1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2006 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19#include "opt_ah.h"
20
21/*
22 * Chips specific device attachment and device info collection
23 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
24 */
25#include "ah.h"
26#include "ah_internal.h"
27#include "ah_devid.h"
28
29#include "ar5211/ar5211.h"
30#include "ar5211/ar5211reg.h"
31#include "ar5211/ar5211phy.h"
32
33#include "ah_eeprom_v3.h"
34
35/* Add static register initialization vectors */
36#include "ar5211/boss.ini"
37
38/*
39 * Structure to hold 11b tuning information for Beanie/Sombrero
40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
41 */
42typedef struct {
43	uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
44	uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
45	uint16_t	channel5111;	/* 11a channel for 5111 */
46} CHAN_INFO_2GHZ;
47
48#define CI_2GHZ_INDEX_CORRECTION 19
49static const CHAN_INFO_2GHZ chan2GHzData[] = {
50	{ 1, 0x46, 96  },	/* 2312 -19 */
51	{ 1, 0x46, 97  },	/* 2317 -18 */
52	{ 1, 0x46, 98  },	/* 2322 -17 */
53	{ 1, 0x46, 99  },	/* 2327 -16 */
54	{ 1, 0x46, 100 },	/* 2332 -15 */
55	{ 1, 0x46, 101 },	/* 2337 -14 */
56	{ 1, 0x46, 102 },	/* 2342 -13 */
57	{ 1, 0x46, 103 },	/* 2347 -12 */
58	{ 1, 0x46, 104 },	/* 2352 -11 */
59	{ 1, 0x46, 105 },	/* 2357 -10 */
60	{ 1, 0x46, 106 },	/* 2362  -9 */
61	{ 1, 0x46, 107 },	/* 2367  -8 */
62	{ 1, 0x46, 108 },	/* 2372  -7 */
63	/* index -6 to 0 are pad to make this a nolookup table */
64	{ 1, 0x46, 116 },	/*       -6 */
65	{ 1, 0x46, 116 },	/*       -5 */
66	{ 1, 0x46, 116 },	/*       -4 */
67	{ 1, 0x46, 116 },	/*       -3 */
68	{ 1, 0x46, 116 },	/*       -2 */
69	{ 1, 0x46, 116 },	/*       -1 */
70	{ 1, 0x46, 116 },	/*        0 */
71	{ 1, 0x46, 116 },	/* 2412   1 */
72	{ 1, 0x46, 117 },	/* 2417   2 */
73	{ 1, 0x46, 118 },	/* 2422   3 */
74	{ 1, 0x46, 119 },	/* 2427   4 */
75	{ 1, 0x46, 120 },	/* 2432   5 */
76	{ 1, 0x46, 121 },	/* 2437   6 */
77	{ 1, 0x46, 122 },	/* 2442   7 */
78	{ 1, 0x46, 123 },	/* 2447   8 */
79	{ 1, 0x46, 124 },	/* 2452   9 */
80	{ 1, 0x46, 125 },	/* 2457  10 */
81	{ 1, 0x46, 126 },	/* 2462  11 */
82	{ 1, 0x46, 127 },	/* 2467  12 */
83	{ 1, 0x46, 128 },	/* 2472  13 */
84	{ 1, 0x44, 124 },	/* 2484  14 */
85	{ 1, 0x46, 136 },	/* 2512  15 */
86	{ 1, 0x46, 140 },	/* 2532  16 */
87	{ 1, 0x46, 144 },	/* 2552  17 */
88	{ 1, 0x46, 148 },	/* 2572  18 */
89	{ 1, 0x46, 152 },	/* 2592  19 */
90	{ 1, 0x46, 156 },	/* 2612  20 */
91	{ 1, 0x46, 160 },	/* 2632  21 */
92	{ 1, 0x46, 164 },	/* 2652  22 */
93	{ 1, 0x46, 168 },	/* 2672  23 */
94	{ 1, 0x46, 172 },	/* 2692  24 */
95	{ 1, 0x46, 176 },	/* 2712  25 */
96	{ 1, 0x46, 180 } 	/* 2732  26 */
97};
98
99/* Power timeouts in usec to wait for chip to wake-up. */
100#define POWER_UP_TIME	2000
101
102#define	DELAY_PLL_SETTLE	300		/* 300 us */
103#define	DELAY_BASE_ACTIVATE	100		/* 100 us */
104
105#define NUM_RATES	8
106
107static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
108static HAL_BOOL ar5211SetChannel(struct ath_hal *,
109		const struct ieee80211_channel *);
110static int16_t ar5211RunNoiseFloor(struct ath_hal *,
111		uint8_t runTime, int16_t startingNF);
112static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
113		struct ieee80211_channel *chan);
114static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
115		const struct ieee80211_channel *chan);
116static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
117		const struct ieee80211_channel *chan);
118static void ar5211SetPowerTable(struct ath_hal *,
119		PCDACS_EEPROM *pSrcStruct, uint16_t channel);
120static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
121		const struct ieee80211_channel *);
122static void ar5211SetRateTable(struct ath_hal *,
123		RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
124		uint16_t numChannels, const struct ieee80211_channel *chan);
125static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
126		const PCDACS_EEPROM *pSrcStruct);
127static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
128		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
129static uint16_t ar5211GetInterpolatedValue(uint16_t target,
130		uint16_t srcLeft, uint16_t srcRight,
131		uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
132static void ar5211GetLowerUpperValues(uint16_t value,
133		const uint16_t *pList, uint16_t listSize,
134		uint16_t *pLowerValue, uint16_t *pUpperValue);
135static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
136		uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
137		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
138
139static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
140static void ar5211RequestRfgain(struct ath_hal *);
141static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
142static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
143static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
144static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
145
146/*
147 * Places the device in and out of reset and then places sane
148 * values in the registers based on EEPROM config, initialization
149 * vectors (as determined by the mode), and station configuration
150 *
151 * bChannelChange is used to preserve DMA/PCU registers across
152 * a HW Reset during channel change.
