_ENTRY(LIST_FIRST(head), type, member)
236#define LIST_NEXT_ENTRY(ptr, unused, member) \
237	_osdep_LIST_ENTRY(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member)
238#define LIST_REPLACE_INIT(old_head, new_head) do {			\
239	__typeof(new_head) _new_head = (new_head);			\
240	LIST_INIT(_new_head);						\
241	LIST_SWAP(old_head, _new_head, ice_list_node, entries);		\
242} while (0)
243
244#define LIST_ENTRY_SAFE(_ptr, _type, _member) \
245({ __typeof(_ptr) ____ptr = (_ptr); \
246   ____ptr ? _osdep_LIST_ENTRY(____ptr, _type, _member) : NULL; \
247})
248
249/**
250 * ice_get_list_tail - Return the pointer to the last node in the list
251 * @head: the pointer to the head of the list
252 *
253 * A helper function for implementing LIST_ADD_TAIL and LIST_LAST_ENTRY.
254 * Returns the pointer to the last node in the list, or NULL of the list is
255 * empty.
256 *
257 * Note: due to the list implementation this is O(N), where N is the size of
258 * the list. An O(1) implementation requires replacing the underlying list
259 * datastructure with one that has a tail pointer. This is problematic,
260 * because using a simple TAILQ would require that the addition and deletion
261 * be given the head of the list.
262 */
263static inline struct ice_list_node *
264ice_get_list_tail(struct ice_list_head *head)
265{
266	struct ice_list_node *node = LIST_FIRST(head);
267
268	if (node == NULL)
269		return NULL;
270	while (LIST_NEXT(node, entries) != NULL)
271		node = LIST_NEXT(node, entries);
272
273	return node;
274}
275
276/* TODO: This is O(N). An O(1) implementation would require a different
277 * underlying list structure, such as a circularly linked list. */
278#define LIST_ADD_TAIL(entry, head) do {					\
279	struct ice_list_node *node = ice_get_list_tail(head);		\
280									\
281	if (node == NULL) {						\
282		LIST_ADD(entry, head);					\
283	} else {							\
284		LIST_INSERT_AFTER(node, entry, entries);		\
285	}								\
286} while (0)
287
288#define LIST_LAST_ENTRY(head, type, member) \
289	LIST_ENTRY_SAFE(ice_get_list_tail(head), type, member)
290
291#define LIST_FIRST_ENTRY_SAFE(head, type, member) \
292	LIST_ENTRY_SAFE(LIST_FIRST(head), type, member)
293
294#define LIST_NEXT_ENTRY_SAFE(ptr, member) \
295	LIST_ENTRY_SAFE(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member)
296
297#define LIST_FOR_EACH_ENTRY(pos, head, unused, member) \
298	for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member);		\
299	    pos;								\
300	    pos = LIST_NEXT_ENTRY_SAFE(pos, member))
301
302#define LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, unused, member) \
303	for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member);		\
304	     pos && ({ n = LIST_NEXT_ENTRY_SAFE(pos, member); 1; });		\
305	     pos = n)
306
307#define STATIC static
308
309#define NTOHS ntohs
310#define NTOHL ntohl
311#define HTONS htons
312#define HTONL htonl
313#define LE16_TO_CPU le16toh
314#define LE32_TO_CPU le32toh
315#define LE64_TO_CPU le64toh
316#define CPU_TO_LE16 htole16
317#define CPU_TO_LE32 htole32
318#define CPU_TO_LE64 htole64
319#define CPU_TO_BE16 htobe16
320#define CPU_TO_BE32 htobe32
321
322#define SNPRINTF snprintf
323
324/**
325 * @typedef u8
326 * @brief compatibility typedef for uint8_t
327 */
328typedef uint8_t  u8;
329
330/**
331 * @typedef u16
332 * @brief compatibility typedef for uint16_t
333 */
334typedef uint16_t u16;
335
336/**
337 * @typedef u32
338 * @brief compatibility typedef for uint32_t
339 */
340typedef uint32_t u32;
341
342/**
343 * @typedef u64
344 * @brief compatibility typedef for uint64_t
345 */
346typedef uint64_t u64;
347
348/**
349 * @typedef s8
350 * @brief compatibility typedef for int8_t
351 */
352typedef int8_t  s8;
353
354/**
355 * @typedef s16
356 * @brief compatibility typedef for int16_t
357 */
358typedef int16_t s16;
359
360/**
361 * @typedef s32
362 * @brief compatibility typedef for int32_t
363 */
364typedef int32_t s32;
365
366/**
367 * @typedef s64
368 * @brief compatibility typedef for int64_t
369 */
370typedef int64_t s64;
371
372#define __le16 u16
373#define __le32 u32
374#define __le64 u64
375#define __be16 u16
376#define __be32 u32
377#define __be64 u64
378
379#define ice_hweight8(x) bitcount16((u8)x)
380#define ice_hweight16(x) bitcount16(x)
381#define ice_hweight32(x) bitcount32(x)
382#define ice_hweight64(x) bitcount64(x)
383
384/**
385 * @struct ice_dma_mem
386 * @brief DMA memory allocation
387 *
388 * Contains DMA allocation bits, used to simplify DMA allocations.
