1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include "if_em.h"
30#include <sys/sbuf.h>
31#include <machine/_inttypes.h>
32
33#define em_mac_min e1000_82571
34#define igb_mac_min e1000_82575
35
36/*********************************************************************
37 *  Driver version:
38 *********************************************************************/
39static const char em_driver_version[] = "7.7.8-fbsd";
40static const char igb_driver_version[] = "2.5.19-fbsd";
41
42/*********************************************************************
43 *  PCI Device ID Table
44 *
45 *  Used by probe to select devices to load on
46 *  Last field stores an index into e1000_strings
47 *  Last entry must be all 0s
48 *
49 *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50 *********************************************************************/
51
52static const pci_vendor_info_t em_vendor_info_array[] =
53{
54	/* Intel(R) - lem-class legacy devices */
55	PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
56	PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
57	PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
58	PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
59	PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
60
61	PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
62	PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
63	PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
64	PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
65	PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
66	PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
67	PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
68
69	PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
70
71	PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
72	PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
73
74	PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
75	PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
76	PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
77	PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
78
79	PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
80	PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
81	PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
82	PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
83	PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
84
85	PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
86	PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
87	PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
88	PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
89	PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
90	PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
91	PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
92	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
93	PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94
95	PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
96	PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
97	PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
98
99	/* Intel(R) - em-class devices */
100	PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
101	PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
102	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
103	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
104	PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
105	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
106	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107	PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
108	PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
109	PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
110	PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111	PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
112	PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
113	PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
114	PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
115	PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
116	PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
117	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
118	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
119	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
120	PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
121	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
122	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
123	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
124	PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
125	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
126	PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
127	PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
128	PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
129	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
130	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
131	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
132	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
133	PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
134	PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
135	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
136	PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
137	PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
138	PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
139	PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
140	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
141	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
142	PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
143	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
144	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
145	PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
146	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
147	PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
148	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
149	PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
150	PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
151	PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
152	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
153	PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
154	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
155	PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
156	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
157	PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
158	PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
159	PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
160	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
161	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
162	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
163	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
164	PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
165	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
166	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
167	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
168	PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
169	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
170	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
171	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
172	PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
173	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
174	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
175	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
176	PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
177	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
178	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
179	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
180	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
181	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
182	PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
183	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
184	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
185	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
186	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
187	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
188	PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
189	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
190	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
191	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
192	PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
193	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
194	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
195	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
196	PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
197	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20, "Intel(R) I219-LM LNL(20)"),
198	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20, "Intel(R) I219-V LNL(20)"),
199	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21, "Intel(R) I219-LM LNL(21)"),
200	PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21, "Intel(R) I219-V LNL(21)"),
201	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22, "Intel(R) I219-LM RPL(22)"),
202	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22, "Intel(R) I219-V RPL(22)"),
203	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23, "Intel(R) I219-LM RPL(23)"),
204	PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23, "Intel(R) I219-V RPL(23)"),
205	PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24, "Intel(R) I219-LM ARL(24)"),
206	PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24, "Intel(R) I219-V ARL(24)"),
207	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25, "Intel(R) I219-LM PTP(25)"),
208	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25, "Intel(R) I219-V PTP(25)"),
209	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26, "Intel(R) I219-LM PTP(26)"),
210	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26, "Intel(R) I219-V PTP(26)"),
211	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27, "Intel(R) I219-LM PTP(27)"),
212	PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27, "Intel(R) I219-V PTP(27)"),
213	/* required last entry */
214	PVID_END
215};
216
217static const pci_vendor_info_t igb_vendor_info_array[] =
218{
219	/* Intel(R) - igb-class devices */
220	PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
221	PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
222	PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
223	PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
224	PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
225	PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
226	PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
227	PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
228	PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
229	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
230	PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
231	PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
232	PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
233	PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
234	PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
235	PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
236	PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
237	PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
238	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
239	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
240	PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
241	PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
242	PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
243	PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
244	PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
245	PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
246	PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
247	PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
248	PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
249	PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
250	PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
251	PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
252	PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
253	PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
254	PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
255	PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
256	PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
257	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
258	PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
259	PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
260	/* required last entry */
261	PVID_END
262};
263
264/*********************************************************************
265 *  Function prototypes
266 *********************************************************************/
267static void	*em_register(device_t);
268static void	*igb_register(device_t);
269static int	em_if_attach_pre(if_ctx_t);
270static int	em_if_attach_post(if_ctx_t);
271static int	em_if_detach(if_ctx_t);
272static int	em_if_shutdown(if_ctx_t);
273static int	em_if_suspend(if_ctx_t);
274static int	em_if_resume(if_ctx_t);
275
276static int	em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
277static int	em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
278static void	em_if_queues_free(if_ctx_t);
279
280static uint64_t	em_if_get_counter(if_ctx_t, ift_counter);
281static void	em_if_init(if_ctx_t);
282static void	em_if_stop(if_ctx_t);
283static void	em_if_media_status(if_ctx_t, struct ifmediareq *);
284static int	em_if_media_change(if_ctx_t);
285static int	em_if_mtu_set(if_ctx_t, uint32_t);
286static void	em_if_timer(if_ctx_t, uint16_t);
287static void	em_if_vlan_register(if_ctx_t, u16);
288static void	em_if_vlan_unregister(if_ctx_t, u16);
289static void	em_if_watchdog_reset(if_ctx_t);
290static bool	em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
291
292static void	em_identify_hardware(if_ctx_t);
293static int	em_allocate_pci_resources(if_ctx_t);
294static void	em_free_pci_resources(if_ctx_t);
295static void	em_reset(if_ctx_t);
296static int	em_setup_interface(if_ctx_t);
297static int	em_setup_msix(if_ctx_t);
298
299static void	em_initialize_transmit_unit(if_ctx_t);
300static void	em_initialize_receive_unit(if_ctx_t);
301
302static void	em_if_intr_enable(if_ctx_t);
303static void	em_if_intr_disable(if_ctx_t);
304static void	igb_if_intr_enable(if_ctx_t);
305static void	igb_if_intr_disable(if_ctx_t);
306static int	em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
307static int	em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
308static int	igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
309static int	igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
310static void	em_if_multi_set(if_ctx_t);
311static void	em_if_update_admin_status(if_ctx_t);
312static void	em_if_debug(if_ctx_t);
313static void	em_update_stats_counters(struct e1000_softc *);
314static void	em_add_hw_stats(struct e1000_softc *);
315static int	em_if_set_promisc(if_ctx_t, int);
316static bool	em_if_vlan_filter_capable(if_ctx_t);
317static bool	em_if_vlan_filter_used(if_ctx_t);
318static void	em_if_vlan_filter_enable(struct e1000_softc *);
319static void	em_if_vlan_filter_disable(struct e1000_softc *);
320static void	em_if_vlan_filter_write(struct e1000_softc *);
321static void	em_setup_vlan_hw_support(if_ctx_t ctx);
322static int	em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
323static void	em_print_nvm_info(struct e1000_softc *);
324static void	em_fw_version_locked(if_ctx_t);
325static void	em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
326static void	em_print_fw_version(struct e1000_softc *);
327static int	em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
328static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
329static int	em_get_rs(SYSCTL_HANDLER_ARGS);
330static void	em_print_debug_info(struct e1000_softc *);
331static int 	em_is_valid_ether_addr(u8 *);
332static bool	em_automask_tso(if_ctx_t);
333static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
334static void	em_add_int_delay_sysctl(struct e1000_softc *, const char *,
335		    const char *, struct em_int_delay_info *, int, int);
336/* Management and WOL Support */
337static void	em_init_manageability(struct e1000_softc *);
338static void	em_release_manageability(struct e1000_softc *);
339static void	em_get_hw_control(struct e1000_softc *);
340static void	em_release_hw_control(struct e1000_softc *);
341static void	em_get_wakeup(if_ctx_t);
342static void	em_enable_wakeup(if_ctx_t);
343static int	em_enable_phy_wakeup(struct e1000_softc *);
344static void	em_disable_aspm(struct e1000_softc *);
345
346int		em_intr(void *);
347
348/* MSI-X handlers */
349static int	em_if_msix_intr_assign(if_ctx_t, int);
350static int	em_msix_link(void *);
351static void	em_handle_link(void *);
352
353static void	em_enable_vectors_82574(if_ctx_t);
354
355static int	em_set_flowcntl(SYSCTL_HANDLER_ARGS);
356static int	em_sysctl_eee(SYSCTL_HANDLER_ARGS);
357static void	em_if_led_func(if_ctx_t, int);
358
359static int	em_get_regs(SYSCTL_HANDLER_ARGS);
360
361static void	lem_smartspeed(struct e1000_softc *);
362static void	igb_configure_queues(struct e1000_softc *);
363static void	em_flush_desc_rings(struct e1000_softc *);
364
365
366/*********************************************************************
367 *  FreeBSD Device Interface Entry Points
368 *********************************************************************/
369static device_method_t em_methods[] = {
370	/* Device interface */
371	DEVMETHOD(device_register, em_register),
372	DEVMETHOD(device_probe, iflib_device_probe),
373	DEVMETHOD(device_attach, iflib_device_attach),
374	DEVMETHOD(device_detach, iflib_device_detach),
375	DEVMETHOD(device_shutdown, iflib_device_shutdown),
376	DEVMETHOD(device_suspend, iflib_device_suspend),
377	DEVMETHOD(device_resume, iflib_device_resume),
378	DEVMETHOD_END
379};
380
381static device_method_t igb_methods[] = {
382	/* Device interface */
383	DEVMETHOD(device_register, igb_register),
384	DEVMETHOD(device_probe, iflib_device_probe),
385	DEVMETHOD(device_attach, iflib_device_attach),
386	DEVMETHOD(device_detach, iflib_device_detach),
387	DEVMETHOD(device_shutdown, iflib_device_shutdown),
388	DEVMETHOD(device_suspend, iflib_device_suspend),
389	DEVMETHOD(device_resume, iflib_device_resume),
390	DEVMETHOD_END
391};
392
393
394static driver_t em_driver = {
395	"em", em_methods, sizeof(struct e1000_softc),
396};
397
398DRIVER_MODULE(em, pci, em_driver, 0, 0);
399
400MODULE_DEPEND(em, pci, 1, 1, 1);
401MODULE_DEPEND(em, ether, 1, 1, 1);
402MODULE_DEPEND(em, iflib, 1, 1, 1);
403
404IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
405
406static driver_t igb_driver = {
407	"igb", igb_methods, sizeof(struct e1000_softc),
408};
409
410DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
411
412MODULE_DEPEND(igb, pci, 1, 1, 1);
413MODULE_DEPEND(igb, ether, 1, 1, 1);
414MODULE_DEPEND(igb, iflib, 1, 1, 1);
415
416IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
417
418static device_method_t em_if_methods[] = {
419	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
420	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
421	DEVMETHOD(ifdi_detach, em_if_detach),
422	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
423	DEVMETHOD(ifdi_suspend, em_if_suspend),
424	DEVMETHOD(ifdi_resume, em_if_resume),
425	DEVMETHOD(ifdi_init, em_if_init),
426	DEVMETHOD(ifdi_stop, em_if_stop),
427	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
428	DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
429	DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
430	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
431	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
432	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
433	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
434	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
435	DEVMETHOD(ifdi_media_status, em_if_media_status),
436	DEVMETHOD(ifdi_media_change, em_if_media_change),
437	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
438	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
439	DEVMETHOD(ifdi_timer, em_if_timer),
440	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
441	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
442	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
443	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
444	DEVMETHOD(ifdi_led_func, em_if_led_func),
445	DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
446	DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
447	DEVMETHOD(ifdi_debug, em_if_debug),
448	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
449	DEVMETHOD_END
450};
451
452static driver_t em_if_driver = {
453	"em_if", em_if_methods, sizeof(struct e1000_softc)
454};
455
456static device_method_t igb_if_methods[] = {
457	DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
458	DEVMETHOD(ifdi_attach_post, em_if_attach_post),
459	DEVMETHOD(ifdi_detach, em_if_detach),
460	DEVMETHOD(ifdi_shutdown, em_if_shutdown),
461	DEVMETHOD(ifdi_suspend, em_if_suspend),
462	DEVMETHOD(ifdi_resume, em_if_resume),
463	DEVMETHOD(ifdi_init, em_if_init),
464	DEVMETHOD(ifdi_stop, em_if_stop),
465	DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
466	DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
467	DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
468	DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
469	DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
470	DEVMETHOD(ifdi_queues_free, em_if_queues_free),
471	DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
472	DEVMETHOD(ifdi_multi_set, em_if_multi_set),
473	DEVMETHOD(ifdi_media_status, em_if_media_status),
474	DEVMETHOD(ifdi_media_change, em_if_media_change),
475	DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
476	DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
477	DEVMETHOD(ifdi_timer, em_if_timer),
478	DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
479	DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
480	DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
481	DEVMETHOD(ifdi_get_counter, em_if_get_counter),
482	DEVMETHOD(ifdi_led_func, em_if_led_func),
483	DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
484	DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
485	DEVMETHOD(ifdi_debug, em_if_debug),
486	DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
487	DEVMETHOD_END
488};
489
490static driver_t igb_if_driver = {
491	"igb_if", igb_if_methods, sizeof(struct e1000_softc)
492};
493
494/*********************************************************************
495 *  Tunable default values.
496 *********************************************************************/
497
498#define EM_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
499#define EM_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
500
501#define MAX_INTS_PER_SEC	8000
502#define DEFAULT_ITR		(1000000000/(MAX_INTS_PER_SEC * 256))
503
504/* Allow common code without TSO */
505#ifndef CSUM_TSO
506#define CSUM_TSO	0
507#endif
508
509static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
510    "EM driver parameters");
511
512static int em_disable_crc_stripping = 0;
513SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
514    &em_disable_crc_stripping, 0, "Disable CRC Stripping");
515
516static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
517static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
518SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
519    0, "Default transmit interrupt delay in usecs");
520SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
521    0, "Default receive interrupt delay in usecs");
522
523static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
524static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
525SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
526    &em_tx_abs_int_delay_dflt, 0,
527    "Default transmit interrupt delay limit in usecs");
528SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
529    &em_rx_abs_int_delay_dflt, 0,
530    "Default receive interrupt delay limit in usecs");
531
532static int em_smart_pwr_down = false;
533SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
534    0, "Set to true to leave smart power down enabled on newer adapters");
535
536static bool em_unsupported_tso = false;
537SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
538    &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
539
540/* Controls whether promiscuous also shows bad packets */
541static int em_debug_sbp = false;
542SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
543    "Show bad packets in promiscuous mode");
544
545/* Energy efficient ethernet - default to OFF */
546static int eee_setting = 1;
547SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
548    "Enable Energy Efficient Ethernet");
549
550/*
551** Tuneable Interrupt rate
552*/
553static int em_max_interrupt_rate = 8000;
554SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
555    &em_max_interrupt_rate, 0, "Maximum interrupts per second");
556
557/* Global used in WOL setup with multiport cards */
558static int global_quad_port_a = 0;
559
560extern struct if_txrx igb_txrx;
561extern struct if_txrx em_txrx;
562extern struct if_txrx lem_txrx;
563
564static struct if_shared_ctx em_sctx_init = {
565	.isc_magic = IFLIB_MAGIC,
566	.isc_q_align = PAGE_SIZE,
567	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
568	.isc_tx_maxsegsize = PAGE_SIZE,
569	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
570	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
571	.isc_rx_maxsize = MJUM9BYTES,
572	.isc_rx_nsegments = 1,
573	.isc_rx_maxsegsize = MJUM9BYTES,
574	.isc_nfl = 1,
575	.isc_nrxqs = 1,
576	.isc_ntxqs = 1,
577	.isc_admin_intrcnt = 1,
578	.isc_vendor_info = em_vendor_info_array,
579	.isc_driver_version = em_driver_version,
580	.isc_driver = &em_if_driver,
581	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
582
583	.isc_nrxd_min = {EM_MIN_RXD},
584	.isc_ntxd_min = {EM_MIN_TXD},
585	.isc_nrxd_max = {EM_MAX_RXD},
586	.isc_ntxd_max = {EM_MAX_TXD},
587	.isc_nrxd_default = {EM_DEFAULT_RXD},
588	.isc_ntxd_default = {EM_DEFAULT_TXD},
589};
590
591static struct if_shared_ctx igb_sctx_init = {
592	.isc_magic = IFLIB_MAGIC,
593	.isc_q_align = PAGE_SIZE,
594	.isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
595	.isc_tx_maxsegsize = PAGE_SIZE,
596	.isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
597	.isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
598	.isc_rx_maxsize = MJUM9BYTES,
599	.isc_rx_nsegments = 1,
600	.isc_rx_maxsegsize = MJUM9BYTES,
601	.isc_nfl = 1,
602	.isc_nrxqs = 1,
603	.isc_ntxqs = 1,
604	.isc_admin_intrcnt = 1,
605	.isc_vendor_info = igb_vendor_info_array,
606	.isc_driver_version = igb_driver_version,
607	.isc_driver = &igb_if_driver,
608	.isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
609
610	.isc_nrxd_min = {EM_MIN_RXD},
611	.isc_ntxd_min = {EM_MIN_TXD},
612	.isc_nrxd_max = {IGB_MAX_RXD},
613	.isc_ntxd_max = {IGB_MAX_TXD},
614	.isc_nrxd_default = {EM_DEFAULT_RXD},
615	.isc_ntxd_default = {EM_DEFAULT_TXD},
616};
617
618/*****************************************************************
619 *
620 * Dump Registers
621 *
622 ****************************************************************/
623#define IGB_REGS_LEN 739
624
625static int em_get_regs(SYSCTL_HANDLER_ARGS)
626{
627	struct e1000_softc *sc = (struct e1000_softc *)arg1;
628	struct e1000_hw *hw = &sc->hw;
629	struct sbuf *sb;
630	u32 *regs_buff;
631	int rc;
632
633	regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
634	memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
635
636	rc = sysctl_wire_old_buffer(req, 0);
637	MPASS(rc == 0);
638	if (rc != 0) {
639		free(regs_buff, M_DEVBUF);
640		return (rc);
641	}
642
643	sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
644	MPASS(sb != NULL);
645	if (sb == NULL) {
646		free(regs_buff, M_DEVBUF);
647		return (ENOMEM);
648	}
649
650	/* General Registers */
651	regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
652	regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
653	regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
654	regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
655	regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
656	regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
657	regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
658	regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
659	regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
660	regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
661	regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
662	regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
663	regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
664	regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
665	regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
666	regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
667	regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
668	regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
669	regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
670	regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
671	regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
672	regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
673
674	sbuf_printf(sb, "General Registers\n");
675	sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
676	sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
677	sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
678
679	sbuf_printf(sb, "Interrupt Registers\n");
680	sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
681
682	sbuf_printf(sb, "RX Registers\n");
683	sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
684	sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
685	sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
686	sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
687	sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
688	sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
689	sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
690
691	sbuf_printf(sb, "TX Registers\n");
692	sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
693	sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
694	sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
695	sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
696	sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
697	sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
698	sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
699	sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
700	sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
701	sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
702	sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
703
704	free(regs_buff, M_DEVBUF);
705
706#ifdef DUMP_DESCS
707	{
708		if_softc_ctx_t scctx = sc->shared;
709		struct rx_ring *rxr = &rx_que->rxr;
710		struct tx_ring *txr = &tx_que->txr;
711		int ntxd = scctx->isc_ntxd[0];
712		int nrxd = scctx->isc_nrxd[0];
713		int j;
714
715	for (j = 0; j < nrxd; j++) {
716		u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
717		u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
718		sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
719	}
720
721	for (j = 0; j < min(ntxd, 256); j++) {
722		unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
723
724		sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
725			    j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
726			    buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
727
728	}
729	}
730#endif
731
732	rc = sbuf_finish(sb);
733	sbuf_delete(sb);
734	return(rc);
735}
736
737static void *
738em_register(device_t dev)
739{
740	return (&em_sctx_init);
741}
742
743static void *
744igb_register(device_t dev)
745{
746	return (&igb_sctx_init);
747}
748
749static int
750em_set_num_queues(if_ctx_t ctx)
751{
752	struct e1000_softc *sc = iflib_get_softc(ctx);
753	int maxqueues;
754
755	/* Sanity check based on HW */
756	switch (sc->hw.mac.type) {
757	case e1000_82576:
758	case e1000_82580:
759	case e1000_i350:
760	case e1000_i354:
761		maxqueues = 8;
762		break;
763	case e1000_i210:
764	case e1000_82575:
765		maxqueues = 4;
766		break;
767	case e1000_i211:
768	case e1000_82574:
769		maxqueues = 2;
770		break;
771	default:
772		maxqueues = 1;
773		break;
774	}
775
776	return (maxqueues);
777}
778
779#define LEM_CAPS \
780    IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
781    IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
782    IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
783
784#define EM_CAPS \
785    IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
786    IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
787    IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
788    IFCAP_TSO6
789
790#define IGB_CAPS \
791    IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
792    IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
793    IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
794    IFCAP_TSO6
795
796/*********************************************************************
797 *  Device initialization routine
798 *
799 *  The attach entry point is called when the driver is being loaded.