153 */
154HAL_BOOL
155ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
156	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
157	HAL_RESET_TYPE resetType,
158	HAL_STATUS *status)
159{
160uint32_t softLedCfg, softLedState;
161#define	N(a)	(sizeof (a) /sizeof (a[0]))
162#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
163	struct ath_hal_5211 *ahp = AH5211(ah);
164	HAL_CHANNEL_INTERNAL *ichan;
165	uint32_t i, ledstate;
166	HAL_STATUS ecode;
167	int q;
168
169	uint32_t		data, synthDelay;
170	uint32_t		macStaId1;
171	uint16_t		modesIndex = 0, freqIndex = 0;
172	uint32_t		saveFrameSeqCount[AR_NUM_DCU];
173	uint32_t		saveTsfLow = 0, saveTsfHigh = 0;
174	uint32_t		saveDefAntenna;
175
176	HALDEBUG(ah, HAL_DEBUG_RESET,
177	     "%s: opmode %u channel %u/0x%x %s channel\n",
178	     __func__, opmode, chan->ic_freq, chan->ic_flags,
179	     bChannelChange ? "change" : "same");
180
181	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
182	/*
183	 * Map public channel to private.
184	 */
185	ichan = ath_hal_checkchannel(ah, chan);
186	if (ichan == AH_NULL)
187		FAIL(HAL_EINVAL);
188	switch (opmode) {
189	case HAL_M_STA:
190	case HAL_M_IBSS:
191	case HAL_M_HOSTAP:
192	case HAL_M_MONITOR:
193		break;
194	default:
195		HALDEBUG(ah, HAL_DEBUG_ANY,
196		    "%s: invalid operating mode %u\n", __func__, opmode);
197		FAIL(HAL_EINVAL);
198		break;
199	}
200	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
201
202	/* Preserve certain DMA hardware registers on a channel change */
203	if (bChannelChange) {
204		/*
205		 * Need to save/restore the TSF because of an issue
206		 * that accelerates the TSF during a chip reset.
207		 *
208		 * We could use system timer routines to more
209		 * accurately restore the TSF, but
210		 * 1. Timer routines on certain platforms are
211		 *	not accurate enough (e.g. 1 ms resolution).
212		 * 2. It would still not be accurate.
213		 *
214		 * The most important aspect of this workaround,
215		 * is that, after reset, the TSF is behind
216		 * other STAs TSFs.  This will allow the STA to
217		 * properly resynchronize its TSF in adhoc mode.
218		 */
219		saveTsfLow  = OS_REG_READ(ah, AR_TSF_L32);
220		saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
221
222		/* Read frame sequence count */
223		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
224			saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
225		} else {
226			for (i = 0; i < AR_NUM_DCU; i++)
227				saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
228		}
229		if (!IEEE80211_IS_CHAN_DFS(chan))
230			chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
231	}
232
233	/*
234	 * Preserve the antenna on a channel change
235	 */
236	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
237	if (saveDefAntenna == 0)
238		saveDefAntenna = 1;
239
240	/* Save hardware flag before chip reset clears the register */
241	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
242
243	/* Save led state from pci config register */
244	ledstate = OS_REG_READ(ah, AR_PCICFG) &
245		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
246		 AR_PCICFG_LEDSLOW);
247	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
248	softLedState = OS_REG_READ(ah, AR_GPIODO);
249
250	if (!ar5211ChipReset(ah, chan)) {
251		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
252		FAIL(HAL_EIO);
253	}
254
255	/* Setup the indices for the next set of register array writes */
256	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
257		freqIndex = 1;
258		if (IEEE80211_IS_CHAN_TURBO(chan))
259			modesIndex = 2;
260		else if (IEEE80211_IS_CHAN_A(chan))
261			modesIndex = 1;
262		else {
263			HALDEBUG(ah, HAL_DEBUG_ANY,
264			    "%s: invalid channel %u/0x%x\n",
265			    __func__, chan->ic_freq, chan->ic_flags);
266			FAIL(HAL_EINVAL);
267		}
268	} else {
269		freqIndex = 2;
270		if (IEEE80211_IS_CHAN_B(chan))
271			modesIndex = 3;
272		else if (IEEE80211_IS_CHAN_PUREG(chan))
273			modesIndex = 4;
274		else {
275			HALDEBUG(ah, HAL_DEBUG_ANY,
276			    "%s: invalid channel %u/0x%x\n",
277			    __func__, chan->ic_freq, chan->ic_flags);
278			FAIL(HAL_EINVAL);
279		}
280	}
281
282	/* Set correct Baseband to analog shift setting to access analog chips. */
283	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
284		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
285	} else {
286		OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
287	}
288
289	/* Write parameters specific to AR5211 */
290	if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
291		if (IEEE80211_IS_CHAN_2GHZ(chan) &&
292		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
293			HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
294			uint32_t ob2GHz, db2GHz;
295
296			if (IEEE80211_IS_CHAN_CCK(chan)) {
297				ob2GHz = ee->ee_ob2GHz[0];
298				db2GHz = ee->ee_db2GHz[0];
299			} else {
300				ob2GHz = ee->ee_ob2GHz[1];
301				db2GHz = ee->ee_db2GHz[1];
302			}
303			ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
304			db2GHz = ath_hal_reverseBits(db2GHz, 3);
305			ar5211Mode2_4[25][freqIndex] =
306				(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
