1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer,
12 *    without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 *    redistribution must be conditioned upon including a substantially
16 *    similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32#include <sys/cdefs.h>
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_var.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_arp.h>
81#include <net/ethernet.h>
82#include <net/if_llc.h>
83
84#include <net80211/ieee80211_var.h>
85#include <net80211/ieee80211_regdomain.h>
86#ifdef IEEE80211_SUPPORT_SUPERG
87#include <net80211/ieee80211_superg.h>
88#endif
89#ifdef IEEE80211_SUPPORT_TDMA
90#include <net80211/ieee80211_tdma.h>
91#endif
92
93#include <net/bpf.h>
94
95#ifdef INET
96#include <netinet/in.h>
97#include <netinet/if_ether.h>
98#endif
99
100#include <dev/ath/if_athvar.h>
101#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104#include <dev/ath/if_ath_debug.h>
105#include <dev/ath/if_ath_misc.h>
106#include <dev/ath/if_ath_tsf.h>
107#include <dev/ath/if_ath_tx.h>
108#include <dev/ath/if_ath_sysctl.h>
109#include <dev/ath/if_ath_led.h>
110#include <dev/ath/if_ath_keycache.h>
111#include <dev/ath/if_ath_rx.h>
112#include <dev/ath/if_ath_rx_edma.h>
113#include <dev/ath/if_ath_tx_edma.h>
114#include <dev/ath/if_ath_beacon.h>
115#include <dev/ath/if_ath_btcoex.h>
116#include <dev/ath/if_ath_btcoex_mci.h>
117#include <dev/ath/if_ath_spectral.h>
118#include <dev/ath/if_ath_lna_div.h>
119#include <dev/ath/if_athdfs.h>
120#include <dev/ath/if_ath_ioctl.h>
121#include <dev/ath/if_ath_descdma.h>
122
123#ifdef ATH_TX99_DIAG
124#include <dev/ath/ath_tx99/ath_tx99.h>
125#endif
126
127#ifdef	ATH_DEBUG_ALQ
128#include <dev/ath/if_ath_alq.h>
129#endif
130
131/*
132 * Only enable this if you're working on PS-POLL support.
133 */
134#define	ATH_SW_PSQ
135
136/*
137 * ATH_BCBUF determines the number of vap's that can transmit
138 * beacons and also (currently) the number of vap's that can
139 * have unique mac addresses/bssid.  When staggering beacons
140 * 4 is probably a good max as otherwise the beacons become
141 * very closely spaced and there is limited time for cab q traffic
142 * to go out.  You can burst beacons instead but that is not good
143 * for stations in power save and at some point you really want
144 * another radio (and channel).
145 *
146 * The limit on the number of mac addresses is tied to our use of
147 * the U/L bit and tracking addresses in a byte; it would be
148 * worthwhile to allow more for applications like proxy sta.
149 */
150CTASSERT(ATH_BCBUF <= 8);
151
152static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
153		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
154		    const uint8_t [IEEE80211_ADDR_LEN],
155		    const uint8_t [IEEE80211_ADDR_LEN]);
156static void	ath_vap_delete(struct ieee80211vap *);
157static int	ath_init(struct ath_softc *);
158static void	ath_stop(struct ath_softc *);
159static int	ath_reset_vap(struct ieee80211vap *, u_long);
160static int	ath_transmit(struct ieee80211com *, struct mbuf *);
161static void	ath_watchdog(void *);
162static void	ath_parent(struct ieee80211com *);
163static void	ath_fatal_proc(void *, int);
164static void	ath_bmiss_vap(struct ieee80211vap *);
165static void	ath_bmiss_proc(void *, int);
166static void	ath_tsfoor_proc(void *, int);
167static void	ath_key_update_begin(struct ieee80211vap *);
168static void	ath_key_update_end(struct ieee80211vap *);
169static void	ath_update_mcast_hw(struct ath_softc *);
170static void	ath_update_mcast(struct ieee80211com *);
171static void	ath_update_promisc(struct ieee80211com *);
172static void	ath_updateslot(struct ieee80211com *);
173static void	ath_bstuck_proc(void *, int);
174static void	ath_reset_proc(void *, int);
175static int	ath_desc_alloc(struct ath_softc *);
176static void	ath_desc_free(struct ath_softc *);
177static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
178			const uint8_t [IEEE80211_ADDR_LEN]);
179static void	ath_node_cleanup(struct ieee80211_node *);
180static void	ath_node_free(struct ieee80211_node *);
181static void	ath_node_getsignal(const struct ieee80211_node *,
182			int8_t *, int8_t *);
183static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
184static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
185static int	ath_tx_setup(struct ath_softc *, int, int);
186static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
187static void	ath_tx_cleanup(struct ath_softc *);
188static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
189		    int dosched);
190static void	ath_tx_proc_q0(void *, int);
191static void	ath_tx_proc_q0123(void *, int);
192static void	ath_tx_proc(void *, int);
193static void	ath_txq_sched_tasklet(void *, int);
194static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
195static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196static void	ath_scan_start(struct ieee80211com *);
197static void	ath_scan_end(struct ieee80211com *);
198static void	ath_set_channel(struct ieee80211com *);
199#ifdef	ATH_ENABLE_11N
200static void	ath_update_chw(struct ieee80211com *);
201#endif	/* ATH_ENABLE_11N */
202static int	ath_set_quiet_ie(struct ieee80211_node *, uint8_t *);
203static void	ath_calibrate(void *);
204static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
205static void	ath_setup_stationkey(struct ieee80211_node *);
206static void	ath_newassoc(struct ieee80211_node *, int);
207static int	ath_setregdomain(struct ieee80211com *,
208		    struct ieee80211_regdomain *, int,
209		    struct ieee80211_channel []);
210static void	ath_getradiocaps(struct ieee80211com *, int, int *,
211		    struct ieee80211_channel []);
212static int	ath_getchannels(struct ath_softc *);
213
214static int	ath_rate_setup(struct ath_softc *, u_int mode);
215static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
216
217static void	ath_announce(struct ath_softc *);
218
219static void	ath_dfs_tasklet(void *, int);
220static void	ath_node_powersave(struct ieee80211_node *, int);
221static int	ath_node_set_tim(struct ieee80211_node *, int);
222static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
223
224#ifdef IEEE80211_SUPPORT_TDMA
225#include <dev/ath/if_ath_tdma.h>
226#endif
227
228SYSCTL_DECL(_hw_ath);
229
230/* XXX validate sysctl values */
231static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
232SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
233	    0, "long chip calibration interval (secs)");
234static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
235SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
236	    0, "short chip calibration interval (msecs)");
237static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
238SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
239	    0, "reset chip calibration results (secs)");
240static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
241SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
242	    0, "ANI calibration (msecs)");
243
244int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
245SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
246	    0, "rx buffers allocated");
247int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
248SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
249	    0, "tx buffers allocated");
250int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
251SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
252	    0, "tx (mgmt) buffers allocated");
253
254int ath_bstuck_threshold = 4;		/* max missed beacons */
255SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
256	    0, "max missed beacon xmits before chip reset");
257
258MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
259
260void
261ath_legacy_attach_comp_func(struct ath_softc *sc)
262{
263
264	/*
265	 * Special case certain configurations.  Note the
266	 * CAB queue is handled by these specially so don't
267	 * include them when checking the txq setup mask.
268	 */
269	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
270	case 0x01:
271		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
272		break;
273	case 0x0f:
274		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
275		break;
276	default:
277		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
278		break;
279	}
280}
281
282/*
283 * Set the target power mode.
284 *
285 * If this is called during a point in time where
286 * the hardware is being programmed elsewhere, it will
287 * simply store it away and update it when all current
288 * uses of the hardware are completed.
289 *
290 * If the chip is going into network sleep or power off, then
291 * we will wait until all uses of the chip are done before
292 * going into network sleep or power off.
293 *
294 * If the chip is being programmed full-awake, then immediately
295 * program it full-awake so we can actually stay awake rather than
296 * the chip potentially going to sleep underneath us.
297 */
298void
299_ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen,
300    const char *file, int line)
301{
302	ATH_LOCK_ASSERT(sc);
303
304	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n",
305	    __func__,
306	    file,
307	    line,
308	    power_state,
309	    sc->sc_powersave_refcnt,
310	    sc->sc_target_powerstate,
311	    sc->sc_cur_powerstate);
312
313	sc->sc_target_powerstate = power_state;
314
315	/*
316	 * Don't program the chip into network sleep if the chip
317	 * is being programmed elsewhere.
318	 *
319	 * However, if the chip is being programmed /awake/, force
320	 * the chip awake so we stay awake.
321	 */
322	if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) &&
323	    power_state != sc->sc_cur_powerstate) {
324		sc->sc_cur_powerstate = power_state;
325		ath_hal_setpower(sc->sc_ah, power_state);
326
327		/*
328		 * If the NIC is force-awake, then set the
329		 * self-gen frame state appropriately.
330		 *
331		 * If the nic is in network sleep or full-sleep,
332		 * we let the above call leave the self-gen
333		 * state as "sleep".
334		 */
335		if (selfgen &&
336		    sc->sc_cur_powerstate == HAL_PM_AWAKE &&
337		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
338			ath_hal_setselfgenpower(sc->sc_ah,
339			    sc->sc_target_selfgen_state);
340		}
341	}
342}
343
344/*
345 * Set the current self-generated frames state.
346 *
347 * This is separate from the target power mode.  The chip may be
348 * awake but the desired state is "sleep", so frames sent to the
349 * destination has PWRMGT=1 in the 802.11 header.  The NIC also
350 * needs to know to set PWRMGT=1 in self-generated frames.
351 */
352void
353_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
354{
355
356	ATH_LOCK_ASSERT(sc);
357
358	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
359	    __func__,
360	    file,
361	    line,
362	    power_state,
363	    sc->sc_target_selfgen_state);
364
365	sc->sc_target_selfgen_state = power_state;
366
367	/*
368	 * If the NIC is force-awake, then set the power state.
369	 * Network-state and full-sleep will already transition it to
370	 * mark self-gen frames as sleeping - and we can't
371	 * guarantee the NIC is awake to program the self-gen frame
372	 * setting anyway.
373	 */
374	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
375		ath_hal_setselfgenpower(sc->sc_ah, power_state);
376	}
377}
378
379/*
380 * Set the hardware power mode and take a reference.
381 *
382 * This doesn't update the target power mode in the driver;
383 * it just updates the hardware power state.
384 *
385 * XXX it should only ever force the hardware awake; it should
386 * never be called to set it asleep.
387 */
388void
389_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
390{
391	ATH_LOCK_ASSERT(sc);
392
393	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
394	    __func__,
395	    file,
396	    line,
397	    power_state,
398	    sc->sc_powersave_refcnt);
399
400	sc->sc_powersave_refcnt++;
401
402	/*
403	 * Only do the power state change if we're not programming
404	 * it elsewhere.
405	 */
406	if (power_state != sc->sc_cur_powerstate) {
407		ath_hal_setpower(sc->sc_ah, power_state);
408		sc->sc_cur_powerstate = power_state;
409		/*
410		 * Adjust the self-gen powerstate if appropriate.
411		 */
412		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
413		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
414			ath_hal_setselfgenpower(sc->sc_ah,
415			    sc->sc_target_selfgen_state);
416		}
417	}
418}
419
420/*
421 * Restore the power save mode to what it once was.
422 *
423 * This will decrement the reference counter and once it hits
424 * zero, it'll restore the powersave state.
425 */
426void
427_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
428{
429
430	ATH_LOCK_ASSERT(sc);
431
432	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
433	    __func__,
434	    file,
435	    line,
436	    sc->sc_powersave_refcnt,
437	    sc->sc_target_powerstate);
438
439	if (sc->sc_powersave_refcnt == 0)
440		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
441	else
442		sc->sc_powersave_refcnt--;
443
444	if (sc->sc_powersave_refcnt == 0 &&
445	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
446		sc->sc_cur_powerstate = sc->sc_target_powerstate;
447		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
448	}
449
450	/*
451	 * Adjust the self-gen powerstate if appropriate.
452	 */
453	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
454	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
455		ath_hal_setselfgenpower(sc->sc_ah,
456		    sc->sc_target_selfgen_state);
457	}
458
459}
460
461/*
462 * Configure the initial HAL configuration values based on bus
463 * specific parameters.
464 *
465 * Some PCI IDs and other information may need tweaking.
466 *
467 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
468 * if BT antenna diversity isn't enabled.
469 *
470 * So, let's also figure out how to enable BT diversity for AR9485.
471 */
472static void
473ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
474{
475	/* XXX TODO: only for PCI devices? */
476
477	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
478		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
479		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
480		ah_config->ath_hal_min_gainidx = AH_TRUE;
481		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
482		/* XXX low_rssi_thresh */
483		/* XXX fast_div_bias */
484		device_printf(sc->sc_dev, "configuring for %s\n",
485		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
486		    "CUS198" : "CUS230");
487	}
488
489	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
490		device_printf(sc->sc_dev, "CUS217 card detected\n");
491
492	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
493		device_printf(sc->sc_dev, "CUS252 card detected\n");
494
495	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
496		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
497
498	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
499		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
500
501	if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV)
502		device_printf(sc->sc_dev,
503		    "Bluetooth Antenna Diversity card detected\n");
504
505	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
506		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
507
508#if 0
509        /*
510         * Some WB335 cards do not support antenna diversity. Since
511         * we use a hardcoded value for AR9565 instead of using the
512         * EEPROM/OTP data, remove the combining feature from
513         * the HW capabilities bitmap.
514         */
515        if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
516                if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
517                        pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
518        }
519
520        if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
521                pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
522                device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
523        }
524#endif
525
526        if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
527                ah_config->ath_hal_pcie_waen = 0x0040473b;
528                device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
529        }
530
531#if 0
532        if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
533                ah->config.no_pll_pwrsave = true;
534                device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
535        }
536#endif
537
538}
539
540/*
541 * Attempt to fetch the MAC address from the kernel environment.
542 *
543 * Returns 0, macaddr in macaddr if successful; -1 otherwise.
544 */
545static int
546ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
547{
548	char devid_str[32];
549	int local_mac = 0;
550	char *local_macstr;
551
552	/*
553	 * Fetch from the kenv rather than using hints.
554	 *
555	 * Hints would be nice but the transition to dynamic
556	 * hints/kenv doesn't happen early enough for this
557	 * to work reliably (eg on anything embedded.)
558	 */
559	snprintf(devid_str, 32, "hint.%s.%d.macaddr",
560	    device_get_name(sc->sc_dev),
561	    device_get_unit(sc->sc_dev));
562
563	if ((local_macstr = kern_getenv(devid_str)) != NULL) {
564		uint32_t tmpmac[ETHER_ADDR_LEN];
565		int count;
566		int i;
567
568		/* Have a MAC address; should use it */
569		device_printf(sc->sc_dev,
570		    "Overriding MAC address from environment: '%s'\n",
571		    local_macstr);
572
573		/* Extract out the MAC address */
574		count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
575		    &tmpmac[0], &tmpmac[1],
576		    &tmpmac[2], &tmpmac[3],
577		    &tmpmac[4], &tmpmac[5]);
578		if (count == 6) {
579			/* Valid! */
580			local_mac = 1;
581			for (i = 0; i < ETHER_ADDR_LEN; i++)
582				macaddr[i] = tmpmac[i];
583		}
584		/* Done! */
585		freeenv(local_macstr);
586		local_macstr = NULL;
587	}
588
589	if (local_mac)
590		return (0);
591	return (-1);
592}
593
594#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
595#define	HAL_MODE_HT40 \
596	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
597	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
598int
599ath_attach(u_int16_t devid, struct ath_softc *sc)
600{
601	struct ieee80211com *ic = &sc->sc_ic;
602	struct ath_hal *ah = NULL;
603	HAL_STATUS status;
604	int error = 0, i;
605	u_int wmodes;
606	int rx_chainmask, tx_chainmask;
607	HAL_OPS_CONFIG ah_config;
608
609	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
610
611	ic->ic_softc = sc;
612	ic->ic_name = device_get_nameunit(sc->sc_dev);
613
614	/*
615	 * Configure the initial configuration data.
616	 *
617	 * This is stuff that may be needed early during attach
618	 * rather than done via configuration calls later.
619	 */
620	bzero(&ah_config, sizeof(ah_config));
621	ath_setup_hal_config(sc, &ah_config);
622
623	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
624	    sc->sc_eepromdata, &ah_config, &status);
625	if (ah == NULL) {
626		device_printf(sc->sc_dev,
627		    "unable to attach hardware; HAL status %u\n", status);
628		error = ENXIO;
629		goto bad;
630	}
631	sc->sc_ah = ah;
632	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
633#ifdef	ATH_DEBUG
634	sc->sc_debug = ath_debug;
635#endif
636
637	/*
638	 * Force the chip awake during setup, just to keep
639	 * the HAL/driver power tracking happy.
640	 *
641	 * There are some methods (eg ath_hal_setmac())
642	 * that poke the hardware.
643	 */
644	ATH_LOCK(sc);
645	ath_power_setpower(sc, HAL_PM_AWAKE, 1);
646	ATH_UNLOCK(sc);
647
648	/*
649	 * Setup the DMA/EDMA functions based on the current
650	 * hardware support.
651	 *
652	 * This is required before the descriptors are allocated.
653	 */
654	if (ath_hal_hasedma(sc->sc_ah)) {
655		sc->sc_isedma = 1;
656		ath_recv_setup_edma(sc);
657		ath_xmit_setup_edma(sc);
658	} else {
659		ath_recv_setup_legacy(sc);
660		ath_xmit_setup_legacy(sc);
661	}
662
663	if (ath_hal_hasmybeacon(sc->sc_ah)) {
664		sc->sc_do_mybeacon = 1;
665	}
666
667	/*
668	 * Check if the MAC has multi-rate retry support.
669	 * We do this by trying to setup a fake extended
670	 * descriptor.  MAC's that don't have support will
671	 * return false w/o doing anything.  MAC's that do
672	 * support it will return true w/o doing anything.
673	 */
674	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
675
676	/*
677	 * Check if the device has hardware counters for PHY
678	 * errors.  If so we need to enable the MIB interrupt
679	 * so we can act on stat triggers.
680	 */
681	if (ath_hal_hwphycounters(ah))
682		sc->sc_needmib = 1;
683
684	/*
685	 * Get the hardware key cache size.
686	 */
687	sc->sc_keymax = ath_hal_keycachesize(ah);
688	if (sc->sc_keymax > ATH_KEYMAX) {
689		device_printf(sc->sc_dev,
690		    "Warning, using only %u of %u key cache slots\n",
691		    ATH_KEYMAX, sc->sc_keymax);
692		sc->sc_keymax = ATH_KEYMAX;
693	}
694	/*
695	 * Reset the key cache since some parts do not
696	 * reset the contents on initial power up.
697	 */
698	for (i = 0; i < sc->sc_keymax; i++)
699		ath_hal_keyreset(ah, i);
700
701	/*
702	 * Collect the default channel list.
703	 */
704	error = ath_getchannels(sc);
705	if (error != 0)
706		goto bad;
707
708	/*
709	 * Setup rate tables for all potential media types.
710	 */
711	ath_rate_setup(sc, IEEE80211_MODE_11A);
712	ath_rate_setup(sc, IEEE80211_MODE_11B);
713	ath_rate_setup(sc, IEEE80211_MODE_11G);
714	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
715	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
716	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
717	ath_rate_setup(sc, IEEE80211_MODE_11NA);
718	ath_rate_setup(sc, IEEE80211_MODE_11NG);
719	ath_rate_setup(sc, IEEE80211_MODE_HALF);
720	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
721
722	/* NB: setup here so ath_rate_update is happy */
723	ath_setcurmode(sc, IEEE80211_MODE_11A);
724
725	/*
726	 * Allocate TX descriptors and populate the lists.
727	 */
728	error = ath_desc_alloc(sc);
729	if (error != 0) {
730		device_printf(sc->sc_dev,
731		    "failed to allocate TX descriptors: %d\n", error);
732		goto bad;
733	}
734	error = ath_txdma_setup(sc);
735	if (error != 0) {
736		device_printf(sc->sc_dev,
737		    "failed to allocate TX descriptors: %d\n", error);
738		goto bad;
739	}
740
741	/*
742	 * Allocate RX descriptors and populate the lists.
743	 */
744	error = ath_rxdma_setup(sc);
745	if (error != 0) {
746		device_printf(sc->sc_dev,
747		     "failed to allocate RX descriptors: %d\n", error);
748		goto bad;
749	}
750
751	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
752	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
753
754	ATH_TXBUF_LOCK_INIT(sc);
755
756	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
757		taskqueue_thread_enqueue, &sc->sc_tq);
758	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
759	    device_get_nameunit(sc->sc_dev));
760
761	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
762	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
763	TASK_INIT(&sc->sc_tsfoortask, 0, ath_tsfoor_proc, sc);
764	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
765	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
766	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
767	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
768
769	/*
770	 * Allocate hardware transmit queues: one queue for
771	 * beacon frames and one data queue for each QoS
772	 * priority.  Note that the hal handles resetting
773	 * these queues at the needed time.
774	 *
775	 * XXX PS-Poll
776	 */
777	sc->sc_bhalq = ath_beaconq_setup(sc);
778	if (sc->sc_bhalq == (u_int) -1) {
779		device_printf(sc->sc_dev,
780		    "unable to setup a beacon xmit queue!\n");
781		error = EIO;
782		goto bad2;
783	}
784	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
785	if (sc->sc_cabq == NULL) {
786		device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
787		error = EIO;
788		goto bad2;
789	}
790	/* NB: insure BK queue is the lowest priority h/w queue */
791	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
792		device_printf(sc->sc_dev,
793		    "unable to setup xmit queue for %s traffic!\n",
794		    ieee80211_wme_acnames[WME_AC_BK]);
795		error = EIO;
796		goto bad2;
797	}
798	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
799	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
800	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
801		/*
802		 * Not enough hardware tx queues to properly do WME;
803		 * just punt and assign them all to the same h/w queue.
804		 * We could do a better job of this if, for example,
805		 * we allocate queues when we switch from station to
806		 * AP mode.
807		 */
808		if (sc->sc_ac2q[WME_AC_VI] != NULL)
809			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
810		if (sc->sc_ac2q[WME_AC_BE] != NULL)
811			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
812		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
813		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
814		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
815	}
816
817	/*
818	 * Attach the TX completion function.
819	 *
820	 * The non-EDMA chips may have some special case optimisations;
821	 * this method gives everyone a chance to attach cleanly.
822	 */
823	sc->sc_tx.xmit_attach_comp_func(sc);
824
825	/*
826	 * Setup rate control.  Some rate control modules
827	 * call back to change the anntena state so expose
828	 * the necessary entry points.
829	 * XXX maybe belongs in struct ath_ratectrl?
830	 */
831	sc->sc_setdefantenna = ath_setdefantenna;
832	sc->sc_rc = ath_rate_attach(sc);
833	if (sc->sc_rc == NULL) {
834		error = EIO;
835		goto bad2;
836	}
837
838	/* Attach DFS module */
839	if (! ath_dfs_attach(sc)) {
840		device_printf(sc->sc_dev,
841		    "%s: unable to attach DFS\n", __func__);
842		error = EIO;
843		goto bad2;
844	}
845
846	/* Attach spectral module */
847	if (ath_spectral_attach(sc) < 0) {
848		device_printf(sc->sc_dev,
849		    "%s: unable to attach spectral\n", __func__);
850		error = EIO;
851		goto bad2;
852	}
853
854	/* Attach bluetooth coexistence module */
855	if (ath_btcoex_attach(sc) < 0) {
856		device_printf(sc->sc_dev,
857		    "%s: unable to attach bluetooth coexistence\n", __func__);
858		error = EIO;
859		goto bad2;
860	}
861
862	/* Attach LNA diversity module */
863	if (ath_lna_div_attach(sc) < 0) {
864		device_printf(sc->sc_dev,
865		    "%s: unable to attach LNA diversity\n", __func__);
866		error = EIO;
867		goto bad2;
868	}
869
870	/* Start DFS processing tasklet */
871	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
872
873	/* Configure LED state */
874	sc->sc_blinking = 0;
875	sc->sc_ledstate = 1;
876	sc->sc_ledon = 0;			/* low true */
877	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
878	callout_init(&sc->sc_ledtimer, 1);
879
880	/*
881	 * Don't setup hardware-based blinking.
882	 *
883	 * Although some NICs may have this configured in the
884	 * default reset register values, the user may wish
885	 * to alter which pins have which function.
886	 *
887	 * The reference driver attaches the MAC network LED to GPIO1 and
888	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
889	 * NIC has these reversed.
890	 */
891	sc->sc_hardled = (1 == 0);
892	sc->sc_led_net_pin = -1;
893	sc->sc_led_pwr_pin = -1;
894	/*
895	 * Auto-enable soft led processing for IBM cards and for
896	 * 5211 minipci cards.  Users can also manually enable/disable
897	 * support with a sysctl.
898	 */
899	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
900	ath_led_config(sc);
901	ath_hal_setledstate(ah, HAL_LED_INIT);
902
903	/* XXX not right but it's not used anywhere important */
904	ic->ic_phytype = IEEE80211_T_OFDM;
905	ic->ic_opmode = IEEE80211_M_STA;
906	ic->ic_caps =
907		  IEEE80211_C_STA		/* station mode */
908		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
909		| IEEE80211_C_HOSTAP		/* hostap mode */
910		| IEEE80211_C_MONITOR		/* monitor mode */
911		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
912		| IEEE80211_C_WDS		/* 4-address traffic works */
913		| IEEE80211_C_MBSS		/* mesh point link mode */
914		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
915		| IEEE80211_C_SHSLOT		/* short slot time supported */
916		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
917#ifndef	ATH_ENABLE_11N
918		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
919#endif
920		| IEEE80211_C_TXFRAG		/* handle tx frags */
921#ifdef	ATH_ENABLE_DFS
922		| IEEE80211_C_DFS		/* Enable radar detection */
923#endif
924		| IEEE80211_C_PMGT		/* Station side power mgmt */
925		| IEEE80211_C_SWSLEEP
926		;
927	/*
928	 * Query the hal to figure out h/w crypto support.
929	 */
930	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
931		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
932	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
933		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
934	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
935		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
936	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
937		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
938	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
939		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
940		/*
941		 * Check if h/w does the MIC and/or whether the
942		 * separate key cache entries are required to
943		 * handle both tx+rx MIC keys.
944		 */
945		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
946			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
947		/*
948		 * If the h/w supports storing tx+rx MIC keys
949		 * in one cache slot automatically enable use.
950		 */
951		if (ath_hal_hastkipsplit(ah) ||
952		    !ath_hal_settkipsplit(ah, AH_FALSE))
953			sc->sc_splitmic = 1;
954		/*
955		 * If the h/w can do TKIP MIC together with WME then
956		 * we use it; otherwise we force the MIC to be done
957		 * in software by the net80211 layer.
958		 */
959		if (ath_hal_haswmetkipmic(ah))
960			sc->sc_wmetkipmic = 1;
961	}
962	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
963	/*
964	 * Check for multicast key search support.
965	 */
966	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
967	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
968		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
969	}
970	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
971	/*
972	 * Mark key cache slots associated with global keys
973	 * as in use.  If we knew TKIP was not to be used we
974	 * could leave the +32, +64, and +32+64 slots free.
975	 */
976	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
977		setbit(sc->sc_keymap, i);
978		setbit(sc->sc_keymap, i+64);
979		if (sc->sc_splitmic) {
980			setbit(sc->sc_keymap, i+32);
981			setbit(sc->sc_keymap, i+32+64);
982		}
983	}
984	/*
985	 * TPC support can be done either with a global cap or
986	 * per-packet support.  The latter is not available on
987	 * all parts.  We're a bit pedantic here as all parts
988	 * support a global cap.
989	 */
990	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
991		ic->ic_caps |= IEEE80211_C_TXPMGT;
992
993	/*
994	 * Mark WME capability only if we have sufficient
995	 * hardware queues to do proper priority scheduling.