800 *  This routine identifies the type of hardware, allocates all resources
801 *  and initializes the hardware.
802 *
803 *  return 0 on success, positive on failure
804 *********************************************************************/
805static int
806em_if_attach_pre(if_ctx_t ctx)
807{
808	struct e1000_softc *sc;
809	if_softc_ctx_t scctx;
810	device_t dev;
811	struct e1000_hw *hw;
812	struct sysctl_oid_list *child;
813	struct sysctl_ctx_list *ctx_list;
814	int error = 0;
815
816	INIT_DEBUGOUT("em_if_attach_pre: begin");
817	dev = iflib_get_dev(ctx);
818	sc = iflib_get_softc(ctx);
819
820	sc->ctx = sc->osdep.ctx = ctx;
821	sc->dev = sc->osdep.dev = dev;
822	scctx = sc->shared = iflib_get_softc_ctx(ctx);
823	sc->media = iflib_get_media(ctx);
824	hw = &sc->hw;
825
826	/* Determine hardware and mac info */
827	em_identify_hardware(ctx);
828
829	/* SYSCTL stuff */
830	ctx_list = device_get_sysctl_ctx(dev);
831	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
832
833	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
834	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
835	    em_sysctl_nvm_info, "I", "NVM Information");
836
837	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
838	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
839	    em_sysctl_print_fw_version, "A",
840	    "Prints FW/NVM Versions");
841
842	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
843	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
844	    em_sysctl_debug_info, "I", "Debug Information");
845
846	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
847	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
848	    em_set_flowcntl, "I", "Flow Control");
849
850	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
851	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
852	    em_get_regs, "A", "Dump Registers");
853
854	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
855	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
856	    em_get_rs, "I", "Dump RS indexes");
857
858	scctx->isc_tx_nsegments = EM_MAX_SCATTER;
859	scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
860	if (bootverbose)
861		device_printf(dev, "attach_pre capping queues at %d\n",
862		    scctx->isc_ntxqsets_max);
863
864	if (hw->mac.type >= igb_mac_min) {
865		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
866		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
867		scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
868		scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
869		scctx->isc_txrx = &igb_txrx;
870		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
871		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
872		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
873		scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
874		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
875		     CSUM_IP6_TCP | CSUM_IP6_UDP;
876		if (hw->mac.type != e1000_82575)
877			scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
878		/*
879		** Some new devices, as with ixgbe, now may
880		** use a different BAR, so we need to keep
881		** track of which is used.
882		*/
883		scctx->isc_msix_bar = pci_msix_table_bar(dev);
884	} else if (hw->mac.type >= em_mac_min) {
885		scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
886		scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
887		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
888		scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
889		scctx->isc_txrx = &em_txrx;
890		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
891		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
892		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
893		scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
894		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
895		    CSUM_IP6_TCP | CSUM_IP6_UDP;
896
897		/* Disable TSO on all em(4) until ring stalls can be debugged */
898		scctx->isc_capenable &= ~IFCAP_TSO;
899
900		/*
901		 * Disable TSO on SPT due to errata that downclocks DMA performance
902		 * i218-i219 Specification Update 1.5.4.5
903		 */
904		if (hw->mac.type == e1000_pch_spt)
905			scctx->isc_capenable &= ~IFCAP_TSO;
906
907		/*
908		 * We support MSI-X with 82574 only, but indicate to iflib(4)
909		 * that it shall give MSI at least a try with other devices.
910		 */
911		if (hw->mac.type == e1000_82574) {
912			scctx->isc_msix_bar = pci_msix_table_bar(dev);
913		} else {
914			scctx->isc_msix_bar = -1;
915			scctx->isc_disable_msix = 1;
916		}
917	} else {
918		scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
919		scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
920		scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
921		scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
922		scctx->isc_txrx = &lem_txrx;
923		scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
924		scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
925		scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
926		scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
927		if (em_unsupported_tso)
928			scctx->isc_capabilities |= IFCAP_TSO6;
929		scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
930		    CSUM_IP6_TCP | CSUM_IP6_UDP;
931
932		/* Disable TSO on all lem(4) until ring stalls can be debugged */
933		scctx->isc_capenable &= ~IFCAP_TSO;
934
935		/* 82541ER doesn't do HW tagging */
936		if (hw->device_id == E1000_DEV_ID_82541ER ||
937		    hw->device_id == E1000_DEV_ID_82541ER_LOM) {
938			scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
939			scctx->isc_capenable = scctx->isc_capabilities;
940		}
941		/* This is the first e1000 chip and it does not do offloads */
942		if (hw->mac.type == e1000_82542) {
943			scctx->isc_capabilities &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
944			    IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWTAGGING |
945			    IFCAP_VLAN_HWFILTER | IFCAP_TSO | IFCAP_VLAN_HWTSO);
946			scctx->isc_capenable = scctx->isc_capabilities;
947		}
948		/* These can't do TSO for various reasons */
949		if (hw->mac.type < e1000_82544 || hw->mac.type == e1000_82547 ||
950		    hw->mac.type == e1000_82547_rev_2) {
951			scctx->isc_capabilities &= ~(IFCAP_TSO | IFCAP_VLAN_HWTSO);
952			scctx->isc_capenable = scctx->isc_capabilities;
953		}
954		/* XXXKB: No IPv6 before this? */
955		if (hw->mac.type < e1000_82545){
956			scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
957			scctx->isc_capenable = scctx->isc_capabilities;
958		}
959		/* "PCI/PCI-X SDM 4.0" page 33 (b) - FDX requirement on these chips */
960		if (hw->mac.type == e1000_82547 || hw->mac.type == e1000_82547_rev_2)
961			scctx->isc_capenable &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
962			    IFCAP_HWCSUM_IPV6);
963
964		/* INTx only */
965		scctx->isc_msix_bar = 0;
966	}
967
968	/* Setup PCI resources */
969	if (em_allocate_pci_resources(ctx)) {
970		device_printf(dev, "Allocation of PCI resources failed\n");
971		error = ENXIO;
972		goto err_pci;
973	}
974
975	/*
976	** For ICH8 and family we need to
977	** map the flash memory, and this
978	** must happen after the MAC is
979	** identified
980	*/
981	if ((hw->mac.type == e1000_ich8lan) ||
982	    (hw->mac.type == e1000_ich9lan) ||
983	    (hw->mac.type == e1000_ich10lan) ||
984	    (hw->mac.type == e1000_pchlan) ||
985	    (hw->mac.type == e1000_pch2lan) ||
986	    (hw->mac.type == e1000_pch_lpt)) {
987		int rid = EM_BAR_TYPE_FLASH;
988		sc->flash = bus_alloc_resource_any(dev,
989		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
990		if (sc->flash == NULL) {
991			device_printf(dev, "Mapping of Flash failed\n");
992			error = ENXIO;
993			goto err_pci;
994		}
995		/* This is used in the shared code */
996		hw->flash_address = (u8 *)sc->flash;
997		sc->osdep.flash_bus_space_tag =
998		    rman_get_bustag(sc->flash);
999		sc->osdep.flash_bus_space_handle =
1000		    rman_get_bushandle(sc->flash);
1001	}
1002	/*
1003	** In the new SPT device flash is not  a
1004	** separate BAR, rather it is also in BAR0,
1005	** so use the same tag and an offset handle for the
1006	** FLASH read/write macros in the shared code.
1007	*/
1008	else if (hw->mac.type >= e1000_pch_spt) {
1009		sc->osdep.flash_bus_space_tag =
1010		    sc->osdep.mem_bus_space_tag;
1011		sc->osdep.flash_bus_space_handle =
1012		    sc->osdep.mem_bus_space_handle
1013		    + E1000_FLASH_BASE_ADDR;
1014	}
1015
1016	/* Do Shared Code initialization */
1017	error = e1000_setup_init_funcs(hw, true);
1018	if (error) {
1019		device_printf(dev, "Setup of Shared code failed, error %d\n",
1020		    error);
1021		error = ENXIO;
1022		goto err_pci;
1023	}
1024
1025	em_setup_msix(ctx);
1026	e1000_get_bus_info(hw);
1027
1028	/* Set up some sysctls for the tunable interrupt delays */
1029	em_add_int_delay_sysctl(sc, "rx_int_delay",
1030	    "receive interrupt delay in usecs", &sc->rx_int_delay,
1031	    E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1032	em_add_int_delay_sysctl(sc, "tx_int_delay",
1033	    "transmit interrupt delay in usecs", &sc->tx_int_delay,
1034	    E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1035	em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1036	    "receive interrupt delay limit in usecs",
1037	    &sc->rx_abs_int_delay,
1038	    E1000_REGISTER(hw, E1000_RADV),
1039	    em_rx_abs_int_delay_dflt);
1040	em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1041	    "transmit interrupt delay limit in usecs",
1042	    &sc->tx_abs_int_delay,
1043	    E1000_REGISTER(hw, E1000_TADV),
1044	    em_tx_abs_int_delay_dflt);
1045	em_add_int_delay_sysctl(sc, "itr",
1046	    "interrupt delay limit in usecs/4",
1047	    &sc->tx_itr,
1048	    E1000_REGISTER(hw, E1000_ITR),
1049	    DEFAULT_ITR);
1050
1051	hw->mac.autoneg = DO_AUTO_NEG;
1052	hw->phy.autoneg_wait_to_complete = false;
1053	hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1054
1055	if (hw->mac.type < em_mac_min) {
1056		e1000_init_script_state_82541(hw, true);
1057		e1000_set_tbi_compatibility_82543(hw, true);
1058	}
1059	/* Copper options */
1060	if (hw->phy.media_type == e1000_media_type_copper) {
1061		hw->phy.mdix = AUTO_ALL_MODES;
1062		hw->phy.disable_polarity_correction = false;
1063		hw->phy.ms_type = EM_MASTER_SLAVE;
1064	}
1065
1066	/*
1067	 * Set the frame limits assuming
1068	 * standard ethernet sized frames.
1069	 */
1070	scctx->isc_max_frame_size = hw->mac.max_frame_size =
1071	    ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1072
1073	/*
1074	 * This controls when hardware reports transmit completion
1075	 * status.
1076	 */
1077	hw->mac.report_tx_early = 1;
1078
1079	/* Allocate multicast array memory. */
1080	sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1081	    MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1082	if (sc->mta == NULL) {
1083		device_printf(dev, "Can not allocate multicast setup array\n");
1084		error = ENOMEM;
1085		goto err_late;
1086	}
1087
1088	/* Clear the IFCAP_TSO auto mask */
1089	sc->tso_automasked = 0;
1090
1091	/* Check SOL/IDER usage */
1092	if (e1000_check_reset_block(hw))
1093		device_printf(dev, "PHY reset is blocked"
1094			      " due to SOL/IDER session.\n");
1095
1096	/* Sysctl for setting Energy Efficient Ethernet */
1097	hw->dev_spec.ich8lan.eee_disable = eee_setting;
1098	SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1099	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1100	    em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1101
1102	/*
1103	** Start from a known state, this is
1104	** important in reading the nvm and
1105	** mac from that.
1106	*/
1107	e1000_reset_hw(hw);
1108
1109	/* Make sure we have a good EEPROM before we read from it */
1110	if (e1000_validate_nvm_checksum(hw) < 0) {
1111		/*
1112		** Some PCI-E parts fail the first check due to
1113		** the link being in sleep state, call it again,
1114		** if it fails a second time its a real issue.
1115		*/
1116		if (e1000_validate_nvm_checksum(hw) < 0) {
1117			device_printf(dev,
1118			    "The EEPROM Checksum Is Not Valid\n");
1119			error = EIO;
1120			goto err_late;
1121		}
1122	}
1123
1124	/* Copy the permanent MAC address out of the EEPROM */
1125	if (e1000_read_mac_addr(hw) < 0) {
1126		device_printf(dev, "EEPROM read error while reading MAC"
1127			      " address\n");
1128		error = EIO;
1129		goto err_late;
1130	}
1131
1132	if (!em_is_valid_ether_addr(hw->mac.addr)) {
1133		if (sc->vf_ifp) {
1134			ether_gen_addr(iflib_get_ifp(ctx),
1135			    (struct ether_addr *)hw->mac.addr);
1136		} else {
1137			device_printf(dev, "Invalid MAC address\n");
1138			error = EIO;
1139			goto err_late;
1140		}
1141	}
1142
1143	/* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1144	em_fw_version_locked(ctx);
1145
1146	em_print_fw_version(sc);
1147
1148	/*
1149	 * Get Wake-on-Lan and Management info for later use
1150	 */
1151	em_get_wakeup(ctx);
1152
1153	/* Enable only WOL MAGIC by default */
1154	scctx->isc_capenable &= ~IFCAP_WOL;
1155	if (sc->wol != 0)
1156		scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1157
1158	iflib_set_mac(ctx, hw->mac.addr);
1159
1160	return (0);
1161
1162err_late:
1163	em_release_hw_control(sc);
1164err_pci:
1165	em_free_pci_resources(ctx);
1166	free(sc->mta, M_DEVBUF);
1167
1168	return (error);
1169}
1170
1171static int
1172em_if_attach_post(if_ctx_t ctx)
1173{
1174	struct e1000_softc *sc = iflib_get_softc(ctx);
1175	struct e1000_hw *hw = &sc->hw;
1176	int error = 0;
1177
1178	/* Setup OS specific network interface */
1179	error = em_setup_interface(ctx);
1180	if (error != 0) {
1181		device_printf(sc->dev, "Interface setup failed: %d\n", error);
1182		goto err_late;
1183	}
1184
1185	em_reset(ctx);
1186
1187	/* Initialize statistics */
1188	em_update_stats_counters(sc);
1189	hw->mac.get_link_status = 1;
1190	em_if_update_admin_status(ctx);
1191	em_add_hw_stats(sc);
1192
1193	/* Non-AMT based hardware can now take control from firmware */
1194	if (sc->has_manage && !sc->has_amt)
1195		em_get_hw_control(sc);
1196
1197	INIT_DEBUGOUT("em_if_attach_post: end");
1198
1199	return (0);
1200
1201err_late:
1202	/* upon attach_post() error, iflib calls _if_detach() to free resources. */
1203	return (error);
1204}
1205
1206/*********************************************************************
1207 *  Device removal routine
1208 *
1209 *  The detach entry point is called when the driver is being removed.
1210 *  This routine stops the adapter and deallocates all the resources
1211 *  that were allocated for driver operation.
1212 *
1213 *  return 0 on success, positive on failure
1214 *********************************************************************/
1215static int
1216em_if_detach(if_ctx_t ctx)
1217{
1218	struct e1000_softc	*sc = iflib_get_softc(ctx);
1219
1220	INIT_DEBUGOUT("em_if_detach: begin");
1221
1222	e1000_phy_hw_reset(&sc->hw);
1223
1224	em_release_manageability(sc);
1225	em_release_hw_control(sc);
1226	em_free_pci_resources(ctx);
1227	free(sc->mta, M_DEVBUF);
1228	sc->mta = NULL;
1229
1230	return (0);
1231}
1232
1233/*********************************************************************
1234 *
1235 *  Shutdown entry point
1236 *
1237 **********************************************************************/
1238
1239static int
1240em_if_shutdown(if_ctx_t ctx)
1241{
1242	return em_if_suspend(ctx);
1243}
1244
1245/*
1246 * Suspend/resume device methods.
1247 */
1248static int
1249em_if_suspend(if_ctx_t ctx)
1250{
1251	struct e1000_softc *sc = iflib_get_softc(ctx);
1252
1253	em_release_manageability(sc);
1254	em_release_hw_control(sc);
1255	em_enable_wakeup(ctx);
1256	return (0);
1257}
1258
1259static int
1260em_if_resume(if_ctx_t ctx)
1261{
1262	struct e1000_softc *sc = iflib_get_softc(ctx);
1263
1264	if (sc->hw.mac.type == e1000_pch2lan)
1265		e1000_resume_workarounds_pchlan(&sc->hw);
1266	em_if_init(ctx);
1267	em_init_manageability(sc);
1268
1269	return(0);
1270}
1271
1272static int
1273em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1274{
1275	int max_frame_size;
1276	struct e1000_softc *sc = iflib_get_softc(ctx);
1277	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1278
1279	IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1280
1281	switch (sc->hw.mac.type) {
1282	case e1000_82571:
1283	case e1000_82572:
1284	case e1000_ich9lan:
1285	case e1000_ich10lan:
1286	case e1000_pch2lan:
1287	case e1000_pch_lpt:
1288	case e1000_pch_spt:
1289	case e1000_pch_cnp:
1290	case e1000_pch_tgp:
1291	case e1000_pch_adp:
1292	case e1000_pch_mtp:
1293	case e1000_pch_ptp:
1294	case e1000_82574:
1295	case e1000_82583:
1296	case e1000_80003es2lan:
1297		/* 9K Jumbo Frame size */
1298		max_frame_size = 9234;
1299		break;
1300	case e1000_pchlan:
1301		max_frame_size = 4096;
1302		break;
1303	case e1000_82542:
1304	case e1000_ich8lan:
1305		/* Adapters that do not support jumbo frames */
1306		max_frame_size = ETHER_MAX_LEN;
1307		break;
1308	default:
1309		if (sc->hw.mac.type >= igb_mac_min)
1310			max_frame_size = 9234;
1311		else /* lem */
1312			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1313	}
1314	if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1315		return (EINVAL);
1316	}
1317
1318	scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1319	    mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1320	return (0);
1321}
1322
1323/*********************************************************************
1324 *  Init entry point
1325 *
1326 *  This routine is used in two ways. It is used by the stack as
1327 *  init entry point in network interface structure. It is also used
1328 *  by the driver as a hw/sw initialization routine to get to a
1329 *  consistent state.