307					((ob2GHz << 6) & 0xC0);
308			ar5211Mode2_4[26][freqIndex] =
309				(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
310					(((ob2GHz >> 2) & 0x1) |
311					 ((db2GHz << 1) & 0x0E));
312		}
313		for (i = 0; i < N(ar5211Mode2_4); i++)
314			OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
315				ar5211Mode2_4[i][freqIndex]);
316	}
317
318	/* Write the analog registers 6 and 7 before other config */
319	ar5211SetRf6and7(ah, chan);
320
321	/* Write registers that vary across all modes */
322	for (i = 0; i < N(ar5211Modes); i++)
323		OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
324
325	/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
326	for (i = 0; i < N(ar5211BB_RfGain); i++)
327		OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
328
329	/* Write Common Array Parameters */
330	for (i = 0; i < N(ar5211Common); i++) {
331		uint32_t reg = ar5211Common[i][0];
332		/* On channel change, don't reset the PCU registers */
333		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
334			OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
335	}
336
337	/* Fix pre-AR5211 register values, this includes AR5311s. */
338	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
339		/*
340		 * The TX and RX latency values have changed locations
341		 * within the USEC register in AR5211.  Since they're
342		 * set via the .ini, for both AR5211 and AR5311, they
343		 * are written properly here for AR5311.
344		 */
345		data = OS_REG_READ(ah, AR_USEC);
346		/* Must be 0 for proper write in AR5311 */
347		HALASSERT((data & 0x00700000) == 0);
348		OS_REG_WRITE(ah, AR_USEC,
349			(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
350			((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
351		/* The following registers exist only on AR5311. */
352		OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
353
354		/* Set proper ADC & DAC delays for AR5311. */
355		OS_REG_WRITE(ah, 0x00009878, 0x00000008);
356
357		/* Enable the PCU FIFO corruption ECO on AR5311. */
358		OS_REG_WRITE(ah, AR_DIAG_SW,
359			OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
360	}
361
362	/* Restore certain DMA hardware registers on a channel change */
363	if (bChannelChange) {
364		/* Restore TSF */
365		OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
366		OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
367
368		if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
369			OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
370		} else {
371			for (i = 0; i < AR_NUM_DCU; i++)
372				OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
373		}
374	}
375
376	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
377	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
378		| macStaId1
379	);
380	ar5211SetOperatingMode(ah, opmode);
381
382	/* Restore previous led state */
383	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
384	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
385	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
386
387	/* Restore previous antenna */
388	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
389
390	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
391	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
392
393	/* Restore bmiss rssi & count thresholds */
394	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
395
396	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
397
398	/*
399	 * for pre-Production Oahu only.
400	 * Disable clock gating in all DMA blocks. Helps when using
401	 * 11B and AES but results in higher power consumption.
402	 */
403	if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
404	    AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
405		OS_REG_WRITE(ah, AR_CFG,
406			OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
407	}
408
409	/* Setup the transmit power values. */
410	if (!ar5211SetTransmitPower(ah, chan)) {
411		HALDEBUG(ah, HAL_DEBUG_ANY,
412		    "%s: error init'ing transmit power\n", __func__);
413		FAIL(HAL_EIO);
414	}
415
416	/*
417	 * Configurable OFDM spoofing for 11n compatibility; used
418	 * only when operating in station mode.
419	 */
420	if (opmode != HAL_M_HOSTAP &&
421	    (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
422		/* NB: override the .ini setting */
423		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
424			AR_PHY_FRAME_CTL_ERR_SERV,
425			MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
426	}
427
428	/* Setup board specific options for EEPROM version 3 */
429	ar5211SetBoardValues(ah, chan);
430
431	if (!ar5211SetChannel(ah, chan)) {
432		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
433		    __func__);
434		FAIL(HAL_EIO);
435	}
436
437	/* Activate the PHY */
438	if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
439	    IEEE80211_IS_CHAN_2GHZ(chan))
440		OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
441	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
442
443	/*
444	 * Wait for the frequency synth to settle (synth goes on
445	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
446	 * Value is in 100ns increments.