996	 */
997	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
998		ic->ic_caps |= IEEE80211_C_WME;
999	/*
1000	 * Check for misc other capabilities.
1001	 */
1002	if (ath_hal_hasbursting(ah))
1003		ic->ic_caps |= IEEE80211_C_BURST;
1004	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
1005	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
1006	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
1007	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
1008
1009	/* XXX TODO: just make this a "store tx/rx timestamp length" operation */
1010	if (ath_hal_get_rx_tsf_prec(ah, &i)) {
1011		if (i == 32) {
1012			sc->sc_rxtsf32 = 1;
1013		}
1014		if (bootverbose)
1015			device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i);
1016	}
1017	if (ath_hal_get_tx_tsf_prec(ah, &i)) {
1018		if (bootverbose)
1019			device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i);
1020	}
1021
1022	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
1023	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
1024	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
1025
1026	/*
1027	 * Some WB335 cards do not support antenna diversity. Since
1028	 * we use a hardcoded value for AR9565 instead of using the
1029	 * EEPROM/OTP data, remove the combining feature from
1030	 * the HW capabilities bitmap.
1031	 */
1032	/*
1033	 * XXX TODO: check reference driver and ath9k for what to do
1034	 * here for WB335.  I think we have to actually disable the
1035	 * LNA div processing in the HAL and instead use the hard
1036	 * coded values; and then use BT diversity.
1037	 *
1038	 * .. but also need to setup MCI too for WB335..
1039	 */
1040#if 0
1041	if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
1042		device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n",
1043		    __func__);
1044		sc->sc_dolnadiv = 0;
1045	}
1046#endif
1047
1048	if (ath_hal_hasfastframes(ah))
1049		ic->ic_caps |= IEEE80211_C_FF;
1050	wmodes = ath_hal_getwirelessmodes(ah);
1051	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
1052		ic->ic_caps |= IEEE80211_C_TURBOP;
1053#ifdef IEEE80211_SUPPORT_TDMA
1054	if (ath_hal_macversion(ah) > 0x78) {
1055		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
1056		ic->ic_tdma_update = ath_tdma_update;
1057	}
1058#endif
1059
1060	/*
1061	 * TODO: enforce that at least this many frames are available
1062	 * in the txbuf list before allowing data frames (raw or
1063	 * otherwise) to be transmitted.
1064	 */
1065	sc->sc_txq_data_minfree = 10;
1066
1067	/*
1068	 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever
1069	 * is smaller.
1070	 *
1071	 * Anything bigger can potentially see the cabq consume
1072	 * almost all buffers, starving everything else, only to
1073	 * see most fail to transmit in the given beacon interval.
1074	 */
1075	sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4);
1076
1077	/*
1078	 * How deep can the node software TX queue get whilst it's asleep.
1079	 */
1080	sc->sc_txq_node_psq_maxdepth = 16;
1081
1082	/*
1083	 * Default the maximum queue to 1/4'th the TX buffers, or
1084	 * 128, whichever is smaller.
1085	 *
1086	 * Set it to 128 instead of the previous default (64) because
1087	 * at 64, two full A-MPDU subframes of 32 frames each is
1088	 * enough to treat this node queue as full and all subsequent
1089	 * traffic is dropped. Setting it to 128 means there'll
1090	 * hopefully be another 64 frames in the software queue
1091	 * to begin making A-MPDU frames out of.
1092	 */
1093	sc->sc_txq_node_maxdepth = MIN(128, ath_txbuf / 4);
1094
1095	/* Enable CABQ by default */
1096	sc->sc_cabq_enable = 1;
1097
1098	/*
1099	 * Allow the TX and RX chainmasks to be overridden by
1100	 * environment variables and/or device.hints.
1101	 *
1102	 * This must be done early - before the hardware is
1103	 * calibrated or before the 802.11n stream calculation
1104	 * is done.
1105	 */
1106	if (resource_int_value(device_get_name(sc->sc_dev),
1107	    device_get_unit(sc->sc_dev), "rx_chainmask",
1108	    &rx_chainmask) == 0) {
1109		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1110		    rx_chainmask);
1111		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1112	}
1113	if (resource_int_value(device_get_name(sc->sc_dev),
1114	    device_get_unit(sc->sc_dev), "tx_chainmask",
1115	    &tx_chainmask) == 0) {
1116		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1117		    tx_chainmask);
1118		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1119	}
1120
1121	/*
1122	 * Query the TX/RX chainmask configuration.
1123	 *
1124	 * This is only relevant for 11n devices.
1125	 */
1126	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1127	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1128
1129	/*
1130	 * Disable MRR with protected frames by default.
1131	 * Only 802.11n series NICs can handle this.
1132	 */
1133	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1134
1135	/*
1136	 * Query the enterprise mode information the HAL.
1137	 */
1138	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1139	    &sc->sc_ent_cfg) == HAL_OK)
1140		sc->sc_use_ent = 1;
1141
1142#ifdef	ATH_ENABLE_11N
1143	/*
1144	 * Query HT capabilities
1145	 */
1146	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1147	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1148		uint32_t rxs, txs;
1149		uint32_t ldpc;
1150
1151		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1152
1153		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1154
1155		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1156			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1157			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1158			    | IEEE80211_HTCAP_MAXAMSDU_3839
1159			    				/* max A-MSDU length */
1160			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1161
1162		/*
1163		 * Enable short-GI for HT20 only if the hardware
1164		 * advertises support.
1165		 * Notably, anything earlier than the AR9287 doesn't.
1166		 */
1167		if ((ath_hal_getcapability(ah,
1168		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1169		    (wmodes & HAL_MODE_HT20)) {
1170			device_printf(sc->sc_dev,
1171			    "[HT] enabling short-GI in 20MHz mode\n");
1172			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1173		}
1174
1175		if (wmodes & HAL_MODE_HT40)
1176			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1177			    |  IEEE80211_HTCAP_SHORTGI40;
1178
1179		/*
1180		 * TX/RX streams need to be taken into account when
1181		 * negotiating which MCS rates it'll receive and
1182		 * what MCS rates are available for TX.
1183		 */
1184		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1185		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1186		ic->ic_txstream = txs;
1187		ic->ic_rxstream = rxs;
1188
1189		/*
1190		 * Setup TX and RX STBC based on what the HAL allows and
1191		 * the currently configured chainmask set.
1192		 * Ie - don't enable STBC TX if only one chain is enabled.
1193		 * STBC RX is fine on a single RX chain; it just won't
1194		 * provide any real benefit.
1195		 */
1196		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1197		    NULL) == HAL_OK) {
1198			sc->sc_rx_stbc = 1;
1199			device_printf(sc->sc_dev,
1200			    "[HT] 1 stream STBC receive enabled\n");
1201			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1202		}
1203		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1204		    NULL) == HAL_OK) {
1205			sc->sc_tx_stbc = 1;
1206			device_printf(sc->sc_dev,
1207			    "[HT] 1 stream STBC transmit enabled\n");
1208			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1209		}
1210
1211		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1212		    &sc->sc_rts_aggr_limit);
1213		if (sc->sc_rts_aggr_limit != (64 * 1024))
1214			device_printf(sc->sc_dev,
1215			    "[HT] RTS aggregates limited to %d KiB\n",
1216			    sc->sc_rts_aggr_limit / 1024);
1217
1218		/*
1219		 * LDPC
1220		 */
1221		if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc))
1222		    == HAL_OK && (ldpc == 1)) {
1223			sc->sc_has_ldpc = 1;
1224			device_printf(sc->sc_dev,
1225			    "[HT] LDPC transmit/receive enabled\n");
1226			ic->ic_htcaps |= IEEE80211_HTCAP_LDPC |
1227					 IEEE80211_HTC_TXLDPC;
1228		}
1229
1230		device_printf(sc->sc_dev,
1231		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1232	}
1233#endif
1234
1235	/*
1236	 * Initial aggregation settings.
1237	 */
1238	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1239	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1240	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1241	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1242	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1243	sc->sc_delim_min_pad = 0;
1244
1245	/*
1246	 * Check if the hardware requires PCI register serialisation.
1247	 * Some of the Owl based MACs require this.
1248	 */
1249	if (mp_ncpus > 1 &&
1250	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1251	     0, NULL) == HAL_OK) {
1252		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1253		device_printf(sc->sc_dev,
1254		    "Enabling register serialisation\n");
1255	}
1256
1257	/*
1258	 * Initialise the deferred completed RX buffer list.
1259	 */
1260	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1261	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1262
1263	/*
1264	 * Indicate we need the 802.11 header padded to a
1265	 * 32-bit boundary for 4-address and QoS frames.
1266	 */
1267	ic->ic_flags |= IEEE80211_F_DATAPAD;
1268
1269	/*
1270	 * Query the hal about antenna support.
1271	 */
1272	sc->sc_defant = ath_hal_getdefantenna(ah);
1273
1274	/*
1275	 * Not all chips have the VEOL support we want to
1276	 * use with IBSS beacons; check here for it.
1277	 */
1278	sc->sc_hasveol = ath_hal_hasveol(ah);
1279
1280	/* get mac address from kenv first, then hardware */
1281	if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
1282		/* Tell the HAL now about the new MAC */
1283		ath_hal_setmac(ah, ic->ic_macaddr);
1284	} else {
1285		ath_hal_getmac(ah, ic->ic_macaddr);
1286	}
1287
1288	if (sc->sc_hasbmask)
1289		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1290
1291	/* NB: used to size node table key mapping array */
1292	ic->ic_max_keyix = sc->sc_keymax;
1293	/* call MI attach routine. */
1294	ieee80211_ifattach(ic);
1295	ic->ic_setregdomain = ath_setregdomain;
1296	ic->ic_getradiocaps = ath_getradiocaps;
1297	sc->sc_opmode = HAL_M_STA;
1298
1299	/* override default methods */
1300	ic->ic_ioctl = ath_ioctl;
1301	ic->ic_parent = ath_parent;
1302	ic->ic_transmit = ath_transmit;
1303	ic->ic_newassoc = ath_newassoc;
1304	ic->ic_updateslot = ath_updateslot;
1305	ic->ic_wme.wme_update = ath_wme_update;
1306	ic->ic_vap_create = ath_vap_create;
1307	ic->ic_vap_delete = ath_vap_delete;
1308	ic->ic_raw_xmit = ath_raw_xmit;
1309	ic->ic_update_mcast = ath_update_mcast;
1310	ic->ic_update_promisc = ath_update_promisc;
1311	ic->ic_node_alloc = ath_node_alloc;
1312	sc->sc_node_free = ic->ic_node_free;
1313	ic->ic_node_free = ath_node_free;
1314	sc->sc_node_cleanup = ic->ic_node_cleanup;
1315	ic->ic_node_cleanup = ath_node_cleanup;
1316	ic->ic_node_getsignal = ath_node_getsignal;
1317	ic->ic_scan_start = ath_scan_start;
1318	ic->ic_scan_end = ath_scan_end;
1319	ic->ic_set_channel = ath_set_channel;
1320#ifdef	ATH_ENABLE_11N
1321	/* 802.11n specific - but just override anyway */
1322	sc->sc_addba_request = ic->ic_addba_request;
1323	sc->sc_addba_response = ic->ic_addba_response;
1324	sc->sc_addba_stop = ic->ic_addba_stop;
1325	sc->sc_bar_response = ic->ic_bar_response;
1326	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1327
1328	ic->ic_addba_request = ath_addba_request;
1329	ic->ic_addba_response = ath_addba_response;
1330	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1331	ic->ic_addba_stop = ath_addba_stop;
1332	ic->ic_bar_response = ath_bar_response;
1333
1334	ic->ic_update_chw = ath_update_chw;
1335#endif	/* ATH_ENABLE_11N */
1336	ic->ic_set_quiet = ath_set_quiet_ie;
1337
1338#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1339	/*
1340	 * There's one vendor bitmap entry in the RX radiotap
1341	 * header; make sure that's taken into account.
1342	 */
1343	ieee80211_radiotap_attachv(ic,
1344	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1345		ATH_TX_RADIOTAP_PRESENT,
1346	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1347		ATH_RX_RADIOTAP_PRESENT);
1348#else
1349	/*
1350	 * No vendor bitmap/extensions are present.
1351	 */
1352	ieee80211_radiotap_attach(ic,
1353	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1354		ATH_TX_RADIOTAP_PRESENT,
1355	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1356		ATH_RX_RADIOTAP_PRESENT);
1357#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1358
1359	/*
1360	 * Setup the ALQ logging if required
1361	 */
1362#ifdef	ATH_DEBUG_ALQ
1363	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1364	if_ath_alq_setcfg(&sc->sc_alq,
1365	    sc->sc_ah->ah_macVersion,
1366	    sc->sc_ah->ah_macRev,
1367	    sc->sc_ah->ah_phyRev,
1368	    sc->sc_ah->ah_magic);
1369#endif
1370
1371	/*
1372	 * Setup dynamic sysctl's now that country code and
1373	 * regdomain are available from the hal.
1374	 */
1375	ath_sysctlattach(sc);
1376	ath_sysctl_stats_attach(sc);
1377	ath_sysctl_hal_attach(sc);
1378
1379	if (bootverbose)
1380		ieee80211_announce(ic);
1381	ath_announce(sc);
1382
1383	/*
1384	 * Put it to sleep for now.
1385	 */
1386	ATH_LOCK(sc);
1387	ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
1388	ATH_UNLOCK(sc);
1389
1390	return 0;
1391bad2:
1392	ath_tx_cleanup(sc);
1393	ath_desc_free(sc);
1394	ath_txdma_teardown(sc);
1395	ath_rxdma_teardown(sc);
1396
1397bad:
1398	if (ah)
1399		ath_hal_detach(ah);
1400	sc->sc_invalid = 1;
1401	return error;
1402}
1403
1404int
1405ath_detach(struct ath_softc *sc)
1406{
1407
1408	/*
1409	 * NB: the order of these is important:
1410	 * o stop the chip so no more interrupts will fire
1411	 * o call the 802.11 layer before detaching the hal to
1412	 *   insure callbacks into the driver to delete global
1413	 *   key cache entries can be handled
1414	 * o free the taskqueue which drains any pending tasks
1415	 * o reclaim the tx queue data structures after calling
1416	 *   the 802.11 layer as we'll get called back to reclaim
1417	 *   node state and potentially want to use them
1418	 * o to cleanup the tx queues the hal is called, so detach
1419	 *   it last
1420	 * Other than that, it's straightforward...
1421	 */
1422
1423	/*
1424	 * XXX Wake the hardware up first.  ath_stop() will still
1425	 * wake it up first, but I'd rather do it here just to
1426	 * ensure it's awake.
1427	 */
1428	ATH_LOCK(sc);
1429	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1430	ath_power_setpower(sc, HAL_PM_AWAKE, 1);
1431
1432	/*
1433	 * Stop things cleanly.
1434	 */
1435	ath_stop(sc);
1436	ATH_UNLOCK(sc);
1437
1438	ieee80211_ifdetach(&sc->sc_ic);
1439	taskqueue_free(sc->sc_tq);
1440#ifdef ATH_TX99_DIAG
1441	if (sc->sc_tx99 != NULL)
1442		sc->sc_tx99->detach(sc->sc_tx99);
1443#endif
1444	ath_rate_detach(sc->sc_rc);
1445#ifdef	ATH_DEBUG_ALQ
1446	if_ath_alq_tidyup(&sc->sc_alq);
1447#endif
1448	ath_lna_div_detach(sc);
1449	ath_btcoex_detach(sc);
1450	ath_spectral_detach(sc);
1451	ath_dfs_detach(sc);
1452	ath_desc_free(sc);
1453	ath_txdma_teardown(sc);
1454	ath_rxdma_teardown(sc);
1455	ath_tx_cleanup(sc);
1456	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1457
1458	return 0;
1459}
1460
1461/*
1462 * MAC address handling for multiple BSS on the same radio.
1463 * The first vap uses the MAC address from the EEPROM.  For
1464 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1465 * address and use the next six bits as an index.
1466 */
1467static void
1468assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1469{
1470	int i;
1471
1472	if (clone && sc->sc_hasbmask) {
1473		/* NB: we only do this if h/w supports multiple bssid */
1474		for (i = 0; i < 8; i++)
1475			if ((sc->sc_bssidmask & (1<<i)) == 0)
1476				break;
1477		if (i != 0)
1478			mac[0] |= (i << 2)|0x2;
1479	} else
1480		i = 0;
1481	sc->sc_bssidmask |= 1<<i;
1482	sc->sc_hwbssidmask[0] &= ~mac[0];
1483	if (i == 0)
1484		sc->sc_nbssid0++;
1485}
1486
1487static void
1488reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1489{
1490	int i = mac[0] >> 2;
1491	uint8_t mask;
1492
1493	if (i != 0 || --sc->sc_nbssid0 == 0) {
1494		sc->sc_bssidmask &= ~(1<<i);
1495		/* recalculate bssid mask from remaining addresses */
1496		mask = 0xff;
1497		for (i = 1; i < 8; i++)
1498			if (sc->sc_bssidmask & (1<<i))
1499				mask &= ~((i<<2)|0x2);
1500		sc->sc_hwbssidmask[0] |= mask;
1501	}
1502}
1503
1504/*
1505 * Assign a beacon xmit slot.  We try to space out
1506 * assignments so when beacons are staggered the
1507 * traffic coming out of the cab q has maximal time
1508 * to go out before the next beacon is scheduled.
1509 */
1510static int
1511assign_bslot(struct ath_softc *sc)
1512{
1513	u_int slot, free;
1514
1515	free = 0;
1516	for (slot = 0; slot < ATH_BCBUF; slot++)
1517		if (sc->sc_bslot[slot] == NULL) {
1518			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1519			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1520				return slot;
1521			free = slot;
1522			/* NB: keep looking for a double slot */
1523		}
1524	return free;
1525}
1526
1527static struct ieee80211vap *
1528ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1529    enum ieee80211_opmode opmode, int flags,
1530    const uint8_t bssid[IEEE80211_ADDR_LEN],
1531    const uint8_t mac0[IEEE80211_ADDR_LEN])
1532{
1533	struct ath_softc *sc = ic->ic_softc;
1534	struct ath_vap *avp;
1535	struct ieee80211vap *vap;
1536	uint8_t mac[IEEE80211_ADDR_LEN];
1537	int needbeacon, error;
1538	enum ieee80211_opmode ic_opmode;
1539
1540	avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1541	needbeacon = 0;
1542	IEEE80211_ADDR_COPY(mac, mac0);
1543
1544	ATH_LOCK(sc);
1545	ic_opmode = opmode;		/* default to opmode of new vap */
1546	switch (opmode) {
1547	case IEEE80211_M_STA:
1548		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1549			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1550			goto bad;
1551		}
1552		if (sc->sc_nvaps) {
1553			/*
1554			 * With multiple vaps we must fall back
1555			 * to s/w beacon miss handling.
1556			 */
1557			flags |= IEEE80211_CLONE_NOBEACONS;
1558		}
1559		if (flags & IEEE80211_CLONE_NOBEACONS) {
1560			/*
1561			 * Station mode w/o beacons are implemented w/ AP mode.
1562			 */
1563			ic_opmode = IEEE80211_M_HOSTAP;
1564		}
1565		break;
1566	case IEEE80211_M_IBSS:
1567		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1568			device_printf(sc->sc_dev,
1569			    "only 1 ibss vap supported\n");
1570			goto bad;
1571		}
1572		needbeacon = 1;
1573		break;
1574	case IEEE80211_M_AHDEMO:
1575#ifdef IEEE80211_SUPPORT_TDMA
1576		if (flags & IEEE80211_CLONE_TDMA) {
1577			if (sc->sc_nvaps != 0) {
1578				device_printf(sc->sc_dev,
1579				    "only 1 tdma vap supported\n");
1580				goto bad;
1581			}
1582			needbeacon = 1;
1583			flags |= IEEE80211_CLONE_NOBEACONS;
1584		}
1585		/* fall thru... */
1586#endif
1587	case IEEE80211_M_MONITOR:
1588		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1589			/*
1590			 * Adopt existing mode.  Adding a monitor or ahdemo
1591			 * vap to an existing configuration is of dubious
1592			 * value but should be ok.
1593			 */
1594			/* XXX not right for monitor mode */
1595			ic_opmode = ic->ic_opmode;
1596		}
1597		break;
1598	case IEEE80211_M_HOSTAP:
1599	case IEEE80211_M_MBSS:
1600		needbeacon = 1;
1601		break;
1602	case IEEE80211_M_WDS:
1603		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1604			device_printf(sc->sc_dev,
1605			    "wds not supported in sta mode\n");
1606			goto bad;
1607		}
1608		/*
1609		 * Silently remove any request for a unique
1610		 * bssid; WDS vap's always share the local
1611		 * mac address.
1612		 */
1613		flags &= ~IEEE80211_CLONE_BSSID;
1614		if (sc->sc_nvaps == 0)
1615			ic_opmode = IEEE80211_M_HOSTAP;
1616		else
1617			ic_opmode = ic->ic_opmode;
1618		break;
1619	default:
1620		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1621		goto bad;
1622	}
1623	/*
1624	 * Check that a beacon buffer is available; the code below assumes it.
1625	 */
1626	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1627		device_printf(sc->sc_dev, "no beacon buffer available\n");
1628		goto bad;
1629	}
1630
1631	/* STA, AHDEMO? */
1632	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) {
1633		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1634		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1635	}
1636
1637	vap = &avp->av_vap;
1638	/* XXX can't hold mutex across if_alloc */
1639	ATH_UNLOCK(sc);
1640	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1641	ATH_LOCK(sc);
1642	if (error != 0) {
1643		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1644		    __func__, error);
1645		goto bad2;
1646	}
1647
1648	/* h/w crypto support */
1649	vap->iv_key_alloc = ath_key_alloc;
1650	vap->iv_key_delete = ath_key_delete;
1651	vap->iv_key_set = ath_key_set;
1652	vap->iv_key_update_begin = ath_key_update_begin;
1653	vap->iv_key_update_end = ath_key_update_end;
1654
1655	/* override various methods */
1656	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1657	vap->iv_recv_mgmt = ath_recv_mgmt;
1658	vap->iv_reset = ath_reset_vap;
1659	vap->iv_update_beacon = ath_beacon_update;
1660	avp->av_newstate = vap->iv_newstate;
1661	vap->iv_newstate = ath_newstate;
1662	avp->av_bmiss = vap->iv_bmiss;
1663	vap->iv_bmiss = ath_bmiss_vap;
1664
1665	avp->av_node_ps = vap->iv_node_ps;
1666	vap->iv_node_ps = ath_node_powersave;
1667
1668	avp->av_set_tim = vap->iv_set_tim;
1669	vap->iv_set_tim = ath_node_set_tim;
1670
1671	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1672	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1673
1674	/* Set default parameters */
1675
1676	/*
1677	 * Anything earlier than some AR9300 series MACs don't
1678	 * support a smaller MPDU density.
1679	 */
1680	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1681	/*
1682	 * All NICs can handle the maximum size, however
1683	 * AR5416 based MACs can only TX aggregates w/ RTS
1684	 * protection when the total aggregate size is <= 8k.
1685	 * However, for now that's enforced by the TX path.
1686	 */
1687	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1688	vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1689
1690	avp->av_bslot = -1;
1691	if (needbeacon) {
1692		/*
1693		 * Allocate beacon state and setup the q for buffered
1694		 * multicast frames.  We know a beacon buffer is
1695		 * available because we checked above.
1696		 */
1697		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1698		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1699		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1700			/*
1701			 * Assign the vap to a beacon xmit slot.  As above
1702			 * this cannot fail to find a free one.
1703			 */
1704			avp->av_bslot = assign_bslot(sc);
1705			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1706			    ("beacon slot %u not empty", avp->av_bslot));
1707			sc->sc_bslot[avp->av_bslot] = vap;
1708			sc->sc_nbcnvaps++;
1709		}
1710		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1711			/*
1712			 * Multple vaps are to transmit beacons and we
1713			 * have h/w support for TSF adjusting; enable
1714			 * use of staggered beacons.
1715			 */
1716			sc->sc_stagbeacons = 1;
1717		}
1718		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1719	}
1720
1721	ic->ic_opmode = ic_opmode;
1722	if (opmode != IEEE80211_M_WDS) {
1723		sc->sc_nvaps++;
1724		if (opmode == IEEE80211_M_STA)
1725			sc->sc_nstavaps++;
1726		if (opmode == IEEE80211_M_MBSS)
1727			sc->sc_nmeshvaps++;
1728	}
1729	switch (ic_opmode) {
1730	case IEEE80211_M_IBSS:
1731		sc->sc_opmode = HAL_M_IBSS;
1732		break;
1733	case IEEE80211_M_STA:
1734		sc->sc_opmode = HAL_M_STA;
1735		break;
1736	case IEEE80211_M_AHDEMO:
1737#ifdef IEEE80211_SUPPORT_TDMA
1738		if (vap->iv_caps & IEEE80211_C_TDMA) {
1739			sc->sc_tdma = 1;
1740			/* NB: disable tsf adjust */
1741			sc->sc_stagbeacons = 0;
1742		}
1743		/*
1744		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1745		 * just ap mode.
1746		 */
1747		/* fall thru... */
1748#endif
1749	case IEEE80211_M_HOSTAP:
1750	case IEEE80211_M_MBSS:
1751		sc->sc_opmode = HAL_M_HOSTAP;
1752		break;
1753	case IEEE80211_M_MONITOR:
1754		sc->sc_opmode = HAL_M_MONITOR;
1755		break;
1756	default:
1757		/* XXX should not happen */
1758		break;
1759	}
1760	if (sc->sc_hastsfadd) {
1761		/*
1762		 * Configure whether or not TSF adjust should be done.
1763		 */
1764		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1765	}
1766	if (flags & IEEE80211_CLONE_NOBEACONS) {
1767		/*
1768		 * Enable s/w beacon miss handling.
1769		 */
1770		sc->sc_swbmiss = 1;
1771	}
1772	ATH_UNLOCK(sc);
1773
1774	/* complete setup */
1775	ieee80211_vap_attach(vap, ieee80211_media_change,
1776	    ieee80211_media_status, mac);
1777	return vap;
1778bad2:
1779	reclaim_address(sc, mac);
1780	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1781bad:
1782	free(avp, M_80211_VAP);
1783	ATH_UNLOCK(sc);
1784	return NULL;
1785}
1786
1787static void
1788ath_vap_delete(struct ieee80211vap *vap)
1789{
1790	struct ieee80211com *ic = vap->iv_ic;
1791	struct ath_softc *sc = ic->ic_softc;
1792	struct ath_hal *ah = sc->sc_ah;
1793	struct ath_vap *avp = ATH_VAP(vap);
1794
1795	ATH_LOCK(sc);
1796	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1797	ATH_UNLOCK(sc);
1798
1799	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1800	if (sc->sc_running) {
1801		/*
1802		 * Quiesce the hardware while we remove the vap.  In
1803		 * particular we need to reclaim all references to
1804		 * the vap state by any frames pending on the tx queues.
1805		 */
1806		ath_hal_intrset(ah, 0);		/* disable interrupts */
1807		/* XXX Do all frames from all vaps/nodes need draining here? */
1808		ath_stoprecv(sc, 1);		/* stop recv side */
1809		ath_rx_flush(sc);
1810		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1811	}
1812
1813	/* .. leave the hardware awake for now. */
1814
1815	ieee80211_vap_detach(vap);
1816
1817	/*
1818	 * XXX Danger Will Robinson! Danger!
1819	 *
1820	 * Because ieee80211_vap_detach() can queue a frame (the station
1821	 * diassociate message?) after we've drained the TXQ and
1822	 * flushed the software TXQ, we will end up with a frame queued
1823	 * to a node whose vap is about to be freed.
1824	 *
1825	 * To work around this, flush the hardware/software again.
1826	 * This may be racy - the ath task may be running and the packet
1827	 * may be being scheduled between sw->hw txq. Tsk.
1828	 *
1829	 * TODO: figure out why a new node gets allocated somewhere around
1830	 * here (after the ath_tx_swq() call; and after an ath_stop()
1831	 * call!)