1330 *
1331 **********************************************************************/
1332static void
1333em_if_init(if_ctx_t ctx)
1334{
1335	struct e1000_softc *sc = iflib_get_softc(ctx);
1336	if_softc_ctx_t scctx = sc->shared;
1337	if_t ifp = iflib_get_ifp(ctx);
1338	struct em_tx_queue *tx_que;
1339	int i;
1340
1341	INIT_DEBUGOUT("em_if_init: begin");
1342
1343	/* Get the latest mac address, User can use a LAA */
1344	bcopy(if_getlladdr(ifp), sc->hw.mac.addr,
1345	    ETHER_ADDR_LEN);
1346
1347	/* Put the address into the Receive Address Array */
1348	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1349
1350	/*
1351	 * With the 82571 adapter, RAR[0] may be overwritten
1352	 * when the other port is reset, we make a duplicate
1353	 * in RAR[14] for that eventuality, this assures
1354	 * the interface continues to function.
1355	 */
1356	if (sc->hw.mac.type == e1000_82571) {
1357		e1000_set_laa_state_82571(&sc->hw, true);
1358		e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1359		    E1000_RAR_ENTRIES - 1);
1360	}
1361
1362	/* Initialize the hardware */
1363	em_reset(ctx);
1364	em_if_update_admin_status(ctx);
1365
1366	for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) {
1367		struct tx_ring *txr = &tx_que->txr;
1368
1369		txr->tx_rs_cidx = txr->tx_rs_pidx;
1370
1371		/* Initialize the last processed descriptor to be the end of
1372		 * the ring, rather than the start, so that we avoid an
1373		 * off-by-one error when calculating how many descriptors are
1374		 * done in the credits_update function.
1375		 */
1376		txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1377	}
1378
1379	/* Setup VLAN support, basic and offload if available */
1380	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1381
1382	/* Clear bad data from Rx FIFOs */
1383	if (sc->hw.mac.type >= igb_mac_min)
1384		e1000_rx_fifo_flush_base(&sc->hw);
1385
1386	/* Configure for OS presence */
1387	em_init_manageability(sc);
1388
1389	/* Prepare transmit descriptors and buffers */
1390	em_initialize_transmit_unit(ctx);
1391
1392	/* Setup Multicast table */
1393	em_if_multi_set(ctx);
1394
1395	sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1396	em_initialize_receive_unit(ctx);
1397
1398	/* Set up VLAN support and filter */
1399	em_setup_vlan_hw_support(ctx);
1400
1401	/* Don't lose promiscuous settings */
1402	em_if_set_promisc(ctx, if_getflags(ifp));
1403	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1404
1405	/* MSI-X configuration for 82574 */
1406	if (sc->hw.mac.type == e1000_82574) {
1407		int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1408
1409		tmp |= E1000_CTRL_EXT_PBA_CLR;
1410		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1411		/* Set the IVAR - interrupt vector routing. */
1412		E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1413	} else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1414		igb_configure_queues(sc);
1415
1416	/* this clears any pending interrupts */
1417	E1000_READ_REG(&sc->hw, E1000_ICR);
1418	E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1419
1420	/* AMT based hardware can now take control from firmware */
1421	if (sc->has_manage && sc->has_amt)
1422		em_get_hw_control(sc);
1423
1424	/* Set Energy Efficient Ethernet */
1425	if (sc->hw.mac.type >= igb_mac_min &&
1426	    sc->hw.phy.media_type == e1000_media_type_copper) {
1427		if (sc->hw.mac.type == e1000_i354)
1428			e1000_set_eee_i354(&sc->hw, true, true);
1429		else
1430			e1000_set_eee_i350(&sc->hw, true, true);
1431	}
1432}
1433
1434/*********************************************************************
1435 *
1436 *  Fast Legacy/MSI Combined Interrupt Service routine
1437 *
1438 *********************************************************************/
1439int
1440em_intr(void *arg)
1441{
1442	struct e1000_softc *sc = arg;
1443	if_ctx_t ctx = sc->ctx;
1444	u32 reg_icr;
1445
1446	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1447
1448	/* Hot eject? */
1449	if (reg_icr == 0xffffffff)
1450		return FILTER_STRAY;
1451
1452	/* Definitely not our interrupt. */
1453	if (reg_icr == 0x0)
1454		return FILTER_STRAY;
1455
1456	/*
1457	 * Starting with the 82571 chip, bit 31 should be used to
1458	 * determine whether the interrupt belongs to us.
1459	 */
1460	if (sc->hw.mac.type >= e1000_82571 &&
1461	    (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1462		return FILTER_STRAY;
1463
1464	/*
1465	 * Only MSI-X interrupts have one-shot behavior by taking advantage
1466	 * of the EIAC register.  Thus, explicitly disable interrupts.  This
1467	 * also works around the MSI message reordering errata on certain
1468	 * systems.
1469	 */
1470	IFDI_INTR_DISABLE(ctx);
1471
1472	/* Link status change */
1473	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1474		em_handle_link(ctx);
1475
1476	if (reg_icr & E1000_ICR_RXO)
1477		sc->rx_overruns++;
1478
1479	return (FILTER_SCHEDULE_THREAD);
1480}
1481
1482static int
1483em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1484{
1485	struct e1000_softc *sc = iflib_get_softc(ctx);
1486	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1487
1488	E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1489	return (0);
1490}
1491
1492static int
1493em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1494{
1495	struct e1000_softc *sc = iflib_get_softc(ctx);
1496	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1497
1498	E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1499	return (0);
1500}
1501
1502static int
1503igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1504{
1505	struct e1000_softc *sc = iflib_get_softc(ctx);
1506	struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1507
1508	E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1509	return (0);
1510}
1511
1512static int
1513igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1514{
1515	struct e1000_softc *sc = iflib_get_softc(ctx);
1516	struct em_tx_queue *txq = &sc->tx_queues[txqid];
1517
1518	E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1519	return (0);
1520}
1521
1522/*********************************************************************
1523 *
1524 *  MSI-X RX Interrupt Service routine
1525 *
1526 **********************************************************************/
1527static int
1528em_msix_que(void *arg)
1529{
1530	struct em_rx_queue *que = arg;
1531
1532	++que->irqs;
1533
1534	return (FILTER_SCHEDULE_THREAD);
1535}
1536
1537/*********************************************************************
1538 *
1539 *  MSI-X Link Fast Interrupt Service routine
1540 *
1541 **********************************************************************/
1542static int
1543em_msix_link(void *arg)
1544{
1545	struct e1000_softc *sc = arg;
1546	u32 reg_icr;
1547
1548	++sc->link_irq;
1549	MPASS(sc->hw.back != NULL);
1550	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1551
1552	if (reg_icr & E1000_ICR_RXO)
1553		sc->rx_overruns++;
1554
1555	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1556		em_handle_link(sc->ctx);
1557
1558	/* Re-arm unconditionally */
1559	if (sc->hw.mac.type >= igb_mac_min) {
1560		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1561		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1562	} else if (sc->hw.mac.type == e1000_82574) {
1563		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC |
1564		    E1000_IMS_OTHER);
1565		/*
1566		 * Because we must read the ICR for this interrupt it may
1567		 * clear other causes using autoclear, for this reason we
1568		 * simply create a soft interrupt for all these vectors.
1569		 */
1570		if (reg_icr)
1571			E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1572	} else
1573		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1574
1575	return (FILTER_HANDLED);
1576}
1577
1578static void
1579em_handle_link(void *context)
1580{
1581	if_ctx_t ctx = context;
1582	struct e1000_softc *sc = iflib_get_softc(ctx);
1583
1584	sc->hw.mac.get_link_status = 1;
1585	iflib_admin_intr_deferred(ctx);
1586}
1587
1588/*********************************************************************
1589 *
1590 *  Media Ioctl callback
1591 *
1592 *  This routine is called whenever the user queries the status of
1593 *  the interface using ifconfig.
1594 *
1595 **********************************************************************/
1596static void
1597em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1598{
1599	struct e1000_softc *sc = iflib_get_softc(ctx);
1600	u_char fiber_type = IFM_1000_SX;
1601
1602	INIT_DEBUGOUT("em_if_media_status: begin");
1603
1604	iflib_admin_intr_deferred(ctx);
1605
1606	ifmr->ifm_status = IFM_AVALID;
1607	ifmr->ifm_active = IFM_ETHER;
1608
1609	if (!sc->link_active) {
1610		return;
1611	}
1612
1613	ifmr->ifm_status |= IFM_ACTIVE;
1614
1615	if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1616	    (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1617		if (sc->hw.mac.type == e1000_82545)
1618			fiber_type = IFM_1000_LX;
1619		ifmr->ifm_active |= fiber_type | IFM_FDX;
1620	} else {
1621		switch (sc->link_speed) {
1622		case 10:
1623			ifmr->ifm_active |= IFM_10_T;
1624			break;
1625		case 100:
1626			ifmr->ifm_active |= IFM_100_TX;
1627			break;
1628		case 1000:
1629			ifmr->ifm_active |= IFM_1000_T;
1630			break;
1631		}
1632		if (sc->link_duplex == FULL_DUPLEX)
1633			ifmr->ifm_active |= IFM_FDX;
1634		else
1635			ifmr->ifm_active |= IFM_HDX;
1636	}
1637}
1638
1639/*********************************************************************
1640 *
1641 *  Media Ioctl callback
1642 *
1643 *  This routine is called when the user changes speed/duplex using
1644 *  media/mediopt option with ifconfig.
1645 *
1646 **********************************************************************/
1647static int
1648em_if_media_change(if_ctx_t ctx)
1649{
1650	struct e1000_softc *sc = iflib_get_softc(ctx);
1651	struct ifmedia *ifm = iflib_get_media(ctx);
1652
1653	INIT_DEBUGOUT("em_if_media_change: begin");
1654
1655	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1656		return (EINVAL);
1657
1658	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1659	case IFM_AUTO:
1660		sc->hw.mac.autoneg = DO_AUTO_NEG;
1661		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1662		break;
1663	case IFM_1000_LX:
1664	case IFM_1000_SX:
1665	case IFM_1000_T:
1666		sc->hw.mac.autoneg = DO_AUTO_NEG;
1667		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1668		break;
1669	case IFM_100_TX:
1670		sc->hw.mac.autoneg = false;
1671		sc->hw.phy.autoneg_advertised = 0;
1672		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1673			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1674		else
1675			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1676		break;
1677	case IFM_10_T:
1678		sc->hw.mac.autoneg = false;
1679		sc->hw.phy.autoneg_advertised = 0;
1680		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1681			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1682		else
1683			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1684		break;
1685	default:
1686		device_printf(sc->dev, "Unsupported media type\n");
1687	}
1688
1689	em_if_init(ctx);
1690
1691	return (0);
1692}
1693
1694static int
1695em_if_set_promisc(if_ctx_t ctx, int flags)
1696{
1697	struct e1000_softc *sc = iflib_get_softc(ctx);
1698	if_t ifp = iflib_get_ifp(ctx);
1699	u32 reg_rctl;
1700	int mcnt = 0;
1701
1702	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1703	reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1704	if (flags & IFF_ALLMULTI)
1705		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1706	else
1707		mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1708
1709	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1710		reg_rctl &= (~E1000_RCTL_MPE);
1711	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1712
1713	if (flags & IFF_PROMISC) {
1714		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1715		em_if_vlan_filter_disable(sc);
1716		/* Turn this on if you want to see bad packets */
1717		if (em_debug_sbp)
1718			reg_rctl |= E1000_RCTL_SBP;
1719		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1720	} else {
1721		if (flags & IFF_ALLMULTI) {
1722			reg_rctl |= E1000_RCTL_MPE;
1723			reg_rctl &= ~E1000_RCTL_UPE;
1724			E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1725		}
1726		if (em_if_vlan_filter_used(ctx))
1727			em_if_vlan_filter_enable(sc);
1728	}
1729	return (0);
1730}
1731
1732static u_int
1733em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1734{
1735	u8 *mta = arg;
1736
1737	if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1738		return (0);
1739
1740	bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1741
1742	return (1);
1743}
1744
1745/*********************************************************************
1746 *  Multicast Update
1747 *
1748 *  This routine is called whenever multicast address list is updated.
1749 *
1750 **********************************************************************/
1751static void
1752em_if_multi_set(if_ctx_t ctx)
1753{
1754	struct e1000_softc *sc = iflib_get_softc(ctx);
1755	if_t ifp = iflib_get_ifp(ctx);
1756	u8  *mta; /* Multicast array memory */
1757	u32 reg_rctl = 0;
1758	int mcnt = 0;
1759
1760	IOCTL_DEBUGOUT("em_set_multi: begin");
1761
1762	mta = sc->mta;
1763	bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1764
1765	if (sc->hw.mac.type == e1000_82542 &&
1766	    sc->hw.revision_id == E1000_REVISION_2) {
1767		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1768		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1769			e1000_pci_clear_mwi(&sc->hw);
1770		reg_rctl |= E1000_RCTL_RST;
1771		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1772		msec_delay(5);
1773	}
1774
1775	mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1776
1777	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1778		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1779
1780	reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1781
1782	if (if_getflags(ifp) & IFF_PROMISC)
1783		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1784	else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1785	    if_getflags(ifp) & IFF_ALLMULTI) {
1786		reg_rctl |= E1000_RCTL_MPE;
1787		reg_rctl &= ~E1000_RCTL_UPE;
1788	} else
1789		reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1790
1791	E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1792
1793	if (sc->hw.mac.type == e1000_82542 &&
1794	    sc->hw.revision_id == E1000_REVISION_2) {
1795		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1796		reg_rctl &= ~E1000_RCTL_RST;
1797		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1798		msec_delay(5);
1799		if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1800			e1000_pci_set_mwi(&sc->hw);
1801	}
1802}
1803
1804/*********************************************************************
1805 *  Timer routine
1806 *
1807 *  This routine schedules em_if_update_admin_status() to check for
1808 *  link status and to gather statistics as well as to perform some
1809 *  controller-specific hardware patting.
1810 *
1811 **********************************************************************/
1812static void
1813em_if_timer(if_ctx_t ctx, uint16_t qid)
1814{
1815
1816	if (qid != 0)
1817		return;
1818
1819	iflib_admin_intr_deferred(ctx);
1820}
1821
1822static void
1823em_if_update_admin_status(if_ctx_t ctx)
1824{
1825	struct e1000_softc *sc = iflib_get_softc(ctx);
1826	struct e1000_hw *hw = &sc->hw;
1827	device_t dev = iflib_get_dev(ctx);
1828	u32 link_check, thstat, ctrl;
1829	bool automasked = false;
1830
1831	link_check = thstat = ctrl = 0;
1832	/* Get the cached link value or read phy for real */
1833	switch (hw->phy.media_type) {
1834	case e1000_media_type_copper:
1835		if (hw->mac.get_link_status) {
1836			if (hw->mac.type == e1000_pch_spt)
1837				msec_delay(50);
1838			/* Do the work to read phy */
1839			e1000_check_for_link(hw);
1840			link_check = !hw->mac.get_link_status;
1841			if (link_check) /* ESB2 fix */
1842				e1000_cfg_on_link_up(hw);
1843		} else {
1844			link_check = true;
1845		}
1846		break;
1847	case e1000_media_type_fiber:
1848		e1000_check_for_link(hw);
1849		link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1850			    E1000_STATUS_LU);
1851		break;
1852	case e1000_media_type_internal_serdes:
1853		e1000_check_for_link(hw);
1854		link_check = hw->mac.serdes_has_link;
1855		break;
1856	/* VF device is type_unknown */
1857	case e1000_media_type_unknown:
1858		e1000_check_for_link(hw);
1859		link_check = !hw->mac.get_link_status;
1860		/* FALLTHROUGH */
1861	default:
1862		break;
1863	}
1864
1865	/* Check for thermal downshift or shutdown */
1866	if (hw->mac.type == e1000_i350) {
1867		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1868		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1869	}
1870
1871	/* Now check for a transition */
1872	if (link_check && (sc->link_active == 0)) {
1873		e1000_get_speed_and_duplex(hw, &sc->link_speed,
1874		    &sc->link_duplex);
1875		/* Check if we must disable SPEED_MODE bit on PCI-E */
1876		if ((sc->link_speed != SPEED_1000) &&
1877		    ((hw->mac.type == e1000_82571) ||
1878		    (hw->mac.type == e1000_82572))) {
1879			int tarc0;
1880			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1881			tarc0 &= ~TARC_SPEED_MODE_BIT;
1882			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1883		}
1884		if (bootverbose)
1885			device_printf(dev, "Link is up %d Mbps %s\n",
1886			    sc->link_speed,
1887			    ((sc->link_duplex == FULL_DUPLEX) ?
1888			    "Full Duplex" : "Half Duplex"));
1889		sc->link_active = 1;
1890		sc->smartspeed = 0;
1891		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1892		    E1000_CTRL_EXT_LINK_MODE_GMII &&
1893		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1894			device_printf(dev, "Link: thermal downshift\n");
1895		/* Delay Link Up for Phy update */
1896		if (((hw->mac.type == e1000_i210) ||
1897		    (hw->mac.type == e1000_i211)) &&
1898		    (hw->phy.id == I210_I_PHY_ID))
1899			msec_delay(I210_LINK_DELAY);
1900		/* Reset if the media type changed. */
1901		if (hw->dev_spec._82575.media_changed &&
1902		    hw->mac.type >= igb_mac_min) {
1903			hw->dev_spec._82575.media_changed = false;
1904			sc->flags |= IGB_MEDIA_RESET;
1905			em_reset(ctx);
1906		}
1907		/* Only do TSO on gigabit Ethernet for older chips due to errata */
1908		if (hw->mac.type < igb_mac_min)
1909			automasked = em_automask_tso(ctx);
1910
1911		/* Automasking resets the interface, so don't mark it up yet */
1912		if (!automasked)
1913			iflib_link_state_change(ctx, LINK_STATE_UP,
1914			    IF_Mbps(sc->link_speed));
1915	} else if (!link_check && (sc->link_active == 1)) {
1916		sc->link_speed = 0;
1917		sc->link_duplex = 0;
1918		sc->link_active = 0;
1919		iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1920	}
1921	em_update_stats_counters(sc);
1922
1923	/* Reset LAA into RAR[0] on 82571 */
1924	if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1925		e1000_rar_set(hw, hw->mac.addr, 0);
1926
1927	if (hw->mac.type < em_mac_min)
1928		lem_smartspeed(sc);
1929}
1930
1931static void
1932em_if_watchdog_reset(if_ctx_t ctx)
1933{
1934	struct e1000_softc *sc = iflib_get_softc(ctx);
1935
1936	/*
1937	 * Just count the event; iflib(4) will already trigger a
1938	 * sufficient reset of the controller.
1939	 */
1940	sc->watchdog_events++;
1941}
1942
1943/*********************************************************************
1944 *
1945 *  This routine disables all traffic on the adapter by issuing a
1946 *  global reset on the MAC.
1947 *
1948 **********************************************************************/
1949static void
1950em_if_stop(if_ctx_t ctx)
1951{
1952	struct e1000_softc *sc = iflib_get_softc(ctx);
1953
1954	INIT_DEBUGOUT("em_if_stop: begin");
1955
1956	/* I219 needs special flushing to avoid hangs */
1957	if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
1958		em_flush_desc_rings(sc);
1959
1960	e1000_reset_hw(&sc->hw);
1961	if (sc->hw.mac.type >= e1000_82544)
1962		E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
1963
1964	e1000_led_off(&sc->hw);
1965	e1000_cleanup_led(&sc->hw);
1966}
1967
1968/*********************************************************************
1969 *
1970 *  Determine hardware revision.