447	 */
448	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
449	if (IEEE80211_IS_CHAN_CCK(chan)) {
450		synthDelay = (4 * data) / 22;
451	} else {
452		synthDelay = data / 10;
453	}
454	/*
455	 * There is an issue if the AP starts the calibration before
456	 * the baseband timeout completes.  This could result in the
457	 * rxclear false triggering.  Add an extra delay to ensure this
458	 * this does not happen.
459	 */
460	OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
461
462	/* Calibrate the AGC and wait for completion. */
463	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
464		 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
465	(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
466
467	/* Perform noise floor and set status */
468	if (!ar5211CalNoiseFloor(ah, chan)) {
469		if (!IEEE80211_IS_CHAN_CCK(chan))
470			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
471		HALDEBUG(ah, HAL_DEBUG_ANY,
472		    "%s: noise floor calibration failed\n", __func__);
473		FAIL(HAL_EIO);
474	}
475
476	/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
477	if (ahp->ah_calibrationTime != 0) {
478		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
479			AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
480		ahp->ah_bIQCalibration = AH_TRUE;
481	}
482
483	/* set 1:1 QCU to DCU mapping for all queues */
484	for (q = 0; q < AR_NUM_DCU; q++)
485		OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
486
487	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
488		ar5211ResetTxQueue(ah, q);
489
490	/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
491	OS_REG_WRITE(ah, AR_IMR_S0,
492		 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
493		 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
494	OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
495	OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
496
497	/*
498	 * GBL_EIFS must always be written after writing
499	 *		to any QCUMASK register.
500	 */
501	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
502
503	/* Now set up the Interrupt Mask Register and save it for future use */
504	OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
505	ahp->ah_maskReg = INIT_INTERRUPT_MASK;
506
507	/* Enable bus error interrupts */
508	OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
509		 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
510
511	/* Enable interrupts specific to AP */
512	if (opmode == HAL_M_HOSTAP) {
513		OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
514		ahp->ah_maskReg |= AR_IMR_MIB;
515	}
516
517	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
518		ar5211EnableRfKill(ah);
519
520	/*
521	 * Writing to AR_BEACON will start timers. Hence it should
522	 * be the last register to be written. Do not reset tsf, do
523	 * not enable beacons at this point, but preserve other values
524	 * like beaconInterval.
525	 */
526	OS_REG_WRITE(ah, AR_BEACON,
527		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
528
529	/* Restore user-specified slot time and timeouts */
530	if (ahp->ah_sifstime != (u_int) -1)
531		ar5211SetSifsTime(ah, ahp->ah_sifstime);
532	if (ahp->ah_slottime != (u_int) -1)
533		ar5211SetSlotTime(ah, ahp->ah_slottime);
534	if (ahp->ah_acktimeout != (u_int) -1)
535		ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
536	if (ahp->ah_ctstimeout != (u_int) -1)
537		ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
538	if (AH_PRIVATE(ah)->ah_diagreg != 0)
539		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
540
541	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
542
543	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
544
545	return AH_TRUE;
546bad:
547	if (status != AH_NULL)
548		*status = ecode;
549	return AH_FALSE;
550#undef FAIL
551#undef N
552}
553
554/*
555 * Places the PHY and Radio chips into reset.  A full reset
556 * must be called to leave this state.  The PCI/MAC/PCU are
557 * not placed into reset as we must receive interrupt to
558 * re-enable the hardware.
559 */
560HAL_BOOL
561ar5211PhyDisable(struct ath_hal *ah)
562{
563	return ar5211SetResetReg(ah, AR_RC_BB);
564}
565
566/*
567 * Places all of hardware into reset
568 */
569HAL_BOOL
570ar5211Disable(struct ath_hal *ah)
571{
572	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
573		return AH_FALSE;
574	/*
575	 * Reset the HW - PCI must be reset after the rest of the
576	 * device has been reset.
577	 */
578	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
579		return AH_FALSE;
580	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
581
582	return AH_TRUE;
583}
584
585/*
586 * Places the hardware into reset and then pulls it out of reset
587 *
588 * Only write the PLL if we're changing to or from CCK mode
589 *
590 * Attach calls with channelFlags = 0, as the coldreset should have
591 * us in the correct mode and we cannot check the hwchannel flags.