1832	 */
1833
1834	ath_draintxq(sc, ATH_RESET_DEFAULT);
1835
1836	ATH_LOCK(sc);
1837	/*
1838	 * Reclaim beacon state.  Note this must be done before
1839	 * the vap instance is reclaimed as we may have a reference
1840	 * to it in the buffer for the beacon frame.
1841	 */
1842	if (avp->av_bcbuf != NULL) {
1843		if (avp->av_bslot != -1) {
1844			sc->sc_bslot[avp->av_bslot] = NULL;
1845			sc->sc_nbcnvaps--;
1846		}
1847		ath_beacon_return(sc, avp->av_bcbuf);
1848		avp->av_bcbuf = NULL;
1849		if (sc->sc_nbcnvaps == 0) {
1850			sc->sc_stagbeacons = 0;
1851			if (sc->sc_hastsfadd)
1852				ath_hal_settsfadjust(sc->sc_ah, 0);
1853		}
1854		/*
1855		 * Reclaim any pending mcast frames for the vap.
1856		 */
1857		ath_tx_draintxq(sc, &avp->av_mcastq);
1858	}
1859	/*
1860	 * Update bookkeeping.
1861	 */
1862	if (vap->iv_opmode == IEEE80211_M_STA) {
1863		sc->sc_nstavaps--;
1864		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1865			sc->sc_swbmiss = 0;
1866	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1867	    vap->iv_opmode == IEEE80211_M_STA ||
1868	    vap->iv_opmode == IEEE80211_M_MBSS) {
1869		reclaim_address(sc, vap->iv_myaddr);
1870		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1871		if (vap->iv_opmode == IEEE80211_M_MBSS)
1872			sc->sc_nmeshvaps--;
1873	}
1874	if (vap->iv_opmode != IEEE80211_M_WDS)
1875		sc->sc_nvaps--;
1876#ifdef IEEE80211_SUPPORT_TDMA
1877	/* TDMA operation ceases when the last vap is destroyed */
1878	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1879		sc->sc_tdma = 0;
1880		sc->sc_swbmiss = 0;
1881	}
1882#endif
1883	free(avp, M_80211_VAP);
1884
1885	if (sc->sc_running) {
1886		/*
1887		 * Restart rx+tx machines if still running (RUNNING will
1888		 * be reset if we just destroyed the last vap).
1889		 */
1890		if (ath_startrecv(sc) != 0)
1891			device_printf(sc->sc_dev,
1892			    "%s: unable to restart recv logic\n", __func__);
1893		if (sc->sc_beacons) {		/* restart beacons */
1894#ifdef IEEE80211_SUPPORT_TDMA
1895			if (sc->sc_tdma)
1896				ath_tdma_config(sc, NULL);
1897			else
1898#endif
1899				ath_beacon_config(sc, NULL);
1900		}
1901		ath_hal_intrset(ah, sc->sc_imask);
1902	}
1903
1904	/* Ok, let the hardware asleep. */
1905	ath_power_restore_power_state(sc);
1906	ATH_UNLOCK(sc);
1907}
1908
1909void
1910ath_suspend(struct ath_softc *sc)
1911{
1912	struct ieee80211com *ic = &sc->sc_ic;
1913
1914	sc->sc_resume_up = ic->ic_nrunning != 0;
1915
1916	ieee80211_suspend_all(ic);
1917	/*
1918	 * NB: don't worry about putting the chip in low power
1919	 * mode; pci will power off our socket on suspend and
1920	 * CardBus detaches the device.
1921	 *
1922	 * XXX TODO: well, that's great, except for non-cardbus
1923	 * devices!
1924	 */
1925
1926	/*
1927	 * XXX This doesn't wait until all pending taskqueue
1928	 * items and parallel transmit/receive/other threads
1929	 * are running!
1930	 */
1931	ath_hal_intrset(sc->sc_ah, 0);
1932	taskqueue_block(sc->sc_tq);
1933
1934	ATH_LOCK(sc);
1935	callout_stop(&sc->sc_cal_ch);
1936	ATH_UNLOCK(sc);
1937
1938	/*
1939	 * XXX ensure sc_invalid is 1
1940	 */
1941
1942	/* Disable the PCIe PHY, complete with workarounds */
1943	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1944}
1945
1946/*
1947 * Reset the key cache since some parts do not reset the
1948 * contents on resume.  First we clear all entries, then
1949 * re-load keys that the 802.11 layer assumes are setup
1950 * in h/w.
1951 */
1952static void
1953ath_reset_keycache(struct ath_softc *sc)
1954{
1955	struct ieee80211com *ic = &sc->sc_ic;
1956	struct ath_hal *ah = sc->sc_ah;
1957	int i;
1958
1959	ATH_LOCK(sc);
1960	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1961	for (i = 0; i < sc->sc_keymax; i++)
1962		ath_hal_keyreset(ah, i);
1963	ath_power_restore_power_state(sc);
1964	ATH_UNLOCK(sc);
1965	ieee80211_crypto_reload_keys(ic);
1966}
1967
1968/*
1969 * Fetch the current chainmask configuration based on the current
1970 * operating channel and options.
1971 */
1972static void
1973ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1974{
1975
1976	/*
1977	 * Set TX chainmask to the currently configured chainmask;
1978	 * the TX chainmask depends upon the current operating mode.
1979	 */
1980	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1981	if (IEEE80211_IS_CHAN_HT(chan)) {
1982		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1983	} else {
1984		sc->sc_cur_txchainmask = 1;
1985	}
1986
1987	DPRINTF(sc, ATH_DEBUG_RESET,
1988	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1989	    __func__,
1990	    sc->sc_cur_txchainmask,
1991	    sc->sc_cur_rxchainmask);
1992}
1993
1994void
1995ath_resume(struct ath_softc *sc)
1996{
1997	struct ieee80211com *ic = &sc->sc_ic;
1998	struct ath_hal *ah = sc->sc_ah;
1999	HAL_STATUS status;
2000
2001	ath_hal_enablepcie(ah, 0, 0);
2002
2003	/*
2004	 * Must reset the chip before we reload the
2005	 * keycache as we were powered down on suspend.
2006	 */
2007	ath_update_chainmasks(sc,
2008	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
2009	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2010	    sc->sc_cur_rxchainmask);
2011
2012	/* Ensure we set the current power state to on */
2013	ATH_LOCK(sc);
2014	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2015	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2016	ath_power_setpower(sc, HAL_PM_AWAKE, 1);
2017	ATH_UNLOCK(sc);
2018
2019	ath_hal_reset(ah, sc->sc_opmode,
2020	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
2021	    AH_FALSE, HAL_RESET_NORMAL, &status);
2022	ath_reset_keycache(sc);
2023
2024	ATH_RX_LOCK(sc);
2025	sc->sc_rx_stopped = 1;
2026	sc->sc_rx_resetted = 1;
2027	ATH_RX_UNLOCK(sc);
2028
2029	/* Let DFS at it in case it's a DFS channel */
2030	ath_dfs_radar_enable(sc, ic->ic_curchan);
2031
2032	/* Let spectral at in case spectral is enabled */
2033	ath_spectral_enable(sc, ic->ic_curchan);
2034
2035	/*
2036	 * Let bluetooth coexistence at in case it's needed for this channel
2037	 */
2038	ath_btcoex_enable(sc, ic->ic_curchan);
2039
2040	/*
2041	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2042	 * support it.
2043	 */
2044	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2045		ath_hal_setenforcetxop(sc->sc_ah, 1);
2046	else
2047		ath_hal_setenforcetxop(sc->sc_ah, 0);
2048
2049	/* Restore the LED configuration */
2050	ath_led_config(sc);
2051	ath_hal_setledstate(ah, HAL_LED_INIT);
2052
2053	if (sc->sc_resume_up)
2054		ieee80211_resume_all(ic);
2055
2056	ATH_LOCK(sc);
2057	ath_power_restore_power_state(sc);
2058	ATH_UNLOCK(sc);
2059
2060	/* XXX beacons ? */
2061}
2062
2063void
2064ath_shutdown(struct ath_softc *sc)
2065{
2066
2067	ATH_LOCK(sc);
2068	ath_stop(sc);
2069	ATH_UNLOCK(sc);
2070	/* NB: no point powering down chip as we're about to reboot */
2071}
2072
2073/*
2074 * Interrupt handler.  Most of the actual processing is deferred.
2075 */
2076void
2077ath_intr(void *arg)
2078{
2079	struct ath_softc *sc = arg;
2080	struct ath_hal *ah = sc->sc_ah;
2081	HAL_INT status = 0;
2082	uint32_t txqs;
2083
2084	/*
2085	 * If we're inside a reset path, just print a warning and
2086	 * clear the ISR. The reset routine will finish it for us.
2087	 */
2088	ATH_PCU_LOCK(sc);
2089	if (sc->sc_inreset_cnt) {
2090		HAL_INT status;
2091		ath_hal_getisr(ah, &status);	/* clear ISR */
2092		ath_hal_intrset(ah, 0);		/* disable further intr's */
2093		DPRINTF(sc, ATH_DEBUG_ANY,
2094		    "%s: in reset, ignoring: status=0x%x\n",
2095		    __func__, status);
2096		ATH_PCU_UNLOCK(sc);
2097		return;
2098	}
2099
2100	if (sc->sc_invalid) {
2101		/*
2102		 * The hardware is not ready/present, don't touch anything.
2103		 * Note this can happen early on if the IRQ is shared.
2104		 */
2105		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2106		ATH_PCU_UNLOCK(sc);
2107		return;
2108	}
2109	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2110		ATH_PCU_UNLOCK(sc);
2111		return;
2112	}
2113
2114	ATH_LOCK(sc);
2115	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2116	ATH_UNLOCK(sc);
2117
2118	if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
2119		HAL_INT status;
2120
2121		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
2122		    __func__, sc->sc_ic.ic_nrunning, sc->sc_running);
2123		ath_hal_getisr(ah, &status);	/* clear ISR */
2124		ath_hal_intrset(ah, 0);		/* disable further intr's */
2125		ATH_PCU_UNLOCK(sc);
2126
2127		ATH_LOCK(sc);
2128		ath_power_restore_power_state(sc);
2129		ATH_UNLOCK(sc);
2130		return;
2131	}
2132
2133	/*
2134	 * Figure out the reason(s) for the interrupt.  Note
2135	 * that the hal returns a pseudo-ISR that may include
2136	 * bits we haven't explicitly enabled so we mask the
2137	 * value to insure we only process bits we requested.
2138	 */
2139	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2140	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2141	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2142#ifdef	ATH_DEBUG_ALQ
2143	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2144	    ah->ah_syncstate);
2145#endif	/* ATH_DEBUG_ALQ */
2146#ifdef	ATH_KTR_INTR_DEBUG
2147	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2148	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2149	    ah->ah_intrstate[0],
2150	    ah->ah_intrstate[1],
2151	    ah->ah_intrstate[2],
2152	    ah->ah_intrstate[3],
2153	    ah->ah_intrstate[6]);
2154#endif
2155
2156	/* Squirrel away SYNC interrupt debugging */
2157	if (ah->ah_syncstate != 0) {
2158		int i;
2159		for (i = 0; i < 32; i++)
2160			if (ah->ah_syncstate & (1 << i))
2161				sc->sc_intr_stats.sync_intr[i]++;
2162	}
2163
2164	status &= sc->sc_imask;			/* discard unasked for bits */
2165
2166	/* Short-circuit un-handled interrupts */
2167	if (status == 0x0) {
2168		ATH_PCU_UNLOCK(sc);
2169
2170		ATH_LOCK(sc);
2171		ath_power_restore_power_state(sc);
2172		ATH_UNLOCK(sc);
2173
2174		return;
2175	}
2176
2177	/*
2178	 * Take a note that we're inside the interrupt handler, so
2179	 * the reset routines know to wait.
2180	 */
2181	sc->sc_intr_cnt++;
2182	ATH_PCU_UNLOCK(sc);
2183
2184	/*
2185	 * Handle the interrupt. We won't run concurrent with the reset
2186	 * or channel change routines as they'll wait for sc_intr_cnt
2187	 * to be 0 before continuing.
2188	 */
2189	if (status & HAL_INT_FATAL) {
2190		sc->sc_stats.ast_hardware++;
2191		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2192		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2193	} else {
2194		if (status & HAL_INT_SWBA) {
2195			/*
2196			 * Software beacon alert--time to send a beacon.
2197			 * Handle beacon transmission directly; deferring
2198			 * this is too slow to meet timing constraints
2199			 * under load.
2200			 */
2201#ifdef IEEE80211_SUPPORT_TDMA
2202			if (sc->sc_tdma) {
2203				if (sc->sc_tdmaswba == 0) {
2204					struct ieee80211com *ic = &sc->sc_ic;
2205					struct ieee80211vap *vap =
2206					    TAILQ_FIRST(&ic->ic_vaps);
2207					ath_tdma_beacon_send(sc, vap);
2208					sc->sc_tdmaswba =
2209					    vap->iv_tdma->tdma_bintval;
2210				} else
2211					sc->sc_tdmaswba--;
2212			} else
2213#endif
2214			{
2215				ath_beacon_proc(sc, 0);
2216#ifdef IEEE80211_SUPPORT_SUPERG
2217				/*
2218				 * Schedule the rx taskq in case there's no
2219				 * traffic so any frames held on the staging
2220				 * queue are aged and potentially flushed.
2221				 */
2222				sc->sc_rx.recv_sched(sc, 1);
2223#endif
2224			}
2225		}
2226		if (status & HAL_INT_RXEOL) {
2227			int imask;
2228			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2229			if (! sc->sc_isedma) {
2230				ATH_PCU_LOCK(sc);
2231				/*
2232				 * NB: the hardware should re-read the link when
2233				 *     RXE bit is written, but it doesn't work at
2234				 *     least on older hardware revs.
2235				 */
2236				sc->sc_stats.ast_rxeol++;
2237				/*
2238				 * Disable RXEOL/RXORN - prevent an interrupt
2239				 * storm until the PCU logic can be reset.
2240				 * In case the interface is reset some other
2241				 * way before "sc_kickpcu" is called, don't
2242				 * modify sc_imask - that way if it is reset
2243				 * by a call to ath_reset() somehow, the
2244				 * interrupt mask will be correctly reprogrammed.
2245				 */
2246				imask = sc->sc_imask;
2247				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2248				ath_hal_intrset(ah, imask);
2249				/*
2250				 * Only blank sc_rxlink if we've not yet kicked
2251				 * the PCU.
2252				 *
2253				 * This isn't entirely correct - the correct solution
2254				 * would be to have a PCU lock and engage that for
2255				 * the duration of the PCU fiddling; which would include
2256				 * running the RX process. Otherwise we could end up
2257				 * messing up the RX descriptor chain and making the
2258				 * RX desc list much shorter.
2259				 */
2260				if (! sc->sc_kickpcu)
2261					sc->sc_rxlink = NULL;
2262				sc->sc_kickpcu = 1;
2263				ATH_PCU_UNLOCK(sc);
2264			}
2265			/*
2266			 * Enqueue an RX proc to handle whatever
2267			 * is in the RX queue.
2268			 * This will then kick the PCU if required.
2269			 */
2270			sc->sc_rx.recv_sched(sc, 1);
2271		}
2272		if (status & HAL_INT_TXURN) {
2273			sc->sc_stats.ast_txurn++;
2274			/* bump tx trigger level */
2275			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2276		}
2277		/*
2278		 * Handle both the legacy and RX EDMA interrupt bits.
2279		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2280		 */
2281		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2282			sc->sc_stats.ast_rx_intr++;
2283			sc->sc_rx.recv_sched(sc, 1);
2284		}
2285		if (status & HAL_INT_TX) {
2286			sc->sc_stats.ast_tx_intr++;
2287			/*
2288			 * Grab all the currently set bits in the HAL txq bitmap
2289			 * and blank them. This is the only place we should be
2290			 * doing this.
2291			 */
2292			if (! sc->sc_isedma) {
2293				ATH_PCU_LOCK(sc);
2294				txqs = 0xffffffff;
2295				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2296				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2297				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2298				    txqs,
2299				    sc->sc_txq_active,
2300				    sc->sc_txq_active | txqs);
2301				sc->sc_txq_active |= txqs;
2302				ATH_PCU_UNLOCK(sc);
2303			}
2304			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2305		}
2306		if (status & HAL_INT_BMISS) {
2307			sc->sc_stats.ast_bmiss++;
2308			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2309		}
2310		if (status & HAL_INT_GTT)
2311			sc->sc_stats.ast_tx_timeout++;
2312		if (status & HAL_INT_CST)
2313			sc->sc_stats.ast_tx_cst++;
2314		if (status & HAL_INT_MIB) {
2315			sc->sc_stats.ast_mib++;
2316			ATH_PCU_LOCK(sc);
2317			/*
2318			 * Disable interrupts until we service the MIB
2319			 * interrupt; otherwise it will continue to fire.
2320			 */
2321			ath_hal_intrset(ah, 0);
2322			/*
2323			 * Let the hal handle the event.  We assume it will
2324			 * clear whatever condition caused the interrupt.
2325			 */
2326			ath_hal_mibevent(ah, &sc->sc_halstats);
2327			/*
2328			 * Don't reset the interrupt if we've just
2329			 * kicked the PCU, or we may get a nested
2330			 * RXEOL before the rxproc has had a chance
2331			 * to run.
2332			 */
2333			if (sc->sc_kickpcu == 0)
2334				ath_hal_intrset(ah, sc->sc_imask);
2335			ATH_PCU_UNLOCK(sc);
2336		}
2337		if (status & HAL_INT_RXORN) {
2338			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2339			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2340			sc->sc_stats.ast_rxorn++;
2341		}
2342		if (status & HAL_INT_TSFOOR) {
2343			/*
2344			 * out of range beacon - wake the chip up,
2345			 * but don't modify self-gen frame config.
2346			 * Do a full reset to clear any potential stuck
2347			 * PHY/MAC that generated this condition.
2348			 */
2349			sc->sc_stats.ast_tsfoor++;
2350			ATH_LOCK(sc);
2351			ath_power_setpower(sc, HAL_PM_AWAKE, 0);
2352			ATH_UNLOCK(sc);
2353			taskqueue_enqueue(sc->sc_tq, &sc->sc_tsfoortask);
2354			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2355		}
2356		if (status & HAL_INT_MCI) {
2357			ath_btcoex_mci_intr(sc);
2358		}
2359	}
2360	ATH_PCU_LOCK(sc);
2361	sc->sc_intr_cnt--;
2362	ATH_PCU_UNLOCK(sc);
2363
2364	ATH_LOCK(sc);
2365	ath_power_restore_power_state(sc);
2366	ATH_UNLOCK(sc);
2367}
2368
2369static void
2370ath_fatal_proc(void *arg, int pending)
2371{
2372	struct ath_softc *sc = arg;
2373	u_int32_t *state;
2374	u_int32_t len;
2375	void *sp;
2376
2377	if (sc->sc_invalid)
2378		return;
2379
2380	device_printf(sc->sc_dev, "hardware error; resetting\n");
2381	/*
2382	 * Fatal errors are unrecoverable.  Typically these
2383	 * are caused by DMA errors.  Collect h/w state from
2384	 * the hal so we can diagnose what's going on.
2385	 */
2386	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2387		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2388		state = sp;
2389		device_printf(sc->sc_dev,
2390		    "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
2391		    state[1] , state[2], state[3], state[4], state[5]);
2392	}
2393	ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2394}
2395
2396static void
2397ath_bmiss_vap(struct ieee80211vap *vap)
2398{
2399	struct ath_softc *sc = vap->iv_ic->ic_softc;
2400
2401	/*
2402	 * Workaround phantom bmiss interrupts by sanity-checking
2403	 * the time of our last rx'd frame.  If it is within the
2404	 * beacon miss interval then ignore the interrupt.  If it's
2405	 * truly a bmiss we'll get another interrupt soon and that'll
2406	 * be dispatched up for processing.  Note this applies only
2407	 * for h/w beacon miss events.
2408	 */
2409
2410	/*
2411	 * XXX TODO: Just read the TSF during the interrupt path;
2412	 * that way we don't have to wake up again just to read it
2413	 * again.
2414	 */
2415	ATH_LOCK(sc);
2416	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2417	ATH_UNLOCK(sc);
2418
2419	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2420		u_int64_t lastrx = sc->sc_lastrx;
2421		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2422		/* XXX should take a locked ref to iv_bss */
2423		u_int bmisstimeout =
2424			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2425
2426		DPRINTF(sc, ATH_DEBUG_BEACON,
2427		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2428		    __func__, (unsigned long long) tsf,
2429		    (unsigned long long)(tsf - lastrx),
2430		    (unsigned long long) lastrx, bmisstimeout);
2431
2432		if (tsf - lastrx <= bmisstimeout) {
2433			sc->sc_stats.ast_bmiss_phantom++;
2434
2435			ATH_LOCK(sc);
2436			ath_power_restore_power_state(sc);
2437			ATH_UNLOCK(sc);
2438
2439			return;
2440		}
2441	}
2442
2443	/*
2444	 * Keep the hardware awake if it's asleep (and leave self-gen
2445	 * frame config alone) until the next beacon, so we can resync
2446	 * against the next beacon.
2447	 *
2448	 * This handles three common beacon miss cases in STA powersave mode -
2449	 * (a) the beacon TBTT isnt a multiple of bintval;
2450	 * (b) the beacon was missed; and
2451	 * (c) the beacons are being delayed because the AP is busy and
2452	 *     isn't reliably able to meet its TBTT.
2453	 */
2454	ATH_LOCK(sc);
2455	ath_power_setpower(sc, HAL_PM_AWAKE, 0);
2456	ath_power_restore_power_state(sc);
2457	ATH_UNLOCK(sc);
2458
2459	DPRINTF(sc, ATH_DEBUG_BEACON,
2460	    "%s: forced awake; force syncbeacon=1\n", __func__);
2461	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2462		/*
2463		 * Attempt to force a beacon resync.
2464		 */
2465		sc->sc_syncbeacon = 1;
2466	}
2467
2468	ATH_VAP(vap)->av_bmiss(vap);
2469}
2470
2471/* XXX this needs a force wakeup! */
2472int
2473ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2474{
2475	uint32_t rsize;
2476	void *sp;
2477
2478	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2479		return 0;
2480	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2481	*hangs = *(uint32_t *)sp;
2482	return 1;
2483}
2484
2485static void
2486ath_bmiss_proc(void *arg, int pending)
2487{
2488	struct ath_softc *sc = arg;
2489	uint32_t hangs;
2490
2491	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2492
2493	ATH_LOCK(sc);
2494	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2495	ATH_UNLOCK(sc);
2496
2497	ath_beacon_miss(sc);
2498
2499	/*
2500	 * Do a reset upon any beacon miss event.
2501	 *
2502	 * It may be a non-recognised RX clear hang which needs a reset
2503	 * to clear.
2504	 */
2505	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2506		ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC);
2507		device_printf(sc->sc_dev,
2508		    "bb hang detected (0x%x), resetting\n", hangs);
2509	} else {
2510		ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2511		ieee80211_beacon_miss(&sc->sc_ic);
2512	}
2513
2514	/* Force a beacon resync, in case they've drifted */
2515	sc->sc_syncbeacon = 1;
2516
2517	ATH_LOCK(sc);
2518	ath_power_restore_power_state(sc);
2519	ATH_UNLOCK(sc);
2520}
2521
2522/*
2523 * Handle a TSF out of range interrupt in STA mode.
2524 *
2525 * This may be due to a partially deaf looking radio, so
2526 * do a full reset just in case it is indeed deaf and
2527 * resync the beacon.
2528 */
2529static void
2530ath_tsfoor_proc(void *arg, int pending)
2531{
2532	struct ath_softc *sc = arg;
2533
2534	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2535
2536	ATH_LOCK(sc);
2537	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2538	ATH_UNLOCK(sc);
2539
2540	/*
2541	 * Do a full reset after any TSFOOR.  It's possible that
2542	 * we've gone deaf or partially deaf (eg due to calibration
2543	 * failures) and this should clean things up a bit.
2544	 */
2545	ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2546
2547	/* Force a beacon resync, in case they've drifted */
2548	sc->sc_syncbeacon = 1;
2549
2550	ATH_LOCK(sc);
2551	ath_power_restore_power_state(sc);
2552	ATH_UNLOCK(sc);
2553}
2554
2555/*
2556 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2557 * calcs together with WME.  If necessary disable the crypto
2558 * hardware and mark the 802.11 state so keys will be setup
2559 * with the MIC work done in software.
2560 */
2561static void
2562ath_settkipmic(struct ath_softc *sc)
2563{
2564	struct ieee80211com *ic = &sc->sc_ic;
2565
2566	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2567		if (ic->ic_flags & IEEE80211_F_WME) {
2568			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2569			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2570		} else {
2571			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2572			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2573		}
2574	}
2575}
2576
2577static void
2578ath_vap_clear_quiet_ie(struct ath_softc *sc)
2579{
2580	struct ieee80211com *ic = &sc->sc_ic;
2581	struct ieee80211vap *vap;
2582	struct ath_vap *avp;
2583
2584	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2585		avp = ATH_VAP(vap);
2586		/* Quiet time handling - ensure we resync */
2587		memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
2588	}
2589}
2590
2591static int
2592ath_init(struct ath_softc *sc)
2593{
2594	struct ieee80211com *ic = &sc->sc_ic;
2595	struct ath_hal *ah = sc->sc_ah;
2596	HAL_STATUS status;
2597
2598	ATH_LOCK_ASSERT(sc);
2599
2600	/*
2601	 * Force the sleep state awake.
2602	 */
2603	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2604	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2605	ath_power_setpower(sc, HAL_PM_AWAKE, 1);
2606
2607	/*
2608	 * Stop anything previously setup.  This is safe
2609	 * whether this is the first time through or not.
2610	 */
2611	ath_stop(sc);
2612
2613	/*
2614	 * The basic interface to setting the hardware in a good
2615	 * state is ``reset''.  On return the hardware is known to
2616	 * be powered up and with interrupts disabled.  This must
2617	 * be followed by initialization of the appropriate bits
2618	 * and then setup of the interrupt mask.
2619	 */
2620	ath_settkipmic(sc);
2621	ath_update_chainmasks(sc, ic->ic_curchan);
2622	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2623	    sc->sc_cur_rxchainmask);
2624
2625	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
2626	    HAL_RESET_NORMAL, &status)) {
2627		device_printf(sc->sc_dev,
2628		    "unable to reset hardware; hal status %u\n", status);
2629		return (ENODEV);
2630	}
2631
2632	ATH_RX_LOCK(sc);
2633	sc->sc_rx_stopped = 1;
2634	sc->sc_rx_resetted = 1;
2635	ATH_RX_UNLOCK(sc);
2636
2637	/* Clear quiet IE state for each VAP */
2638	ath_vap_clear_quiet_ie(sc);
2639
2640	ath_chan_change(sc, ic->ic_curchan);
2641
2642	/* Let DFS at it in case it's a DFS channel */
2643	ath_dfs_radar_enable(sc, ic->ic_curchan);
2644
2645	/* Let spectral at in case spectral is enabled */
2646	ath_spectral_enable(sc, ic->ic_curchan);
2647
2648	/*
2649	 * Let bluetooth coexistence at in case it's needed for this channel
2650	 */
2651	ath_btcoex_enable(sc, ic->ic_curchan);
2652
2653	/*
2654	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2655	 * support it.
2656	 */
2657	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2658		ath_hal_setenforcetxop(sc->sc_ah, 1);
2659	else
2660		ath_hal_setenforcetxop(sc->sc_ah, 0);
2661
2662	/*
2663	 * Likewise this is set during reset so update
2664	 * state cached in the driver.
2665	 */
2666	sc->sc_diversity = ath_hal_getdiversity(ah);
2667	sc->sc_lastlongcal = ticks;
2668	sc->sc_resetcal = 1;
2669	sc->sc_lastcalreset = 0;
2670	sc->sc_lastani = ticks;
2671	sc->sc_lastshortcal = ticks;
2672	sc->sc_doresetcal = AH_FALSE;
2673	/*
2674	 * Beacon timers were cleared here; give ath_newstate()
2675	 * a hint that the beacon timers should be poked when
2676	 * things transition to the RUN state.