1971 *
1972 **********************************************************************/
1973static void
1974em_identify_hardware(if_ctx_t ctx)
1975{
1976	device_t dev = iflib_get_dev(ctx);
1977	struct e1000_softc *sc = iflib_get_softc(ctx);
1978
1979	/* Make sure our PCI config space has the necessary stuff set */
1980	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1981
1982	/* Save off the information about this board */
1983	sc->hw.vendor_id = pci_get_vendor(dev);
1984	sc->hw.device_id = pci_get_device(dev);
1985	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1986	sc->hw.subsystem_vendor_id =
1987	    pci_read_config(dev, PCIR_SUBVEND_0, 2);
1988	sc->hw.subsystem_device_id =
1989	    pci_read_config(dev, PCIR_SUBDEV_0, 2);
1990
1991	/* Do Shared Code Init and Setup */
1992	if (e1000_set_mac_type(&sc->hw)) {
1993		device_printf(dev, "Setup init failure\n");
1994		return;
1995	}
1996
1997	/* Are we a VF device? */
1998	if ((sc->hw.mac.type == e1000_vfadapt) ||
1999	    (sc->hw.mac.type == e1000_vfadapt_i350))
2000		sc->vf_ifp = 1;
2001	else
2002		sc->vf_ifp = 0;
2003}
2004
2005static int
2006em_allocate_pci_resources(if_ctx_t ctx)
2007{
2008	struct e1000_softc *sc = iflib_get_softc(ctx);
2009	device_t dev = iflib_get_dev(ctx);
2010	int rid, val;
2011
2012	rid = PCIR_BAR(0);
2013	sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2014	    &rid, RF_ACTIVE);
2015	if (sc->memory == NULL) {
2016		device_printf(dev, "Unable to allocate bus resource: memory\n");
2017		return (ENXIO);
2018	}
2019	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2020	sc->osdep.mem_bus_space_handle =
2021	    rman_get_bushandle(sc->memory);
2022	sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2023
2024	/* Only older adapters use IO mapping */
2025	if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2026		/* Figure our where our IO BAR is ? */
2027		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2028			val = pci_read_config(dev, rid, 4);
2029			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2030				break;
2031			}
2032			rid += 4;
2033			/* check for 64bit BAR */
2034			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2035				rid += 4;
2036		}
2037		if (rid >= PCIR_CIS) {
2038			device_printf(dev, "Unable to locate IO BAR\n");
2039			return (ENXIO);
2040		}
2041		sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2042		    &rid, RF_ACTIVE);
2043		if (sc->ioport == NULL) {
2044			device_printf(dev, "Unable to allocate bus resource: "
2045			    "ioport\n");
2046			return (ENXIO);
2047		}
2048		sc->hw.io_base = 0;
2049		sc->osdep.io_bus_space_tag =
2050		    rman_get_bustag(sc->ioport);
2051		sc->osdep.io_bus_space_handle =
2052		    rman_get_bushandle(sc->ioport);
2053	}
2054
2055	sc->hw.back = &sc->osdep;
2056
2057	return (0);
2058}
2059
2060/*********************************************************************
2061 *
2062 *  Set up the MSI-X Interrupt handlers
2063 *
2064 **********************************************************************/
2065static int
2066em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2067{
2068	struct e1000_softc *sc = iflib_get_softc(ctx);
2069	struct em_rx_queue *rx_que = sc->rx_queues;
2070	struct em_tx_queue *tx_que = sc->tx_queues;
2071	int error, rid, i, vector = 0, rx_vectors;
2072	char buf[16];
2073
2074	/* First set up ring resources */
2075	for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2076		rid = vector + 1;
2077		snprintf(buf, sizeof(buf), "rxq%d", i);
2078		error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2079		if (error) {
2080			device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2081			sc->rx_num_queues = i + 1;
2082			goto fail;
2083		}
2084
2085		rx_que->msix =  vector;
2086
2087		/*
2088		 * Set the bit to enable interrupt
2089		 * in E1000_IMS -- bits 20 and 21
2090		 * are for RX0 and RX1, note this has
2091		 * NOTHING to do with the MSI-X vector
2092		 */
2093		if (sc->hw.mac.type == e1000_82574) {
2094			rx_que->eims = 1 << (20 + i);
2095			sc->ims |= rx_que->eims;
2096			sc->ivars |= (8 | rx_que->msix) << (i * 4);
2097		} else if (sc->hw.mac.type == e1000_82575)
2098			rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2099		else
2100			rx_que->eims = 1 << vector;
2101	}
2102	rx_vectors = vector;
2103
2104	vector = 0;
2105	for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2106		snprintf(buf, sizeof(buf), "txq%d", i);
2107		tx_que = &sc->tx_queues[i];
2108		iflib_softirq_alloc_generic(ctx,
2109		    &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2110		    IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2111
2112		tx_que->msix = (vector % sc->rx_num_queues);
2113
2114		/*
2115		 * Set the bit to enable interrupt
2116		 * in E1000_IMS -- bits 22 and 23
2117		 * are for TX0 and TX1, note this has
2118		 * NOTHING to do with the MSI-X vector
2119		 */
2120		if (sc->hw.mac.type == e1000_82574) {
2121			tx_que->eims = 1 << (22 + i);
2122			sc->ims |= tx_que->eims;
2123			sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2124		} else if (sc->hw.mac.type == e1000_82575) {
2125			tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2126		} else {
2127			tx_que->eims = 1 << i;
2128		}
2129	}
2130
2131	/* Link interrupt */
2132	rid = rx_vectors + 1;
2133	error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq");
2134
2135	if (error) {
2136		device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2137		goto fail;
2138	}
2139	sc->linkvec = rx_vectors;
2140	if (sc->hw.mac.type < igb_mac_min) {
2141		sc->ivars |=  (8 | rx_vectors) << 16;
2142		sc->ivars |= 0x80000000;
2143		/* Enable the "Other" interrupt type for link status change */
2144		sc->ims |= E1000_IMS_OTHER;
2145	}
2146
2147	return (0);
2148fail:
2149	iflib_irq_free(ctx, &sc->irq);
2150	rx_que = sc->rx_queues;
2151	for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2152		iflib_irq_free(ctx, &rx_que->que_irq);
2153	return (error);
2154}
2155
2156static void
2157igb_configure_queues(struct e1000_softc *sc)
2158{
2159	struct e1000_hw *hw = &sc->hw;
2160	struct em_rx_queue *rx_que;
2161	struct em_tx_queue *tx_que;
2162	u32 tmp, ivar = 0, newitr = 0;
2163
2164	/* First turn on RSS capability */
2165	if (hw->mac.type != e1000_82575)
2166		E1000_WRITE_REG(hw, E1000_GPIE,
2167		    E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2168		    E1000_GPIE_PBA | E1000_GPIE_NSICR);
2169
2170	/* Turn on MSI-X */
2171	switch (hw->mac.type) {
2172	case e1000_82580:
2173	case e1000_i350:
2174	case e1000_i354:
2175	case e1000_i210:
2176	case e1000_i211:
2177	case e1000_vfadapt:
2178	case e1000_vfadapt_i350:
2179		/* RX entries */
2180		for (int i = 0; i < sc->rx_num_queues; i++) {
2181			u32 index = i >> 1;
2182			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2183			rx_que = &sc->rx_queues[i];
2184			if (i & 1) {
2185				ivar &= 0xFF00FFFF;
2186				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2187			} else {
2188				ivar &= 0xFFFFFF00;
2189				ivar |= rx_que->msix | E1000_IVAR_VALID;
2190			}
2191			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2192		}
2193		/* TX entries */
2194		for (int i = 0; i < sc->tx_num_queues; i++) {
2195			u32 index = i >> 1;
2196			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2197			tx_que = &sc->tx_queues[i];
2198			if (i & 1) {
2199				ivar &= 0x00FFFFFF;
2200				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2201			} else {
2202				ivar &= 0xFFFF00FF;
2203				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2204			}
2205			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2206			sc->que_mask |= tx_que->eims;
2207		}
2208
2209		/* And for the link interrupt */
2210		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2211		sc->link_mask = 1 << sc->linkvec;
2212		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2213		break;
2214	case e1000_82576:
2215		/* RX entries */
2216		for (int i = 0; i < sc->rx_num_queues; i++) {
2217			u32 index = i & 0x7; /* Each IVAR has two entries */
2218			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2219			rx_que = &sc->rx_queues[i];
2220			if (i < 8) {
2221				ivar &= 0xFFFFFF00;
2222				ivar |= rx_que->msix | E1000_IVAR_VALID;
2223			} else {
2224				ivar &= 0xFF00FFFF;
2225				ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2226			}
2227			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2228			sc->que_mask |= rx_que->eims;
2229		}
2230		/* TX entries */
2231		for (int i = 0; i < sc->tx_num_queues; i++) {
2232			u32 index = i & 0x7; /* Each IVAR has two entries */
2233			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2234			tx_que = &sc->tx_queues[i];
2235			if (i < 8) {
2236				ivar &= 0xFFFF00FF;
2237				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2238			} else {
2239				ivar &= 0x00FFFFFF;
2240				ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2241			}
2242			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2243			sc->que_mask |= tx_que->eims;
2244		}
2245
2246		/* And for the link interrupt */
2247		ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2248		sc->link_mask = 1 << sc->linkvec;
2249		E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2250		break;
2251
2252	case e1000_82575:
2253		/* enable MSI-X support*/
2254		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2255		tmp |= E1000_CTRL_EXT_PBA_CLR;
2256		/* Auto-Mask interrupts upon ICR read. */
2257		tmp |= E1000_CTRL_EXT_EIAME;
2258		tmp |= E1000_CTRL_EXT_IRCA;
2259		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2260
2261		/* Queues */
2262		for (int i = 0; i < sc->rx_num_queues; i++) {
2263			rx_que = &sc->rx_queues[i];
2264			tmp = E1000_EICR_RX_QUEUE0 << i;
2265			tmp |= E1000_EICR_TX_QUEUE0 << i;
2266			rx_que->eims = tmp;
2267			E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2268			    i, rx_que->eims);
2269			sc->que_mask |= rx_que->eims;
2270		}
2271
2272		/* Link */
2273		E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2274		    E1000_EIMS_OTHER);
2275		sc->link_mask |= E1000_EIMS_OTHER;
2276	default:
2277		break;
2278	}
2279
2280	/* Set the starting interrupt rate */
2281	if (em_max_interrupt_rate > 0)
2282		newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2283
2284	if (hw->mac.type == e1000_82575)
2285		newitr |= newitr << 16;
2286	else
2287		newitr |= E1000_EITR_CNT_IGNR;
2288
2289	for (int i = 0; i < sc->rx_num_queues; i++) {
2290		rx_que = &sc->rx_queues[i];
2291		E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2292	}
2293
2294	return;
2295}
2296
2297static void
2298em_free_pci_resources(if_ctx_t ctx)
2299{
2300	struct e1000_softc *sc = iflib_get_softc(ctx);
2301	struct em_rx_queue *que = sc->rx_queues;
2302	device_t dev = iflib_get_dev(ctx);
2303
2304	/* Release all MSI-X queue resources */
2305	if (sc->intr_type == IFLIB_INTR_MSIX)
2306		iflib_irq_free(ctx, &sc->irq);
2307
2308	if (que != NULL) {
2309		for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2310			iflib_irq_free(ctx, &que->que_irq);
2311		}
2312	}
2313
2314	if (sc->memory != NULL) {
2315		bus_release_resource(dev, SYS_RES_MEMORY,
2316		    rman_get_rid(sc->memory), sc->memory);
2317		sc->memory = NULL;
2318	}
2319
2320	if (sc->flash != NULL) {
2321		bus_release_resource(dev, SYS_RES_MEMORY,
2322		    rman_get_rid(sc->flash), sc->flash);
2323		sc->flash = NULL;
2324	}
2325
2326	if (sc->ioport != NULL) {
2327		bus_release_resource(dev, SYS_RES_IOPORT,
2328		    rman_get_rid(sc->ioport), sc->ioport);
2329		sc->ioport = NULL;
2330	}
2331}
2332
2333/* Set up MSI or MSI-X */
2334static int
2335em_setup_msix(if_ctx_t ctx)
2336{
2337	struct e1000_softc *sc = iflib_get_softc(ctx);
2338
2339	if (sc->hw.mac.type == e1000_82574) {
2340		em_enable_vectors_82574(ctx);
2341	}
2342	return (0);
2343}
2344
2345/*********************************************************************
2346 *
2347 *  Workaround for SmartSpeed on 82541 and 82547 controllers
2348 *
2349 **********************************************************************/
2350static void
2351lem_smartspeed(struct e1000_softc *sc)
2352{
2353	u16 phy_tmp;
2354
2355	if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2356	    sc->hw.mac.autoneg == 0 ||
2357	    (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2358		return;
2359
2360	if (sc->smartspeed == 0) {
2361		/* If Master/Slave config fault is asserted twice,
2362		 * we assume back-to-back */
2363		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2364		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2365			return;
2366		e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2367		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2368			e1000_read_phy_reg(&sc->hw,
2369			    PHY_1000T_CTRL, &phy_tmp);
2370			if(phy_tmp & CR_1000T_MS_ENABLE) {
2371				phy_tmp &= ~CR_1000T_MS_ENABLE;
2372				e1000_write_phy_reg(&sc->hw,
2373				    PHY_1000T_CTRL, phy_tmp);
2374				sc->smartspeed++;
2375				if(sc->hw.mac.autoneg &&
2376				   !e1000_copper_link_autoneg(&sc->hw) &&
2377				   !e1000_read_phy_reg(&sc->hw,
2378				    PHY_CONTROL, &phy_tmp)) {
2379					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2380						    MII_CR_RESTART_AUTO_NEG);
2381					e1000_write_phy_reg(&sc->hw,
2382					    PHY_CONTROL, phy_tmp);
2383				}
2384			}
2385		}
2386		return;
2387	} else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2388		/* If still no link, perhaps using 2/3 pair cable */
2389		e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2390		phy_tmp |= CR_1000T_MS_ENABLE;
2391		e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2392		if(sc->hw.mac.autoneg &&
2393		   !e1000_copper_link_autoneg(&sc->hw) &&
2394		   !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2395			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2396				    MII_CR_RESTART_AUTO_NEG);
2397			e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2398		}
2399	}
2400	/* Restart process after EM_SMARTSPEED_MAX iterations */
2401	if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2402		sc->smartspeed = 0;
2403}
2404
2405/*********************************************************************
2406 *
2407 *  Initialize the DMA Coalescing feature
2408 *
2409 **********************************************************************/
2410static void
2411igb_init_dmac(struct e1000_softc *sc, u32 pba)
2412{
2413	device_t	dev = sc->dev;
2414	struct e1000_hw *hw = &sc->hw;
2415	u32 		dmac, reg = ~E1000_DMACR_DMAC_EN;
2416	u16		hwm;
2417	u16		max_frame_size;
2418
2419	if (hw->mac.type == e1000_i211)
2420		return;
2421
2422	max_frame_size = sc->shared->isc_max_frame_size;
2423	if (hw->mac.type > e1000_82580) {
2424
2425		if (sc->dmac == 0) { /* Disabling it */
2426			E1000_WRITE_REG(hw, E1000_DMACR, reg);
2427			return;
2428		} else
2429			device_printf(dev, "DMA Coalescing enabled\n");
2430
2431		/* Set starting threshold */
2432		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2433
2434		hwm = 64 * pba - max_frame_size / 16;
2435		if (hwm < 64 * (pba - 6))
2436			hwm = 64 * (pba - 6);
2437		reg = E1000_READ_REG(hw, E1000_FCRTC);
2438		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2439		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2440		    & E1000_FCRTC_RTH_COAL_MASK);
2441		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2442
2443
2444		dmac = pba - max_frame_size / 512;
2445		if (dmac < pba - 10)
2446			dmac = pba - 10;
2447		reg = E1000_READ_REG(hw, E1000_DMACR);
2448		reg &= ~E1000_DMACR_DMACTHR_MASK;
2449		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2450		    & E1000_DMACR_DMACTHR_MASK);
2451
2452		/* transition to L0x or L1 if available..*/
2453		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2454
2455		/* Check if status is 2.5Gb backplane connection
2456		* before configuration of watchdog timer, which is
2457		* in msec values in 12.8usec intervals
2458		* watchdog timer= msec values in 32usec intervals
2459		* for non 2.5Gb connection
2460		*/
2461		if (hw->mac.type == e1000_i354) {
2462			int status = E1000_READ_REG(hw, E1000_STATUS);
2463			if ((status & E1000_STATUS_2P5_SKU) &&
2464			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2465				reg |= ((sc->dmac * 5) >> 6);
2466			else
2467				reg |= (sc->dmac >> 5);
2468		} else {
2469			reg |= (sc->dmac >> 5);
2470		}
2471
2472		E1000_WRITE_REG(hw, E1000_DMACR, reg);
2473
2474		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2475
2476		/* Set the interval before transition */
2477		reg = E1000_READ_REG(hw, E1000_DMCTLX);
2478		if (hw->mac.type == e1000_i350)
2479			reg |= IGB_DMCTLX_DCFLUSH_DIS;
2480		/*
2481		** in 2.5Gb connection, TTLX unit is 0.4 usec
2482		** which is 0x4*2 = 0xA. But delay is still 4 usec
2483		*/
2484		if (hw->mac.type == e1000_i354) {
2485			int status = E1000_READ_REG(hw, E1000_STATUS);
2486			if ((status & E1000_STATUS_2P5_SKU) &&
2487			    (!(status & E1000_STATUS_2P5_SKU_OVER)))
2488				reg |= 0xA;
2489			else
2490				reg |= 0x4;
2491		} else {
2492			reg |= 0x4;
2493		}
2494
2495		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2496
2497		/* free space in tx packet buffer to wake from DMA coal */
2498		E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2499		    (2 * max_frame_size)) >> 6);
2500
2501		/* make low power state decision controlled by DMA coal */
2502		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2503		reg &= ~E1000_PCIEMISC_LX_DECISION;
2504		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2505
2506	} else if (hw->mac.type == e1000_82580) {
2507		u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2508		E1000_WRITE_REG(hw, E1000_PCIEMISC,
2509		    reg & ~E1000_PCIEMISC_LX_DECISION);
2510		E1000_WRITE_REG(hw, E1000_DMACR, 0);
2511	}
2512}
2513/*********************************************************************
2514 * The 3 following flush routines are used as a workaround in the
2515 * I219 client parts and only for them.
2516 *
2517 * em_flush_tx_ring - remove all descriptors from the tx_ring
2518 *
2519 * We want to clear all pending descriptors from the TX ring.
2520 * zeroing happens when the HW reads the regs. We assign the ring itself as
2521 * the data of the next descriptor. We don't care about the data we are about
2522 * to reset the HW.
2523 **********************************************************************/
2524static void
2525em_flush_tx_ring(struct e1000_softc *sc)
2526{
2527	struct e1000_hw		*hw = &sc->hw;
2528	struct tx_ring		*txr = &sc->tx_queues->txr;
2529	struct e1000_tx_desc	*txd;
2530	u32			tctl, txd_lower = E1000_TXD_CMD_IFCS;
2531	u16			size = 512;
2532
2533	tctl = E1000_READ_REG(hw, E1000_TCTL);
2534	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2535
2536	txd = &txr->tx_base[txr->tx_cidx_processed];
2537
2538	/* Just use the ring as a dummy buffer addr */
2539	txd->buffer_addr = txr->tx_paddr;
2540	txd->lower.data = htole32(txd_lower | size);
2541	txd->upper.data = 0;
2542
2543	/* flush descriptors to memory before notifying the HW */
2544	wmb();
2545
2546	E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2547	mb();
2548	usec_delay(250);
2549}
2550
2551/*********************************************************************
2552 * em_flush_rx_ring - remove all descriptors from the rx_ring
2553 *
2554 * Mark all descriptors in the RX ring as consumed and disable the rx ring
2555 **********************************************************************/
2556static void
2557em_flush_rx_ring(struct e1000_softc *sc)
2558{
2559	struct e1000_hw	*hw = &sc->hw;
2560	u32		rctl, rxdctl;
2561
2562	rctl = E1000_READ_REG(hw, E1000_RCTL);
2563	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2564	E1000_WRITE_FLUSH(hw);
2565	usec_delay(150);
2566
2567	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2568	/* zero the lower 14 bits (prefetch and host thresholds) */
2569	rxdctl &= 0xffffc000;
2570	/*
2571	 * update thresholds: prefetch threshold to 31, host threshold to 1
2572	 * and make sure the granularity is "descriptors" and not "cache lines"
2573	 */
2574	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2575	E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
2576
2577	/* momentarily enable the RX ring for the changes to take effect */
2578	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
2579	E1000_WRITE_FLUSH(hw);
2580	usec_delay(150);
2581	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2582}
2583
2584/*********************************************************************
2585 * em_flush_desc_rings - remove all descriptors from the descriptor rings
2586 *
2587 * In I219, the descriptor rings must be emptied before resetting the HW
2588 * or before changing the device state to D3 during runtime (runtime PM).