592 */
593HAL_BOOL
594ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
595{
596	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
597		return AH_FALSE;
598
599	/* NB: called from attach with chan null */
600	if (chan != AH_NULL) {
601		/* Set CCK and Turbo modes correctly */
602		OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
603		    AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
604		if (IEEE80211_IS_CHAN_B(chan)) {
605			OS_REG_WRITE(ah, AR5211_PHY_MODE,
606			    AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
607			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
608			/* Wait for the PLL to settle */
609			OS_DELAY(DELAY_PLL_SETTLE);
610		} else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
611			OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
612			OS_DELAY(DELAY_PLL_SETTLE);
613			OS_REG_WRITE(ah, AR5211_PHY_MODE,
614			    AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
615				AR5211_PHY_MODE_RF2GHZ :
616				AR5211_PHY_MODE_RF5GHZ));
617		}
618	}
619
620	/*
621	 * Reset the HW - PCI must be reset after the rest of the
622	 * device has been reset
623	 */
624	if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
625		return AH_FALSE;
626	OS_DELAY(2100);	   /* 8245 @ 96Mhz hangs with 2000us. */
627
628	/* Bring out of sleep mode (AGAIN) */
629	if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
630		return AH_FALSE;
631
632	/* Clear warm reset register */
633	return ar5211SetResetReg(ah, 0);
634}
635
636/*
637 * Recalibrate the lower PHY chips to account for temperature/environment
638 * changes.
639 */
640HAL_BOOL
641ar5211PerCalibrationN(struct ath_hal *ah,  struct ieee80211_channel *chan,
642	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
643{
644	struct ath_hal_5211 *ahp = AH5211(ah);
645	HAL_CHANNEL_INTERNAL *ichan;
646	int32_t qCoff, qCoffDenom;
647	uint32_t data;
648	int32_t iqCorrMeas;
649	int32_t iCoff, iCoffDenom;
650	uint32_t powerMeasQ, powerMeasI;
651
652	ichan = ath_hal_checkchannel(ah, chan);
653	if (ichan == AH_NULL) {
654		HALDEBUG(ah, HAL_DEBUG_ANY,
655		    "%s: invalid channel %u/0x%x; no mapping\n",
656		    __func__, chan->ic_freq, chan->ic_flags);
657		return AH_FALSE;
658	}
659	/* IQ calibration in progress. Check to see if it has finished. */
660	if (ahp->ah_bIQCalibration &&
661	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
662		/* IQ Calibration has finished. */
663		ahp->ah_bIQCalibration = AH_FALSE;
664
665		/* Read calibration results. */
666		powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
667		powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
668		iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
669
670		/*
671		 * Prescale these values to remove 64-bit operation requirement at the loss
672		 * of a little precision.
673		 */
674		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
675		qCoffDenom = powerMeasQ / 64;
676
677		/* Protect against divide-by-0. */
678		if (iCoffDenom != 0 && qCoffDenom != 0) {
679			iCoff = (-iqCorrMeas) / iCoffDenom;
680			/* IQCORR_Q_I_COFF is a signed 6 bit number */
681			iCoff = iCoff & 0x3f;
682
683			qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
684			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
685			qCoff = qCoff & 0x1f;
686
687			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
688			    powerMeasI);
689			HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
690			    powerMeasQ);
691			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
692			    iqCorrMeas);
693			HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff	  = %d\n",
694			    iCoff);
695			HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff	  = %d\n",
696			    qCoff);
697
698			/* Write IQ */
699			data  = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
700				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
701				(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
702				((uint32_t)qCoff);
703			OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
704		}
705	}
706	*isCalDone = !ahp->ah_bIQCalibration;
707
708	if (longCal) {
709		/* Perform noise floor and set status */
710		if (!ar5211IsNfGood(ah, chan)) {
711			/* report up and clear internal state */
712			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
713			return AH_FALSE;
714		}
715		if (!ar5211CalNoiseFloor(ah, chan)) {
716			/*
717			 * Delay 5ms before retrying the noise floor
718			 * just to make sure, as we are in an error
719			 * condition here.
720			 */
721			OS_DELAY(5000);
722			if (!ar5211CalNoiseFloor(ah, chan)) {
723				if (!IEEE80211_IS_CHAN_CCK(chan))
724					chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
725				return AH_FALSE;
726			}
727		}
728		ar5211RequestRfgain(ah);
729	}
730	return AH_TRUE;
731}
732
733HAL_BOOL
734ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
735	HAL_BOOL *isIQdone)
736{
737	return ar5211PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
738}
739
740HAL_BOOL
741ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
742{
743	/* XXX */
744	return AH_TRUE;
745}
746
747/*
748 * Writes the given reset bit mask into the reset register
749 */
750static HAL_BOOL
751ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
752{
753	uint32_t mask = resetMask ? resetMask : ~0;
754	HAL_BOOL rt;
755
756	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
757	OS_REG_WRITE(ah, AR_RC, resetMask);
758
759	/* need to wait at least 128 clocks when reseting PCI before read */
760	OS_DELAY(15);
761
762	resetMask &= AR_RC_MAC | AR_RC_BB;
763	mask &= AR_RC_MAC | AR_RC_BB;
764	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
765        if ((resetMask & AR_RC_MAC) == 0) {
766		if (isBigEndian()) {
767			/*
768			 * Set CFG, little-endian for descriptor accesses.