389 */
390struct ice_dma_mem {
391	void *va;
392	uint64_t pa;
393	size_t size;
394
395	bus_dma_tag_t		tag;
396	bus_dmamap_t		map;
397	bus_dma_segment_t	seg;
398};
399
400
401void * ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size);
402void ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem);
403
404/**
405 * @struct ice_lock
406 * @brief simplified lock API
407 *
408 * Contains a simple lock implementation used to lock various resources.
409 */
410struct ice_lock {
411	struct mtx mutex;
412	char name[ICE_STR_BUF_LEN];
413};
414
415extern u16 ice_lock_count;
416
417/**
418 * ice_init_lock - Initialize a lock for use
419 * @lock: the lock memory to initialize
420 *
421 * OS compatibility layer to provide a simple locking mechanism. We use
422 * a mutex for this purpose.
423 */
424static inline void
425ice_init_lock(struct ice_lock *lock)
426{
427	/*
428	 * Make each lock unique by incrementing a counter each time this
429	 * function is called. Use of a u16 allows 65535 possible locks before
430	 * we'd hit a duplicate.
431	 */
432	memset(lock->name, 0, sizeof(lock->name));
433	snprintf(lock->name, ICE_STR_BUF_LEN, "ice_lock_%u", ice_lock_count++);
434	mtx_init(&lock->mutex, lock->name, NULL, MTX_DEF);
435}
436
437/**
438 * ice_acquire_lock - Acquire the lock
439 * @lock: the lock to acquire
440 *
441 * Acquires the mutex specified by the lock pointer.
442 */
443static inline void
444ice_acquire_lock(struct ice_lock *lock)
445{
446	mtx_lock(&lock->mutex);
447}
448
449/**
450 * ice_release_lock - Release the lock
451 * @lock: the lock to release
452 *
453 * Releases the mutex specified by the lock pointer.
454 */
455static inline void
456ice_release_lock(struct ice_lock *lock)
457{
458	mtx_unlock(&lock->mutex);
459}
460
461/**
462 * ice_destroy_lock - Destroy the lock to de-allocate it
463 * @lock: the lock to destroy
464 *
465 * Destroys a previously initialized lock. We only do this if the mutex was
466 * previously initialized.
467 */
468static inline void
469ice_destroy_lock(struct ice_lock *lock)
470{
471	if (mtx_initialized(&lock->mutex))
472		mtx_destroy(&lock->mutex);
473	memset(lock->name, 0, sizeof(lock->name));
474}
475
476/* Some function parameters are unused outside of MPASS/KASSERT macros. Rather
477 * than marking these as __unused all the time, mark them as __invariant_only,
478 * and define this to __unused when INVARIANTS is disabled. Otherwise, define
479 * it empty so that __invariant_only parameters are caught as unused by the
480 * INVARIANTS build.
481 */
482#ifndef INVARIANTS
483#define __invariant_only __unused
484#else
485#define __invariant_only
486#endif
487
488#define __ALWAYS_UNUSED __unused
489
490/**
491 * ice_ilog2 - Calculate the integer log base 2 of a 64bit value
492 * @n: 64bit number
493 *
494 * Calculates the integer log base 2 of a 64bit value, rounded down.
495 *
496 * @remark The integer log base 2 of zero is technically undefined, but this
497 * function will return 0 in that case.
498 *
499 */
500static inline int
501ice_ilog2(u64 n) {
502	if (n == 0)
503		return 0;
504	return flsll(n) - 1;
505}
506
507/**
508 * ice_is_pow2 - Check if the value is a power of 2
509 * @n: 64bit number
510 *
511 * Check if the given value is a power of 2.
512 *
513 * @remark FreeBSD's powerof2 function treats zero as a power of 2, while this
514 * function does not.
515 *
516 * @returns true or false
517 */
518static inline bool
519ice_is_pow2(u64 n) {
520	if (n == 0)
521		return false;
522	return powerof2(n);
523}
524#endif /* _ICE_OSDEP_H_ */
525