2589 *
2590 * Failure to do this will cause the HW to enter a unit hang state which can
2591 * only be released by PCI reset on the device
2592 *
2593 **********************************************************************/
2594static void
2595em_flush_desc_rings(struct e1000_softc *sc)
2596{
2597	struct e1000_hw	*hw = &sc->hw;
2598	device_t dev = sc->dev;
2599	u16		hang_state;
2600	u32		fext_nvm11, tdlen;
2601
2602	/* First, disable MULR fix in FEXTNVM11 */
2603	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2604	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
2605	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
2606
2607	/* do nothing if we're not in faulty state, or if the queue is empty */
2608	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2609	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
2610	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2611		return;
2612	em_flush_tx_ring(sc);
2613
2614	/* recheck, maybe the fault is caused by the rx ring */
2615	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
2616	if (hang_state & FLUSH_DESC_REQUIRED)
2617		em_flush_rx_ring(sc);
2618}
2619
2620
2621/*********************************************************************
2622 *
2623 *  Initialize the hardware to a configuration as specified by the
2624 *  sc structure.
2625 *
2626 **********************************************************************/
2627static void
2628em_reset(if_ctx_t ctx)
2629{
2630	device_t dev = iflib_get_dev(ctx);
2631	struct e1000_softc *sc = iflib_get_softc(ctx);
2632	if_t ifp = iflib_get_ifp(ctx);
2633	struct e1000_hw *hw = &sc->hw;
2634	u32 rx_buffer_size;
2635	u32 pba;
2636
2637	INIT_DEBUGOUT("em_reset: begin");
2638	/* Let the firmware know the OS is in control */
2639	em_get_hw_control(sc);
2640
2641	/* Set up smart power down as default off on newer adapters. */
2642	if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2643	    hw->mac.type == e1000_82572)) {
2644		u16 phy_tmp = 0;
2645
2646		/* Speed up time to link by disabling smart power down. */
2647		e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2648		phy_tmp &= ~IGP02E1000_PM_SPD;
2649		e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2650	}
2651
2652	/*
2653	 * Packet Buffer Allocation (PBA)
2654	 * Writing PBA sets the receive portion of the buffer
2655	 * the remainder is used for the transmit buffer.
2656	 */
2657	switch (hw->mac.type) {
2658	/* 82547: Total Packet Buffer is 40K */
2659	case e1000_82547:
2660	case e1000_82547_rev_2:
2661		if (hw->mac.max_frame_size > 8192)
2662			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2663		else
2664			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2665		break;
2666	/* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2667	case e1000_82571:
2668	case e1000_82572:
2669	case e1000_80003es2lan:
2670			pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2671		break;
2672	/* 82573: Total Packet Buffer is 32K */
2673	case e1000_82573:
2674			pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2675		break;
2676	case e1000_82574:
2677	case e1000_82583:
2678			pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2679		break;
2680	case e1000_ich8lan:
2681		pba = E1000_PBA_8K;
2682		break;
2683	case e1000_ich9lan:
2684	case e1000_ich10lan:
2685		/* Boost Receive side for jumbo frames */
2686		if (hw->mac.max_frame_size > 4096)
2687			pba = E1000_PBA_14K;
2688		else
2689			pba = E1000_PBA_10K;
2690		break;
2691	case e1000_pchlan:
2692	case e1000_pch2lan:
2693	case e1000_pch_lpt:
2694	case e1000_pch_spt:
2695	case e1000_pch_cnp:
2696	case e1000_pch_tgp:
2697	case e1000_pch_adp:
2698	case e1000_pch_mtp:
2699	case e1000_pch_ptp:
2700		pba = E1000_PBA_26K;
2701		break;
2702	case e1000_82575:
2703		pba = E1000_PBA_32K;
2704		break;
2705	case e1000_82576:
2706	case e1000_vfadapt:
2707		pba = E1000_READ_REG(hw, E1000_RXPBS);
2708		pba &= E1000_RXPBS_SIZE_MASK_82576;
2709		break;
2710	case e1000_82580:
2711	case e1000_i350:
2712	case e1000_i354:
2713	case e1000_vfadapt_i350:
2714		pba = E1000_READ_REG(hw, E1000_RXPBS);
2715		pba = e1000_rxpbs_adjust_82580(pba);
2716		break;
2717	case e1000_i210:
2718	case e1000_i211:
2719		pba = E1000_PBA_34K;
2720		break;
2721	default:
2722		/* Remaining devices assumed to have a Packet Buffer of 64K. */
2723		if (hw->mac.max_frame_size > 8192)
2724			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2725		else
2726			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2727	}
2728
2729	/* Special needs in case of Jumbo frames */
2730	if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
2731		u32 tx_space, min_tx, min_rx;
2732		pba = E1000_READ_REG(hw, E1000_PBA);
2733		tx_space = pba >> 16;
2734		pba &= 0xffff;
2735		min_tx = (hw->mac.max_frame_size +
2736		    sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2737		min_tx = roundup2(min_tx, 1024);
2738		min_tx >>= 10;
2739		min_rx = hw->mac.max_frame_size;
2740		min_rx = roundup2(min_rx, 1024);
2741		min_rx >>= 10;
2742		if (tx_space < min_tx &&
2743		    ((min_tx - tx_space) < pba)) {
2744			pba = pba - (min_tx - tx_space);
2745			/*
2746			 * if short on rx space, rx wins
2747			 * and must trump tx adjustment
2748			 */
2749			if (pba < min_rx)
2750				pba = min_rx;
2751		}
2752		E1000_WRITE_REG(hw, E1000_PBA, pba);
2753	}
2754
2755	if (hw->mac.type < igb_mac_min)
2756		E1000_WRITE_REG(hw, E1000_PBA, pba);
2757
2758	INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2759
2760	/*
2761	 * These parameters control the automatic generation (Tx) and
2762	 * response (Rx) to Ethernet PAUSE frames.
2763	 * - High water mark should allow for at least two frames to be
2764	 *   received after sending an XOFF.
2765	 * - Low water mark works best when it is very near the high water mark.
2766	 *   This allows the receiver to restart by sending XON when it has
2767	 *   drained a bit. Here we use an arbitrary value of 1500 which will
2768	 *   restart after one full frame is pulled from the buffer. There
2769	 *   could be several smaller frames in the buffer and if so they will
2770	 *   not trigger the XON until their total number reduces the buffer
2771	 *   by 1500.
2772	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2773	 */
2774	rx_buffer_size = (pba & 0xffff) << 10;
2775	hw->fc.high_water = rx_buffer_size -
2776	    roundup2(hw->mac.max_frame_size, 1024);
2777	hw->fc.low_water = hw->fc.high_water - 1500;
2778
2779	if (sc->fc) /* locally set flow control value? */
2780		hw->fc.requested_mode = sc->fc;
2781	else
2782		hw->fc.requested_mode = e1000_fc_full;
2783
2784	if (hw->mac.type == e1000_80003es2lan)
2785		hw->fc.pause_time = 0xFFFF;
2786	else
2787		hw->fc.pause_time = EM_FC_PAUSE_TIME;
2788
2789	hw->fc.send_xon = true;
2790
2791	/* Device specific overrides/settings */
2792	switch (hw->mac.type) {
2793	case e1000_pchlan:
2794		/* Workaround: no TX flow ctrl for PCH */
2795		hw->fc.requested_mode = e1000_fc_rx_pause;
2796		hw->fc.pause_time = 0xFFFF; /* override */
2797		if (if_getmtu(ifp) > ETHERMTU) {
2798			hw->fc.high_water = 0x3500;
2799			hw->fc.low_water = 0x1500;
2800		} else {
2801			hw->fc.high_water = 0x5000;
2802			hw->fc.low_water = 0x3000;
2803		}
2804		hw->fc.refresh_time = 0x1000;
2805		break;
2806	case e1000_pch2lan:
2807	case e1000_pch_lpt:
2808	case e1000_pch_spt:
2809	case e1000_pch_cnp:
2810	case e1000_pch_tgp:
2811	case e1000_pch_adp:
2812	case e1000_pch_mtp:
2813	case e1000_pch_ptp:
2814		hw->fc.high_water = 0x5C20;
2815		hw->fc.low_water = 0x5048;
2816		hw->fc.pause_time = 0x0650;
2817		hw->fc.refresh_time = 0x0400;
2818		/* Jumbos need adjusted PBA */
2819		if (if_getmtu(ifp) > ETHERMTU)
2820			E1000_WRITE_REG(hw, E1000_PBA, 12);
2821		else
2822			E1000_WRITE_REG(hw, E1000_PBA, 26);
2823		break;
2824	case e1000_82575:
2825	case e1000_82576:
2826		/* 8-byte granularity */
2827		hw->fc.low_water = hw->fc.high_water - 8;
2828		break;
2829	case e1000_82580:
2830	case e1000_i350:
2831	case e1000_i354:
2832	case e1000_i210:
2833	case e1000_i211:
2834	case e1000_vfadapt:
2835	case e1000_vfadapt_i350:
2836		/* 16-byte granularity */
2837		hw->fc.low_water = hw->fc.high_water - 16;
2838		break;
2839	case e1000_ich9lan:
2840	case e1000_ich10lan:
2841		if (if_getmtu(ifp) > ETHERMTU) {
2842			hw->fc.high_water = 0x2800;
2843			hw->fc.low_water = hw->fc.high_water - 8;
2844			break;
2845		}
2846		/* FALLTHROUGH */
2847	default:
2848		if (hw->mac.type == e1000_80003es2lan)
2849			hw->fc.pause_time = 0xFFFF;
2850		break;
2851	}
2852
2853	/* I219 needs some special flushing to avoid hangs */
2854	if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2855		em_flush_desc_rings(sc);
2856
2857	/* Issue a global reset */
2858	e1000_reset_hw(hw);
2859	if (hw->mac.type >= igb_mac_min) {
2860		E1000_WRITE_REG(hw, E1000_WUC, 0);
2861	} else {
2862		E1000_WRITE_REG(hw, E1000_WUFC, 0);
2863		em_disable_aspm(sc);
2864	}
2865	if (sc->flags & IGB_MEDIA_RESET) {
2866		e1000_setup_init_funcs(hw, true);
2867		e1000_get_bus_info(hw);
2868		sc->flags &= ~IGB_MEDIA_RESET;
2869	}
2870	/* and a re-init */
2871	if (e1000_init_hw(hw) < 0) {
2872		device_printf(dev, "Hardware Initialization Failed\n");
2873		return;
2874	}
2875	if (hw->mac.type >= igb_mac_min)
2876		igb_init_dmac(sc, pba);
2877
2878	E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2879	e1000_get_phy_info(hw);
2880	e1000_check_for_link(hw);
2881}
2882
2883/*
2884 * Initialise the RSS mapping for NICs that support multiple transmit/
2885 * receive rings.
2886 */
2887
2888#define RSSKEYLEN 10
2889static void
2890em_initialize_rss_mapping(struct e1000_softc *sc)
2891{
2892	uint8_t  rss_key[4 * RSSKEYLEN];
2893	uint32_t reta = 0;
2894	struct e1000_hw	*hw = &sc->hw;
2895	int i;
2896
2897	/*
2898	 * Configure RSS key
2899	 */
2900	arc4rand(rss_key, sizeof(rss_key), 0);
2901	for (i = 0; i < RSSKEYLEN; ++i) {
2902		uint32_t rssrk = 0;
2903
2904		rssrk = EM_RSSRK_VAL(rss_key, i);
2905		E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2906	}
2907
2908	/*
2909	 * Configure RSS redirect table in following fashion:
2910	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2911	 */
2912	for (i = 0; i < sizeof(reta); ++i) {
2913		uint32_t q;
2914
2915		q = (i % sc->rx_num_queues) << 7;
2916		reta |= q << (8 * i);
2917	}
2918
2919	for (i = 0; i < 32; ++i)
2920		E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2921
2922	E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2923			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2924			E1000_MRQC_RSS_FIELD_IPV4 |
2925			E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2926			E1000_MRQC_RSS_FIELD_IPV6_EX |
2927			E1000_MRQC_RSS_FIELD_IPV6);
2928}
2929
2930static void
2931igb_initialize_rss_mapping(struct e1000_softc *sc)
2932{
2933	struct e1000_hw *hw = &sc->hw;
2934	int i;
2935	int queue_id;
2936	u32 reta;
2937	u32 rss_key[10], mrqc, shift = 0;
2938
2939	/* XXX? */
2940	if (hw->mac.type == e1000_82575)
2941		shift = 6;
2942
2943	/*
2944	 * The redirection table controls which destination
2945	 * queue each bucket redirects traffic to.
2946	 * Each DWORD represents four queues, with the LSB
2947	 * being the first queue in the DWORD.
2948	 *
2949	 * This just allocates buckets to queues using round-robin
2950	 * allocation.
2951	 *
2952	 * NOTE: It Just Happens to line up with the default
2953	 * RSS allocation method.
2954	 */
2955
2956	/* Warning FM follows */
2957	reta = 0;
2958	for (i = 0; i < 128; i++) {
2959#ifdef RSS
2960		queue_id = rss_get_indirection_to_bucket(i);
2961		/*
2962		 * If we have more queues than buckets, we'll
2963		 * end up mapping buckets to a subset of the
2964		 * queues.
2965		 *
2966		 * If we have more buckets than queues, we'll
2967		 * end up instead assigning multiple buckets
2968		 * to queues.
2969		 *
2970		 * Both are suboptimal, but we need to handle
2971		 * the case so we don't go out of bounds
2972		 * indexing arrays and such.
2973		 */
2974		queue_id = queue_id % sc->rx_num_queues;
2975#else
2976		queue_id = (i % sc->rx_num_queues);
2977#endif
2978		/* Adjust if required */
2979		queue_id = queue_id << shift;
2980
2981		/*
2982		 * The low 8 bits are for hash value (n+0);
2983		 * The next 8 bits are for hash value (n+1), etc.
2984		 */
2985		reta = reta >> 8;
2986		reta = reta | ( ((uint32_t) queue_id) << 24);
2987		if ((i & 3) == 3) {
2988			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2989			reta = 0;
2990		}
2991	}
2992
2993	/* Now fill in hash table */
2994
2995	/*
2996	 * MRQC: Multiple Receive Queues Command
2997	 * Set queuing to RSS control, number depends on the device.
2998	 */
2999	mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3000
3001#ifdef RSS
3002	/* XXX ew typecasting */
3003	rss_getkey((uint8_t *) &rss_key);
3004#else
3005	arc4rand(&rss_key, sizeof(rss_key), 0);
3006#endif
3007	for (i = 0; i < 10; i++)
3008		E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3009
3010	/*
3011	 * Configure the RSS fields to hash upon.
3012	 */
3013	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3014	    E1000_MRQC_RSS_FIELD_IPV4_TCP);
3015	mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3016	    E1000_MRQC_RSS_FIELD_IPV6_TCP);
3017	mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3018	    E1000_MRQC_RSS_FIELD_IPV6_UDP);
3019	mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3020	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3021
3022	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3023}
3024
3025/*********************************************************************
3026 *
3027 *  Setup networking device structure and register interface media.
3028 *
3029 **********************************************************************/
3030static int
3031em_setup_interface(if_ctx_t ctx)
3032{
3033	if_t ifp = iflib_get_ifp(ctx);
3034	struct e1000_softc *sc = iflib_get_softc(ctx);
3035	if_softc_ctx_t scctx = sc->shared;
3036
3037	INIT_DEBUGOUT("em_setup_interface: begin");
3038
3039	/* Single Queue */
3040	if (sc->tx_num_queues == 1) {
3041		if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3042		if_setsendqready(ifp);
3043	}
3044
3045	/*
3046	 * Specify the media types supported by this adapter and register
3047	 * callbacks to update media and link information
3048	 */
3049	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3050	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3051		u_char fiber_type = IFM_1000_SX;	/* default type */
3052
3053		if (sc->hw.mac.type == e1000_82545)
3054			fiber_type = IFM_1000_LX;
3055		ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3056		ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3057	} else {
3058		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3059		ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3060		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3061		ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3062		if (sc->hw.phy.type != e1000_phy_ife) {
3063			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3064			ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
3065		}
3066	}
3067	ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3068	ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3069	return (0);
3070}
3071
3072static int
3073em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
3074{
3075	struct e1000_softc *sc = iflib_get_softc(ctx);
3076	if_softc_ctx_t scctx = sc->shared;
3077	int error = E1000_SUCCESS;
3078	struct em_tx_queue *que;
3079	int i, j;
3080
3081	MPASS(sc->tx_num_queues > 0);
3082	MPASS(sc->tx_num_queues == ntxqsets);
3083
3084	/* First allocate the top level queue structs */
3085	if (!(sc->tx_queues =
3086	    (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3087	    sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3088		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
3089		return(ENOMEM);
3090	}
3091
3092	for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3093		/* Set up some basics */
3094
3095		struct tx_ring *txr = &que->txr;
3096		txr->sc = que->sc = sc;
3097		que->me = txr->me =  i;
3098
3099		/* Allocate report status array */
3100		if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
3101			device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
3102			error = ENOMEM;
3103			goto fail;
3104		}
3105		for (j = 0; j < scctx->isc_ntxd[0]; j++)
3106			txr->tx_rsq[j] = QIDX_INVALID;
3107		/* get the virtual and physical address of the hardware queues */
3108		txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3109		txr->tx_paddr = paddrs[i*ntxqs];
3110	}
3111
3112	if (bootverbose)
3113		device_printf(iflib_get_dev(ctx),
3114		    "allocated for %d tx_queues\n", sc->tx_num_queues);
3115	return (0);
3116fail:
3117	em_if_queues_free(ctx);
3118	return (error);
3119}
3120
3121static int
3122em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
3123{
3124	struct e1000_softc *sc = iflib_get_softc(ctx);
3125	int error = E1000_SUCCESS;
3126	struct em_rx_queue *que;
3127	int i;
3128
3129	MPASS(sc->rx_num_queues > 0);
3130	MPASS(sc->rx_num_queues == nrxqsets);
3131
3132	/* First allocate the top level queue structs */
3133	if (!(sc->rx_queues =
3134	    (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3135	    sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3136		device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
3137		error = ENOMEM;
3138		goto fail;
3139	}
3140
3141	for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3142		/* Set up some basics */
3143		struct rx_ring *rxr = &que->rxr;
3144		rxr->sc = que->sc = sc;
3145		rxr->que = que;
3146		que->me = rxr->me =  i;
3147
3148		/* get the virtual and physical address of the hardware queues */
3149		rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3150		rxr->rx_paddr = paddrs[i*nrxqs];
3151	}
3152
3153	if (bootverbose)
3154		device_printf(iflib_get_dev(ctx),
3155		    "allocated for %d rx_queues\n", sc->rx_num_queues);
3156
3157	return (0);
3158fail:
3159	em_if_queues_free(ctx);
3160	return (error);
3161}
3162
3163static void
3164em_if_queues_free(if_ctx_t ctx)
3165{
3166	struct e1000_softc *sc = iflib_get_softc(ctx);
3167	struct em_tx_queue *tx_que = sc->tx_queues;
3168	struct em_rx_queue *rx_que = sc->rx_queues;
3169
3170	if (tx_que != NULL) {
3171		for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3172			struct tx_ring *txr = &tx_que->txr;
3173			if (txr->tx_rsq == NULL)
3174				break;
3175
3176			free(txr->tx_rsq, M_DEVBUF);
3177			txr->tx_rsq = NULL;
3178		}
3179		free(sc->tx_queues, M_DEVBUF);
3180		sc->tx_queues = NULL;
3181	}
3182
3183	if (rx_que != NULL) {
3184		free(sc->rx_queues, M_DEVBUF);
3185		sc->rx_queues = NULL;
3186	}
3187}
3188
3189/*********************************************************************
3190 *
3191 *  Enable transmit unit.