769			 */
770			mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
771			OS_REG_WRITE(ah, AR_CFG, mask);
772		} else
773			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
774	}
775	return rt;
776}
777
778/*
779 * Takes the MHz channel value and sets the Channel value
780 *
781 * ASSUMES: Writes enabled to analog bus before AGC is active
782 *   or by disabling the AGC.
783 */
784static HAL_BOOL
785ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
786{
787	uint32_t refClk, reg32, data2111;
788	int16_t chan5111, chanIEEE;
789
790	chanIEEE = chan->ic_ieee;
791	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
792		const CHAN_INFO_2GHZ* ci =
793			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
794
795		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
796				<< 5)
797			 | (ci->refClkSel << 4);
798		chan5111 = ci->channel5111;
799	} else {
800		data2111 = 0;
801		chan5111 = chanIEEE;
802	}
803
804	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
805	if (chan5111 >= 145 || (chan5111 & 0x1)) {
806		reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
807		refClk = 1;
808	} else {
809		reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
810		refClk = 0;
811	}
812
813	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
814	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
815	reg32 >>= 8;
816	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
817
818	AH_PRIVATE(ah)->ah_curchan = chan;
819	return AH_TRUE;
820}
821
822static int16_t
823ar5211GetNoiseFloor(struct ath_hal *ah)
824{
825	int16_t nf;
826
827	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
828	if (nf & 0x100)
829		nf = 0 - ((nf ^ 0x1ff) + 1);
830	return nf;
831}
832
833/*
834 * Peform the noisefloor calibration for the length of time set
835 * in runTime (valid values 1 to 7)
836 *
837 * Returns: The NF value at the end of the given time (or 0 for failure)
838 */
839int16_t
840ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
841{
842	int i, searchTime;
843
844	HALASSERT(runTime <= 7);
845
846	/* Setup  noise floor run time and starting value */
847	OS_REG_WRITE(ah, AR_PHY(25),
848		(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
849			 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
850	/* Calibrate the noise floor */
851	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
852		OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
853
854	/* Compute the required amount of searchTime needed to finish NF */
855	if (runTime == 0) {
856		/* 8 search windows * 6.4us each */
857		searchTime = 8  * 7;
858	} else {
859		/* 512 * runtime search windows * 6.4us each */
860		searchTime = (runTime * 512)  * 7;
861	}
862
863	/*
864	 * Do not read noise floor until it has been updated
865	 *
866	 * As a guesstimate - we may only get 1/60th the time on
867	 * the air to see search windows  in a heavily congested
868	 * network (40 us every 2400 us of time)
869	 */
870	for (i = 0; i < 60; i++) {
871		if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
872			break;
873		OS_DELAY(searchTime);
874	}
875	if (i >= 60) {
876		HALDEBUG(ah, HAL_DEBUG_NFCAL,
877		    "NF with runTime %d failed to end on channel %d\n",
878		    runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
879		HALDEBUG(ah, HAL_DEBUG_NFCAL,
880		    "  PHY NF Reg state:	 0x%x\n",
881		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
882		HALDEBUG(ah, HAL_DEBUG_NFCAL,
883		    "  PHY Active Reg state: 0x%x\n",
884		    OS_REG_READ(ah, AR_PHY_ACTIVE));
885		return 0;
886	}
887
888	return ar5211GetNoiseFloor(ah);
889}
890
891static HAL_BOOL
892getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
893	int16_t *nft)
894{
895	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
896
897	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
898	case IEEE80211_CHAN_A:
899		*nft = ee->ee_noiseFloorThresh[0];
900		break;
901	case IEEE80211_CHAN_B:
902		*nft = ee->ee_noiseFloorThresh[1];
903		break;
904	case IEEE80211_CHAN_PUREG:
905		*nft = ee->ee_noiseFloorThresh[2];
906		break;
907	default:
908		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
909		    __func__, chan->ic_flags);
910		return AH_FALSE;
911	}
912	return AH_TRUE;
913}
914
915/*
916 * Read the NF and check it against the noise floor threshold
917 *
918 * Returns: TRUE if the NF is good
919 */
920static HAL_BOOL
921ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
922{
923	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
924	int16_t nf, nfThresh;
925
926	if (!getNoiseFloorThresh(ah, chan, &nfThresh))
927		return AH_FALSE;
928	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
929		HALDEBUG(ah, HAL_DEBUG_ANY,
930		    "%s: NF did not complete in calibration window\n", __func__);
931	}
932	nf = ar5211GetNoiseFloor(ah);
933	if (nf > nfThresh) {
934		HALDEBUG(ah, HAL_DEBUG_ANY,
935		    "%s: noise floor failed; detected %u, threshold %u\n",
936		    __func__, nf, nfThresh);
937		/*
938		 * NB: Don't discriminate 2.4 vs 5Ghz, if this
939		 *     happens it indicates a problem regardless
940		 *     of the band.
941		 */
942		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
943	}
944	ichan->rawNoiseFloor = nf;
945	return (nf <= nfThresh);
946}
947
948/*
949 * Peform the noisefloor calibration and check for any constant channel
950 * interference.
951 *
952 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
953 * it is if'ed for MKK regulatory domain only.