2677	 */
2678	sc->sc_beacons = 0;
2679
2680	/*
2681	 * Setup the hardware after reset: the key cache
2682	 * is filled as needed and the receive engine is
2683	 * set going.  Frame transmit is handled entirely
2684	 * in the frame output path; there's nothing to do
2685	 * here except setup the interrupt mask.
2686	 */
2687	if (ath_startrecv(sc) != 0) {
2688		device_printf(sc->sc_dev, "unable to start recv logic\n");
2689		ath_power_restore_power_state(sc);
2690		return (ENODEV);
2691	}
2692
2693	/*
2694	 * Enable interrupts.
2695	 */
2696	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2697		  | HAL_INT_RXORN | HAL_INT_TXURN
2698		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2699
2700	/*
2701	 * Enable RX EDMA bits.  Note these overlap with
2702	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2703	 */
2704	if (sc->sc_isedma)
2705		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2706
2707	/*
2708	 * If we're an EDMA NIC, we don't care about RXEOL.
2709	 * Writing a new descriptor in will simply restart
2710	 * RX DMA.
2711	 */
2712	if (! sc->sc_isedma)
2713		sc->sc_imask |= HAL_INT_RXEOL;
2714
2715	/*
2716	 * Enable MCI interrupt for MCI devices.
2717	 */
2718	if (sc->sc_btcoex_mci)
2719		sc->sc_imask |= HAL_INT_MCI;
2720
2721	/*
2722	 * Enable MIB interrupts when there are hardware phy counters.
2723	 * Note we only do this (at the moment) for station mode.
2724	 */
2725	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2726		sc->sc_imask |= HAL_INT_MIB;
2727
2728	/*
2729	 * XXX add capability for this.
2730	 *
2731	 * If we're in STA mode (and maybe IBSS?) then register for
2732	 * TSFOOR interrupts.
2733	 */
2734	if (ic->ic_opmode == IEEE80211_M_STA)
2735		sc->sc_imask |= HAL_INT_TSFOOR;
2736
2737	/* Enable global TX timeout and carrier sense timeout if available */
2738	if (ath_hal_gtxto_supported(ah))
2739		sc->sc_imask |= HAL_INT_GTT;
2740
2741	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2742		__func__, sc->sc_imask);
2743
2744	sc->sc_running = 1;
2745	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2746	ath_hal_intrset(ah, sc->sc_imask);
2747
2748	ath_power_restore_power_state(sc);
2749
2750	return (0);
2751}
2752
2753static void
2754ath_stop(struct ath_softc *sc)
2755{
2756	struct ath_hal *ah = sc->sc_ah;
2757
2758	ATH_LOCK_ASSERT(sc);
2759
2760	/*
2761	 * Wake the hardware up before fiddling with it.
2762	 */
2763	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2764
2765	if (sc->sc_running) {
2766		/*
2767		 * Shutdown the hardware and driver:
2768		 *    reset 802.11 state machine
2769		 *    turn off timers
2770		 *    disable interrupts
2771		 *    turn off the radio
2772		 *    clear transmit machinery
2773		 *    clear receive machinery
2774		 *    drain and release tx queues
2775		 *    reclaim beacon resources
2776		 *    power down hardware
2777		 *
2778		 * Note that some of this work is not possible if the
2779		 * hardware is gone (invalid).
2780		 */
2781#ifdef ATH_TX99_DIAG
2782		if (sc->sc_tx99 != NULL)
2783			sc->sc_tx99->stop(sc->sc_tx99);
2784#endif
2785		callout_stop(&sc->sc_wd_ch);
2786		sc->sc_wd_timer = 0;
2787		sc->sc_running = 0;
2788		if (!sc->sc_invalid) {
2789			if (sc->sc_softled) {
2790				callout_stop(&sc->sc_ledtimer);
2791				ath_hal_gpioset(ah, sc->sc_ledpin,
2792					!sc->sc_ledon);
2793				sc->sc_blinking = 0;
2794			}
2795			ath_hal_intrset(ah, 0);
2796		}
2797		/* XXX we should stop RX regardless of whether it's valid */
2798		if (!sc->sc_invalid) {
2799			ath_stoprecv(sc, 1);
2800			ath_hal_phydisable(ah);
2801		} else
2802			sc->sc_rxlink = NULL;
2803		ath_draintxq(sc, ATH_RESET_DEFAULT);
2804		ath_beacon_free(sc);	/* XXX not needed */
2805	}
2806
2807	/* And now, restore the current power state */
2808	ath_power_restore_power_state(sc);
2809}
2810
2811/*
2812 * Wait until all pending TX/RX has completed.
2813 *
2814 * This waits until all existing transmit, receive and interrupts
2815 * have completed.  It's assumed that the caller has first
2816 * grabbed the reset lock so it doesn't try to do overlapping
2817 * chip resets.
2818 */
2819#define	MAX_TXRX_ITERATIONS	100
2820static void
2821ath_txrx_stop_locked(struct ath_softc *sc)
2822{
2823	int i = MAX_TXRX_ITERATIONS;
2824
2825	ATH_UNLOCK_ASSERT(sc);
2826	ATH_PCU_LOCK_ASSERT(sc);
2827
2828	/*
2829	 * Sleep until all the pending operations have completed.
2830	 *
2831	 * The caller must ensure that reset has been incremented
2832	 * or the pending operations may continue being queued.
2833	 */
2834	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2835	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2836		if (i <= 0)
2837			break;
2838		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2839		    msecs_to_ticks(10));
2840		i--;
2841	}
2842
2843	if (i <= 0)
2844		device_printf(sc->sc_dev,
2845		    "%s: didn't finish after %d iterations\n",
2846		    __func__, MAX_TXRX_ITERATIONS);
2847}
2848#undef	MAX_TXRX_ITERATIONS
2849
2850#if 0
2851static void
2852ath_txrx_stop(struct ath_softc *sc)
2853{
2854	ATH_UNLOCK_ASSERT(sc);
2855	ATH_PCU_UNLOCK_ASSERT(sc);
2856
2857	ATH_PCU_LOCK(sc);
2858	ath_txrx_stop_locked(sc);
2859	ATH_PCU_UNLOCK(sc);
2860}
2861#endif
2862
2863static void
2864ath_txrx_start(struct ath_softc *sc)
2865{
2866
2867	taskqueue_unblock(sc->sc_tq);
2868}
2869
2870/*
2871 * Grab the reset lock, and wait around until no one else
2872 * is trying to do anything with it.
2873 *
2874 * This is totally horrible but we can't hold this lock for
2875 * long enough to do TX/RX or we end up with net80211/ip stack
2876 * LORs and eventual deadlock.
2877 *
2878 * "dowait" signals whether to spin, waiting for the reset
2879 * lock count to reach 0. This should (for now) only be used
2880 * during the reset path, as the rest of the code may not
2881 * be locking-reentrant enough to behave correctly.
2882 *
2883 * Another, cleaner way should be found to serialise all of
2884 * these operations.
2885 */
2886#define	MAX_RESET_ITERATIONS	25
2887static int
2888ath_reset_grablock(struct ath_softc *sc, int dowait)
2889{
2890	int w = 0;
2891	int i = MAX_RESET_ITERATIONS;
2892
2893	ATH_PCU_LOCK_ASSERT(sc);
2894	do {
2895		if (sc->sc_inreset_cnt == 0) {
2896			w = 1;
2897			break;
2898		}
2899		if (dowait == 0) {
2900			w = 0;
2901			break;
2902		}
2903		ATH_PCU_UNLOCK(sc);
2904		/*
2905		 * 1 tick is likely not enough time for long calibrations
2906		 * to complete.  So we should wait quite a while.
2907		 */
2908		pause("ath_reset_grablock", msecs_to_ticks(100));
2909		i--;
2910		ATH_PCU_LOCK(sc);
2911	} while (i > 0);
2912
2913	/*
2914	 * We always increment the refcounter, regardless
2915	 * of whether we succeeded to get it in an exclusive
2916	 * way.
2917	 */
2918	sc->sc_inreset_cnt++;
2919
2920	if (i <= 0)
2921		device_printf(sc->sc_dev,
2922		    "%s: didn't finish after %d iterations\n",
2923		    __func__, MAX_RESET_ITERATIONS);
2924
2925	if (w == 0)
2926		device_printf(sc->sc_dev,
2927		    "%s: warning, recursive reset path!\n",
2928		    __func__);
2929
2930	return w;
2931}
2932#undef MAX_RESET_ITERATIONS
2933
2934/*
2935 * Reset the hardware w/o losing operational state.  This is
2936 * basically a more efficient way of doing ath_stop, ath_init,
2937 * followed by state transitions to the current 802.11
2938 * operational state.  Used to recover from various errors and
2939 * to reset or reload hardware state.
2940 */
2941int
2942ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type,
2943    HAL_RESET_TYPE ah_reset_type)
2944{
2945	struct ieee80211com *ic = &sc->sc_ic;
2946	struct ath_hal *ah = sc->sc_ah;
2947	HAL_STATUS status;
2948	int i;
2949
2950	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2951
2952	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2953	ATH_PCU_UNLOCK_ASSERT(sc);
2954	ATH_UNLOCK_ASSERT(sc);
2955
2956	/* Try to (stop any further TX/RX from occurring */
2957	taskqueue_block(sc->sc_tq);
2958
2959	/*
2960	 * Wake the hardware up.
2961	 */
2962	ATH_LOCK(sc);
2963	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2964	ATH_UNLOCK(sc);
2965
2966	ATH_PCU_LOCK(sc);
2967
2968	/*
2969	 * Grab the reset lock before TX/RX is stopped.
2970	 *
2971	 * This is needed to ensure that when the TX/RX actually does finish,
2972	 * no further TX/RX/reset runs in parallel with this.
2973	 */
2974	if (ath_reset_grablock(sc, 1) == 0) {
2975		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2976		    __func__);
2977	}
2978
2979	/* disable interrupts */
2980	ath_hal_intrset(ah, 0);
2981
2982	/*
2983	 * Now, ensure that any in progress TX/RX completes before we
2984	 * continue.
2985	 */
2986	ath_txrx_stop_locked(sc);
2987
2988	ATH_PCU_UNLOCK(sc);
2989
2990	/*
2991	 * Regardless of whether we're doing a no-loss flush or
2992	 * not, stop the PCU and handle what's in the RX queue.
2993	 * That way frames aren't dropped which shouldn't be.
2994	 */
2995	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2996	ath_rx_flush(sc);
2997
2998	/*
2999	 * Should now wait for pending TX/RX to complete
3000	 * and block future ones from occurring. This needs to be
3001	 * done before the TX queue is drained.
3002	 */
3003	ath_draintxq(sc, reset_type);	/* stop xmit side */
3004
3005	ath_settkipmic(sc);		/* configure TKIP MIC handling */
3006	/* NB: indicate channel change so we do a full reset */
3007	ath_update_chainmasks(sc, ic->ic_curchan);
3008	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
3009	    sc->sc_cur_rxchainmask);
3010	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE,
3011	    ah_reset_type, &status))
3012		device_printf(sc->sc_dev,
3013		    "%s: unable to reset hardware; hal status %u\n",
3014		    __func__, status);
3015	sc->sc_diversity = ath_hal_getdiversity(ah);
3016
3017	ATH_RX_LOCK(sc);
3018	sc->sc_rx_stopped = 1;
3019	sc->sc_rx_resetted = 1;
3020	ATH_RX_UNLOCK(sc);
3021
3022	/* Quiet time handling - ensure we resync */
3023	ath_vap_clear_quiet_ie(sc);
3024
3025	/* Let DFS at it in case it's a DFS channel */
3026	ath_dfs_radar_enable(sc, ic->ic_curchan);
3027
3028	/* Let spectral at in case spectral is enabled */
3029	ath_spectral_enable(sc, ic->ic_curchan);
3030
3031	/*
3032	 * Let bluetooth coexistence at in case it's needed for this channel
3033	 */
3034	ath_btcoex_enable(sc, ic->ic_curchan);
3035
3036	/*
3037	 * If we're doing TDMA, enforce the TXOP limitation for chips that
3038	 * support it.
3039	 */
3040	if (sc->sc_hasenforcetxop && sc->sc_tdma)
3041		ath_hal_setenforcetxop(sc->sc_ah, 1);
3042	else
3043		ath_hal_setenforcetxop(sc->sc_ah, 0);
3044
3045	if (ath_startrecv(sc) != 0)	/* restart recv */
3046		device_printf(sc->sc_dev,
3047		    "%s: unable to start recv logic\n", __func__);
3048	/*
3049	 * We may be doing a reset in response to an ioctl
3050	 * that changes the channel so update any state that
3051	 * might change as a result.
3052	 */
3053	ath_chan_change(sc, ic->ic_curchan);
3054	if (sc->sc_beacons) {		/* restart beacons */
3055#ifdef IEEE80211_SUPPORT_TDMA
3056		if (sc->sc_tdma)
3057			ath_tdma_config(sc, NULL);
3058		else
3059#endif
3060			ath_beacon_config(sc, NULL);
3061	}
3062
3063	/*
3064	 * Release the reset lock and re-enable interrupts here.
3065	 * If an interrupt was being processed in ath_intr(),
3066	 * it would disable interrupts at this point. So we have
3067	 * to atomically enable interrupts and decrement the
3068	 * reset counter - this way ath_intr() doesn't end up
3069	 * disabling interrupts without a corresponding enable
3070	 * in the rest or channel change path.
3071	 *
3072	 * Grab the TX reference in case we need to transmit.
3073	 * That way a parallel transmit doesn't.
3074	 */
3075	ATH_PCU_LOCK(sc);
3076	sc->sc_inreset_cnt--;
3077	sc->sc_txstart_cnt++;
3078	/* XXX only do this if sc_inreset_cnt == 0? */
3079	ath_hal_intrset(ah, sc->sc_imask);
3080	ATH_PCU_UNLOCK(sc);
3081
3082	/*
3083	 * TX and RX can be started here. If it were started with
3084	 * sc_inreset_cnt > 0, the TX and RX path would abort.
3085	 * Thus if this is a nested call through the reset or
3086	 * channel change code, TX completion will occur but
3087	 * RX completion and ath_start / ath_tx_start will not
3088	 * run.
3089	 */
3090
3091	/* Restart TX/RX as needed */
3092	ath_txrx_start(sc);
3093
3094	/* XXX TODO: we need to hold the tx refcount here! */
3095
3096	/* Restart TX completion and pending TX */
3097	if (reset_type == ATH_RESET_NOLOSS) {
3098		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3099			if (ATH_TXQ_SETUP(sc, i)) {
3100				ATH_TXQ_LOCK(&sc->sc_txq[i]);
3101				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
3102				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3103
3104				ATH_TX_LOCK(sc);
3105				ath_txq_sched(sc, &sc->sc_txq[i]);
3106				ATH_TX_UNLOCK(sc);
3107			}
3108		}
3109	}
3110
3111	ATH_LOCK(sc);
3112	ath_power_restore_power_state(sc);
3113	ATH_UNLOCK(sc);
3114
3115	ATH_PCU_LOCK(sc);
3116	sc->sc_txstart_cnt--;
3117	ATH_PCU_UNLOCK(sc);
3118
3119	/* Handle any frames in the TX queue */
3120	/*
3121	 * XXX should this be done by the caller, rather than
3122	 * ath_reset() ?
3123	 */
3124	ath_tx_kick(sc);		/* restart xmit */
3125	return 0;
3126}
3127
3128static int
3129ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3130{
3131	struct ieee80211com *ic = vap->iv_ic;
3132	struct ath_softc *sc = ic->ic_softc;
3133	struct ath_hal *ah = sc->sc_ah;
3134
3135	switch (cmd) {
3136	case IEEE80211_IOC_TXPOWER:
3137		/*
3138		 * If per-packet TPC is enabled, then we have nothing
3139		 * to do; otherwise we need to force the global limit.
3140		 * All this can happen directly; no need to reset.
3141		 */
3142		if (!ath_hal_gettpc(ah))
3143			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3144		return 0;
3145	}
3146	/* XXX? Full or NOLOSS? */
3147	return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL);
3148}
3149
3150struct ath_buf *
3151_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
3152{
3153	struct ath_buf *bf;
3154
3155	ATH_TXBUF_LOCK_ASSERT(sc);
3156
3157	if (btype == ATH_BUFTYPE_MGMT)
3158		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3159	else
3160		bf = TAILQ_FIRST(&sc->sc_txbuf);
3161
3162	if (bf == NULL) {
3163		sc->sc_stats.ast_tx_getnobuf++;
3164	} else {
3165		if (bf->bf_flags & ATH_BUF_BUSY) {
3166			sc->sc_stats.ast_tx_getbusybuf++;
3167			bf = NULL;
3168		}
3169	}
3170
3171	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3172		if (btype == ATH_BUFTYPE_MGMT)
3173			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3174		else {
3175			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3176			sc->sc_txbuf_cnt--;
3177
3178			/*
3179			 * This shuldn't happen; however just to be
3180			 * safe print a warning and fudge the txbuf
3181			 * count.
3182			 */
3183			if (sc->sc_txbuf_cnt < 0) {
3184				device_printf(sc->sc_dev,
3185				    "%s: sc_txbuf_cnt < 0?\n",
3186				    __func__);
3187				sc->sc_txbuf_cnt = 0;
3188			}
3189		}
3190	} else
3191		bf = NULL;
3192
3193	if (bf == NULL) {
3194		/* XXX should check which list, mgmt or otherwise */
3195		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3196		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3197			"out of xmit buffers" : "xmit buffer busy");
3198		return NULL;
3199	}
3200
3201	/* XXX TODO: should do this at buffer list initialisation */
3202	/* XXX (then, ensure the buffer has the right flag set) */
3203	bf->bf_flags = 0;
3204	if (btype == ATH_BUFTYPE_MGMT)
3205		bf->bf_flags |= ATH_BUF_MGMT;
3206	else
3207		bf->bf_flags &= (~ATH_BUF_MGMT);
3208
3209	/* Valid bf here; clear some basic fields */
3210	bf->bf_next = NULL;	/* XXX just to be sure */
3211	bf->bf_last = NULL;	/* XXX again, just to be sure */
3212	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3213	bzero(&bf->bf_state, sizeof(bf->bf_state));
3214
3215	/*
3216	 * Track the descriptor ID only if doing EDMA
3217	 */
3218	if (sc->sc_isedma) {
3219		bf->bf_descid = sc->sc_txbuf_descid;
3220		sc->sc_txbuf_descid++;
3221	}
3222
3223	return bf;
3224}
3225
3226/*
3227 * When retrying a software frame, buffers marked ATH_BUF_BUSY
3228 * can't be thrown back on the queue as they could still be
3229 * in use by the hardware.
3230 *
3231 * This duplicates the buffer, or returns NULL.
3232 *
3233 * The descriptor is also copied but the link pointers and
3234 * the DMA segments aren't copied; this frame should thus
3235 * be again passed through the descriptor setup/chain routines
3236 * so the link is correct.
3237 *
3238 * The caller must free the buffer using ath_freebuf().
3239 */
3240struct ath_buf *
3241ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3242{
3243	struct ath_buf *tbf;
3244
3245	tbf = ath_getbuf(sc,
3246	    (bf->bf_flags & ATH_BUF_MGMT) ?
3247	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3248	if (tbf == NULL)
3249		return NULL;	/* XXX failure? Why? */
3250
3251	/* Copy basics */
3252	tbf->bf_next = NULL;
3253	tbf->bf_nseg = bf->bf_nseg;
3254	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3255	tbf->bf_status = bf->bf_status;
3256	tbf->bf_m = bf->bf_m;
3257	tbf->bf_node = bf->bf_node;
3258	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3259	/* will be setup by the chain/setup function */
3260	tbf->bf_lastds = NULL;
3261	/* for now, last == self */
3262	tbf->bf_last = tbf;
3263	tbf->bf_comp = bf->bf_comp;
3264
3265	/* NOTE: DMA segments will be setup by the setup/chain functions */
3266
3267	/* The caller has to re-init the descriptor + links */
3268
3269	/*
3270	 * Free the DMA mapping here, before we NULL the mbuf.
3271	 * We must only call bus_dmamap_unload() once per mbuf chain
3272	 * or behaviour is undefined.
3273	 */
3274	if (bf->bf_m != NULL) {
3275		/*
3276		 * XXX is this POSTWRITE call required?
3277		 */
3278		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3279		    BUS_DMASYNC_POSTWRITE);
3280		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3281	}
3282
3283	bf->bf_m = NULL;
3284	bf->bf_node = NULL;
3285
3286	/* Copy state */
3287	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3288
3289	return tbf;
3290}
3291
3292struct ath_buf *
3293ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3294{
3295	struct ath_buf *bf;
3296
3297	ATH_TXBUF_LOCK(sc);
3298	bf = _ath_getbuf_locked(sc, btype);
3299	/*
3300	 * If a mgmt buffer was requested but we're out of those,
3301	 * try requesting a normal one.
3302	 */
3303	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3304		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3305	ATH_TXBUF_UNLOCK(sc);
3306	if (bf == NULL) {
3307		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3308		sc->sc_stats.ast_tx_qstop++;
3309	}
3310	return bf;
3311}
3312
3313/*
3314 * Transmit a single frame.
3315 *
3316 * net80211 will free the node reference if the transmit
3317 * fails, so don't free the node reference here.
3318 */
3319static int
3320ath_transmit(struct ieee80211com *ic, struct mbuf *m)
3321{
3322	struct ath_softc *sc = ic->ic_softc;
3323	struct ieee80211_node *ni;
3324	struct mbuf *next;
3325	struct ath_buf *bf;
3326	ath_bufhead frags;
3327	int retval = 0;
3328
3329	/*
3330	 * Tell the reset path that we're currently transmitting.
3331	 */
3332	ATH_PCU_LOCK(sc);
3333	if (sc->sc_inreset_cnt > 0) {
3334		DPRINTF(sc, ATH_DEBUG_XMIT,
3335		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3336		ATH_PCU_UNLOCK(sc);
3337		sc->sc_stats.ast_tx_qstop++;
3338		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3339		return (ENOBUFS);	/* XXX should be EINVAL or? */
3340	}
3341	sc->sc_txstart_cnt++;
3342	ATH_PCU_UNLOCK(sc);
3343
3344	/* Wake the hardware up already */
3345	ATH_LOCK(sc);
3346	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3347	ATH_UNLOCK(sc);
3348
3349	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3350	/*
3351	 * Grab the TX lock - it's ok to do this here; we haven't
3352	 * yet started transmitting.
3353	 */
3354	ATH_TX_LOCK(sc);
3355
3356	/*
3357	 * Node reference, if there's one.
3358	 */
3359	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3360
3361	/*
3362	 * Enforce how deep a node queue can get.
3363	 *
3364	 * XXX it would be nicer if we kept an mbuf queue per
3365	 * node and only whacked them into ath_bufs when we
3366	 * are ready to schedule some traffic from them.
3367	 * .. that may come later.
3368	 *
3369	 * XXX we should also track the per-node hardware queue
3370	 * depth so it is easy to limit the _SUM_ of the swq and
3371	 * hwq frames.  Since we only schedule two HWQ frames
3372	 * at a time, this should be OK for now.
3373	 */
3374	if ((!(m->m_flags & M_EAPOL)) &&
3375	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3376		sc->sc_stats.ast_tx_nodeq_overflow++;
3377		retval = ENOBUFS;
3378		goto finish;
3379	}
3380
3381	/*
3382	 * Check how many TX buffers are available.
3383	 *
3384	 * If this is for non-EAPOL traffic, just leave some
3385	 * space free in order for buffer cloning and raw
3386	 * frame transmission to occur.
3387	 *
3388	 * If it's for EAPOL traffic, ignore this for now.
3389	 * Management traffic will be sent via the raw transmit
3390	 * method which bypasses this check.
3391	 *
3392	 * This is needed to ensure that EAPOL frames during
3393	 * (re) keying have a chance to go out.
3394	 *
3395	 * See kern/138379 for more information.
3396	 */
3397	if ((!(m->m_flags & M_EAPOL)) &&
3398	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3399		sc->sc_stats.ast_tx_nobuf++;
3400		retval = ENOBUFS;
3401		goto finish;
3402	}
3403
3404	/*
3405	 * Grab a TX buffer and associated resources.
3406	 *
3407	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3408	 * That way even with temporary buffer exhaustion due to
3409	 * the data path doesn't leave us without the ability
3410	 * to transmit management frames.
3411	 *
3412	 * Otherwise allocate a normal buffer.
3413	 */
3414	if (m->m_flags & M_EAPOL)
3415		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3416	else
3417		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3418
3419	if (bf == NULL) {
3420		/*
3421		 * If we failed to allocate a buffer, fail.
3422		 *
3423		 * We shouldn't fail normally, due to the check
3424		 * above.
3425		 */
3426		sc->sc_stats.ast_tx_nobuf++;
3427		retval = ENOBUFS;
3428		goto finish;
3429	}
3430
3431	/*
3432	 * At this point we have a buffer; so we need to free it
3433	 * if we hit any error conditions.
3434	 */
3435
3436	/*
3437	 * Check for fragmentation.  If this frame
3438	 * has been broken up verify we have enough
3439	 * buffers to send all the fragments so all
3440	 * go out or none...
3441	 */
3442	TAILQ_INIT(&frags);
3443	if ((m->m_flags & M_FRAG) &&
3444	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3445		DPRINTF(sc, ATH_DEBUG_XMIT,
3446		    "%s: out of txfrag buffers\n", __func__);
3447		sc->sc_stats.ast_tx_nofrag++;
3448		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3449		/*
3450		 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
3451		 * we shouldn't free it but return back.
3452		 */
3453		ieee80211_free_mbuf(m);
3454		m = NULL;
3455		goto bad;
3456	}
3457
3458	/*
3459	 * At this point if we have any TX fragments, then we will
3460	 * have bumped the node reference once for each of those.
3461	 */
3462
3463	/*
3464	 * XXX Is there anything actually _enforcing_ that the
3465	 * fragments are being transmitted in one hit, rather than
3466	 * being interleaved with other transmissions on that
3467	 * hardware queue?
3468	 *
3469	 * The ATH TX output lock is the only thing serialising this
3470	 * right now.
3471	 */
3472
3473	/*
3474	 * Calculate the "next fragment" length field in ath_buf
3475	 * in order to let the transmit path know enough about
3476	 * what to next write to the hardware.
3477	 */
3478	if (m->m_flags & M_FRAG) {
3479		struct ath_buf *fbf = bf;
3480		struct ath_buf *n_fbf = NULL;
3481		struct mbuf *fm = m->m_nextpkt;
3482
3483		/*
3484		 * We need to walk the list of fragments and set
3485		 * the next size to the following buffer.
3486		 * However, the first buffer isn't in the frag
3487		 * list, so we have to do some gymnastics here.
3488		 */
3489		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3490			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3491			fbf = n_fbf;
3492			fm = fm->m_nextpkt;
3493		}
3494	}
3495
3496nextfrag:
3497	/*
3498	 * Pass the frame to the h/w for transmission.
3499	 * Fragmented frames have each frag chained together
3500	 * with m_nextpkt.  We know there are sufficient ath_buf's
3501	 * to send all the frags because of work done by
3502	 * ath_txfrag_setup.  We leave m_nextpkt set while
3503	 * calling ath_tx_start so it can use it to extend the
3504	 * the tx duration to cover the subsequent frag and
3505	 * so it can reclaim all the mbufs in case of an error;
3506	 * ath_tx_start clears m_nextpkt once it commits to
3507	 * handing the frame to the hardware.
3508	 *
3509	 * Note: if this fails, then the mbufs are freed but
3510	 * not the node reference.
3511	 *
3512	 * So, we now have to free the node reference ourselves here
3513	 * and return OK up to the stack.