3192 *
3193 **********************************************************************/
3194static void
3195em_initialize_transmit_unit(if_ctx_t ctx)
3196{
3197	struct e1000_softc *sc = iflib_get_softc(ctx);
3198	if_softc_ctx_t scctx = sc->shared;
3199	struct em_tx_queue *que;
3200	struct tx_ring	*txr;
3201	struct e1000_hw	*hw = &sc->hw;
3202	u32 tctl, txdctl = 0, tarc, tipg = 0;
3203
3204	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3205
3206	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3207		u64 bus_addr;
3208		caddr_t offp, endp;
3209
3210		que = &sc->tx_queues[i];
3211		txr = &que->txr;
3212		bus_addr = txr->tx_paddr;
3213
3214		/* Clear checksum offload context. */
3215		offp = (caddr_t)&txr->csum_flags;
3216		endp = (caddr_t)(txr + 1);
3217		bzero(offp, endp - offp);
3218
3219		/* Base and Len of TX Ring */
3220		E1000_WRITE_REG(hw, E1000_TDLEN(i),
3221		    scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3222		E1000_WRITE_REG(hw, E1000_TDBAH(i),
3223		    (u32)(bus_addr >> 32));
3224		E1000_WRITE_REG(hw, E1000_TDBAL(i),
3225		    (u32)bus_addr);
3226		/* Init the HEAD/TAIL indices */
3227		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3228		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3229
3230		HW_DEBUGOUT2("Base = %x, Length = %x\n",
3231		    E1000_READ_REG(hw, E1000_TDBAL(i)),
3232		    E1000_READ_REG(hw, E1000_TDLEN(i)));
3233
3234		txdctl = 0; /* clear txdctl */
3235		txdctl |= 0x1f; /* PTHRESH */
3236		txdctl |= 1 << 8; /* HTHRESH */
3237		txdctl |= 1 << 16;/* WTHRESH */
3238		txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3239		txdctl |= E1000_TXDCTL_GRAN;
3240		txdctl |= 1 << 25; /* LWTHRESH */
3241
3242		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3243	}
3244
3245	/* Set the default values for the Tx Inter Packet Gap timer */
3246	switch (hw->mac.type) {
3247	case e1000_80003es2lan:
3248		tipg = DEFAULT_82543_TIPG_IPGR1;
3249		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3250		    E1000_TIPG_IPGR2_SHIFT;
3251		break;
3252	case e1000_82542:
3253		tipg = DEFAULT_82542_TIPG_IPGT;
3254		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3255		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3256		break;
3257	default:
3258		if (hw->phy.media_type == e1000_media_type_fiber ||
3259		    hw->phy.media_type == e1000_media_type_internal_serdes)
3260			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3261		else
3262			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3263		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3264		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3265	}
3266
3267	E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3268	E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3269
3270	if(hw->mac.type >= e1000_82540)
3271		E1000_WRITE_REG(hw, E1000_TADV,
3272		    sc->tx_abs_int_delay.value);
3273
3274	if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3275		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3276		tarc |= TARC_SPEED_MODE_BIT;
3277		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3278	} else if (hw->mac.type == e1000_80003es2lan) {
3279		/* errata: program both queues to unweighted RR */
3280		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3281		tarc |= 1;
3282		E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3283		tarc = E1000_READ_REG(hw, E1000_TARC(1));
3284		tarc |= 1;
3285		E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3286	} else if (hw->mac.type == e1000_82574) {
3287		tarc = E1000_READ_REG(hw, E1000_TARC(0));
3288		tarc |= TARC_ERRATA_BIT;
3289		if ( sc->tx_num_queues > 1) {
3290			tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3291			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3292			E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3293		} else
3294			E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3295	}
3296
3297	if (sc->tx_int_delay.value > 0)
3298		sc->txd_cmd |= E1000_TXD_CMD_IDE;
3299
3300	/* Program the Transmit Control Register */
3301	tctl = E1000_READ_REG(hw, E1000_TCTL);
3302	tctl &= ~E1000_TCTL_CT;
3303	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3304		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3305
3306	if (hw->mac.type >= e1000_82571)
3307		tctl |= E1000_TCTL_MULR;
3308
3309	/* This write will effectively turn on the transmit unit. */
3310	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3311
3312	/* SPT and KBL errata workarounds */
3313	if (hw->mac.type == e1000_pch_spt) {
3314		u32 reg;
3315		reg = E1000_READ_REG(hw, E1000_IOSFPC);
3316		reg |= E1000_RCTL_RDMTS_HEX;
3317		E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3318		/* i218-i219 Specification Update 1.5.4.5 */
3319		reg = E1000_READ_REG(hw, E1000_TARC(0));
3320		reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3321		reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3322		E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3323	}
3324}
3325
3326/*********************************************************************
3327 *
3328 *  Enable receive unit.
3329 *
3330 **********************************************************************/
3331#define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3332
3333static void
3334em_initialize_receive_unit(if_ctx_t ctx)
3335{
3336	struct e1000_softc *sc = iflib_get_softc(ctx);
3337	if_softc_ctx_t scctx = sc->shared;
3338	if_t ifp = iflib_get_ifp(ctx);
3339	struct e1000_hw	*hw = &sc->hw;
3340	struct em_rx_queue *que;
3341	int i;
3342	uint32_t rctl, rxcsum;
3343
3344	INIT_DEBUGOUT("em_initialize_receive_units: begin");
3345
3346	/*
3347	 * Make sure receives are disabled while setting
3348	 * up the descriptor ring
3349	 */
3350	rctl = E1000_READ_REG(hw, E1000_RCTL);
3351	/* Do not disable if ever enabled on this hardware */
3352	if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3353		E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3354
3355	/* Setup the Receive Control Register */
3356	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3357	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3358	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3359	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3360
3361	/* Do not store bad packets */
3362	rctl &= ~E1000_RCTL_SBP;
3363
3364	/* Enable Long Packet receive */
3365	if (if_getmtu(ifp) > ETHERMTU)
3366		rctl |= E1000_RCTL_LPE;
3367	else
3368		rctl &= ~E1000_RCTL_LPE;
3369
3370	/* Strip the CRC */
3371	if (!em_disable_crc_stripping)
3372		rctl |= E1000_RCTL_SECRC;
3373
3374	if (hw->mac.type >= e1000_82540) {
3375		E1000_WRITE_REG(hw, E1000_RADV,
3376		    sc->rx_abs_int_delay.value);
3377
3378		/*
3379		 * Set the interrupt throttling rate. Value is calculated
3380		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3381		 */
3382		E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3383	}
3384	E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value);
3385
3386	if (hw->mac.type >= em_mac_min) {
3387		uint32_t rfctl;
3388		/* Use extended rx descriptor formats */
3389		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3390		rfctl |= E1000_RFCTL_EXTEN;
3391
3392		/*
3393		 * When using MSI-X interrupts we need to throttle
3394		 * using the EITR register (82574 only)
3395		 */
3396		if (hw->mac.type == e1000_82574) {
3397			for (int i = 0; i < 4; i++)
3398				E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3399				    DEFAULT_ITR);
3400			/* Disable accelerated acknowledge */
3401			rfctl |= E1000_RFCTL_ACK_DIS;
3402		}
3403		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3404	}
3405
3406	/* Set up L3 and L4 csum Rx descriptor offloads */
3407	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3408	if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3409		rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3410		if (hw->mac.type > e1000_82575)
3411			rxcsum |= E1000_RXCSUM_CRCOFL;
3412		else if (hw->mac.type < em_mac_min &&
3413		    if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3414			rxcsum |= E1000_RXCSUM_IPV6OFL;
3415	} else {
3416		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3417		if (hw->mac.type > e1000_82575)
3418			rxcsum &= ~E1000_RXCSUM_CRCOFL;
3419		else if (hw->mac.type < em_mac_min)
3420			rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3421	}
3422
3423	if (sc->rx_num_queues > 1) {
3424		/* RSS hash needed in the Rx descriptor */
3425		rxcsum |= E1000_RXCSUM_PCSD;
3426
3427		if (hw->mac.type >= igb_mac_min)
3428			igb_initialize_rss_mapping(sc);
3429		else
3430			em_initialize_rss_mapping(sc);
3431	}
3432	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3433
3434	/*
3435	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3436	 * long latencies are observed, like Lenovo X60. This
3437	 * change eliminates the problem, but since having positive
3438	 * values in RDTR is a known source of problems on other
3439	 * platforms another solution is being sought.
3440	 */
3441	if (hw->mac.type == e1000_82573)
3442		E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3443
3444	for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3445		struct rx_ring *rxr = &que->rxr;
3446		/* Setup the Base and Length of the Rx Descriptor Ring */
3447		u64 bus_addr = rxr->rx_paddr;
3448#if 0
3449		u32 rdt = sc->rx_num_queues -1;  /* default */
3450#endif
3451
3452		E1000_WRITE_REG(hw, E1000_RDLEN(i),
3453		    scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3454		E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3455		E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3456		/* Setup the Head and Tail Descriptor Pointers */
3457		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3458		E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3459	}
3460
3461	/*
3462	 * Set PTHRESH for improved jumbo performance
3463	 * According to 10.2.5.11 of Intel 82574 Datasheet,
3464	 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3465	 * Only write to RXDCTL(1) if there is a need for different
3466	 * settings.
3467	 */
3468	if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3469	    hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3470		u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3471		E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3472	} else if (hw->mac.type == e1000_82574) {
3473		for (int i = 0; i < sc->rx_num_queues; i++) {
3474			u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3475			rxdctl |= 0x20; /* PTHRESH */
3476			rxdctl |= 4 << 8; /* HTHRESH */
3477			rxdctl |= 4 << 16;/* WTHRESH */
3478			rxdctl |= 1 << 24; /* Switch to granularity */
3479			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3480		}
3481	} else if (hw->mac.type >= igb_mac_min) {
3482		u32 psize, srrctl = 0;
3483
3484		if (if_getmtu(ifp) > ETHERMTU) {
3485			psize = scctx->isc_max_frame_size;
3486			/* are we on a vlan? */
3487			if (if_vlantrunkinuse(ifp))
3488				psize += VLAN_TAG_SIZE;
3489
3490			if (sc->vf_ifp)
3491				e1000_rlpml_set_vf(hw, psize);
3492			else
3493				E1000_WRITE_REG(hw, E1000_RLPML, psize);
3494		}
3495
3496		/* Set maximum packet buffer len */
3497		srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3498		    E1000_SRRCTL_BSIZEPKT_SHIFT;
3499
3500		/*
3501		 * If TX flow control is disabled and there's >1 queue defined,
3502		 * enable DROP.
3503		 *
3504		 * This drops frames rather than hanging the RX MAC for all queues.
3505		 */
3506		if ((sc->rx_num_queues > 1) &&
3507		    (sc->fc == e1000_fc_none ||
3508		     sc->fc == e1000_fc_rx_pause)) {
3509			srrctl |= E1000_SRRCTL_DROP_EN;
3510		}
3511			/* Setup the Base and Length of the Rx Descriptor Rings */
3512		for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3513			struct rx_ring *rxr = &que->rxr;
3514			u64 bus_addr = rxr->rx_paddr;
3515			u32 rxdctl;
3516
3517#ifdef notyet
3518			/* Configure for header split? -- ignore for now */
3519			rxr->hdr_split = igb_header_split;
3520#else
3521			srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3522#endif
3523
3524			E1000_WRITE_REG(hw, E1000_RDLEN(i),
3525					scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3526			E1000_WRITE_REG(hw, E1000_RDBAH(i),
3527					(uint32_t)(bus_addr >> 32));
3528			E1000_WRITE_REG(hw, E1000_RDBAL(i),
3529					(uint32_t)bus_addr);
3530			E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3531			/* Enable this Queue */
3532			rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3533			rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3534			rxdctl &= 0xFFF00000;
3535			rxdctl |= IGB_RX_PTHRESH;
3536			rxdctl |= IGB_RX_HTHRESH << 8;
3537			rxdctl |= IGB_RX_WTHRESH << 16;
3538			E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3539		}
3540	} else if (hw->mac.type >= e1000_pch2lan) {
3541		if (if_getmtu(ifp) > ETHERMTU)
3542			e1000_lv_jumbo_workaround_ich8lan(hw, true);
3543		else
3544			e1000_lv_jumbo_workaround_ich8lan(hw, false);
3545	}
3546
3547	/* Make sure VLAN Filters are off */
3548	rctl &= ~E1000_RCTL_VFE;
3549
3550	/* Set up packet buffer size, overridden by per queue srrctl on igb */
3551	if (hw->mac.type < igb_mac_min) {
3552		if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3553			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3554		else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3555			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3556		else if (sc->rx_mbuf_sz > 8192)
3557			rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3558		else {
3559			rctl |= E1000_RCTL_SZ_2048;
3560			rctl &= ~E1000_RCTL_BSEX;
3561		}
3562	} else
3563		rctl |= E1000_RCTL_SZ_2048;
3564
3565	/*
3566	 * rctl bits 11:10 are as follows
3567	 * lem: reserved
3568	 * em: DTYPE
3569	 * igb: reserved
3570	 * and should be 00 on all of the above
3571	 */
3572	rctl &= ~0x00000C00;
3573
3574	/* Write out the settings */
3575	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3576
3577	return;
3578}
3579
3580static void
3581em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3582{
3583	struct e1000_softc *sc = iflib_get_softc(ctx);
3584	u32 index, bit;
3585
3586	index = (vtag >> 5) & 0x7F;
3587	bit = vtag & 0x1F;
3588	sc->shadow_vfta[index] |= (1 << bit);
3589	++sc->num_vlans;
3590	em_if_vlan_filter_write(sc);
3591}
3592
3593static void
3594em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3595{
3596	struct e1000_softc *sc = iflib_get_softc(ctx);
3597	u32 index, bit;
3598
3599	index = (vtag >> 5) & 0x7F;
3600	bit = vtag & 0x1F;
3601	sc->shadow_vfta[index] &= ~(1 << bit);
3602	--sc->num_vlans;
3603	em_if_vlan_filter_write(sc);
3604}
3605
3606static bool
3607em_if_vlan_filter_capable(if_ctx_t ctx)
3608{
3609	if_t ifp = iflib_get_ifp(ctx);
3610
3611	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
3612	    !em_disable_crc_stripping)
3613		return (true);
3614
3615	return (false);
3616}
3617
3618static bool
3619em_if_vlan_filter_used(if_ctx_t ctx)
3620{
3621	struct e1000_softc *sc = iflib_get_softc(ctx);
3622
3623	if (!em_if_vlan_filter_capable(ctx))
3624		return (false);
3625
3626	for (int i = 0; i < EM_VFTA_SIZE; i++)
3627		if (sc->shadow_vfta[i] != 0)
3628			return (true);
3629
3630	return (false);
3631}
3632
3633static void
3634em_if_vlan_filter_enable(struct e1000_softc *sc)
3635{
3636	struct e1000_hw *hw = &sc->hw;
3637	u32 reg;
3638
3639	reg = E1000_READ_REG(hw, E1000_RCTL);
3640	reg &= ~E1000_RCTL_CFIEN;
3641	reg |= E1000_RCTL_VFE;
3642	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3643}
3644
3645static void
3646em_if_vlan_filter_disable(struct e1000_softc *sc)
3647{
3648	struct e1000_hw *hw = &sc->hw;
3649	u32 reg;
3650
3651	reg = E1000_READ_REG(hw, E1000_RCTL);
3652	reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
3653	E1000_WRITE_REG(hw, E1000_RCTL, reg);
3654}
3655
3656static void
3657em_if_vlan_filter_write(struct e1000_softc *sc)
3658{
3659	struct e1000_hw *hw = &sc->hw;
3660
3661	if (sc->vf_ifp)
3662		return;
3663
3664	/* Disable interrupts for lem-class devices during the filter change */
3665	if (hw->mac.type < em_mac_min)
3666		em_if_intr_disable(sc->ctx);
3667
3668	for (int i = 0; i < EM_VFTA_SIZE; i++)
3669		if (sc->shadow_vfta[i] != 0) {
3670			/* XXXKB: incomplete VF support, we return early above */
3671			if (sc->vf_ifp)
3672				e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true);
3673			else
3674				e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
3675		}
3676
3677	/* Re-enable interrupts for lem-class devices */
3678	if (hw->mac.type < em_mac_min)
3679		em_if_intr_enable(sc->ctx);
3680}
3681
3682static void
3683em_setup_vlan_hw_support(if_ctx_t ctx)
3684{
3685	struct e1000_softc *sc = iflib_get_softc(ctx);
3686	struct e1000_hw *hw = &sc->hw;
3687	if_t ifp = iflib_get_ifp(ctx);
3688	u32 reg;
3689
3690	/* XXXKB: Return early if we are a VF until VF decap and filter management
3691	 * is ready and tested.
3692	 */
3693	if (sc->vf_ifp)
3694		return;
3695
3696	if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
3697	    !em_disable_crc_stripping) {
3698		reg = E1000_READ_REG(hw, E1000_CTRL);
3699		reg |= E1000_CTRL_VME;
3700		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3701	} else {
3702		reg = E1000_READ_REG(hw, E1000_CTRL);
3703		reg &= ~E1000_CTRL_VME;
3704		E1000_WRITE_REG(hw, E1000_CTRL, reg);
3705	}
3706
3707	/* If we aren't doing HW filtering, we're done */
3708	if (!em_if_vlan_filter_capable(ctx))  {
3709		em_if_vlan_filter_disable(sc);
3710		return;
3711	}
3712
3713	/*
3714	 * A soft reset zero's out the VFTA, so
3715	 * we need to repopulate it now.
3716	 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
3717	 * traffic through. This will write the entire table.