954 *
955 * Returns: TRUE for a successful noise floor calibration; else FALSE
956 */
957HAL_BOOL
958ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
959{
960#define	N(a)	(sizeof (a) / sizeof (a[0]))
961	/* Check for Carrier Wave interference in MKK regulatory zone */
962	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
963	    (chan->ic_flags & CHANNEL_NFCREQUIRED)) {
964		static const uint8_t runtime[3] = { 0, 2, 7 };
965		HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
966		int16_t nf, nfThresh;
967		int i;
968
969		if (!getNoiseFloorThresh(ah, chan, &nfThresh))
970			return AH_FALSE;
971		/*
972		 * Run a quick noise floor that will hopefully
973		 * complete (decrease delay time).
974		 */
975		for (i = 0; i < N(runtime); i++) {
976			nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
977			if (nf > nfThresh) {
978				HALDEBUG(ah, HAL_DEBUG_ANY,
979				    "%s: run failed with %u > threshold %u "
980				    "(runtime %u)\n", __func__,
981				    nf, nfThresh, runtime[i]);
982				ichan->rawNoiseFloor = 0;
983			} else
984				ichan->rawNoiseFloor = nf;
985		}
986		return (i <= N(runtime));
987	} else {
988		/* Calibrate the noise floor */
989		OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
990			OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
991				 AR_PHY_AGC_CONTROL_NF);
992	}
993	return AH_TRUE;
994#undef N
995}
996
997/*
998 * Adjust NF based on statistical values for 5GHz frequencies.
999 */
1000int16_t
1001ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1002{
1003	static const struct {
1004		uint16_t freqLow;
1005		int16_t	  adjust;
1006	} adjust5111[] = {
1007		{ 5790,	11 },	/* NB: ordered high -> low */
1008		{ 5730, 10 },
1009		{ 5690,  9 },
1010		{ 5660,  8 },
1011		{ 5610,  7 },
1012		{ 5530,  5 },
1013		{ 5450,  4 },
1014		{ 5379,  2 },
1015		{ 5209,  0 },	/* XXX? bogus but doesn't matter */
1016		{    0,  1 },
1017	};
1018	int i;
1019
1020	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1021		;
1022	/* NB: placeholder for 5111's less severe requirement */
1023	return adjust5111[i].adjust / 3;
1024}
1025
1026/*
1027 * Reads EEPROM header info from device structure and programs
1028 * analog registers 6 and 7
1029 *
1030 * REQUIRES: Access to the analog device
1031 */
1032static HAL_BOOL
1033ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
1034{
1035#define	N(a)	(sizeof (a) / sizeof (a[0]))
1036	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1037	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1038	struct ath_hal_5211 *ahp = AH5211(ah);
1039	uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1040	uint16_t tempOB, tempDB;
1041	uint16_t freqIndex;
1042	int i;
1043
1044	freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
1045
1046	/*
1047	 * TODO: This array mode correspondes with the index used
1048	 *	 during the read.
1049	 * For readability, this should be changed to an enum or #define
1050	 */
1051	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1052	case IEEE80211_CHAN_A:
1053		if (freq > 4000 && freq < 5260) {
1054			tempOB = ee->ee_ob1;
1055			tempDB = ee->ee_db1;
1056		} else if (freq >= 5260 && freq < 5500) {
1057			tempOB = ee->ee_ob2;
1058			tempDB = ee->ee_db2;
1059		} else if (freq >= 5500 && freq < 5725) {
1060			tempOB = ee->ee_ob3;
1061			tempDB = ee->ee_db3;
1062		} else if (freq >= 5725) {
1063			tempOB = ee->ee_ob4;
1064			tempDB = ee->ee_db4;
1065		} else {
1066			/* XXX panic?? */
1067			tempOB = tempDB = 0;
1068		}
1069
1070		rfXpdGain = ee->ee_xgain[0];
1071		rfPloSel  = ee->ee_xpd[0];
1072		rfPwdXpd  = !ee->ee_xpd[0];
1073
1074		ar5211Rf6n7[5][freqIndex]  =
1075			(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1076				(ee->ee_cornerCal.pd84<< 28);
1077		ar5211Rf6n7[6][freqIndex]  =
1078			(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1079				(ee->ee_cornerCal.pd90 << 26);
1080		ar5211Rf6n7[21][freqIndex] =
1081			(ar5211Rf6n7[21][freqIndex] & ~0x08) |
1082				(ee->ee_cornerCal.gSel << 3);
1083		break;
1084	case IEEE80211_CHAN_B:
1085		tempOB = ee->ee_obFor24;
1086		tempDB = ee->ee_dbFor24;
1087		rfXpdGain = ee->ee_xgain[1];
1088		rfPloSel  = ee->ee_xpd[1];
1089		rfPwdXpd  = !ee->ee_xpd[1];
1090		break;
1091	case IEEE80211_CHAN_PUREG:
1092		tempOB = ee->ee_obFor24g;
1093		tempDB = ee->ee_dbFor24g;
1094		rfXpdGain = ee->ee_xgain[2];
1095		rfPloSel  = ee->ee_xpd[2];
1096		rfPwdXpd  = !ee->ee_xpd[2];
1097		break;
1098	default:
1099		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1100		    __func__, chan->ic_flags);
1101		return AH_FALSE;
1102	}
1103
1104	HALASSERT(1 <= tempOB && tempOB <= 5);
1105	HALASSERT(1 <= tempDB && tempDB <= 5);
1106
1107	/* Set rfXpdGain and rfPwdXpd */
1108	ar5211Rf6n7[11][freqIndex] =  (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1109		(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1110	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1111		((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1112
1113	/* Set OB */