3514	 */
3515	next = m->m_nextpkt;
3516	if (ath_tx_start(sc, ni, bf, m)) {
3517bad:
3518		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3519reclaim:
3520		bf->bf_m = NULL;
3521		bf->bf_node = NULL;
3522		ATH_TXBUF_LOCK(sc);
3523		ath_returnbuf_head(sc, bf);
3524		/*
3525		 * Free the rest of the node references and
3526		 * buffers for the fragment list.
3527		 */
3528		ath_txfrag_cleanup(sc, &frags, ni);
3529		ATH_TXBUF_UNLOCK(sc);
3530
3531		/*
3532		 * XXX: And free the node/return OK; ath_tx_start() may have
3533		 *      modified the buffer.  We currently have no way to
3534		 *      signify that the mbuf was freed but there was an error.
3535		 */
3536		ieee80211_free_node(ni);
3537		retval = 0;
3538		goto finish;
3539	}
3540
3541	/*
3542	 * Check here if the node is in power save state.
3543	 */
3544	ath_tx_update_tim(sc, ni, 1);
3545
3546	if (next != NULL) {
3547		/*
3548		 * Beware of state changing between frags.
3549		 * XXX check sta power-save state?
3550		 */
3551		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3552			DPRINTF(sc, ATH_DEBUG_XMIT,
3553			    "%s: flush fragmented packet, state %s\n",
3554			    __func__,
3555			    ieee80211_state_name[ni->ni_vap->iv_state]);
3556			/* XXX dmamap */
3557			ieee80211_free_mbuf(next);
3558			goto reclaim;
3559		}
3560		m = next;
3561		bf = TAILQ_FIRST(&frags);
3562		KASSERT(bf != NULL, ("no buf for txfrag"));
3563		TAILQ_REMOVE(&frags, bf, bf_list);
3564		goto nextfrag;
3565	}
3566
3567	/*
3568	 * Bump watchdog timer.
3569	 */
3570	sc->sc_wd_timer = 5;
3571
3572finish:
3573	ATH_TX_UNLOCK(sc);
3574
3575	/*
3576	 * Finished transmitting!
3577	 */
3578	ATH_PCU_LOCK(sc);
3579	sc->sc_txstart_cnt--;
3580	ATH_PCU_UNLOCK(sc);
3581
3582	/* Sleep the hardware if required */
3583	ATH_LOCK(sc);
3584	ath_power_restore_power_state(sc);
3585	ATH_UNLOCK(sc);
3586
3587	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3588
3589	return (retval);
3590}
3591
3592/*
3593 * Block/unblock tx+rx processing while a key change is done.
3594 * We assume the caller serializes key management operations
3595 * so we only need to worry about synchronization with other
3596 * uses that originate in the driver.
3597 */
3598static void
3599ath_key_update_begin(struct ieee80211vap *vap)
3600{
3601	struct ath_softc *sc = vap->iv_ic->ic_softc;
3602
3603	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3604	taskqueue_block(sc->sc_tq);
3605}
3606
3607static void
3608ath_key_update_end(struct ieee80211vap *vap)
3609{
3610	struct ath_softc *sc = vap->iv_ic->ic_softc;
3611
3612	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3613	taskqueue_unblock(sc->sc_tq);
3614}
3615
3616static void
3617ath_update_promisc(struct ieee80211com *ic)
3618{
3619	struct ath_softc *sc = ic->ic_softc;
3620	u_int32_t rfilt;
3621
3622	/* configure rx filter */
3623	ATH_LOCK(sc);
3624	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3625	rfilt = ath_calcrxfilter(sc);
3626	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3627	ath_power_restore_power_state(sc);
3628	ATH_UNLOCK(sc);
3629
3630	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3631}
3632
3633static u_int
3634ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3635{
3636	uint32_t val, *mfilt = arg;
3637	char *dl;
3638	uint8_t pos;
3639
3640	/* calculate XOR of eight 6bit values */
3641	dl = LLADDR(sdl);
3642	val = le32dec(dl + 0);
3643	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3644	val = le32dec(dl + 3);
3645	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3646	pos &= 0x3f;
3647	mfilt[pos / 32] |= (1 << (pos % 32));
3648
3649	return (1);
3650}
3651
3652/*
3653 * Driver-internal mcast update call.
3654 *
3655 * Assumes the hardware is already awake.
3656 */
3657static void
3658ath_update_mcast_hw(struct ath_softc *sc)
3659{
3660	struct ieee80211com *ic = &sc->sc_ic;
3661	u_int32_t mfilt[2];
3662
3663	/* calculate and install multicast filter */
3664	if (ic->ic_allmulti == 0) {
3665		struct ieee80211vap *vap;
3666
3667		/*
3668		 * Merge multicast addresses to form the hardware filter.
3669		 */
3670		mfilt[0] = mfilt[1] = 0;
3671		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
3672			if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt);
3673	} else
3674		mfilt[0] = mfilt[1] = ~0;
3675
3676	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3677
3678	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3679		__func__, mfilt[0], mfilt[1]);
3680}
3681
3682/*
3683 * Called from the net80211 layer - force the hardware
3684 * awake before operating.
3685 */
3686static void
3687ath_update_mcast(struct ieee80211com *ic)
3688{
3689	struct ath_softc *sc = ic->ic_softc;
3690
3691	ATH_LOCK(sc);
3692	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3693	ATH_UNLOCK(sc);
3694
3695	ath_update_mcast_hw(sc);
3696
3697	ATH_LOCK(sc);
3698	ath_power_restore_power_state(sc);
3699	ATH_UNLOCK(sc);
3700}
3701
3702void
3703ath_mode_init(struct ath_softc *sc)
3704{
3705	struct ieee80211com *ic = &sc->sc_ic;
3706	struct ath_hal *ah = sc->sc_ah;
3707	u_int32_t rfilt;
3708
3709	/* XXX power state? */
3710
3711	/* configure rx filter */
3712	rfilt = ath_calcrxfilter(sc);
3713	ath_hal_setrxfilter(ah, rfilt);
3714
3715	/* configure operational mode */
3716	ath_hal_setopmode(ah);
3717
3718	/* handle any link-level address change */
3719	ath_hal_setmac(ah, ic->ic_macaddr);
3720
3721	/* calculate and install multicast filter */
3722	ath_update_mcast_hw(sc);
3723}
3724
3725/*
3726 * Set the slot time based on the current setting.
3727 */
3728void
3729ath_setslottime(struct ath_softc *sc)
3730{
3731	struct ieee80211com *ic = &sc->sc_ic;
3732	struct ath_hal *ah = sc->sc_ah;
3733	u_int usec;
3734
3735	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3736		usec = 13;
3737	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3738		usec = 21;
3739	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3740		/* honor short/long slot time only in 11g */
3741		/* XXX shouldn't honor on pure g or turbo g channel */
3742		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3743			usec = HAL_SLOT_TIME_9;
3744		else
3745			usec = HAL_SLOT_TIME_20;
3746	} else
3747		usec = HAL_SLOT_TIME_9;
3748
3749	DPRINTF(sc, ATH_DEBUG_RESET,
3750	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3751	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3752	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3753
3754	/* Wake up the hardware first before updating the slot time */
3755	ATH_LOCK(sc);
3756	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3757	ath_hal_setslottime(ah, usec);
3758	ath_power_restore_power_state(sc);
3759	sc->sc_updateslot = OK;
3760	ATH_UNLOCK(sc);
3761}
3762
3763/*
3764 * Callback from the 802.11 layer to update the
3765 * slot time based on the current setting.
3766 */
3767static void
3768ath_updateslot(struct ieee80211com *ic)
3769{
3770	struct ath_softc *sc = ic->ic_softc;
3771
3772	/*
3773	 * When not coordinating the BSS, change the hardware
3774	 * immediately.  For other operation we defer the change
3775	 * until beacon updates have propagated to the stations.
3776	 *
3777	 * XXX sc_updateslot isn't changed behind a lock?
3778	 */
3779	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3780	    ic->ic_opmode == IEEE80211_M_MBSS)
3781		sc->sc_updateslot = UPDATE;
3782	else
3783		ath_setslottime(sc);
3784}
3785
3786/*
3787 * Append the contents of src to dst; both queues
3788 * are assumed to be locked.
3789 */
3790void
3791ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3792{
3793
3794	ATH_TXQ_LOCK_ASSERT(src);
3795	ATH_TXQ_LOCK_ASSERT(dst);
3796
3797	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3798	dst->axq_link = src->axq_link;
3799	src->axq_link = NULL;
3800	dst->axq_depth += src->axq_depth;
3801	dst->axq_aggr_depth += src->axq_aggr_depth;
3802	src->axq_depth = 0;
3803	src->axq_aggr_depth = 0;
3804}
3805
3806/*
3807 * Reset the hardware, with no loss.
3808 *
3809 * This can't be used for a general case reset.
3810 */
3811static void
3812ath_reset_proc(void *arg, int pending)
3813{
3814	struct ath_softc *sc = arg;
3815
3816#if 0
3817	device_printf(sc->sc_dev, "%s: resetting\n", __func__);
3818#endif
3819	ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
3820}
3821
3822/*
3823 * Reset the hardware after detecting beacons have stopped.
3824 */
3825static void
3826ath_bstuck_proc(void *arg, int pending)
3827{
3828	struct ath_softc *sc = arg;
3829	uint32_t hangs = 0;
3830
3831	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3832		device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
3833
3834#ifdef	ATH_DEBUG_ALQ
3835	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3836		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3837#endif
3838
3839	device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
3840	    sc->sc_bmisscount);
3841	sc->sc_stats.ast_bstuck++;
3842	/*
3843	 * This assumes that there's no simultaneous channel mode change
3844	 * occurring.
3845	 */
3846	ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
3847}
3848
3849static int
3850ath_desc_alloc(struct ath_softc *sc)
3851{
3852	int error;
3853
3854	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3855		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3856	if (error != 0) {
3857		return error;
3858	}
3859	sc->sc_txbuf_cnt = ath_txbuf;
3860
3861	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3862		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3863		    ATH_TXDESC);
3864	if (error != 0) {
3865		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3866		return error;
3867	}
3868
3869	/*
3870	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3871	 * flag doesn't have to be set in ath_getbuf_locked().
3872	 */
3873
3874	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3875			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3876	if (error != 0) {
3877		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3878		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3879		    &sc->sc_txbuf_mgmt);
3880		return error;
3881	}
3882	return 0;
3883}
3884
3885static void
3886ath_desc_free(struct ath_softc *sc)
3887{
3888
3889	if (sc->sc_bdma.dd_desc_len != 0)
3890		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3891	if (sc->sc_txdma.dd_desc_len != 0)
3892		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3893	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3894		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3895		    &sc->sc_txbuf_mgmt);
3896}
3897
3898static struct ieee80211_node *
3899ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3900{
3901	struct ieee80211com *ic = vap->iv_ic;
3902	struct ath_softc *sc = ic->ic_softc;
3903	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3904	struct ath_node *an;
3905
3906	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3907	if (an == NULL) {
3908		/* XXX stat+msg */
3909		return NULL;
3910	}
3911	ath_rate_node_init(sc, an);
3912
3913	/* Setup the mutex - there's no associd yet so set the name to NULL */
3914	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3915	    device_get_nameunit(sc->sc_dev), an);
3916	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3917
3918	/* XXX setup ath_tid */
3919	ath_tx_tid_init(sc, an);
3920
3921	an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
3922	an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
3923	an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
3924
3925	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3926	return &an->an_node;
3927}
3928
3929static void
3930ath_node_cleanup(struct ieee80211_node *ni)
3931{
3932	struct ieee80211com *ic = ni->ni_ic;
3933	struct ath_softc *sc = ic->ic_softc;
3934
3935	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3936	    ni->ni_macaddr, ":", ATH_NODE(ni));
3937
3938	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3939	ath_tx_node_flush(sc, ATH_NODE(ni));
3940	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3941	sc->sc_node_cleanup(ni);
3942}
3943
3944static void
3945ath_node_free(struct ieee80211_node *ni)
3946{
3947	struct ieee80211com *ic = ni->ni_ic;
3948	struct ath_softc *sc = ic->ic_softc;
3949
3950	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3951	    ni->ni_macaddr, ":", ATH_NODE(ni));
3952	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3953	sc->sc_node_free(ni);
3954}
3955
3956static void
3957ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3958{
3959	struct ieee80211com *ic = ni->ni_ic;
3960	struct ath_softc *sc = ic->ic_softc;
3961	struct ath_hal *ah = sc->sc_ah;
3962
3963	*rssi = ic->ic_node_getrssi(ni);
3964	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3965		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3966	else
3967		*noise = -95;		/* nominally correct */
3968}
3969
3970/*
3971 * Set the default antenna.
3972 */
3973void
3974ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3975{
3976	struct ath_hal *ah = sc->sc_ah;
3977
3978	/* XXX block beacon interrupts */
3979	ath_hal_setdefantenna(ah, antenna);
3980	if (sc->sc_defant != antenna)
3981		sc->sc_stats.ast_ant_defswitch++;
3982	sc->sc_defant = antenna;
3983	sc->sc_rxotherant = 0;
3984}
3985
3986static void
3987ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3988{
3989	txq->axq_qnum = qnum;
3990	txq->axq_ac = 0;
3991	txq->axq_depth = 0;
3992	txq->axq_aggr_depth = 0;
3993	txq->axq_intrcnt = 0;
3994	txq->axq_link = NULL;
3995	txq->axq_softc = sc;
3996	TAILQ_INIT(&txq->axq_q);
3997	TAILQ_INIT(&txq->axq_tidq);
3998	TAILQ_INIT(&txq->fifo.axq_q);
3999	ATH_TXQ_LOCK_INIT(sc, txq);
4000}
4001
4002/*
4003 * Setup a h/w transmit queue.
4004 */
4005static struct ath_txq *
4006ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4007{
4008	struct ath_hal *ah = sc->sc_ah;
4009	HAL_TXQ_INFO qi;
4010	int qnum;
4011
4012	memset(&qi, 0, sizeof(qi));
4013	qi.tqi_subtype = subtype;
4014	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4015	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4016	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4017	/*
4018	 * Enable interrupts only for EOL and DESC conditions.
4019	 * We mark tx descriptors to receive a DESC interrupt
4020	 * when a tx queue gets deep; otherwise waiting for the
4021	 * EOL to reap descriptors.  Note that this is done to
4022	 * reduce interrupt load and this only defers reaping
4023	 * descriptors, never transmitting frames.  Aside from
4024	 * reducing interrupts this also permits more concurrency.
4025	 * The only potential downside is if the tx queue backs
4026	 * up in which case the top half of the kernel may backup
4027	 * due to a lack of tx descriptors.
4028	 */
4029	if (sc->sc_isedma)
4030		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4031		    HAL_TXQ_TXOKINT_ENABLE;
4032	else
4033		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4034		    HAL_TXQ_TXDESCINT_ENABLE;
4035
4036	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4037	if (qnum == -1) {
4038		/*
4039		 * NB: don't print a message, this happens
4040		 * normally on parts with too few tx queues
4041		 */
4042		return NULL;
4043	}
4044	if (qnum >= nitems(sc->sc_txq)) {
4045		device_printf(sc->sc_dev,
4046			"hal qnum %u out of range, max %zu!\n",
4047			qnum, nitems(sc->sc_txq));
4048		ath_hal_releasetxqueue(ah, qnum);
4049		return NULL;
4050	}
4051	if (!ATH_TXQ_SETUP(sc, qnum)) {
4052		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4053		sc->sc_txqsetup |= 1<<qnum;
4054	}
4055	return &sc->sc_txq[qnum];
4056}
4057
4058/*
4059 * Setup a hardware data transmit queue for the specified
4060 * access control.  The hal may not support all requested
4061 * queues in which case it will return a reference to a
4062 * previously setup queue.  We record the mapping from ac's
4063 * to h/w queues for use by ath_tx_start and also track
4064 * the set of h/w queues being used to optimize work in the
4065 * transmit interrupt handler and related routines.
4066 */
4067static int
4068ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4069{
4070	struct ath_txq *txq;
4071
4072	if (ac >= nitems(sc->sc_ac2q)) {
4073		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4074			ac, nitems(sc->sc_ac2q));
4075		return 0;
4076	}
4077	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4078	if (txq != NULL) {
4079		txq->axq_ac = ac;
4080		sc->sc_ac2q[ac] = txq;
4081		return 1;
4082	} else
4083		return 0;
4084}
4085
4086/*
4087 * Update WME parameters for a transmit queue.
4088 */
4089static int
4090ath_txq_update(struct ath_softc *sc, int ac)
4091{
4092#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4093	struct ieee80211com *ic = &sc->sc_ic;
4094	struct ath_txq *txq = sc->sc_ac2q[ac];
4095	struct chanAccParams chp;
4096	struct wmeParams *wmep;
4097	struct ath_hal *ah = sc->sc_ah;
4098	HAL_TXQ_INFO qi;
4099
4100	ieee80211_wme_ic_getparams(ic, &chp);
4101	wmep = &chp.cap_wmeParams[ac];
4102
4103	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4104#ifdef IEEE80211_SUPPORT_TDMA
4105	if (sc->sc_tdma) {
4106		/*
4107		 * AIFS is zero so there's no pre-transmit wait.  The
4108		 * burst time defines the slot duration and is configured
4109		 * through net80211.  The QCU is setup to not do post-xmit
4110		 * back off, lockout all lower-priority QCU's, and fire
4111		 * off the DMA beacon alert timer which is setup based
4112		 * on the slot configuration.
4113		 */
4114		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4115			      | HAL_TXQ_TXERRINT_ENABLE
4116			      | HAL_TXQ_TXURNINT_ENABLE
4117			      | HAL_TXQ_TXEOLINT_ENABLE
4118			      | HAL_TXQ_DBA_GATED
4119			      | HAL_TXQ_BACKOFF_DISABLE
4120			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4121			      ;
4122		qi.tqi_aifs = 0;
4123		/* XXX +dbaprep? */
4124		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4125		qi.tqi_burstTime = qi.tqi_readyTime;
4126	} else {
4127#endif
4128		/*
4129		 * XXX shouldn't this just use the default flags
4130		 * used in the previous queue setup?
4131		 */
4132		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4133			      | HAL_TXQ_TXERRINT_ENABLE
4134			      | HAL_TXQ_TXDESCINT_ENABLE
4135			      | HAL_TXQ_TXURNINT_ENABLE
4136			      | HAL_TXQ_TXEOLINT_ENABLE
4137			      ;
4138		qi.tqi_aifs = wmep->wmep_aifsn;
4139		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4140		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4141		qi.tqi_readyTime = 0;
4142		qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
4143#ifdef IEEE80211_SUPPORT_TDMA
4144	}
4145#endif
4146
4147	DPRINTF(sc, ATH_DEBUG_RESET,
4148	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4149	    __func__, txq->axq_qnum, qi.tqi_qflags,
4150	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4151
4152	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4153		device_printf(sc->sc_dev, "unable to update hardware queue "
4154		    "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
4155		return 0;
4156	} else {
4157		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4158		return 1;
4159	}
4160#undef ATH_EXPONENT_TO_VALUE
4161}
4162
4163/*
4164 * Callback from the 802.11 layer to update WME parameters.
4165 */
4166int
4167ath_wme_update(struct ieee80211com *ic)
4168{
4169	struct ath_softc *sc = ic->ic_softc;
4170
4171	return !ath_txq_update(sc, WME_AC_BE) ||
4172	    !ath_txq_update(sc, WME_AC_BK) ||
4173	    !ath_txq_update(sc, WME_AC_VI) ||
4174	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4175}
4176
4177/*
4178 * Reclaim resources for a setup queue.
4179 */
4180static void
4181ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4182{
4183
4184	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4185	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4186	ATH_TXQ_LOCK_DESTROY(txq);
4187}
4188
4189/*
4190 * Reclaim all tx queue resources.
4191 */
4192static void
4193ath_tx_cleanup(struct ath_softc *sc)
4194{
4195	int i;
4196
4197	ATH_TXBUF_LOCK_DESTROY(sc);
4198	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4199		if (ATH_TXQ_SETUP(sc, i))
4200			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4201}
4202
4203/*
4204 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4205 * using the current rates in sc_rixmap.
4206 */
4207int
4208ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4209{
4210	int rix = sc->sc_rixmap[rate];
4211	/* NB: return lowest rix for invalid rate */
4212	return (rix == 0xff ? 0 : rix);
4213}
4214
4215static void
4216ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4217    struct ath_buf *bf)
4218{
4219	struct ieee80211_node *ni = bf->bf_node;
4220	struct ieee80211com *ic = &sc->sc_ic;
4221	int sr, lr, pri;
4222
4223	if (ts->ts_status == 0) {
4224		u_int8_t txant = ts->ts_antenna;
4225		/*
4226		 * Handle weird/corrupted tx antenna field
4227		 */
4228		if (txant >= ATH_IOCTL_STATS_NUM_TX_ANTENNA)
4229			txant = 0;
4230		sc->sc_stats.ast_ant_tx[txant]++;
4231		sc->sc_ant_tx[txant]++;
4232		if (ts->ts_finaltsi != 0)
4233			sc->sc_stats.ast_tx_altrate++;
4234
4235		/* XXX TODO: should do per-pri conuters */
4236		pri = M_WME_GETAC(bf->bf_m);
4237		if (pri >= WME_AC_VO)
4238			ic->ic_wme.wme_hipri_traffic++;
4239
4240		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4241			ni->ni_inact = ni->ni_inact_reload;
4242	} else {
4243		if (ts->ts_status & HAL_TXERR_XRETRY)
4244			sc->sc_stats.ast_tx_xretries++;
4245		if (ts->ts_status & HAL_TXERR_FIFO)
4246			sc->sc_stats.ast_tx_fifoerr++;
4247		if (ts->ts_status & HAL_TXERR_FILT)
4248			sc->sc_stats.ast_tx_filtered++;
4249		if (ts->ts_status & HAL_TXERR_XTXOP)
4250			sc->sc_stats.ast_tx_xtxop++;
4251		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4252			sc->sc_stats.ast_tx_timerexpired++;
4253
4254		if (bf->bf_m->m_flags & M_FF)
4255			sc->sc_stats.ast_ff_txerr++;
4256	}
4257	/* XXX when is this valid? */
4258	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4259		sc->sc_stats.ast_tx_desccfgerr++;
4260	/*
4261	 * This can be valid for successful frame transmission!
4262	 * If there's a TX FIFO underrun during aggregate transmission,
4263	 * the MAC will pad the rest of the aggregate with delimiters.
4264	 * If a BA is returned, the frame is marked as "OK" and it's up
4265	 * to the TX completion code to notice which frames weren't
4266	 * successfully transmitted.
4267	 */
4268	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4269		sc->sc_stats.ast_tx_data_underrun++;
4270	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4271		sc->sc_stats.ast_tx_delim_underrun++;
4272
4273	sr = ts->ts_shortretry;
4274	lr = ts->ts_longretry;
4275	sc->sc_stats.ast_tx_shortretry += sr;
4276	sc->sc_stats.ast_tx_longretry += lr;
4277
4278}
4279
4280/*
4281 * The default completion. If fail is 1, this means
4282 * "please don't retry the frame, and just return -1 status
4283 * to the net80211 stack.
4284 */
4285void
4286ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4287{
4288	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4289	int st;
4290
4291	if (fail == 1)
4292		st = -1;
4293	else
4294		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4295		    ts->ts_status : HAL_TXERR_XRETRY;
4296
4297#if 0
4298	if (bf->bf_state.bfs_dobaw)
4299		device_printf(sc->sc_dev,
4300		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4301		    __func__,
4302		    bf,
4303		    SEQNO(bf->bf_state.bfs_seqno));
4304#endif
4305	if (bf->bf_next != NULL)
4306		device_printf(sc->sc_dev,
4307		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4308		    __func__,
4309		    bf,
4310		    SEQNO(bf->bf_state.bfs_seqno));
4311
4312	/*
4313	 * Check if the node software queue is empty; if so
4314	 * then clear the TIM.
4315	 *
4316	 * This needs to be done before the buffer is freed as
4317	 * otherwise the node reference will have been released
4318	 * and the node may not actually exist any longer.
4319	 *
4320	 * XXX I don't like this belonging here, but it's cleaner
4321	 * to do it here right now then all the other places
4322	 * where ath_tx_default_comp() is called.
4323	 *
4324	 * XXX TODO: during drain, ensure that the callback is
4325	 * being called so we get a chance to update the TIM.
4326	 */
4327	if (bf->bf_node) {
4328		ATH_TX_LOCK(sc);
4329		ath_tx_update_tim(sc, bf->bf_node, 0);
4330		ATH_TX_UNLOCK(sc);
4331	}
4332
4333	/*
4334	 * Do any tx complete callback.  Note this must
4335	 * be done before releasing the node reference.
4336	 * This will free the mbuf, release the net80211
4337	 * node and recycle the ath_buf.
4338	 */
4339	ath_tx_freebuf(sc, bf, st);
4340}
4341
4342/*
4343 * Update rate control with the given completion status.
4344 */
4345void
4346ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4347    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4348    int rc_framelen, int nframes, int nbad)
4349{
4350	struct ath_node *an;
4351
4352	/* Only for unicast frames */
4353	if (ni == NULL)
4354		return;
4355
4356	an = ATH_NODE(ni);
4357	ATH_NODE_UNLOCK_ASSERT(an);
4358
4359	/*
4360	 * XXX TODO: teach the rate control about TXERR_FILT and
4361	 * see about handling it (eg see how many attempts were
4362	 * made before it got filtered and account for that.)
4363	 */
4364
4365	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4366		ATH_NODE_LOCK(an);
4367		ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen,
4368		    nframes, nbad);
4369		ATH_NODE_UNLOCK(an);
4370	}
4371}
4372
4373/*
4374 * Process the completion of the given buffer.
4375 *
4376 * This calls the rate control update and then the buffer completion.
4377 * This will either free the buffer or requeue it.  In any case, the
4378 * bf pointer should be treated as invalid after this function is called.
4379 */
4380void
4381ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4382    struct ath_tx_status *ts, struct ath_buf *bf)
4383{
4384	struct ieee80211_node *ni = bf->bf_node;
4385
4386	ATH_TX_UNLOCK_ASSERT(sc);
4387	ATH_TXQ_UNLOCK_ASSERT(txq);
4388
4389	/* If unicast frame, update general statistics */
4390	if (ni != NULL) {
4391		/* update statistics */
4392		ath_tx_update_stats(sc, ts, bf);
4393	}
4394
4395	/*
4396	 * Call the completion handler.
4397	 * The completion handler is responsible for
4398	 * calling the rate control code.
4399	 *
4400	 * Frames with no completion handler get the
4401	 * rate control code called here.
4402	 */
4403	if (bf->bf_comp == NULL) {
4404		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4405		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4406			/*
4407			 * XXX assume this isn't an aggregate
4408			 * frame.
4409			 *
4410			 * XXX TODO: also do this for filtered frames?
4411			 * Once rate control knows about them?
4412			 */
4413			ath_tx_update_ratectrl(sc, ni,
4414			     bf->bf_state.bfs_rc, ts,
4415			    bf->bf_state.bfs_pktlen,
4416			    bf->bf_state.bfs_pktlen,
4417			    1,
4418			    (ts->ts_status == 0 ? 0 : 1));
4419		}
4420		ath_tx_default_comp(sc, bf, 0);
4421	} else
4422		bf->bf_comp(sc, bf, 0);
4423}
4424
4425/*
4426 * Process completed xmit descriptors from the specified queue.
4427 * Kick the packet scheduler if needed. This can occur from this
4428 * particular task.