3718	 */
3719	em_if_vlan_register(ctx, 0);
3720
3721	/* Enable the Filter Table */
3722	em_if_vlan_filter_enable(sc);
3723}
3724
3725static void
3726em_if_intr_enable(if_ctx_t ctx)
3727{
3728	struct e1000_softc *sc = iflib_get_softc(ctx);
3729	struct e1000_hw *hw = &sc->hw;
3730	u32 ims_mask = IMS_ENABLE_MASK;
3731
3732	if (sc->intr_type == IFLIB_INTR_MSIX) {
3733		E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
3734		ims_mask |= sc->ims;
3735	}
3736	E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3737	E1000_WRITE_FLUSH(hw);
3738}
3739
3740static void
3741em_if_intr_disable(if_ctx_t ctx)
3742{
3743	struct e1000_softc *sc = iflib_get_softc(ctx);
3744	struct e1000_hw *hw = &sc->hw;
3745
3746	if (sc->intr_type == IFLIB_INTR_MSIX)
3747		E1000_WRITE_REG(hw, EM_EIAC, 0);
3748	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3749	E1000_WRITE_FLUSH(hw);
3750}
3751
3752static void
3753igb_if_intr_enable(if_ctx_t ctx)
3754{
3755	struct e1000_softc *sc = iflib_get_softc(ctx);
3756	struct e1000_hw *hw = &sc->hw;
3757	u32 mask;
3758
3759	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3760		mask = (sc->que_mask | sc->link_mask);
3761		E1000_WRITE_REG(hw, E1000_EIAC, mask);
3762		E1000_WRITE_REG(hw, E1000_EIAM, mask);
3763		E1000_WRITE_REG(hw, E1000_EIMS, mask);
3764		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3765	} else
3766		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3767	E1000_WRITE_FLUSH(hw);
3768}
3769
3770static void
3771igb_if_intr_disable(if_ctx_t ctx)
3772{
3773	struct e1000_softc *sc = iflib_get_softc(ctx);
3774	struct e1000_hw *hw = &sc->hw;
3775
3776	if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
3777		E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3778		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3779	}
3780	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3781	E1000_WRITE_FLUSH(hw);
3782}
3783
3784/*
3785 * Bit of a misnomer, what this really means is
3786 * to enable OS management of the system... aka
3787 * to disable special hardware management features
3788 */
3789static void
3790em_init_manageability(struct e1000_softc *sc)
3791{
3792	/* A shared code workaround */
3793#define E1000_82542_MANC2H E1000_MANC2H
3794	if (sc->has_manage) {
3795		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
3796		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3797
3798		/* disable hardware interception of ARP */
3799		manc &= ~(E1000_MANC_ARP_EN);
3800
3801		/* enable receiving management packets to the host */
3802		manc |= E1000_MANC_EN_MNG2HOST;
3803#define E1000_MNG2HOST_PORT_623 (1 << 5)
3804#define E1000_MNG2HOST_PORT_664 (1 << 6)
3805		manc2h |= E1000_MNG2HOST_PORT_623;
3806		manc2h |= E1000_MNG2HOST_PORT_664;
3807		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
3808		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3809	}
3810}
3811
3812/*
3813 * Give control back to hardware management
3814 * controller if there is one.
3815 */
3816static void
3817em_release_manageability(struct e1000_softc *sc)
3818{
3819	if (sc->has_manage) {
3820		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3821
3822		/* re-enable hardware interception of ARP */
3823		manc |= E1000_MANC_ARP_EN;
3824		manc &= ~E1000_MANC_EN_MNG2HOST;
3825
3826		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3827	}
3828}
3829
3830/*
3831 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3832 * For ASF and Pass Through versions of f/w this means
3833 * that the driver is loaded. For AMT version type f/w
3834 * this means that the network i/f is open.
3835 */
3836static void
3837em_get_hw_control(struct e1000_softc *sc)
3838{
3839	u32 ctrl_ext, swsm;
3840
3841	if (sc->vf_ifp)
3842		return;
3843
3844	if (sc->hw.mac.type == e1000_82573) {
3845		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3846		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3847		    swsm | E1000_SWSM_DRV_LOAD);
3848		return;
3849	}
3850	/* else */
3851	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3852	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3853	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3854}
3855
3856/*
3857 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3858 * For ASF and Pass Through versions of f/w this means that
3859 * the driver is no longer loaded. For AMT versions of the
3860 * f/w this means that the network i/f is closed.
3861 */
3862static void
3863em_release_hw_control(struct e1000_softc *sc)
3864{
3865	u32 ctrl_ext, swsm;
3866
3867	if (!sc->has_manage)
3868		return;
3869
3870	if (sc->hw.mac.type == e1000_82573) {
3871		swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3872		E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3873		    swsm & ~E1000_SWSM_DRV_LOAD);
3874		return;
3875	}
3876	/* else */
3877	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3878	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3879	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3880	return;
3881}
3882
3883static int
3884em_is_valid_ether_addr(u8 *addr)
3885{
3886	char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3887
3888	if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3889		return (false);
3890	}
3891
3892	return (true);
3893}
3894
3895static bool
3896em_automask_tso(if_ctx_t ctx)
3897{
3898	struct e1000_softc *sc = iflib_get_softc(ctx);
3899	if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
3900	if_t ifp = iflib_get_ifp(ctx);
3901
3902	if (!em_unsupported_tso && sc->link_speed &&
3903	    sc->link_speed != SPEED_1000 && scctx->isc_capenable & IFCAP_TSO) {
3904		device_printf(sc->dev, "Disabling TSO for 10/100 Ethernet.\n");
3905		sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
3906		scctx->isc_capenable &= ~IFCAP_TSO;
3907		if_setcapenablebit(ifp, 0, IFCAP_TSO);
3908		/* iflib_init_locked handles ifnet hwassistbits */
3909		iflib_request_reset(ctx);
3910		return true;
3911	} else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
3912		device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
3913		scctx->isc_capenable |= sc->tso_automasked;
3914		if_setcapenablebit(ifp, sc->tso_automasked, 0);
3915		sc->tso_automasked = 0;
3916		/* iflib_init_locked handles ifnet hwassistbits */
3917		iflib_request_reset(ctx);
3918		return true;
3919	}
3920
3921	return false;
3922}
3923
3924/*
3925** Parse the interface capabilities with regard
3926** to both system management and wake-on-lan for
3927** later use.
3928*/
3929static void
3930em_get_wakeup(if_ctx_t ctx)
3931{
3932	struct e1000_softc *sc = iflib_get_softc(ctx);
3933	device_t dev = iflib_get_dev(ctx);
3934	u16 eeprom_data = 0, device_id, apme_mask;
3935
3936	sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
3937	apme_mask = EM_EEPROM_APME;
3938
3939	switch (sc->hw.mac.type) {
3940	case e1000_82542:
3941	case e1000_82543:
3942		break;
3943	case e1000_82544:
3944		e1000_read_nvm(&sc->hw,
3945		    NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3946		apme_mask = EM_82544_APME;
3947		break;
3948	case e1000_82546:
3949	case e1000_82546_rev_3:
3950		if (sc->hw.bus.func == 1) {
3951			e1000_read_nvm(&sc->hw,
3952			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3953			break;
3954		} else
3955			e1000_read_nvm(&sc->hw,
3956			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3957		break;
3958	case e1000_82573:
3959	case e1000_82583:
3960		sc->has_amt = true;
3961		/* FALLTHROUGH */
3962	case e1000_82571:
3963	case e1000_82572:
3964	case e1000_80003es2lan:
3965		if (sc->hw.bus.func == 1) {
3966			e1000_read_nvm(&sc->hw,
3967			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3968			break;
3969		} else
3970			e1000_read_nvm(&sc->hw,
3971			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3972		break;
3973	case e1000_ich8lan:
3974	case e1000_ich9lan:
3975	case e1000_ich10lan:
3976	case e1000_pchlan:
3977	case e1000_pch2lan:
3978	case e1000_pch_lpt:
3979	case e1000_pch_spt:
3980	case e1000_82575:	/* listing all igb devices */
3981	case e1000_82576:
3982	case e1000_82580:
3983	case e1000_i350:
3984	case e1000_i354:
3985	case e1000_i210:
3986	case e1000_i211:
3987	case e1000_vfadapt:
3988	case e1000_vfadapt_i350:
3989		apme_mask = E1000_WUC_APME;
3990		sc->has_amt = true;
3991		eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
3992		break;
3993	default:
3994		e1000_read_nvm(&sc->hw,
3995		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3996		break;
3997	}
3998	if (eeprom_data & apme_mask)
3999		sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4000	/*
4001	 * We have the eeprom settings, now apply the special cases
4002	 * where the eeprom may be wrong or the board won't support
4003	 * wake on lan on a particular port
4004	 */
4005	device_id = pci_get_device(dev);
4006	switch (device_id) {
4007	case E1000_DEV_ID_82546GB_PCIE:
4008		sc->wol = 0;
4009		break;
4010	case E1000_DEV_ID_82546EB_FIBER:
4011	case E1000_DEV_ID_82546GB_FIBER:
4012		/* Wake events only supported on port A for dual fiber
4013		 * regardless of eeprom setting */
4014		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4015		    E1000_STATUS_FUNC_1)
4016			sc->wol = 0;
4017		break;
4018	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4019		/* if quad port adapter, disable WoL on all but port A */
4020		if (global_quad_port_a != 0)
4021			sc->wol = 0;
4022		/* Reset for multiple quad port adapters */
4023		if (++global_quad_port_a == 4)
4024			global_quad_port_a = 0;
4025		break;
4026	case E1000_DEV_ID_82571EB_FIBER:
4027		/* Wake events only supported on port A for dual fiber
4028		 * regardless of eeprom setting */
4029		if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4030		    E1000_STATUS_FUNC_1)
4031			sc->wol = 0;
4032		break;
4033	case E1000_DEV_ID_82571EB_QUAD_COPPER:
4034	case E1000_DEV_ID_82571EB_QUAD_FIBER:
4035	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4036		/* if quad port adapter, disable WoL on all but port A */
4037		if (global_quad_port_a != 0)
4038			sc->wol = 0;
4039		/* Reset for multiple quad port adapters */
4040		if (++global_quad_port_a == 4)
4041			global_quad_port_a = 0;
4042		break;
4043	}
4044	return;
4045}
4046
4047
4048/*
4049 * Enable PCI Wake On Lan capability
4050 */
4051static void
4052em_enable_wakeup(if_ctx_t ctx)
4053{
4054	struct e1000_softc *sc = iflib_get_softc(ctx);
4055	device_t dev = iflib_get_dev(ctx);
4056	if_t ifp = iflib_get_ifp(ctx);
4057	int error = 0;
4058	u32 pmc, ctrl, ctrl_ext, rctl;
4059	u16 status;
4060
4061	if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
4062		return;
4063
4064	/*
4065	 * Determine type of Wakeup: note that wol
4066	 * is set with all bits on by default.
4067	 */
4068	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4069		sc->wol &= ~E1000_WUFC_MAG;
4070
4071	if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4072		sc->wol &= ~E1000_WUFC_EX;
4073
4074	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4075		sc->wol &= ~E1000_WUFC_MC;
4076	else {
4077		rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4078		rctl |= E1000_RCTL_MPE;
4079		E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4080	}
4081
4082	if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4083		goto pme;
4084
4085	/* Advertise the wakeup capability */
4086	ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4087	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4088	E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4089
4090	/* Keep the laser running on Fiber adapters */
4091	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4092	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4093		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4094		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4095		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4096	}
4097
4098	if ((sc->hw.mac.type == e1000_ich8lan) ||
4099	    (sc->hw.mac.type == e1000_pchlan) ||
4100	    (sc->hw.mac.type == e1000_ich9lan) ||
4101	    (sc->hw.mac.type == e1000_ich10lan))
4102		e1000_suspend_workarounds_ich8lan(&sc->hw);
4103
4104	if ( sc->hw.mac.type >= e1000_pchlan) {
4105		error = em_enable_phy_wakeup(sc);
4106		if (error)
4107			goto pme;
4108	} else {
4109		/* Enable wakeup by the MAC */
4110		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4111		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4112	}
4113
4114	if (sc->hw.phy.type == e1000_phy_igp_3)
4115		e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4116
4117pme:
4118	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
4119	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
4120	if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4121		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4122	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
4123
4124	return;
4125}
4126
4127/*
4128 * WOL in the newer chipset interfaces (pchlan)
4129 * require thing to be copied into the phy
4130 */
4131static int
4132em_enable_phy_wakeup(struct e1000_softc *sc)
4133{
4134	struct e1000_hw *hw = &sc->hw;
4135	u32 mreg, ret = 0;
4136	u16 preg;
4137
4138	/* copy MAC RARs to PHY RARs */
4139	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4140
4141	/* copy MAC MTA to PHY MTA */
4142	for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4143		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4144		e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4145		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4146		    (u16)((mreg >> 16) & 0xFFFF));
4147	}
4148
4149	/* configure PHY Rx Control register */
4150	e1000_read_phy_reg(hw, BM_RCTL, &preg);
4151	mreg = E1000_READ_REG(hw, E1000_RCTL);
4152	if (mreg & E1000_RCTL_UPE)
4153		preg |= BM_RCTL_UPE;
4154	if (mreg & E1000_RCTL_MPE)
4155		preg |= BM_RCTL_MPE;
4156	preg &= ~(BM_RCTL_MO_MASK);
4157	if (mreg & E1000_RCTL_MO_3)
4158		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4159				<< BM_RCTL_MO_SHIFT);
4160	if (mreg & E1000_RCTL_BAM)
4161		preg |= BM_RCTL_BAM;
4162	if (mreg & E1000_RCTL_PMCF)
4163		preg |= BM_RCTL_PMCF;
4164	mreg = E1000_READ_REG(hw, E1000_CTRL);
4165	if (mreg & E1000_CTRL_RFCE)
4166		preg |= BM_RCTL_RFCE;
4167	e1000_write_phy_reg(hw, BM_RCTL, preg);
4168
4169	/* enable PHY wakeup in MAC register */
4170	E1000_WRITE_REG(hw, E1000_WUC,
4171	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4172	E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4173
4174	/* configure and enable PHY wakeup in PHY registers */
4175	e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4176	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4177
4178	/* activate PHY wakeup */
4179	ret = hw->phy.ops.acquire(hw);
4180	if (ret) {
4181		printf("Could not acquire PHY\n");
4182		return ret;
4183	}
4184	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4185	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4186	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4187	if (ret) {
4188		printf("Could not read PHY page 769\n");
4189		goto out;
4190	}
4191	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4192	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4193	if (ret)
4194		printf("Could not set PHY Host Wakeup bit\n");
4195out:
4196	hw->phy.ops.release(hw);
4197
4198	return ret;
4199}
4200
4201static void
4202em_if_led_func(if_ctx_t ctx, int onoff)
4203{
4204	struct e1000_softc *sc = iflib_get_softc(ctx);
4205
4206	if (onoff) {
4207		e1000_setup_led(&sc->hw);
4208		e1000_led_on(&sc->hw);
4209	} else {
4210		e1000_led_off(&sc->hw);
4211		e1000_cleanup_led(&sc->hw);
4212	}
4213}
4214
4215/*
4216 * Disable the L0S and L1 LINK states
4217 */
4218static void
4219em_disable_aspm(struct e1000_softc *sc)
4220{
4221	int base, reg;
4222	u16 link_cap,link_ctrl;
4223	device_t dev = sc->dev;
4224
4225	switch (sc->hw.mac.type) {
4226	case e1000_82573:
4227	case e1000_82574:
4228	case e1000_82583:
4229		break;
4230	default:
4231		return;
4232	}
4233	if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4234		return;
4235	reg = base + PCIER_LINK_CAP;
4236	link_cap = pci_read_config(dev, reg, 2);
4237	if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4238		return;
4239	reg = base + PCIER_LINK_CTL;
4240	link_ctrl = pci_read_config(dev, reg, 2);
4241	link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4242	pci_write_config(dev, reg, link_ctrl, 2);
4243	return;
4244}
4245
4246/**********************************************************************
4247 *
4248 *  Update the board statistics counters.
4249 *
4250 **********************************************************************/
4251static void
4252em_update_stats_counters(struct e1000_softc *sc)
4253{
4254	u64 prev_xoffrxc = sc->stats.xoffrxc;
4255
4256	if(sc->hw.phy.media_type == e1000_media_type_copper ||
4257	   (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4258		sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4259		sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4260	}
4261	sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4262	sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4263	sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4264	sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4265
4266	sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4267	sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4268	sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4269	sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4270	sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4271	sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4272	sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4273	sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4274	/*
4275	 ** For watchdog management we need to know if we have been
4276	 ** paused during the last interval, so capture that here.
4277	*/
4278	if (sc->stats.xoffrxc != prev_xoffrxc)
4279		sc->shared->isc_pause_frames = 1;
4280	sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4281	sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4282	sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4283	sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4284	sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4285	sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4286	sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4287	sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4288	sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4289	sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4290	sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4291	sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4292
4293	/* For the 64-bit byte counters the low dword must be read first. */
4294	/* Both registers clear on the read of the high dword */
4295
4296	sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4297	    ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4298	sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4299	    ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4300
4301	sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4302	sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4303	sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4304	sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4305	sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4306
4307	sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4308	sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4309
4310	sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4311	sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4312	sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4313	sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4314	sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4315	sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4316	sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4317	sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4318	sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4319	sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4320
4321	/* Interrupt Counts */
4322
4323	sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4324	sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4325	sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4326	sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4327	sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4328	sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4329	sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4330	sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4331	sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4332
4333	if (sc->hw.mac.type >= e1000_82543) {
4334		sc->stats.algnerrc +=
4335		E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4336		sc->stats.rxerrc +=
4337		E1000_READ_REG(&sc->hw, E1000_RXERRC);
4338		sc->stats.tncrs +=
4339		E1000_READ_REG(&sc->hw, E1000_TNCRS);
4340		sc->stats.cexterr +=
4341		E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4342		sc->stats.tsctc +=
4343		E1000_READ_REG(&sc->hw, E1000_TSCTC);
4344		sc->stats.tsctfc +=
4345		E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4346	}
4347}
4348
4349static uint64_t
4350em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4351{
4352	struct e1000_softc *sc = iflib_get_softc(ctx);
4353	if_t ifp = iflib_get_ifp(ctx);
4354
4355	switch (cnt) {
4356	case IFCOUNTER_COLLISIONS:
4357		return (sc->stats.colc);
4358	case IFCOUNTER_IERRORS:
4359		return (sc->dropped_pkts + sc->stats.rxerrc +
4360		    sc->stats.crcerrs + sc->stats.algnerrc +
4361		    sc->stats.ruc + sc->stats.roc +
4362		    sc->stats.mpc + sc->stats.cexterr);
4363	case IFCOUNTER_OERRORS:
4364		return (sc->stats.ecol + sc->stats.latecol +
4365		    sc->watchdog_events);
4366	default:
4367		return (if_get_counter_default(ifp, cnt));
4368	}
4369}
4370
4371/* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4372 * @ctx: iflib context
4373 * @event: event code to check
4374 *
4375 * Defaults to returning false for unknown events.
4376 *
4377 * @returns true if iflib needs to reinit the interface
4378 */
4379static bool
4380em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4381{
4382	switch (event) {
4383	case IFLIB_RESTART_VLAN_CONFIG:
4384	default:
4385		return (false);
4386	}
4387}
4388
4389/* Export a single 32-bit register via a read-only sysctl. */
4390static int
4391em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4392{
4393	struct e1000_softc *sc;
4394	u_int val;
4395
4396	sc = oidp->oid_arg1;
4397	val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4398	return (sysctl_handle_int(oidp, &val, 0, req));
4399}
4400
4401/*
4402 * Add sysctl variables, one per statistic, to the system.
4403 */
4404static void
4405em_add_hw_stats(struct e1000_softc *sc)
4406{
4407	device_t dev = iflib_get_dev(sc->ctx);
4408	struct em_tx_queue *tx_que = sc->tx_queues;
4409	struct em_rx_queue *rx_que = sc->rx_queues;
4410
4411	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4412	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4413	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4414	struct e1000_hw_stats *stats = &sc->stats;
4415
4416	struct sysctl_oid *stat_node, *queue_node, *int_node;
4417	struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4418
4419#define QUEUE_NAME_LEN 32
4420	char namebuf[QUEUE_NAME_LEN];
4421
4422	/* Driver Statistics */
4423	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4424			CTLFLAG_RD, &sc->dropped_pkts,
4425			"Driver dropped packets");
4426	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4427			CTLFLAG_RD, &sc->link_irq,
4428			"Link MSI-X IRQ Handled");
4429	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4430			CTLFLAG_RD, &sc->rx_overruns,
4431			"RX overruns");
4432	SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4433			CTLFLAG_RD, &sc->watchdog_events,
4434			"Watchdog timeouts");
4435	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4436	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4437	    sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4438	    "Device Control Register");
4439	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4440	    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4441	    sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4442	    "Receiver Control Register");
4443	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4444			CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4445			"Flow Control High Watermark");
4446	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4447			CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4448			"Flow Control Low Watermark");
4449
4450	for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4451		struct tx_ring *txr = &tx_que->txr;
4452		snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4453		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4454		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4455		queue_list = SYSCTL_CHILDREN(queue_node);
4456
4457		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4458		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4459		    E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4460		    "Transmit Descriptor Head");
4461		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4462		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4463		    E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4464		    "Transmit Descriptor Tail");
4465		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4466				CTLFLAG_RD, &txr->tx_irq,
4467				"Queue MSI-X Transmit Interrupts");
4468	}
4469
4470	for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4471		struct rx_ring *rxr = &rx_que->rxr;
4472		snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4473		queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4474		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4475		queue_list = SYSCTL_CHILDREN(queue_node);
4476
4477		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4478		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4479		    E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4480		    "Receive Descriptor Head");
4481		SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4482		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc,
4483		    E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4484		    "Receive Descriptor Tail");
4485		SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4486				CTLFLAG_RD, &rxr->rx_irq,
4487				"Queue MSI-X Receive Interrupts");
4488	}
4489
4490	/* MAC stats get their own sub node */
4491
4492	stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4493	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4494	stat_list = SYSCTL_CHILDREN(stat_node);
4495
4496	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4497			CTLFLAG_RD, &stats->ecol,
4498			"Excessive collisions");
4499	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4500			CTLFLAG_RD, &stats->scc,
4501			"Single collisions");
4502	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4503			CTLFLAG_RD, &stats->mcc,
4504			"Multiple collisions");
4505	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4506			CTLFLAG_RD, &stats->latecol,
4507			"Late collisions");
4508	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4509			CTLFLAG_RD, &stats->colc,
4510			"Collision Count");
4511	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4512			CTLFLAG_RD, &sc->stats.symerrs,
4513			"Symbol Errors");
4514	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4515			CTLFLAG_RD, &sc->stats.sec,
4516			"Sequence Errors");
4517	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4518			CTLFLAG_RD, &sc->stats.dc,
4519			"Defer Count");
4520	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4521			CTLFLAG_RD, &sc->stats.mpc,
4522			"Missed Packets");
4523	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4524			CTLFLAG_RD, &sc->stats.rnbc,
4525			"Receive No Buffers");
4526	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4527			CTLFLAG_RD, &sc->stats.ruc,
4528			"Receive Undersize");
4529	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4530			CTLFLAG_RD, &sc->stats.rfc,
4531			"Fragmented Packets Received ");
4532	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4533			CTLFLAG_RD, &sc->stats.roc,
4534			"Oversized Packets Received");
4535	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4536			CTLFLAG_RD, &sc->stats.rjc,
4537			"Recevied Jabber");
4538	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4539			CTLFLAG_RD, &sc->stats.rxerrc,
4540			"Receive Errors");
4541	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4542			CTLFLAG_RD, &sc->stats.crcerrs,
4543			"CRC errors");
4544	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4545			CTLFLAG_RD, &sc->stats.algnerrc,
4546			"Alignment Errors");
4547	/* On 82575 these are collision counts */
4548	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4549			CTLFLAG_RD, &sc->stats.cexterr,
4550			"Collision/Carrier extension errors");
4551	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4552			CTLFLAG_RD, &sc->stats.xonrxc,
4553			"XON Received");
4554	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4555			CTLFLAG_RD, &sc->stats.xontxc,
4556			"XON Transmitted");
4557	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4558			CTLFLAG_RD, &sc->stats.xoffrxc,
4559			"XOFF Received");
4560	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4561			CTLFLAG_RD, &sc->stats.xofftxc,
4562			"XOFF Transmitted");
4563
4564	/* Packet Reception Stats */
4565	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4566			CTLFLAG_RD, &sc->stats.tpr,
4567			"Total Packets Received ");
4568	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4569			CTLFLAG_RD, &sc->stats.gprc,
4570			"Good Packets Received");
4571	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4572			CTLFLAG_RD, &sc->stats.bprc,
4573			"Broadcast Packets Received");
4574	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4575			CTLFLAG_RD, &sc->stats.mprc,
4576			"Multicast Packets Received");
4577	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4578			CTLFLAG_RD, &sc->stats.prc64,
4579			"64 byte frames received ");
4580	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4581			CTLFLAG_RD, &sc->stats.prc127,
4582			"65-127 byte frames received");
4583	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4584			CTLFLAG_RD, &sc->stats.prc255,
4585			"128-255 byte frames received");
4586	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4587			CTLFLAG_RD, &sc->stats.prc511,
4588			"256-511 byte frames received");
4589	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4590			CTLFLAG_RD, &sc->stats.prc1023,
4591			"512-1023 byte frames received");
4592	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4593			CTLFLAG_RD, &sc->stats.prc1522,
4594			"1023-1522 byte frames received");
4595	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4596			CTLFLAG_RD, &sc->stats.gorc,
4597			"Good Octets Received");
4598
4599	/* Packet Transmission Stats */
4600	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4601			CTLFLAG_RD, &sc->stats.gotc,
4602			"Good Octets Transmitted");
4603	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4604			CTLFLAG_RD, &sc->stats.tpt,
4605			"Total Packets Transmitted");
4606	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4607			CTLFLAG_RD, &sc->stats.gptc,
4608			"Good Packets Transmitted");
4609	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4610			CTLFLAG_RD, &sc->stats.bptc,
4611			"Broadcast Packets Transmitted");
4612	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4613			CTLFLAG_RD, &sc->stats.mptc,
4614			"Multicast Packets Transmitted");
4615	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4616			CTLFLAG_RD, &sc->stats.ptc64,
4617			"64 byte frames transmitted ");
4618	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4619			CTLFLAG_RD, &sc->stats.ptc127,
4620			"65-127 byte frames transmitted");
4621	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4622			CTLFLAG_RD, &sc->stats.ptc255,
4623			"128-255 byte frames transmitted");
4624	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4625			CTLFLAG_RD, &sc->stats.ptc511,
4626			"256-511 byte frames transmitted");
4627	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4628			CTLFLAG_RD, &sc->stats.ptc1023,
4629			"512-1023 byte frames transmitted");
4630	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4631			CTLFLAG_RD, &sc->stats.ptc1522,
4632			"1024-1522 byte frames transmitted");
4633	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4634			CTLFLAG_RD, &sc->stats.tsctc,
4635			"TSO Contexts Transmitted");
4636	SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4637			CTLFLAG_RD, &sc->stats.tsctfc,
4638			"TSO Contexts Failed");
4639
4640
4641	/* Interrupt Stats */
4642
4643	int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4644	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4645	int_list = SYSCTL_CHILDREN(int_node);
4646
4647	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4648			CTLFLAG_RD, &sc->stats.iac,
4649			"Interrupt Assertion Count");
4650
4651	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4652			CTLFLAG_RD, &sc->stats.icrxptc,
4653			"Interrupt Cause Rx Pkt Timer Expire Count");
4654
4655	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4656			CTLFLAG_RD, &sc->stats.icrxatc,
4657			"Interrupt Cause Rx Abs Timer Expire Count");
4658
4659	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4660			CTLFLAG_RD, &sc->stats.ictxptc,
4661			"Interrupt Cause Tx Pkt Timer Expire Count");
4662
4663	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4664			CTLFLAG_RD, &sc->stats.ictxatc,
4665			"Interrupt Cause Tx Abs Timer Expire Count");
4666
4667	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4668			CTLFLAG_RD, &sc->stats.ictxqec,
4669			"Interrupt Cause Tx Queue Empty Count");
4670
4671	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4672			CTLFLAG_RD, &sc->stats.ictxqmtc,
4673			"Interrupt Cause Tx Queue Min Thresh Count");
4674
4675	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4676			CTLFLAG_RD, &sc->stats.icrxdmtc,
4677			"Interrupt Cause Rx Desc Min Thresh Count");
4678
4679	SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4680			CTLFLAG_RD, &sc->stats.icrxoc,
4681			"Interrupt Cause Receiver Overrun Count");
4682}
4683
4684static void
4685em_fw_version_locked(if_ctx_t ctx)
4686{
4687	struct e1000_softc *sc = iflib_get_softc(ctx);
4688	struct e1000_hw *hw = &sc->hw;
4689	struct e1000_fw_version *fw_ver = &sc->fw_ver;
4690	uint16_t eep = 0;
4691
4692	/*
4693	 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the
4694	 * NVM locking model, so we do it in em_if_attach_pre() and store the
4695	 * info in the softc
4696	 */
4697	ASSERT_CTX_LOCK_HELD(hw);
4698
4699	*fw_ver = (struct e1000_fw_version){0};
4700
4701	if (hw->mac.type >= igb_mac_min) {
4702		/*
4703		 * Use the Shared Code for igb(4)
4704		 */
4705		e1000_get_fw_version(hw, fw_ver);
4706	} else {
4707		/*
4708		 * Otherwise, EEPROM version should be present on (almost?) all
4709		 * devices here
4710		 */
4711		if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
4712			INIT_DEBUGOUT("can't get EEPROM version");
4713			return;
4714		}
4715
4716		fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
4717		fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
4718		fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
4719	}
4720}
4721
4722static void
4723em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
4724{
4725	const char *space = "";
4726
4727	if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
4728		sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
4729			    fw_ver->eep_minor, fw_ver->eep_build);
4730		space = " ";
4731	}
4732
4733	if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) {
4734		sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
4735			    space, fw_ver->invm_major, fw_ver->invm_minor,
4736			    fw_ver->invm_img_type);
4737		space = " ";
4738	}
4739
4740	if (fw_ver->or_valid) {
4741		sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
4742			    space, fw_ver->or_major, fw_ver->or_build,
4743			    fw_ver->or_patch);
4744		space = " ";
4745	}
4746
4747	if (fw_ver->etrack_id)
4748		sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
4749}
4750
4751static void
4752em_print_fw_version(struct e1000_softc *sc )
4753{
4754	device_t dev = sc->dev;
4755	struct sbuf *buf;
4756	int error = 0;
4757
4758	buf = sbuf_new_auto();
4759	if (!buf) {
4760		device_printf(dev, "Could not allocate sbuf for output.\n");
4761		return;
4762	}
4763
4764	em_sbuf_fw_version(&sc->fw_ver, buf);
4765
4766	error = sbuf_finish(buf);
4767	if (error)
4768		device_printf(dev, "Error finishing sbuf: %d\n", error);
4769	else if (sbuf_len(buf))
4770		device_printf(dev, "%s\n", sbuf_data(buf));
4771
4772	sbuf_delete(buf);
4773}
4774
4775static int
4776em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
4777{
4778	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4779	device_t dev = sc->dev;
4780	struct sbuf *buf;
4781	int error = 0;
4782
4783	buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
4784	if (!buf) {
4785		device_printf(dev, "Could not allocate sbuf for output.\n");
4786		return (ENOMEM);
4787	}
4788
4789	em_sbuf_fw_version(&sc->fw_ver, buf);
4790
4791	error = sbuf_finish(buf);
4792	if (error)
4793		device_printf(dev, "Error finishing sbuf: %d\n", error);
4794
4795	sbuf_delete(buf);
4796
4797	return (0);
4798}
4799
4800/**********************************************************************
4801 *
4802 *  This routine provides a way to dump out the adapter eeprom,
4803 *  often a useful debug/service tool. This only dumps the first
4804 *  32 words, stuff that matters is in that extent.
4805 *
4806 **********************************************************************/
4807static int
4808em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4809{
4810	struct e1000_softc *sc = (struct e1000_softc *)arg1;
4811	int error;
4812	int result;
4813
4814	result = -1;
4815	error = sysctl_handle_int(oidp, &result, 0, req);
4816
4817	if (error || !req->newptr)
4818		return (error);
4819
4820	/*
4821	 * This value will cause a hex dump of the
4822	 * first 32 16-bit words of the EEPROM to
4823	 * the screen.
4824	 */
4825	if (result == 1)
4826		em_print_nvm_info(sc);
4827
4828	return (error);
4829}
4830
4831static void
4832em_print_nvm_info(struct e1000_softc *sc)
4833{
4834	struct e1000_hw *hw = &sc->hw;
4835	struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
4836	u16 eeprom_data;
4837	int i, j, row = 0;
4838
4839	/* Its a bit crude, but it gets the job done */
4840	printf("\nInterface EEPROM Dump:\n");
4841	printf("Offset\n0x0000  ");
4842
4843	/* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
4844	sx_xlock(iflib_ctx_lock);
4845	ASSERT_CTX_LOCK_HELD(hw);
4846	for (i = 0, j = 0; i < 32; i++, j++) {
4847		if (j == 8) { /* Make the offset block */
4848			j = 0; ++row;
4849			printf("\n0x00%x0  ",row);
4850		}
4851		e1000_read_nvm(hw, i, 1, &eeprom_data);
4852		printf("%04x ", eeprom_data);
4853	}
4854	sx_xunlock(iflib_ctx_lock);
4855	printf("\n");
4856}
4857
4858static int
4859em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4860{
4861	struct em_int_delay_info *info;
4862	struct e1000_softc *sc;
4863	u32 regval;
4864	int error, usecs, ticks;
4865
4866	info = (struct em_int_delay_info *) arg1;
4867	usecs = info->value;
4868	error = sysctl_handle_int(oidp, &usecs, 0, req);
4869	if (error != 0 || req->newptr == NULL)
4870		return (error);
4871	if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4872		return (EINVAL);
4873	info->value = usecs;
4874	ticks = EM_USECS_TO_TICKS(usecs);
4875	if (info->offset == E1000_ITR)	/* units are 256ns here */
4876		ticks *= 4;
4877
4878	sc = info->sc;
4879
4880	regval = E1000_READ_OFFSET(&sc->hw, info->offset);
4881	regval = (regval & ~0xffff) | (ticks & 0xffff);
4882	/* Handle a few special cases. */
4883	switch (info->offset) {
4884	case E1000_RDTR:
4885		break;
4886	case E1000_TIDV:
4887		if (ticks == 0) {
4888			sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
4889			/* Don't write 0 into the TIDV register. */
4890			regval++;
4891		} else
4892			sc->txd_cmd |= E1000_TXD_CMD_IDE;
4893		break;
4894	}
4895	E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
4896	return (0);
4897}
4898
4899static void
4900em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
4901	const char *description, struct em_int_delay_info *info,
4902	int offset, int value)
4903{
4904	info->sc = sc;
4905	info->offset = offset;
4906	info->value = value;
4907	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
4908	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
4909	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4910	    info, 0, em_sysctl_int_delay, "I", description);
4911}
4912
4913/*
4914 * Set flow control using sysctl:
4915 * Flow control values:
4916 *      0 - off
4917 *      1 - rx pause
4918 *      2 - tx pause
4919 *      3 - full
4920 */
4921static int
4922em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4923{
4924	int error;
4925	static int input = 3; /* default is full */
4926	struct e1000_softc	*sc = (struct e1000_softc *) arg1;
4927
4928	error = sysctl_handle_int(oidp, &input, 0, req);
4929
4930	if ((error) || (req->newptr == NULL))
4931		return (error);
4932
4933	if (input == sc->fc) /* no change? */
4934		return (error);
4935
4936	switch (input) {
4937	case e1000_fc_rx_pause:
4938	case e1000_fc_tx_pause:
4939	case e1000_fc_full:
4940	case e1000_fc_none:
4941		sc->hw.fc.requested_mode = input;
4942		sc->fc = input;
4943		break;
4944	default:
4945		/* Do nothing */
4946		return (error);
4947	}
4948
4949	sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
4950	e1000_force_mac_fc(&sc->hw);
4951	return (error);
4952}
4953
4954/*
4955 * Manage Energy Efficient Ethernet:
4956 * Control values:
4957 *     0/1 - enabled/disabled
4958 */
4959static int
4960em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4961{
4962	struct e1000_softc *sc = (struct e1000_softc *) arg1;
4963	int error, value;
4964
4965	value = sc->hw.dev_spec.ich8lan.eee_disable;
4966	error = sysctl_handle_int(oidp, &value, 0, req);
4967	if (error || req->newptr == NULL)
4968		return (error);
4969	sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4970	em_if_init(sc->ctx);
4971
4972	return (0);
4973}
4974
4975static int
4976em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4977{
4978	struct e1000_softc *sc;
4979	int error;
4980	int result;
4981
4982	result = -1;
4983	error = sysctl_handle_int(oidp, &result, 0, req);
4984
4985	if (error || !req->newptr)
4986		return (error);
4987
4988	if (result == 1) {
4989		sc = (struct e1000_softc *) arg1;
4990		em_print_debug_info(sc);
4991	}
4992
4993	return (error);
4994}
4995
4996static int
4997em_get_rs(SYSCTL_HANDLER_ARGS)
4998{
4999	struct e1000_softc *sc = (struct e1000_softc *) arg1;
5000	int error;
5001	int result;
5002
5003	result = 0;
5004	error = sysctl_handle_int(oidp, &result, 0, req);
5005
5006	if (error || !req->newptr || result != 1)
5007		return (error);
5008	em_dump_rs(sc);
5009
5010	return (error);
5011}
5012
5013static void
5014em_if_debug(if_ctx_t ctx)
5015{
5016	em_dump_rs(iflib_get_softc(ctx));
5017}
5018
5019/*
5020 * This routine is meant to be fluid, add whatever is
5021 * needed for debugging a problem.  -jfv
5022 */
5023static void
5024em_print_debug_info(struct e1000_softc *sc)
5025{
5026	device_t dev = iflib_get_dev(sc->ctx);
5027	if_t ifp = iflib_get_ifp(sc->ctx);
5028	struct tx_ring *txr = &sc->tx_queues->txr;
5029	struct rx_ring *rxr = &sc->rx_queues->rxr;
5030
5031	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5032		printf("Interface is RUNNING ");
5033	else
5034		printf("Interface is NOT RUNNING\n");
5035
5036	if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5037		printf("and INACTIVE\n");
5038	else
5039		printf("and ACTIVE\n");
5040
5041	for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5042		device_printf(dev, "TX Queue %d ------\n", i);
5043		device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5044			E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5045			E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5046
5047	}
5048	for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5049		device_printf(dev, "RX Queue %d ------\n", j);
5050		device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5051			E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5052			E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5053	}
5054}
5055
5056/*
5057 * 82574 only:
5058 * Write a new value to the EEPROM increasing the number of MSI-X
5059 * vectors from 3 to 5, for proper multiqueue support.
5060 */
5061static void
5062em_enable_vectors_82574(if_ctx_t ctx)
5063{
5064	struct e1000_softc *sc = iflib_get_softc(ctx);
5065	struct e1000_hw *hw = &sc->hw;
5066	device_t dev = iflib_get_dev(ctx);
5067	u16 edata;
5068
5069	e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5070	if (bootverbose)
5071		device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5072	if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5073		device_printf(dev, "Writing to eeprom: increasing "
5074		    "reported MSI-X vectors from 3 to 5...\n");
5075		edata &= ~(EM_NVM_MSIX_N_MASK);
5076		edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5077		e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5078		e1000_update_nvm_checksum(hw);
5079		device_printf(dev, "Writing to eeprom: done\n");
5080	}
5081}
5082