4429 */
4430static int
4431ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4432{
4433	struct ath_hal *ah = sc->sc_ah;
4434	struct ath_buf *bf;
4435	struct ath_desc *ds;
4436	struct ath_tx_status *ts;
4437	struct ieee80211_node *ni;
4438#ifdef	IEEE80211_SUPPORT_SUPERG
4439	struct ieee80211com *ic = &sc->sc_ic;
4440#endif	/* IEEE80211_SUPPORT_SUPERG */
4441	int nacked;
4442	HAL_STATUS status;
4443
4444	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4445		__func__, txq->axq_qnum,
4446		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4447		txq->axq_link);
4448
4449	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4450	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4451	    txq->axq_qnum,
4452	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4453	    txq->axq_link,
4454	    txq->axq_depth);
4455
4456	nacked = 0;
4457	for (;;) {
4458		ATH_TXQ_LOCK(txq);
4459		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4460		bf = TAILQ_FIRST(&txq->axq_q);
4461		if (bf == NULL) {
4462			ATH_TXQ_UNLOCK(txq);
4463			break;
4464		}
4465		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4466		ts = &bf->bf_status.ds_txstat;
4467
4468		status = ath_hal_txprocdesc(ah, ds, ts);
4469#ifdef ATH_DEBUG
4470		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4471			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4472			    status == HAL_OK);
4473		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4474			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4475			    status == HAL_OK);
4476#endif
4477#ifdef	ATH_DEBUG_ALQ
4478		if (if_ath_alq_checkdebug(&sc->sc_alq,
4479		    ATH_ALQ_EDMA_TXSTATUS)) {
4480			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4481			sc->sc_tx_statuslen,
4482			(char *) ds);
4483		}
4484#endif
4485
4486		if (status == HAL_EINPROGRESS) {
4487			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4488			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4489			    txq->axq_qnum, bf, ds);
4490			ATH_TXQ_UNLOCK(txq);
4491			break;
4492		}
4493		ATH_TXQ_REMOVE(txq, bf, bf_list);
4494
4495		/*
4496		 * Sanity check.
4497		 */
4498		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4499			device_printf(sc->sc_dev,
4500			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4501			    __func__,
4502			    txq->axq_qnum,
4503			    bf,
4504			    bf->bf_state.bfs_tx_queue);
4505		}
4506		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4507			device_printf(sc->sc_dev,
4508			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4509			    __func__,
4510			    txq->axq_qnum,
4511			    bf->bf_last,
4512			    bf->bf_last->bf_state.bfs_tx_queue);
4513		}
4514
4515#if 0
4516		if (txq->axq_depth > 0) {
4517			/*
4518			 * More frames follow.  Mark the buffer busy
4519			 * so it's not re-used while the hardware may
4520			 * still re-read the link field in the descriptor.
4521			 *
4522			 * Use the last buffer in an aggregate as that
4523			 * is where the hardware may be - intermediate
4524			 * descriptors won't be "busy".
4525			 */
4526			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4527		} else
4528			txq->axq_link = NULL;
4529#else
4530		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4531#endif
4532		if (bf->bf_state.bfs_aggr)
4533			txq->axq_aggr_depth--;
4534
4535		ni = bf->bf_node;
4536
4537		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4538		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4539		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4540		/*
4541		 * If unicast frame was ack'd update RSSI,
4542		 * including the last rx time used to
4543		 * workaround phantom bmiss interrupts.
4544		 */
4545		if (ni != NULL && ts->ts_status == 0 &&
4546		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4547			nacked++;
4548			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4549			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4550				ts->ts_rssi);
4551			ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi,
4552				ts->ts_rssi);
4553		}
4554		ATH_TXQ_UNLOCK(txq);
4555
4556		/*
4557		 * Update statistics and call completion
4558		 */
4559		ath_tx_process_buf_completion(sc, txq, ts, bf);
4560
4561		/* XXX at this point, bf and ni may be totally invalid */
4562	}
4563#ifdef IEEE80211_SUPPORT_SUPERG
4564	/*
4565	 * Flush fast-frame staging queue when traffic slows.
4566	 */
4567	if (txq->axq_depth <= 1)
4568		ieee80211_ff_flush(ic, txq->axq_ac);
4569#endif
4570
4571	/* Kick the software TXQ scheduler */
4572	if (dosched) {
4573		ATH_TX_LOCK(sc);
4574		ath_txq_sched(sc, txq);
4575		ATH_TX_UNLOCK(sc);
4576	}
4577
4578	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4579	    "ath_tx_processq: txq=%u: done",
4580	    txq->axq_qnum);
4581
4582	return nacked;
4583}
4584
4585#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4586
4587/*
4588 * Deferred processing of transmit interrupt; special-cased
4589 * for a single hardware transmit queue (e.g. 5210 and 5211).
4590 */
4591static void
4592ath_tx_proc_q0(void *arg, int npending)
4593{
4594	struct ath_softc *sc = arg;
4595	uint32_t txqs;
4596
4597	ATH_PCU_LOCK(sc);
4598	sc->sc_txproc_cnt++;
4599	txqs = sc->sc_txq_active;
4600	sc->sc_txq_active &= ~txqs;
4601	ATH_PCU_UNLOCK(sc);
4602
4603	ATH_LOCK(sc);
4604	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4605	ATH_UNLOCK(sc);
4606
4607	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4608	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4609
4610	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4611		/* XXX why is lastrx updated in tx code? */
4612		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4613	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4614		ath_tx_processq(sc, sc->sc_cabq, 1);
4615	sc->sc_wd_timer = 0;
4616
4617	if (sc->sc_softled)
4618		ath_led_event(sc, sc->sc_txrix);
4619
4620	ATH_PCU_LOCK(sc);
4621	sc->sc_txproc_cnt--;
4622	ATH_PCU_UNLOCK(sc);
4623
4624	ATH_LOCK(sc);
4625	ath_power_restore_power_state(sc);
4626	ATH_UNLOCK(sc);
4627
4628	ath_tx_kick(sc);
4629}
4630
4631/*
4632 * Deferred processing of transmit interrupt; special-cased
4633 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4634 */
4635static void
4636ath_tx_proc_q0123(void *arg, int npending)
4637{
4638	struct ath_softc *sc = arg;
4639	int nacked;
4640	uint32_t txqs;
4641
4642	ATH_PCU_LOCK(sc);
4643	sc->sc_txproc_cnt++;
4644	txqs = sc->sc_txq_active;
4645	sc->sc_txq_active &= ~txqs;
4646	ATH_PCU_UNLOCK(sc);
4647
4648	ATH_LOCK(sc);
4649	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4650	ATH_UNLOCK(sc);
4651
4652	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4653	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4654
4655	/*
4656	 * Process each active queue.
4657	 */
4658	nacked = 0;
4659	if (TXQACTIVE(txqs, 0))
4660		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4661	if (TXQACTIVE(txqs, 1))
4662		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4663	if (TXQACTIVE(txqs, 2))
4664		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4665	if (TXQACTIVE(txqs, 3))
4666		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4667	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4668		ath_tx_processq(sc, sc->sc_cabq, 1);
4669	if (nacked)
4670		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4671
4672	sc->sc_wd_timer = 0;
4673
4674	if (sc->sc_softled)
4675		ath_led_event(sc, sc->sc_txrix);
4676
4677	ATH_PCU_LOCK(sc);
4678	sc->sc_txproc_cnt--;
4679	ATH_PCU_UNLOCK(sc);
4680
4681	ATH_LOCK(sc);
4682	ath_power_restore_power_state(sc);
4683	ATH_UNLOCK(sc);
4684
4685	ath_tx_kick(sc);
4686}
4687
4688/*
4689 * Deferred processing of transmit interrupt.
4690 */
4691static void
4692ath_tx_proc(void *arg, int npending)
4693{
4694	struct ath_softc *sc = arg;
4695	int i, nacked;
4696	uint32_t txqs;
4697
4698	ATH_PCU_LOCK(sc);
4699	sc->sc_txproc_cnt++;
4700	txqs = sc->sc_txq_active;
4701	sc->sc_txq_active &= ~txqs;
4702	ATH_PCU_UNLOCK(sc);
4703
4704	ATH_LOCK(sc);
4705	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4706	ATH_UNLOCK(sc);
4707
4708	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4709
4710	/*
4711	 * Process each active queue.
4712	 */
4713	nacked = 0;
4714	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4715		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4716			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4717	if (nacked)
4718		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4719
4720	sc->sc_wd_timer = 0;
4721
4722	if (sc->sc_softled)
4723		ath_led_event(sc, sc->sc_txrix);
4724
4725	ATH_PCU_LOCK(sc);
4726	sc->sc_txproc_cnt--;
4727	ATH_PCU_UNLOCK(sc);
4728
4729	ATH_LOCK(sc);
4730	ath_power_restore_power_state(sc);
4731	ATH_UNLOCK(sc);
4732
4733	ath_tx_kick(sc);
4734}
4735#undef	TXQACTIVE
4736
4737/*
4738 * Deferred processing of TXQ rescheduling.
4739 */
4740static void
4741ath_txq_sched_tasklet(void *arg, int npending)
4742{
4743	struct ath_softc *sc = arg;
4744	int i;
4745
4746	/* XXX is skipping ok? */
4747	ATH_PCU_LOCK(sc);
4748#if 0
4749	if (sc->sc_inreset_cnt > 0) {
4750		device_printf(sc->sc_dev,
4751		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4752		ATH_PCU_UNLOCK(sc);
4753		return;
4754	}
4755#endif
4756	sc->sc_txproc_cnt++;
4757	ATH_PCU_UNLOCK(sc);
4758
4759	ATH_LOCK(sc);
4760	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4761	ATH_UNLOCK(sc);
4762
4763	ATH_TX_LOCK(sc);
4764	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4765		if (ATH_TXQ_SETUP(sc, i)) {
4766			ath_txq_sched(sc, &sc->sc_txq[i]);
4767		}
4768	}
4769	ATH_TX_UNLOCK(sc);
4770
4771	ATH_LOCK(sc);
4772	ath_power_restore_power_state(sc);
4773	ATH_UNLOCK(sc);
4774
4775	ATH_PCU_LOCK(sc);
4776	sc->sc_txproc_cnt--;
4777	ATH_PCU_UNLOCK(sc);
4778}
4779
4780void
4781ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4782{
4783
4784	ATH_TXBUF_LOCK_ASSERT(sc);
4785
4786	if (bf->bf_flags & ATH_BUF_MGMT)
4787		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4788	else {
4789		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4790		sc->sc_txbuf_cnt++;
4791		if (sc->sc_txbuf_cnt > ath_txbuf) {
4792			device_printf(sc->sc_dev,
4793			    "%s: sc_txbuf_cnt > %d?\n",
4794			    __func__,
4795			    ath_txbuf);
4796			sc->sc_txbuf_cnt = ath_txbuf;
4797		}
4798	}
4799}
4800
4801void
4802ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4803{
4804
4805	ATH_TXBUF_LOCK_ASSERT(sc);
4806
4807	if (bf->bf_flags & ATH_BUF_MGMT)
4808		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4809	else {
4810		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4811		sc->sc_txbuf_cnt++;
4812		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4813			device_printf(sc->sc_dev,
4814			    "%s: sc_txbuf_cnt > %d?\n",
4815			    __func__,
4816			    ATH_TXBUF);
4817			sc->sc_txbuf_cnt = ATH_TXBUF;
4818		}
4819	}
4820}
4821
4822/*
4823 * Free the holding buffer if it exists
4824 */
4825void
4826ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4827{
4828	ATH_TXBUF_UNLOCK_ASSERT(sc);
4829	ATH_TXQ_LOCK_ASSERT(txq);
4830
4831	if (txq->axq_holdingbf == NULL)
4832		return;
4833
4834	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4835
4836	ATH_TXBUF_LOCK(sc);
4837	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4838	ATH_TXBUF_UNLOCK(sc);
4839
4840	txq->axq_holdingbf = NULL;
4841}
4842
4843/*
4844 * Add this buffer to the holding queue, freeing the previous
4845 * one if it exists.
4846 */
4847static void
4848ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4849{
4850	struct ath_txq *txq;
4851
4852	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4853
4854	ATH_TXBUF_UNLOCK_ASSERT(sc);
4855	ATH_TXQ_LOCK_ASSERT(txq);
4856
4857	/* XXX assert ATH_BUF_BUSY is set */
4858
4859	/* XXX assert the tx queue is under the max number */
4860	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4861		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4862		    __func__,
4863		    bf,
4864		    bf->bf_state.bfs_tx_queue);
4865		bf->bf_flags &= ~ATH_BUF_BUSY;
4866		ath_returnbuf_tail(sc, bf);
4867		return;
4868	}
4869	ath_txq_freeholdingbuf(sc, txq);
4870	txq->axq_holdingbf = bf;
4871}
4872
4873/*
4874 * Return a buffer to the pool and update the 'busy' flag on the
4875 * previous 'tail' entry.
4876 *
4877 * This _must_ only be called when the buffer is involved in a completed
4878 * TX. The logic is that if it was part of an active TX, the previous
4879 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4880 * for restart (eg for TDMA.)
4881 *
4882 * The caller must free the mbuf and recycle the node reference.
4883 *
4884 * XXX This method of handling busy / holding buffers is insanely stupid.
4885 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4886 * be much nicer if buffers in the processq() methods would instead be
4887 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4888 * exactly what hardware queue they came from in the first place.
4889 */
4890void
4891ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4892{
4893	struct ath_txq *txq;
4894
4895	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4896
4897	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4898	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4899
4900	/*
4901	 * If this buffer is busy, push it onto the holding queue.
4902	 */
4903	if (bf->bf_flags & ATH_BUF_BUSY) {
4904		ATH_TXQ_LOCK(txq);
4905		ath_txq_addholdingbuf(sc, bf);
4906		ATH_TXQ_UNLOCK(txq);
4907		return;
4908	}
4909
4910	/*
4911	 * Not a busy buffer, so free normally
4912	 */
4913	ATH_TXBUF_LOCK(sc);
4914	ath_returnbuf_tail(sc, bf);
4915	ATH_TXBUF_UNLOCK(sc);
4916}
4917
4918/*
4919 * This is currently used by ath_tx_draintxq() and
4920 * ath_tx_tid_free_pkts().
4921 *
4922 * It recycles a single ath_buf.
4923 */
4924void
4925ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4926{
4927	struct ieee80211_node *ni = bf->bf_node;
4928	struct mbuf *m0 = bf->bf_m;
4929
4930	/*
4931	 * Make sure that we only sync/unload if there's an mbuf.
4932	 * If not (eg we cloned a buffer), the unload will have already
4933	 * occurred.
4934	 */
4935	if (bf->bf_m != NULL) {
4936		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4937		    BUS_DMASYNC_POSTWRITE);
4938		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4939	}
4940
4941	bf->bf_node = NULL;
4942	bf->bf_m = NULL;
4943
4944	/* Free the buffer, it's not needed any longer */
4945	ath_freebuf(sc, bf);
4946
4947	/* Pass the buffer back to net80211 - completing it */
4948	ieee80211_tx_complete(ni, m0, status);
4949}
4950
4951static struct ath_buf *
4952ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4953{
4954	struct ath_buf *bf;
4955
4956	ATH_TXQ_LOCK_ASSERT(txq);
4957
4958	/*
4959	 * Drain the FIFO queue first, then if it's
4960	 * empty, move to the normal frame queue.
4961	 */
4962	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4963	if (bf != NULL) {
4964		/*
4965		 * Is it the last buffer in this set?
4966		 * Decrement the FIFO counter.
4967		 */
4968		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4969			if (txq->axq_fifo_depth == 0) {
4970				device_printf(sc->sc_dev,
4971				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4972				    __func__,
4973				    txq->axq_qnum,
4974				    txq->fifo.axq_depth);
4975			} else
4976				txq->axq_fifo_depth--;
4977		}
4978		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4979		return (bf);
4980	}
4981
4982	/*
4983	 * Debugging!
4984	 */
4985	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4986		device_printf(sc->sc_dev,
4987		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4988		    __func__,
4989		    txq->axq_qnum,
4990		    txq->axq_fifo_depth,
4991		    txq->fifo.axq_depth);
4992	}
4993
4994	/*
4995	 * Now drain the pending queue.
4996	 */
4997	bf = TAILQ_FIRST(&txq->axq_q);
4998	if (bf == NULL) {
4999		txq->axq_link = NULL;
5000		return (NULL);
5001	}
5002	ATH_TXQ_REMOVE(txq, bf, bf_list);
5003	return (bf);
5004}
5005
5006void
5007ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5008{
5009#ifdef ATH_DEBUG
5010	struct ath_hal *ah = sc->sc_ah;
5011#endif
5012	struct ath_buf *bf;
5013	u_int ix;
5014
5015	/*
5016	 * NB: this assumes output has been stopped and
5017	 *     we do not need to block ath_tx_proc
5018	 */
5019	for (ix = 0;; ix++) {
5020		ATH_TXQ_LOCK(txq);
5021		bf = ath_tx_draintxq_get_one(sc, txq);
5022		if (bf == NULL) {
5023			ATH_TXQ_UNLOCK(txq);
5024			break;
5025		}
5026		if (bf->bf_state.bfs_aggr)
5027			txq->axq_aggr_depth--;
5028#ifdef ATH_DEBUG
5029		if (sc->sc_debug & ATH_DEBUG_RESET) {
5030			struct ieee80211com *ic = &sc->sc_ic;
5031			int status = 0;
5032
5033			/*
5034			 * EDMA operation has a TX completion FIFO
5035			 * separate from the TX descriptor, so this
5036			 * method of checking the "completion" status
5037			 * is wrong.
5038			 */
5039			if (! sc->sc_isedma) {
5040				status = (ath_hal_txprocdesc(ah,
5041				    bf->bf_lastds,
5042				    &bf->bf_status.ds_txstat) == HAL_OK);
5043			}
5044			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5045			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5046			    bf->bf_m->m_len, 0, -1);
5047		}
5048#endif /* ATH_DEBUG */
5049		/*
5050		 * Since we're now doing magic in the completion
5051		 * functions, we -must- call it for aggregation
5052		 * destinations or BAW tracking will get upset.
5053		 */
5054		/*
5055		 * Clear ATH_BUF_BUSY; the completion handler
5056		 * will free the buffer.
5057		 */
5058		ATH_TXQ_UNLOCK(txq);
5059		bf->bf_flags &= ~ATH_BUF_BUSY;
5060		if (bf->bf_comp)
5061			bf->bf_comp(sc, bf, 1);
5062		else
5063			ath_tx_default_comp(sc, bf, 1);
5064	}
5065
5066	/*
5067	 * Free the holding buffer if it exists
5068	 */
5069	ATH_TXQ_LOCK(txq);
5070	ath_txq_freeholdingbuf(sc, txq);
5071	ATH_TXQ_UNLOCK(txq);
5072
5073	/*
5074	 * Drain software queued frames which are on
5075	 * active TIDs.
5076	 */
5077	ath_tx_txq_drain(sc, txq);
5078}
5079
5080static void
5081ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5082{
5083	struct ath_hal *ah = sc->sc_ah;
5084
5085	ATH_TXQ_LOCK_ASSERT(txq);
5086
5087	DPRINTF(sc, ATH_DEBUG_RESET,
5088	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5089	    "link %p, holdingbf=%p\n",
5090	    __func__,
5091	    txq->axq_qnum,
5092	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5093	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5094	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5095	    txq->axq_flags,
5096	    txq->axq_link,
5097	    txq->axq_holdingbf);
5098
5099	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5100	/* We've stopped TX DMA, so mark this as stopped. */
5101	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5102
5103#ifdef	ATH_DEBUG
5104	if ((sc->sc_debug & ATH_DEBUG_RESET)
5105	    && (txq->axq_holdingbf != NULL)) {
5106		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5107	}
5108#endif
5109}
5110
5111int
5112ath_stoptxdma(struct ath_softc *sc)
5113{
5114	struct ath_hal *ah = sc->sc_ah;
5115	int i;
5116
5117	/* XXX return value */
5118	if (sc->sc_invalid)
5119		return 0;
5120
5121	if (!sc->sc_invalid) {
5122		/* don't touch the hardware if marked invalid */
5123		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5124		    __func__, sc->sc_bhalq,
5125		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5126		    NULL);
5127
5128		/* stop the beacon queue */
5129		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5130
5131		/* Stop the data queues */
5132		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5133			if (ATH_TXQ_SETUP(sc, i)) {
5134				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5135				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5136				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5137			}
5138		}
5139	}
5140
5141	return 1;
5142}
5143
5144#ifdef	ATH_DEBUG
5145void
5146ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5147{
5148	struct ath_hal *ah = sc->sc_ah;
5149	struct ath_buf *bf;
5150	int i = 0;
5151
5152	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5153		return;
5154
5155	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5156	    __func__, txq->axq_qnum);
5157	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5158		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5159			ath_hal_txprocdesc(ah, bf->bf_lastds,
5160			    &bf->bf_status.ds_txstat) == HAL_OK);
5161		i++;
5162	}
5163	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5164	    __func__, txq->axq_qnum);
5165}
5166#endif /* ATH_DEBUG */
5167
5168/*
5169 * Drain the transmit queues and reclaim resources.
5170 */
5171void
5172ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5173{
5174	struct ath_hal *ah = sc->sc_ah;
5175	struct ath_buf *bf_last;
5176	int i;
5177
5178	(void) ath_stoptxdma(sc);
5179
5180	/*
5181	 * Dump the queue contents
5182	 */
5183	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5184		/*
5185		 * XXX TODO: should we just handle the completed TX frames
5186		 * here, whether or not the reset is a full one or not?
5187		 */
5188		if (ATH_TXQ_SETUP(sc, i)) {
5189#ifdef	ATH_DEBUG
5190			if (sc->sc_debug & ATH_DEBUG_RESET)
5191				ath_tx_dump(sc, &sc->sc_txq[i]);
5192#endif	/* ATH_DEBUG */
5193			if (reset_type == ATH_RESET_NOLOSS) {
5194				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5195				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5196				/*
5197				 * Free the holding buffer; DMA is now
5198				 * stopped.
5199				 */
5200				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5201				/*
5202				 * Setup the link pointer to be the
5203				 * _last_ buffer/descriptor in the list.
5204				 * If there's nothing in the list, set it
5205				 * to NULL.
5206				 */
5207				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5208				    axq_q_s);
5209				if (bf_last != NULL) {
5210					ath_hal_gettxdesclinkptr(ah,
5211					    bf_last->bf_lastds,
5212					    &sc->sc_txq[i].axq_link);
5213				} else {
5214					sc->sc_txq[i].axq_link = NULL;
5215				}
5216				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5217			} else
5218				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5219		}
5220	}
5221#ifdef ATH_DEBUG
5222	if (sc->sc_debug & ATH_DEBUG_RESET) {
5223		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5224		if (bf != NULL && bf->bf_m != NULL) {
5225			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5226				ath_hal_txprocdesc(ah, bf->bf_lastds,
5227				    &bf->bf_status.ds_txstat) == HAL_OK);
5228			ieee80211_dump_pkt(&sc->sc_ic,
5229			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5230			    0, -1);
5231		}
5232	}
5233#endif /* ATH_DEBUG */
5234	sc->sc_wd_timer = 0;
5235}
5236
5237/*
5238 * Update internal state after a channel change.
5239 */
5240static void
5241ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5242{
5243	enum ieee80211_phymode mode;
5244
5245	/*
5246	 * Change channels and update the h/w rate map
5247	 * if we're switching; e.g. 11a to 11b/g.
5248	 */
5249	mode = ieee80211_chan2mode(chan);
5250	if (mode != sc->sc_curmode)
5251		ath_setcurmode(sc, mode);
5252	sc->sc_curchan = chan;
5253}
5254
5255/*
5256 * Set/change channels.  If the channel is really being changed,
5257 * it's done by resetting the chip.  To accomplish this we must
5258 * first cleanup any pending DMA, then restart stuff after a la
5259 * ath_init.
5260 */
5261static int
5262ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5263{
5264	struct ieee80211com *ic = &sc->sc_ic;
5265	struct ath_hal *ah = sc->sc_ah;
5266	int ret = 0;
5267
5268	/* Treat this as an interface reset */
5269	ATH_PCU_UNLOCK_ASSERT(sc);
5270	ATH_UNLOCK_ASSERT(sc);
5271
5272	/* (Try to) stop TX/RX from occurring */
5273	taskqueue_block(sc->sc_tq);
5274
5275	ATH_PCU_LOCK(sc);
5276
5277	/* Disable interrupts */
5278	ath_hal_intrset(ah, 0);
5279
5280	/* Stop new RX/TX/interrupt completion */
5281	if (ath_reset_grablock(sc, 1) == 0) {
5282		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5283		    __func__);
5284	}
5285
5286	/* Stop pending RX/TX completion */
5287	ath_txrx_stop_locked(sc);
5288
5289	ATH_PCU_UNLOCK(sc);
5290
5291	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5292	    __func__, ieee80211_chan2ieee(ic, chan),
5293	    chan->ic_freq, chan->ic_flags);
5294	if (chan != sc->sc_curchan) {
5295		HAL_STATUS status;
5296		/*
5297		 * To switch channels clear any pending DMA operations;
5298		 * wait long enough for the RX fifo to drain, reset the
5299		 * hardware at the new frequency, and then re-enable
5300		 * the relevant bits of the h/w.
5301		 */
5302#if 0
5303		ath_hal_intrset(ah, 0);		/* disable interrupts */
5304#endif
5305		ath_stoprecv(sc, 1);		/* turn off frame recv */
5306		/*
5307		 * First, handle completed TX/RX frames.
5308		 */
5309		ath_rx_flush(sc);
5310		ath_draintxq(sc, ATH_RESET_NOLOSS);
5311		/*
5312		 * Next, flush the non-scheduled frames.
5313		 */
5314		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5315
5316		ath_update_chainmasks(sc, chan);
5317		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5318		    sc->sc_cur_rxchainmask);
5319		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE,
5320		    HAL_RESET_NORMAL, &status)) {
5321			device_printf(sc->sc_dev, "%s: unable to reset "
5322			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5323			    __func__, ieee80211_chan2ieee(ic, chan),
5324			    chan->ic_freq, chan->ic_flags, status);
5325			ret = EIO;
5326			goto finish;
5327		}
5328		sc->sc_diversity = ath_hal_getdiversity(ah);
5329
5330		ATH_RX_LOCK(sc);
5331		sc->sc_rx_stopped = 1;
5332		sc->sc_rx_resetted = 1;
5333		ATH_RX_UNLOCK(sc);
5334
5335		/* Quiet time handling - ensure we resync */
5336		ath_vap_clear_quiet_ie(sc);
5337
5338		/* Let DFS at it in case it's a DFS channel */
5339		ath_dfs_radar_enable(sc, chan);
5340
5341		/* Let spectral at in case spectral is enabled */
5342		ath_spectral_enable(sc, chan);
5343
5344		/*
5345		 * Let bluetooth coexistence at in case it's needed for this
5346		 * channel
5347		 */
5348		ath_btcoex_enable(sc, ic->ic_curchan);
5349
5350		/*
5351		 * If we're doing TDMA, enforce the TXOP limitation for chips
5352		 * that support it.
5353		 */
5354		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5355			ath_hal_setenforcetxop(sc->sc_ah, 1);
5356		else
5357			ath_hal_setenforcetxop(sc->sc_ah, 0);
5358
5359		/*
5360		 * Re-enable rx framework.
5361		 */
5362		if (ath_startrecv(sc) != 0) {
5363			device_printf(sc->sc_dev,
5364			    "%s: unable to restart recv logic\n", __func__);
5365			ret = EIO;
5366			goto finish;
5367		}
5368
5369		/*
5370		 * Change channels and update the h/w rate map
5371		 * if we're switching; e.g. 11a to 11b/g.
5372		 */
5373		ath_chan_change(sc, chan);
5374
5375		/*
5376		 * Reset clears the beacon timers; reset them
5377		 * here if needed.
5378		 */
5379		if (sc->sc_beacons) {		/* restart beacons */
5380#ifdef IEEE80211_SUPPORT_TDMA
5381			if (sc->sc_tdma)
5382				ath_tdma_config(sc, NULL);
5383			else
5384#endif
5385			ath_beacon_config(sc, NULL);
5386		}
5387
5388		/*
5389		 * Re-enable interrupts.
5390		 */
5391#if 0
5392		ath_hal_intrset(ah, sc->sc_imask);
5393#endif
5394	}
5395
5396finish:
5397	ATH_PCU_LOCK(sc);
5398	sc->sc_inreset_cnt--;
5399	/* XXX only do this if sc_inreset_cnt == 0? */
5400	ath_hal_intrset(ah, sc->sc_imask);
5401	ATH_PCU_UNLOCK(sc);
5402
5403	ath_txrx_start(sc);
5404	/* XXX ath_start? */
5405
5406	return ret;
5407}
5408
5409/*
5410 * Periodically recalibrate the PHY to account
5411 * for temperature/environment changes.
5412 */
5413static void
5414ath_calibrate(void *arg)
5415{
5416	struct ath_softc *sc = arg;
5417	struct ath_hal *ah = sc->sc_ah;
5418	struct ieee80211com *ic = &sc->sc_ic;
5419	HAL_BOOL longCal, isCalDone = AH_TRUE;
5420	HAL_BOOL aniCal, shortCal = AH_FALSE;
5421	int nextcal;
5422
5423	ATH_LOCK_ASSERT(sc);
5424
5425	/*
5426	 * Force the hardware awake for ANI work.
5427	 */
5428	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5429
5430	/* Skip trying to do this if we're in reset */
5431	if (sc->sc_inreset_cnt)
5432		goto restart;
5433
5434	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5435		goto restart;
5436	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5437	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5438	if (sc->sc_doresetcal)
5439		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5440
5441	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5442	if (aniCal) {
5443		sc->sc_stats.ast_ani_cal++;
5444		sc->sc_lastani = ticks;
5445		ath_hal_ani_poll(ah, sc->sc_curchan);
5446	}
5447
5448	if (longCal) {
5449		sc->sc_stats.ast_per_cal++;
5450		sc->sc_lastlongcal = ticks;
5451		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5452			/*
5453			 * Rfgain is out of bounds, reset the chip
5454			 * to load new gain values.
5455			 */
5456			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5457				"%s: rfgain change\n", __func__);
5458			sc->sc_stats.ast_per_rfgain++;
5459			sc->sc_resetcal = 0;
5460			sc->sc_doresetcal = AH_TRUE;
5461			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5462			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5463			ath_power_restore_power_state(sc);
5464			return;
5465		}
5466		/*
5467		 * If this long cal is after an idle period, then
5468		 * reset the data collection state so we start fresh.
5469		 */
5470		if (sc->sc_resetcal) {
5471			(void) ath_hal_calreset(ah, sc->sc_curchan);
5472			sc->sc_lastcalreset = ticks;
5473			sc->sc_lastshortcal = ticks;
5474			sc->sc_resetcal = 0;
5475			sc->sc_doresetcal = AH_TRUE;
5476		}
5477	}
5478
5479	/* Only call if we're doing a short/long cal, not for ANI calibration */
5480	if (shortCal || longCal) {
5481		isCalDone = AH_FALSE;
5482		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5483			if (longCal) {
5484				/*
5485				 * Calibrate noise floor data again in case of change.
5486				 */
5487				ath_hal_process_noisefloor(ah);
5488			}
5489		} else {
5490			DPRINTF(sc, ATH_DEBUG_ANY,
5491				"%s: calibration of channel %u failed\n",
5492				__func__, sc->sc_curchan->ic_freq);
5493			sc->sc_stats.ast_per_calfail++;
5494		}
5495		/*
5496		 * XXX TODO: get the NF calibration results from the HAL.
5497		 * If we failed NF cal then schedule a hard reset to potentially
5498		 * un-freeze the PHY.
5499		 *
5500		 * Note we have to be careful here to not get stuck in an
5501		 * infinite NIC restart.  Ideally we'd not restart if we
5502		 * failed the first NF cal - that /can/ fail sometimes in
5503		 * a noisy environment.
5504		 *
5505		 * Instead, we should likely temporarily shorten the longCal
5506		 * period to happen pretty quickly and if a subsequent one
5507		 * fails, do a full reset.
5508		 */
5509		if (shortCal)
5510			sc->sc_lastshortcal = ticks;
5511	}
5512	if (!isCalDone) {
5513restart:
5514		/*
5515		 * Use a shorter interval to potentially collect multiple
5516		 * data samples required to complete calibration.  Once
5517		 * we're told the work is done we drop back to a longer
5518		 * interval between requests.  We're more aggressive doing
5519		 * work when operating as an AP to improve operation right
5520		 * after startup.
5521		 */
5522		sc->sc_lastshortcal = ticks;
5523		nextcal = ath_shortcalinterval*hz/1000;
5524		if (sc->sc_opmode != HAL_M_HOSTAP)
5525			nextcal *= 10;
5526		sc->sc_doresetcal = AH_TRUE;
5527	} else {
5528		/* nextcal should be the shortest time for next event */
5529		nextcal = ath_longcalinterval*hz;
5530		if (sc->sc_lastcalreset == 0)
5531			sc->sc_lastcalreset = sc->sc_lastlongcal;
5532		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5533			sc->sc_resetcal = 1;	/* setup reset next trip */
5534		sc->sc_doresetcal = AH_FALSE;
5535	}
5536	/* ANI calibration may occur more often than short/long/resetcal */
5537	if (ath_anicalinterval > 0)
5538		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5539
5540	if (nextcal != 0) {
5541		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5542		    __func__, nextcal, isCalDone ? "" : "!");
5543		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5544	} else {
5545		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5546		    __func__);
5547		/* NB: don't rearm timer */
5548	}
5549	/*
5550	 * Restore power state now that we're done.
5551	 */
5552	ath_power_restore_power_state(sc);
5553}
5554
5555static void
5556ath_scan_start(struct ieee80211com *ic)
5557{
5558	struct ath_softc *sc = ic->ic_softc;
5559	struct ath_hal *ah = sc->sc_ah;
5560	u_int32_t rfilt;
5561
5562	/* XXX calibration timer? */
5563	/* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
5564
5565	ATH_LOCK(sc);
5566	sc->sc_scanning = 1;
5567	sc->sc_syncbeacon = 0;
5568	rfilt = ath_calcrxfilter(sc);
5569	ATH_UNLOCK(sc);
5570
5571	ATH_PCU_LOCK(sc);
5572	ath_hal_setrxfilter(ah, rfilt);
5573	ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
5574	ATH_PCU_UNLOCK(sc);
5575
5576	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5577		 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
5578}
5579
5580static void
5581ath_scan_end(struct ieee80211com *ic)
5582{
5583	struct ath_softc *sc = ic->ic_softc;
5584	struct ath_hal *ah = sc->sc_ah;
5585	u_int32_t rfilt;
5586
5587	ATH_LOCK(sc);
5588	sc->sc_scanning = 0;
5589	rfilt = ath_calcrxfilter(sc);
5590	ATH_UNLOCK(sc);
5591
5592	ATH_PCU_LOCK(sc);
5593	ath_hal_setrxfilter(ah, rfilt);
5594	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5595
5596	ath_hal_process_noisefloor(ah);
5597	ATH_PCU_UNLOCK(sc);
5598
5599	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5600		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5601		 sc->sc_curaid);
5602}
5603
5604#ifdef	ATH_ENABLE_11N
5605/*
5606 * For now, just do a channel change.
5607 *
5608 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5609 * control state and resetting the hardware without dropping frames out
5610 * of the queue.
5611 *
5612 * The unfortunate trouble here is making absolutely sure that the
5613 * channel width change has propagated enough so the hardware
5614 * absolutely isn't handed bogus frames for it's current operating
5615 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5616 * does occur in parallel, we need to make certain we've blocked
5617 * any further ongoing TX (and RX, that can cause raw TX)
5618 * before we do this.
5619 */
5620static void
5621ath_update_chw(struct ieee80211com *ic)
5622{
5623	struct ath_softc *sc = ic->ic_softc;
5624
5625	//DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5626	device_printf(sc->sc_dev, "%s: called\n", __func__);
5627
5628	/*
5629	 * XXX TODO: schedule a tasklet that stops things without freeing,
5630	 * walks the now stopped TX queue(s) looking for frames to retry
5631	 * as if we TX filtered them (whch may mean dropping non-ampdu frames!)
5632	 * but okay) then place them back on the software queue so they
5633	 * can have the rate control lookup done again.
5634	 */
5635	ath_set_channel(ic);
5636}
5637#endif	/* ATH_ENABLE_11N */
5638
5639/*
5640 * This is called by the beacon parsing routine in the receive
5641 * path to update the current quiet time information provided by
5642 * an AP.
5643 *
5644 * This is STA specific, it doesn't take the AP TBTT/beacon slot
5645 * offset into account.
5646 *
5647 * The quiet IE doesn't control the /now/ beacon interval - it
5648 * controls the upcoming beacon interval.  So, when tbtt=1,
5649 * the quiet element programming shall be for the next beacon
5650 * interval.  There's no tbtt=0 behaviour defined, so don't.
5651 *
5652 * Since we're programming the next quiet interval, we have
5653 * to keep in mind what we will see when the next beacon
5654 * is received with potentially a quiet IE.  For example, if
5655 * quiet_period is 1, then we are always getting a quiet interval
5656 * each TBTT - so if we just program it in upon each beacon received,
5657 * it will constantly reflect the "next" TBTT and we will never
5658 * let the counter stay programmed correctly.
5659 *
5660 * So:
5661 * + the first time we see the quiet IE, program it and store
5662 *   the details somewhere;
5663 * + if the quiet parameters don't change (ie, period/duration/offset)
5664 *   then just leave the programming enabled;
5665 * + (we can "skip" beacons, so don't try to enforce tbttcount unless
5666 *   you're willing to also do the skipped beacon math);
5667 * + if the quiet IE is removed, then halt quiet time.
5668 */
5669static int
5670ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie)
5671{
5672	struct ieee80211_quiet_ie *q;
5673	struct ieee80211vap *vap = ni->ni_vap;
5674	struct ath_vap *avp = ATH_VAP(vap);
5675	struct ieee80211com *ic = vap->iv_ic;
5676	struct ath_softc *sc = ic->ic_softc;
5677
5678	if (vap->iv_opmode != IEEE80211_M_STA)
5679		return (0);
5680
5681	/* Verify we have a quiet time IE */
5682	if (ie == NULL) {
5683		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5684		    "%s: called; NULL IE, disabling\n", __func__);
5685
5686		ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE);
5687		memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
5688		return (0);
5689	}
5690
5691	/* If we do, verify it's actually legit */
5692	if (ie[0] != IEEE80211_ELEMID_QUIET)
5693		return 0;
5694	if (ie[1] != 6)
5695		return 0;
5696
5697	/* Note: this belongs in net80211, parsed out and everything */
5698	q = (void *) ie;
5699
5700	/*
5701	 * Compare what we have stored to what we last saw.
5702	 * If they're the same then don't program in anything.
5703	 */
5704	if ((q->period == avp->quiet_ie.period) &&
5705	    (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) &&
5706	    (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset)))
5707		return (0);
5708
5709	DPRINTF(sc, ATH_DEBUG_QUIETIE,
5710	    "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n",
5711	    __func__,
5712	    (int) q->tbttcount,
5713	    (int) q->period,
5714	    (int) le16dec(&q->duration),
5715	    (int) le16dec(&q->offset));
5716
5717	/*
5718	 * Don't program in garbage values.
5719	 */
5720	if ((le16dec(&q->duration) == 0) ||
5721	    (le16dec(&q->duration) >= ni->ni_intval)) {
5722		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5723		    "%s: invalid duration (%d)\n", __func__,
5724		    le16dec(&q->duration));
5725		    return (0);
5726	}
5727	/*
5728	 * Can have a 0 offset, but not a duration - so just check
5729	 * they don't exceed the intval.
5730	 */
5731	if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) {
5732		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5733		    "%s: invalid duration + offset (%d+%d)\n", __func__,
5734		    le16dec(&q->duration),
5735		    le16dec(&q->offset));
5736		    return (0);
5737	}
5738	if (q->tbttcount == 0) {
5739		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5740		    "%s: invalid tbttcount (0)\n", __func__);
5741		    return (0);
5742	}
5743	if (q->period == 0) {
5744		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5745		    "%s: invalid period (0)\n", __func__);
5746		    return (0);
5747	}
5748
5749	/*
5750	 * This is a new quiet time IE config, so wait until tbttcount
5751	 * is equal to 1, and program it in.
5752	 */
5753	if (q->tbttcount == 1) {
5754		DPRINTF(sc, ATH_DEBUG_QUIETIE,
5755		    "%s: programming\n", __func__);
5756		ath_hal_set_quiet(sc->sc_ah,
5757		    q->period * ni->ni_intval,	/* convert to TU */
5758		    le16dec(&q->duration),	/* already in TU */
5759		    le16dec(&q->offset) + ni->ni_intval,
5760		    HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF);
5761		/*
5762		 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for
5763		 * STA mode
5764		 */
5765
5766		/* Update local state */
5767		memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie));
5768	}
5769
5770	return (0);
5771}
5772
5773static void
5774ath_set_channel(struct ieee80211com *ic)
5775{
5776	struct ath_softc *sc = ic->ic_softc;
5777
5778	ATH_LOCK(sc);
5779	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5780	ATH_UNLOCK(sc);
5781
5782	(void) ath_chan_set(sc, ic->ic_curchan);
5783	/*
5784	 * If we are returning to our bss channel then mark state
5785	 * so the next recv'd beacon's tsf will be used to sync the
5786	 * beacon timers.  Note that since we only hear beacons in
5787	 * sta/ibss mode this has no effect in other operating modes.
5788	 */
5789	ATH_LOCK(sc);
5790	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5791		sc->sc_syncbeacon = 1;
5792	ath_power_restore_power_state(sc);
5793	ATH_UNLOCK(sc);
5794}
5795
5796/*
5797 * Walk the vap list and check if there any vap's in RUN state.
5798 */
5799static int
5800ath_isanyrunningvaps(struct ieee80211vap *this)
5801{
5802	struct ieee80211com *ic = this->iv_ic;
5803	struct ieee80211vap *vap;
5804
5805	IEEE80211_LOCK_ASSERT(ic);
5806
5807	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5808		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5809			return 1;
5810	}
5811	return 0;
5812}
5813
5814static int
5815ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5816{
5817	struct ieee80211com *ic = vap->iv_ic;
5818	struct ath_softc *sc = ic->ic_softc;
5819	struct ath_vap *avp = ATH_VAP(vap);
5820	struct ath_hal *ah = sc->sc_ah;
5821	struct ieee80211_node *ni = NULL;
5822	int i, error, stamode;
5823	u_int32_t rfilt;
5824	int csa_run_transition = 0;
5825	enum ieee80211_state ostate = vap->iv_state;
5826
5827	static const HAL_LED_STATE leds[] = {
5828	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5829	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5830	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5831	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5832	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5833	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5834	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5835	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5836	};
5837
5838	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5839		ieee80211_state_name[ostate],
5840		ieee80211_state_name[nstate]);
5841
5842	/*
5843	 * net80211 _should_ have the comlock asserted at this point.
5844	 * There are some comments around the calls to vap->iv_newstate
5845	 * which indicate that it (newstate) may end up dropping the
5846	 * lock.  This and the subsequent lock assert check after newstate
5847	 * are an attempt to catch these and figure out how/why.
5848	 */
5849	IEEE80211_LOCK_ASSERT(ic);
5850
5851	/* Before we touch the hardware - wake it up */
5852	ATH_LOCK(sc);
5853	/*
5854	 * If the NIC is in anything other than SLEEP state,
5855	 * we need to ensure that self-generated frames are
5856	 * set for PWRMGT=0.  Otherwise we may end up with
5857	 * strange situations.
5858	 *
5859	 * XXX TODO: is this actually the case? :-)
5860	 */
5861	if (nstate != IEEE80211_S_SLEEP)
5862		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5863
5864	/*
5865	 * Now, wake the thing up.
5866	 */
5867	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5868
5869	/*
5870	 * And stop the calibration callout whilst we have
5871	 * ATH_LOCK held.
5872	 */
5873	callout_stop(&sc->sc_cal_ch);
5874	ATH_UNLOCK(sc);
5875
5876	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5877		csa_run_transition = 1;
5878
5879	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5880
5881	if (nstate == IEEE80211_S_SCAN) {
5882		/*
5883		 * Scanning: turn off beacon miss and don't beacon.
5884		 * Mark beacon state so when we reach RUN state we'll
5885		 * [re]setup beacons.  Unblock the task q thread so
5886		 * deferred interrupt processing is done.
5887		 */
5888
5889		/* Ensure we stay awake during scan */
5890		ATH_LOCK(sc);
5891		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5892		ath_power_setpower(sc, HAL_PM_AWAKE, 1);
5893		ATH_UNLOCK(sc);
5894
5895		ath_hal_intrset(ah,
5896		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5897		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5898		sc->sc_beacons = 0;
5899		taskqueue_unblock(sc->sc_tq);
5900	}
5901
5902	ni = ieee80211_ref_node(vap->iv_bss);
5903	rfilt = ath_calcrxfilter(sc);
5904	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5905		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5906		   vap->iv_opmode == IEEE80211_M_IBSS);
5907
5908	/*
5909	 * XXX Dont need to do this (and others) if we've transitioned
5910	 * from SLEEP->RUN.
5911	 */
5912	if (stamode && nstate == IEEE80211_S_RUN) {
5913		sc->sc_curaid = ni->ni_associd;
5914		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5915		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5916	}
5917	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5918	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5919	ath_hal_setrxfilter(ah, rfilt);
5920
5921	/* XXX is this to restore keycache on resume? */
5922	if (vap->iv_opmode != IEEE80211_M_STA &&
5923	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5924		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5925			if (ath_hal_keyisvalid(ah, i))
5926				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5927	}
5928
5929	/*
5930	 * Invoke the parent method to do net80211 work.
5931	 */
5932	error = avp->av_newstate(vap, nstate, arg);
5933	if (error != 0)
5934		goto bad;
5935
5936	/*
5937	 * See above: ensure av_newstate() doesn't drop the lock
5938	 * on us.
5939	 */
5940	IEEE80211_LOCK_ASSERT(ic);
5941
5942	/*
5943	 * XXX TODO: if nstate is _S_CAC, then we should disable
5944	 * ACK processing until CAC is completed.
5945	 */
5946
5947	/*
5948	 * XXX TODO: if we're on a passive channel, then we should
5949	 * not allow any ACKs or self-generated frames until we hear
5950	 * a beacon.  Unfortunately there isn't a notification from
5951	 * net80211 so perhaps we could slot that particular check
5952	 * into the mgmt receive path and just ensure that we clear
5953	 * it on RX of beacons in passive mode (and only clear it
5954	 * once, obviously.)
5955	 */
5956
5957	/*
5958	 * XXX TODO: net80211 should be tracking whether channels
5959	 * have heard beacons and are thus considered "OK" for
5960	 * transmitting - and then inform the driver about this
5961	 * state change.  That way if we hear an AP go quiet
5962	 * (and nothing else is beaconing on a channel) the
5963	 * channel can go back to being passive until another
5964	 * beacon is heard.
5965	 */
5966
5967	/*
5968	 * XXX TODO: if nstate is _S_CAC, then we should disable
5969	 * ACK processing until CAC is completed.
5970	 */
5971
5972	/*
5973	 * XXX TODO: if we're on a passive channel, then we should
5974	 * not allow any ACKs or self-generated frames until we hear
5975	 * a beacon.  Unfortunately there isn't a notification from
5976	 * net80211 so perhaps we could slot that particular check
5977	 * into the mgmt receive path and just ensure that we clear
5978	 * it on RX of beacons in passive mode (and only clear it
5979	 * once, obviously.)
5980	 */
5981
5982	/*
5983	 * XXX TODO: net80211 should be tracking whether channels
5984	 * have heard beacons and are thus considered "OK" for
5985	 * transmitting - and then inform the driver about this
5986	 * state change.  That way if we hear an AP go quiet
5987	 * (and nothing else is beaconing on a channel) the
5988	 * channel can go back to being passive until another
5989	 * beacon is heard.
5990	 */
5991
5992	if (nstate == IEEE80211_S_RUN) {
5993		/* NB: collect bss node again, it may have changed */
5994		ieee80211_free_node(ni);
5995		ni = ieee80211_ref_node(vap->iv_bss);
5996
5997		DPRINTF(sc, ATH_DEBUG_STATE,
5998		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5999		    "capinfo 0x%04x chan %d\n", __func__,
6000		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6001		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6002
6003		switch (vap->iv_opmode) {
6004#ifdef IEEE80211_SUPPORT_TDMA
6005		case IEEE80211_M_AHDEMO:
6006			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6007				break;
6008			/* fall thru... */
6009#endif
6010		case IEEE80211_M_HOSTAP:
6011		case IEEE80211_M_IBSS:
6012		case IEEE80211_M_MBSS:
6013
6014			/*
6015			 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.)
6016			 * For channels that are in CAC, we may have disabled
6017			 * this during CAC to ensure we don't ACK frames
6018			 * sent to us.
6019			 */
6020
6021			/*
6022			 * Allocate and setup the beacon frame.
6023			 *
6024			 * Stop any previous beacon DMA.  This may be
6025			 * necessary, for example, when an ibss merge
6026			 * causes reconfiguration; there will be a state
6027			 * transition from RUN->RUN that means we may
6028			 * be called with beacon transmission active.
6029			 */
6030			ath_hal_stoptxdma(ah, sc->sc_bhalq);
6031
6032			error = ath_beacon_alloc(sc, ni);
6033			if (error != 0)
6034				goto bad;
6035			/*
6036			 * If joining an adhoc network defer beacon timer
6037			 * configuration to the next beacon frame so we
6038			 * have a current TSF to use.  Otherwise we're
6039			 * starting an ibss/bss so there's no need to delay;
6040			 * if this is the first vap moving to RUN state, then
6041			 * beacon state needs to be [re]configured.
6042			 */
6043			if (vap->iv_opmode == IEEE80211_M_IBSS &&
6044			    ni->ni_tstamp.tsf != 0) {
6045				sc->sc_syncbeacon = 1;
6046			} else if (!sc->sc_beacons) {
6047#ifdef IEEE80211_SUPPORT_TDMA
6048				if (vap->iv_caps & IEEE80211_C_TDMA)
6049					ath_tdma_config(sc, vap);
6050				else
6051#endif
6052					ath_beacon_config(sc, vap);
6053				sc->sc_beacons = 1;
6054			}
6055			break;
6056		case IEEE80211_M_STA:
6057			/*
6058			 * Defer beacon timer configuration to the next
6059			 * beacon frame so we have a current TSF to use
6060			 * (any TSF collected when scanning is likely old).
6061			 * However if it's due to a CSA -> RUN transition,
6062			 * force a beacon update so we pick up a lack of
6063			 * beacons from an AP in CAC and thus force a
6064			 * scan.
6065			 *
6066			 * And, there's also corner cases here where
6067			 * after a scan, the AP may have disappeared.
6068			 * In that case, we may not receive an actual
6069			 * beacon to update the beacon timer and thus we
6070			 * won't get notified of the missing beacons.
6071			 *
6072			 * Also, don't do any of this if we're not running
6073			 * with hardware beacon support, as that'll interfere
6074			 * with an AP VAP.
6075			 */
6076			if (ostate != IEEE80211_S_RUN &&
6077			    ostate != IEEE80211_S_SLEEP) {
6078
6079				if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
6080					DPRINTF(sc, ATH_DEBUG_BEACON,
6081					    "%s: STA; syncbeacon=1\n", __func__);
6082					sc->sc_syncbeacon = 1;
6083					if (csa_run_transition)
6084						ath_beacon_config(sc, vap);
6085				}
6086
6087				/* Quiet time handling - ensure we resync */
6088				memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6089
6090			/*
6091			 * PR: kern/175227
6092			 *
6093			 * Reconfigure beacons during reset; as otherwise
6094			 * we won't get the beacon timers reprogrammed
6095			 * after a reset and thus we won't pick up a
6096			 * beacon miss interrupt.
6097			 *
6098			 * Hopefully we'll see a beacon before the BMISS
6099			 * timer fires (too often), leading to a STA
6100			 * disassociation.
6101			 */
6102				if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
6103					sc->sc_beacons = 1;
6104				}
6105			}
6106			break;
6107		case IEEE80211_M_MONITOR:
6108			/*
6109			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6110			 * transitions so we must re-enable interrupts here to
6111			 * handle the case of a single monitor mode vap.
6112			 */
6113			ath_hal_intrset(ah, sc->sc_imask);
6114			break;
6115		case IEEE80211_M_WDS:
6116			break;
6117		default:
6118			break;
6119		}
6120		/*
6121		 * Let the hal process statistics collected during a
6122		 * scan so it can provide calibrated noise floor data.
6123		 */
6124		ath_hal_process_noisefloor(ah);
6125		/*
6126		 * Reset rssi stats; maybe not the best place...
6127		 */
6128		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6129		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6130		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6131
6132		/*
6133		 * Force awake for RUN mode.
6134		 */
6135		ATH_LOCK(sc);
6136		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6137		ath_power_setpower(sc, HAL_PM_AWAKE, 1);
6138
6139		/*
6140		 * Finally, start any timers and the task q thread
6141		 * (in case we didn't go through SCAN state).
6142		 */
6143		if (ath_longcalinterval != 0) {
6144			/* start periodic recalibration timer */
6145			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6146		} else {
6147			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6148			    "%s: calibration disabled\n", __func__);
6149		}
6150		ATH_UNLOCK(sc);
6151
6152		taskqueue_unblock(sc->sc_tq);
6153	} else if (nstate == IEEE80211_S_INIT) {
6154		/* Quiet time handling - ensure we resync */
6155		memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6156
6157		/*
6158		 * If there are no vaps left in RUN state then
6159		 * shutdown host/driver operation:
6160		 * o disable interrupts
6161		 * o disable the task queue thread
6162		 * o mark beacon processing as stopped
6163		 */
6164		if (!ath_isanyrunningvaps(vap)) {
6165			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6166			/* disable interrupts  */
6167			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6168			taskqueue_block(sc->sc_tq);
6169			sc->sc_beacons = 0;
6170		}
6171
6172		/*
6173		 * For at least STA mode we likely should clear the ANI
6174		 * and NF calibration state and allow the NIC/HAL to figure
6175		 * out optimal parameters at runtime.  Otherwise if we
6176		 * disassociate due to interference / deafness it may persist
6177		 * when we reconnect.
6178		 *
6179		 * Note: may need to do this for other states too, not just
6180		 * _S_INIT.
6181		 */
6182#ifdef IEEE80211_SUPPORT_TDMA
6183		ath_hal_setcca(ah, AH_TRUE);
6184#endif
6185	} else if (nstate == IEEE80211_S_SLEEP) {
6186		/* We're going to sleep, so transition appropriately */
6187		/* For now, only do this if we're a single STA vap */
6188		if (sc->sc_nvaps == 1 &&
6189		    vap->iv_opmode == IEEE80211_M_STA) {
6190			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6191			ATH_LOCK(sc);
6192			/*
6193			 * Always at least set the self-generated
6194			 * frame config to set PWRMGT=1.
6195			 */
6196			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6197
6198			/*
6199			 * If we're not syncing beacons, transition
6200			 * to NETWORK_SLEEP.
6201			 *
6202			 * We stay awake if syncbeacon > 0 in case
6203			 * we need to listen for some beacons otherwise
6204			 * our beacon timer config may be wrong.
6205			 */
6206			if (sc->sc_syncbeacon == 0) {
6207				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1);
6208			}
6209			ATH_UNLOCK(sc);
6210		}
6211
6212		/*
6213		 * Note - the ANI/calibration timer isn't re-enabled during
6214		 * network sleep for now.  One unfortunate side-effect is that
6215		 * the PHY/airtime statistics aren't gathered on the channel
6216		 * but I haven't yet tested to see if reading those registers
6217		 * CAN occur during network sleep.
6218		 *
6219		 * This should be revisited in a future commit, even if it's
6220		 * just to split out the airtime polling from ANI/calibration.
6221		 */
6222	} else if (nstate == IEEE80211_S_SCAN) {
6223		/* Quiet time handling - ensure we resync */
6224		memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6225
6226		/*
6227		 * If we're in scan mode then startpcureceive() is
6228		 * hopefully being called with "reset ANI" for this channel;
6229		 * but once we attempt to reassociate we program in the previous
6230		 * ANI values and.. not do any calibration until we're running.
6231		 * This may mean we stay deaf unless we can associate successfully.
6232		 *
6233		 * So do kick off the cal timer to get NF/ANI going.
6234		 */
6235		ATH_LOCK(sc);
6236		if (ath_longcalinterval != 0) {
6237			/* start periodic recalibration timer */
6238			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6239		} else {
6240			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6241			    "%s: calibration disabled\n", __func__);
6242		}
6243		ATH_UNLOCK(sc);
6244	}
6245bad:
6246	ieee80211_free_node(ni);
6247
6248	/*
6249	 * Restore the power state - either to what it was, or
6250	 * to network_sleep if it's alright.
6251	 */
6252	ATH_LOCK(sc);
6253	ath_power_restore_power_state(sc);
6254	ATH_UNLOCK(sc);
6255	return error;
6256}
6257
6258/*
6259 * Allocate a key cache slot to the station so we can
6260 * setup a mapping from key index to node. The key cache
6261 * slot is needed for managing antenna state and for
6262 * compression when stations do not use crypto.  We do
6263 * it uniliaterally here; if crypto is employed this slot
6264 * will be reassigned.
6265 */
6266static void
6267ath_setup_stationkey(struct ieee80211_node *ni)
6268{
6269	struct ieee80211vap *vap = ni->ni_vap;
6270	struct ath_softc *sc = vap->iv_ic->ic_softc;
6271	ieee80211_keyix keyix, rxkeyix;
6272
6273	/* XXX should take a locked ref to vap->iv_bss */
6274	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6275		/*
6276		 * Key cache is full; we'll fall back to doing
6277		 * the more expensive lookup in software.  Note
6278		 * this also means no h/w compression.
6279		 */
6280		/* XXX msg+statistic */
6281	} else {
6282		/* XXX locking? */
6283		ni->ni_ucastkey.wk_keyix = keyix;
6284		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6285		/* NB: must mark device key to get called back on delete */
6286		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6287		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6288		/* NB: this will create a pass-thru key entry */
6289		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6290	}
6291}
6292
6293/*
6294 * Setup driver-specific state for a newly associated node.
6295 * Note that we're called also on a re-associate, the isnew
6296 * param tells us if this is the first time or not.
6297 */
6298static void
6299ath_newassoc(struct ieee80211_node *ni, int isnew)
6300{
6301	struct ath_node *an = ATH_NODE(ni);
6302	struct ieee80211vap *vap = ni->ni_vap;
6303	struct ath_softc *sc = vap->iv_ic->ic_softc;
6304	const struct ieee80211_txparam *tp = ni->ni_txparms;
6305
6306	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6307	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6308
6309	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6310	    __func__,
6311	    ni->ni_macaddr,
6312	    ":",
6313	    isnew,
6314	    an->an_is_powersave);
6315
6316	ATH_NODE_LOCK(an);
6317	ath_rate_newassoc(sc, an, isnew);
6318	ATH_NODE_UNLOCK(an);
6319
6320	if (isnew &&
6321	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6322	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6323		ath_setup_stationkey(ni);
6324
6325	/*
6326	 * If we're reassociating, make sure that any paused queues
6327	 * get unpaused.
6328	 *
6329	 * Now, we may have frames in the hardware queue for this node.
6330	 * So if we are reassociating and there are frames in the queue,
6331	 * we need to go through the cleanup path to ensure that they're
6332	 * marked as non-aggregate.
6333	 */
6334	if (! isnew) {
6335		DPRINTF(sc, ATH_DEBUG_NODE,
6336		    "%s: %6D: reassoc; is_powersave=%d\n",
6337		    __func__,
6338		    ni->ni_macaddr,
6339		    ":",
6340		    an->an_is_powersave);
6341
6342		/* XXX for now, we can't hold the lock across assoc */
6343		ath_tx_node_reassoc(sc, an);
6344
6345		/* XXX for now, we can't hold the lock across wakeup */
6346		if (an->an_is_powersave)
6347			ath_tx_node_wakeup(sc, an);
6348	}
6349}
6350
6351static int
6352ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6353	int nchans, struct ieee80211_channel chans[])
6354{
6355	struct ath_softc *sc = ic->ic_softc;
6356	struct ath_hal *ah = sc->sc_ah;
6357	HAL_STATUS status;
6358
6359	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6360	    "%s: rd %u cc %u location %c%s\n",
6361	    __func__, reg->regdomain, reg->country, reg->location,
6362	    reg->ecm ? " ecm" : "");
6363
6364	status = ath_hal_set_channels(ah, chans, nchans,
6365	    reg->country, reg->regdomain);
6366	if (status != HAL_OK) {
6367		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6368		    __func__, status);
6369		return EINVAL;		/* XXX */
6370	}
6371
6372	return 0;
6373}
6374
6375static void
6376ath_getradiocaps(struct ieee80211com *ic,
6377	int maxchans, int *nchans, struct ieee80211_channel chans[])
6378{
6379	struct ath_softc *sc = ic->ic_softc;
6380	struct ath_hal *ah = sc->sc_ah;
6381
6382	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6383	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6384
6385	/* XXX check return */
6386	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6387	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6388
6389}
6390
6391static int
6392ath_getchannels(struct ath_softc *sc)
6393{
6394	struct ieee80211com *ic = &sc->sc_ic;
6395	struct ath_hal *ah = sc->sc_ah;
6396	HAL_STATUS status;
6397
6398	/*
6399	 * Collect channel set based on EEPROM contents.
6400	 */
6401	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6402	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6403	if (status != HAL_OK) {
6404		device_printf(sc->sc_dev,
6405		    "%s: unable to collect channel list from hal, status %d\n",
6406		    __func__, status);
6407		return EINVAL;
6408	}
6409	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6410	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6411	/* XXX map Atheros sku's to net80211 SKU's */
6412	/* XXX net80211 types too small */
6413	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6414	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6415	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6416	ic->ic_regdomain.isocc[1] = ' ';
6417
6418	ic->ic_regdomain.ecm = 1;
6419	ic->ic_regdomain.location = 'I';
6420
6421	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6422	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6423	    __func__, sc->sc_eerd, sc->sc_eecc,
6424	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6425	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6426	return 0;
6427}
6428
6429static int
6430ath_rate_setup(struct ath_softc *sc, u_int mode)
6431{
6432	struct ath_hal *ah = sc->sc_ah;
6433	const HAL_RATE_TABLE *rt;
6434
6435	switch (mode) {
6436	case IEEE80211_MODE_11A:
6437		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6438		break;
6439	case IEEE80211_MODE_HALF:
6440		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6441		break;
6442	case IEEE80211_MODE_QUARTER:
6443		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6444		break;
6445	case IEEE80211_MODE_11B:
6446		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6447		break;
6448	case IEEE80211_MODE_11G:
6449		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6450		break;
6451	case IEEE80211_MODE_TURBO_A:
6452		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6453		break;
6454	case IEEE80211_MODE_TURBO_G:
6455		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6456		break;
6457	case IEEE80211_MODE_STURBO_A:
6458		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6459		break;
6460	case IEEE80211_MODE_11NA:
6461		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6462		break;
6463	case IEEE80211_MODE_11NG:
6464		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6465		break;
6466	default:
6467		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6468			__func__, mode);
6469		return 0;
6470	}
6471	sc->sc_rates[mode] = rt;
6472	return (rt != NULL);
6473}
6474
6475static void
6476ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6477{
6478	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6479	static const struct {
6480		u_int		rate;		/* tx/rx 802.11 rate */
6481		u_int16_t	timeOn;		/* LED on time (ms) */
6482		u_int16_t	timeOff;	/* LED off time (ms) */
6483	} blinkrates[] = {
6484		{ 108,  40,  10 },
6485		{  96,  44,  11 },
6486		{  72,  50,  13 },
6487		{  48,  57,  14 },
6488		{  36,  67,  16 },
6489		{  24,  80,  20 },
6490		{  22, 100,  25 },
6491		{  18, 133,  34 },
6492		{  12, 160,  40 },
6493		{  10, 200,  50 },
6494		{   6, 240,  58 },
6495		{   4, 267,  66 },
6496		{   2, 400, 100 },
6497		{   0, 500, 130 },
6498		/* XXX half/quarter rates */
6499	};
6500	const HAL_RATE_TABLE *rt;
6501	int i, j;
6502
6503	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6504	rt = sc->sc_rates[mode];
6505	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6506	for (i = 0; i < rt->rateCount; i++) {
6507		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6508		if (rt->info[i].phy != IEEE80211_T_HT)
6509			sc->sc_rixmap[ieeerate] = i;
6510		else
6511			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6512	}
6513	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6514	for (i = 0; i < nitems(sc->sc_hwmap); i++) {
6515		if (i >= rt->rateCount) {
6516			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6517			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6518			continue;
6519		}
6520		sc->sc_hwmap[i].ieeerate =
6521			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6522		if (rt->info[i].phy == IEEE80211_T_HT)
6523			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6524		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6525		if (rt->info[i].shortPreamble ||
6526		    rt->info[i].phy == IEEE80211_T_OFDM)
6527			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6528		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6529		for (j = 0; j < nitems(blinkrates)-1; j++)
6530			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6531				break;
6532		/* NB: this uses the last entry if the rate isn't found */
6533		/* XXX beware of overlow */
6534		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6535		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6536	}
6537	sc->sc_currates = rt;
6538	sc->sc_curmode = mode;
6539	/*
6540	 * All protection frames are transmitted at 2Mb/s for
6541	 * 11g, otherwise at 1Mb/s.
6542	 */
6543	if (mode == IEEE80211_MODE_11G)
6544		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6545	else
6546		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6547	/* NB: caller is responsible for resetting rate control state */
6548}
6549
6550static void
6551ath_watchdog(void *arg)
6552{
6553	struct ath_softc *sc = arg;
6554	struct ieee80211com *ic = &sc->sc_ic;
6555	int do_reset = 0;
6556
6557	ATH_LOCK_ASSERT(sc);
6558
6559	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6560		uint32_t hangs;
6561
6562		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6563
6564		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6565		    hangs != 0) {
6566			device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
6567			    hangs & 0xff ? "bb" : "mac", hangs);
6568		} else
6569			device_printf(sc->sc_dev, "device timeout\n");
6570		do_reset = 1;
6571		counter_u64_add(ic->ic_oerrors, 1);
6572		sc->sc_stats.ast_watchdog++;
6573
6574		ath_power_restore_power_state(sc);
6575	}
6576
6577	/*
6578	 * We can't hold the lock across the ath_reset() call.
6579	 *
6580	 * And since this routine can't hold a lock and sleep,
6581	 * do the reset deferred.
6582	 */
6583	if (do_reset) {
6584		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6585	}
6586
6587	callout_schedule(&sc->sc_wd_ch, hz);
6588}
6589
6590static void
6591ath_parent(struct ieee80211com *ic)
6592{
6593	struct ath_softc *sc = ic->ic_softc;
6594	int error = EDOOFUS;
6595
6596	ATH_LOCK(sc);
6597	if (ic->ic_nrunning > 0) {
6598		/*
6599		 * To avoid rescanning another access point,
6600		 * do not call ath_init() here.  Instead,
6601		 * only reflect promisc mode settings.
6602		 */
6603		if (sc->sc_running) {
6604			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6605			ath_mode_init(sc);
6606			ath_power_restore_power_state(sc);
6607		} else if (!sc->sc_invalid) {
6608			/*
6609			 * Beware of being called during attach/detach
6610			 * to reset promiscuous mode.  In that case we
6611			 * will still be marked UP but not RUNNING.
6612			 * However trying to re-init the interface
6613			 * is the wrong thing to do as we've already
6614			 * torn down much of our state.  There's
6615			 * probably a better way to deal with this.
6616			 */
6617			error = ath_init(sc);
6618		}
6619	} else {
6620		ath_stop(sc);
6621		if (!sc->sc_invalid)
6622			ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
6623	}
6624	ATH_UNLOCK(sc);
6625
6626	if (error == 0) {
6627#ifdef ATH_TX99_DIAG
6628		if (sc->sc_tx99 != NULL)
6629			sc->sc_tx99->start(sc->sc_tx99);
6630		else
6631#endif
6632		ieee80211_start_all(ic);
6633	}
6634}
6635
6636/*
6637 * Announce various information on device/driver attach.
6638 */
6639static void
6640ath_announce(struct ath_softc *sc)
6641{
6642	struct ath_hal *ah = sc->sc_ah;
6643
6644	device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n",
6645		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6646		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6647	device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6648		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6649	if (bootverbose) {
6650		int i;
6651		for (i = 0; i <= WME_AC_VO; i++) {
6652			struct ath_txq *txq = sc->sc_ac2q[i];
6653			device_printf(sc->sc_dev,
6654			    "Use hw queue %u for %s traffic\n",
6655			    txq->axq_qnum, ieee80211_wme_acnames[i]);
6656		}
6657		device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
6658		    sc->sc_cabq->axq_qnum);
6659		device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
6660		    sc->sc_bhalq);
6661	}
6662	if (ath_rxbuf != ATH_RXBUF)
6663		device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
6664	if (ath_txbuf != ATH_TXBUF)
6665		device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
6666	if (sc->sc_mcastkey && bootverbose)
6667		device_printf(sc->sc_dev, "using multicast key search\n");
6668}
6669
6670static void
6671ath_dfs_tasklet(void *p, int npending)
6672{
6673	struct ath_softc *sc = (struct ath_softc *) p;
6674	struct ieee80211com *ic = &sc->sc_ic;
6675
6676	/*
6677	 * If previous processing has found a radar event,
6678	 * signal this to the net80211 layer to begin DFS
6679	 * processing.
6680	 */
6681	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6682		/* DFS event found, initiate channel change */
6683
6684		/*
6685		 * XXX TODO: immediately disable ACK processing
6686		 * on the current channel.  This would be done
6687		 * by setting AR_DIAG_ACK_DIS (AR5212; may be
6688		 * different for others) until we are out of
6689		 * CAC.
6690		 */
6691
6692		/*
6693		 * XXX doesn't currently tell us whether the event
6694		 * XXX was found in the primary or extension
6695		 * XXX channel!
6696		 */
6697		IEEE80211_LOCK(ic);
6698		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6699		IEEE80211_UNLOCK(ic);
6700	}
6701}
6702
6703/*
6704 * Enable/disable power save.  This must be called with
6705 * no TX driver locks currently held, so it should only
6706 * be called from the RX path (which doesn't hold any
6707 * TX driver locks.)
6708 */
6709static void
6710ath_node_powersave(struct ieee80211_node *ni, int enable)
6711{
6712#ifdef	ATH_SW_PSQ
6713	struct ath_node *an = ATH_NODE(ni);
6714	struct ieee80211com *ic = ni->ni_ic;
6715	struct ath_softc *sc = ic->ic_softc;
6716	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6717
6718	/* XXX and no TXQ locks should be held here */
6719
6720	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6721	    __func__,
6722	    ni->ni_macaddr,
6723	    ":",
6724	    !! enable);
6725
6726	/* Suspend or resume software queue handling */
6727	if (enable)
6728		ath_tx_node_sleep(sc, an);
6729	else
6730		ath_tx_node_wakeup(sc, an);
6731
6732	/* Update net80211 state */
6733	avp->av_node_ps(ni, enable);
6734#else
6735	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6736
6737	/* Update net80211 state */
6738	avp->av_node_ps(ni, enable);
6739#endif/* ATH_SW_PSQ */
6740}
6741
6742/*
6743 * Notification from net80211 that the powersave queue state has
6744 * changed.
6745 *
6746 * Since the software queue also may have some frames:
6747 *
6748 * + if the node software queue has frames and the TID state
6749 *   is 0, we set the TIM;
6750 * + if the node and the stack are both empty, we clear the TIM bit.
6751 * + If the stack tries to set the bit, always set it.
6752 * + If the stack tries to clear the bit, only clear it if the
6753 *   software queue in question is also cleared.
6754 *
6755 * TODO: this is called during node teardown; so let's ensure this
6756 * is all correctly handled and that the TIM bit is cleared.
6757 * It may be that the node flush is called _AFTER_ the net80211
6758 * stack clears the TIM.
6759 *
6760 * Here is the racy part.  Since it's possible >1 concurrent,
6761 * overlapping TXes will appear complete with a TX completion in
6762 * another thread, it's possible that the concurrent TIM calls will
6763 * clash.  We can't hold the node lock here because setting the
6764 * TIM grabs the net80211 comlock and this may cause a LOR.
6765 * The solution is either to totally serialise _everything_ at
6766 * this point (ie, all TX, completion and any reset/flush go into
6767 * one taskqueue) or a new "ath TIM lock" needs to be created that
6768 * just wraps the driver state change and this call to avp->av_set_tim().
6769 *
6770 * The same race exists in the net80211 power save queue handling
6771 * as well.  Since multiple transmitting threads may queue frames
6772 * into the driver, as well as ps-poll and the driver transmitting
6773 * frames (and thus clearing the psq), it's quite possible that
6774 * a packet entering the PSQ and a ps-poll being handled will
6775 * race, causing the TIM to be cleared and not re-set.
6776 */
6777static int
6778ath_node_set_tim(struct ieee80211_node *ni, int enable)
6779{
6780#ifdef	ATH_SW_PSQ
6781	struct ieee80211com *ic = ni->ni_ic;
6782	struct ath_softc *sc = ic->ic_softc;
6783	struct ath_node *an = ATH_NODE(ni);
6784	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6785	int changed = 0;
6786
6787	ATH_TX_LOCK(sc);
6788	an->an_stack_psq = enable;
6789
6790	/*
6791	 * This will get called for all operating modes,
6792	 * even if avp->av_set_tim is unset.
6793	 * It's currently set for hostap/ibss modes; but
6794	 * the same infrastructure is used for both STA
6795	 * and AP/IBSS node power save.
6796	 */
6797	if (avp->av_set_tim == NULL) {
6798		ATH_TX_UNLOCK(sc);
6799		return (0);
6800	}
6801
6802	/*
6803	 * If setting the bit, always set it here.
6804	 * If clearing the bit, only clear it if the
6805	 * software queue is also empty.
6806	 *
6807	 * If the node has left power save, just clear the TIM
6808	 * bit regardless of the state of the power save queue.
6809	 *
6810	 * XXX TODO: although atomics are used, it's quite possible
6811	 * that a race will occur between this and setting/clearing
6812	 * in another thread.  TX completion will occur always in
6813	 * one thread, however setting/clearing the TIM bit can come
6814	 * from a variety of different process contexts!
6815	 */
6816	if (enable && an->an_tim_set == 1) {
6817		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6818		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6819		    __func__,
6820		    ni->ni_macaddr,
6821		    ":",
6822		    enable);
6823		ATH_TX_UNLOCK(sc);
6824	} else if (enable) {
6825		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6826		    "%s: %6D: enable=%d, enabling TIM\n",
6827		    __func__,
6828		    ni->ni_macaddr,
6829		    ":",
6830		    enable);
6831		an->an_tim_set = 1;
6832		ATH_TX_UNLOCK(sc);
6833		changed = avp->av_set_tim(ni, enable);
6834	} else if (an->an_swq_depth == 0) {
6835		/* disable */
6836		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6837		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6838		    __func__,
6839		    ni->ni_macaddr,
6840		    ":",
6841		    enable);
6842		an->an_tim_set = 0;
6843		ATH_TX_UNLOCK(sc);
6844		changed = avp->av_set_tim(ni, enable);
6845	} else if (! an->an_is_powersave) {
6846		/*
6847		 * disable regardless; the node isn't in powersave now
6848		 */
6849		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6850		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6851		    __func__,
6852		    ni->ni_macaddr,
6853		    ":",
6854		    enable);
6855		an->an_tim_set = 0;
6856		ATH_TX_UNLOCK(sc);
6857		changed = avp->av_set_tim(ni, enable);
6858	} else {
6859		/*
6860		 * psq disable, node is currently in powersave, node
6861		 * software queue isn't empty, so don't clear the TIM bit
6862		 * for now.
6863		 */
6864		ATH_TX_UNLOCK(sc);
6865		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6866		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6867		    __func__,
6868		    ni->ni_macaddr,
6869		    ":",
6870		    enable);
6871		changed = 0;
6872	}
6873
6874	return (changed);
6875#else
6876	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6877
6878	/*
6879	 * Some operating modes don't set av_set_tim(), so don't
6880	 * update it here.
6881	 */
6882	if (avp->av_set_tim == NULL)
6883		return (0);
6884
6885	return (avp->av_set_tim(ni, enable));
6886#endif /* ATH_SW_PSQ */
6887}
6888
6889/*
6890 * Set or update the TIM from the software queue.
6891 *
6892 * Check the software queue depth before attempting to do lock
6893 * anything; that avoids trying to obtain the lock.  Then,
6894 * re-check afterwards to ensure nothing has changed in the
6895 * meantime.
6896 *
6897 * set:   This is designed to be called from the TX path, after
6898 *        a frame has been queued; to see if the swq > 0.
6899 *
6900 * clear: This is designed to be called from the buffer completion point
6901 *        (right now it's ath_tx_default_comp()) where the state of
6902 *        a software queue has changed.
6903 *
6904 * It makes sense to place it at buffer free / completion rather
6905 * than after each software queue operation, as there's no real
6906 * point in churning the TIM bit as the last frames in the software
6907 * queue are transmitted.  If they fail and we retry them, we'd
6908 * just be setting the TIM bit again anyway.
6909 */
6910void
6911ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6912     int enable)
6913{
6914#ifdef	ATH_SW_PSQ
6915	struct ath_node *an;
6916	struct ath_vap *avp;
6917
6918	/* Don't do this for broadcast/etc frames */
6919	if (ni == NULL)
6920		return;
6921
6922	an = ATH_NODE(ni);
6923	avp = ATH_VAP(ni->ni_vap);
6924
6925	/*
6926	 * And for operating modes without the TIM handler set, let's
6927	 * just skip those.
6928	 */
6929	if (avp->av_set_tim == NULL)
6930		return;
6931
6932	ATH_TX_LOCK_ASSERT(sc);
6933
6934	if (enable) {
6935		if (an->an_is_powersave &&
6936		    an->an_tim_set == 0 &&
6937		    an->an_swq_depth != 0) {
6938			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6939			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6940			    __func__,
6941			    ni->ni_macaddr,
6942			    ":");
6943			an->an_tim_set = 1;
6944			(void) avp->av_set_tim(ni, 1);
6945		}
6946	} else {
6947		/*
6948		 * Don't bother grabbing the lock unless the queue is empty.
6949		 */
6950		if (an->an_swq_depth != 0)
6951			return;
6952
6953		if (an->an_is_powersave &&
6954		    an->an_stack_psq == 0 &&
6955		    an->an_tim_set == 1 &&
6956		    an->an_swq_depth == 0) {
6957			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6958			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6959			    " clear!\n",
6960			    __func__,
6961			    ni->ni_macaddr,
6962			    ":");
6963			an->an_tim_set = 0;
6964			(void) avp->av_set_tim(ni, 0);
6965		}
6966	}
6967#else
6968	return;
6969#endif	/* ATH_SW_PSQ */
6970}
6971
6972/*
6973 * Received a ps-poll frame from net80211.
6974 *
6975 * Here we get a chance to serve out a software-queued frame ourselves
6976 * before we punt it to net80211 to transmit us one itself - either
6977 * because there's traffic in the net80211 psq, or a NULL frame to
6978 * indicate there's nothing else.
6979 */
6980static void
6981ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6982{
6983#ifdef	ATH_SW_PSQ
6984	struct ath_node *an;
6985	struct ath_vap *avp;
6986	struct ieee80211com *ic = ni->ni_ic;
6987	struct ath_softc *sc = ic->ic_softc;
6988	int tid;
6989
6990	/* Just paranoia */
6991	if (ni == NULL)
6992		return;
6993
6994	/*
6995	 * Unassociated (temporary node) station.
6996	 */
6997	if (ni->ni_associd == 0)
6998		return;
6999
7000	/*
7001	 * We do have an active node, so let's begin looking into it.
7002	 */
7003	an = ATH_NODE(ni);
7004	avp = ATH_VAP(ni->ni_vap);
7005
7006	/*
7007	 * For now, we just call the original ps-poll method.
7008	 * Once we're ready to flip this on:
7009	 *
7010	 * + Set leak to 1, as no matter what we're going to have
7011	 *   to send a frame;
7012	 * + Check the software queue and if there's something in it,
7013	 *   schedule the highest TID thas has traffic from this node.
7014	 *   Then make sure we schedule the software scheduler to
7015	 *   run so it picks up said frame.
7016	 *
7017	 * That way whatever happens, we'll at least send _a_ frame
7018	 * to the given node.
7019	 *
7020	 * Again, yes, it's crappy QoS if the node has multiple
7021	 * TIDs worth of traffic - but let's get it working first
7022	 * before we optimise it.
7023	 *
7024	 * Also yes, there's definitely latency here - we're not
7025	 * direct dispatching to the hardware in this path (and
7026	 * we're likely being called from the packet receive path,
7027	 * so going back into TX may be a little hairy!) but again
7028	 * I'd like to get this working first before optimising
7029	 * turn-around time.
7030	 */
7031
7032	ATH_TX_LOCK(sc);
7033
7034	/*
7035	 * Legacy - we're called and the node isn't asleep.
7036	 * Immediately punt.
7037	 */
7038	if (! an->an_is_powersave) {
7039		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7040		    "%s: %6D: not in powersave?\n",
7041		    __func__,
7042		    ni->ni_macaddr,
7043		    ":");
7044		ATH_TX_UNLOCK(sc);
7045		avp->av_recv_pspoll(ni, m);
7046		return;
7047	}
7048
7049	/*
7050	 * We're in powersave.
7051	 *
7052	 * Leak a frame.
7053	 */
7054	an->an_leak_count = 1;
7055
7056	/*
7057	 * Now, if there's no frames in the node, just punt to
7058	 * recv_pspoll.
7059	 *
7060	 * Don't bother checking if the TIM bit is set, we really
7061	 * only care if there are any frames here!
7062	 */
7063	if (an->an_swq_depth == 0) {
7064		ATH_TX_UNLOCK(sc);
7065		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7066		    "%s: %6D: SWQ empty; punting to net80211\n",
7067		    __func__,
7068		    ni->ni_macaddr,
7069		    ":");
7070		avp->av_recv_pspoll(ni, m);
7071		return;
7072	}
7073
7074	/*
7075	 * Ok, let's schedule the highest TID that has traffic
7076	 * and then schedule something.
7077	 */
7078	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7079		struct ath_tid *atid = &an->an_tid[tid];
7080		/*
7081		 * No frames? Skip.
7082		 */
7083		if (atid->axq_depth == 0)
7084			continue;
7085		ath_tx_tid_sched(sc, atid);
7086		/*
7087		 * XXX we could do a direct call to the TXQ
7088		 * scheduler code here to optimise latency
7089		 * at the expense of a REALLY deep callstack.
7090		 */
7091		ATH_TX_UNLOCK(sc);
7092		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7093		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7094		    "%s: %6D: leaking frame to TID %d\n",
7095		    __func__,
7096		    ni->ni_macaddr,
7097		    ":",
7098		    tid);
7099		return;
7100	}
7101
7102	ATH_TX_UNLOCK(sc);
7103
7104	/*
7105	 * XXX nothing in the TIDs at this point? Eek.
7106	 */
7107	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7108	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7109	    __func__,
7110	    ni->ni_macaddr,
7111	    ":");
7112	avp->av_recv_pspoll(ni, m);
7113#else
7114	avp->av_recv_pspoll(ni, m);
7115#endif	/* ATH_SW_PSQ */
7116}
7117
7118MODULE_VERSION(ath_main, 1);
7119MODULE_DEPEND(ath_main, wlan, 1, 1, 1);          /* 802.11 media layer */
7120MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1);
7121MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1);
7122MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1);
7123#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7124MODULE_DEPEND(ath_main, alq, 1, 1, 1);
7125#endif
7126