1114	ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1115		((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1116	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1117		((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1118
1119	/* Set DB */
1120	ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1121		((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1122
1123	/* Set rfPloSel */
1124	ar5211Rf6n7[17][freqIndex] =  (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1125		((rfPloSel << 3) & 0x08);
1126
1127	/* Write the Rf registers 6 & 7 */
1128	for (i = 0; i < N(ar5211Rf6n7); i++)
1129		OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1130
1131	/* Now that we have reprogrammed rfgain value, clear the flag. */
1132	ahp->ah_rfgainState = RFGAIN_INACTIVE;
1133
1134	return AH_TRUE;
1135#undef N
1136}
1137
1138HAL_BOOL
1139ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1140	const struct ieee80211_channel *chan)
1141{
1142#define	ANT_SWITCH_TABLE1	0x9960
1143#define	ANT_SWITCH_TABLE2	0x9964
1144	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1145	struct ath_hal_5211 *ahp = AH5211(ah);
1146	uint32_t antSwitchA, antSwitchB;
1147	int ix;
1148
1149	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1150	case IEEE80211_CHAN_A:		ix = 0; break;
1151	case IEEE80211_CHAN_B:		ix = 1; break;
1152	case IEEE80211_CHAN_PUREG:	ix = 2; break;
1153	default:
1154		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1155		    __func__, chan->ic_flags);
1156		return AH_FALSE;
1157	}
1158
1159	antSwitchA =  ee->ee_antennaControl[1][ix]
1160		   | (ee->ee_antennaControl[2][ix] << 6)
1161		   | (ee->ee_antennaControl[3][ix] << 12)
1162		   | (ee->ee_antennaControl[4][ix] << 18)
1163		   | (ee->ee_antennaControl[5][ix] << 24)
1164		   ;
1165	antSwitchB =  ee->ee_antennaControl[6][ix]
1166		   | (ee->ee_antennaControl[7][ix] << 6)
1167		   | (ee->ee_antennaControl[8][ix] << 12)
1168		   | (ee->ee_antennaControl[9][ix] << 18)
1169		   | (ee->ee_antennaControl[10][ix] << 24)
1170		   ;
1171	/*
1172	 * For fixed antenna, give the same setting for both switch banks
1173	 */
1174	switch (settings) {
1175	case HAL_ANT_FIXED_A:
1176		antSwitchB = antSwitchA;
1177		break;
1178	case HAL_ANT_FIXED_B:
1179		antSwitchA = antSwitchB;
1180		break;
1181	case HAL_ANT_VARIABLE:
1182		break;
1183	default:
1184		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1185		    __func__, settings);
1186		return AH_FALSE;
1187	}
1188	ahp->ah_diversityControl = settings;
1189
1190	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1191	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1192
1193	return AH_TRUE;
1194#undef ANT_SWITCH_TABLE1
1195#undef ANT_SWITCH_TABLE2
1196}
1197
1198/*
1199 * Reads EEPROM header info and programs the device for correct operation
1200 * given the channel value
1201 */
1202static HAL_BOOL
1203ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1204{
1205	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1206	struct ath_hal_5211 *ahp = AH5211(ah);
1207	int arrayMode, falseDectectBackoff;
1208
1209	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1210	case IEEE80211_CHAN_A:
1211		arrayMode = 0;
1212		OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1213			AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1214		break;
1215	case IEEE80211_CHAN_B:
1216		arrayMode = 1;
1217		break;
1218	case IEEE80211_CHAN_PUREG:
1219		arrayMode = 2;
1220		break;
1221	default:
1222		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1223		    __func__, chan->ic_flags);
1224		return AH_FALSE;
1225	}
1226
1227	/* Set the antenna register(s) correctly for the chip revision */
1228	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1229		OS_REG_WRITE(ah, AR_PHY(68),
1230			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1231	} else {
1232		OS_REG_WRITE(ah, AR_PHY(68),
1233			(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1234			(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1235
1236		ar5211SetAntennaSwitchInternal(ah,
1237			ahp->ah_diversityControl, chan);
1238
1239		/* Set the Noise Floor Thresh on ar5211 devices */
1240		OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1241			(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1242	}
1243	OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1244		(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1245		((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1246	OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1247		(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1248		((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1249	OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1250		(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1251		((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1252		(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1253	OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1254		(ee->ee_txEndToXPAOff[arrayMode] << 24) |
1255		(ee->ee_txEndToXPAOff[arrayMode] << 16) |
1256		(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1257		ee->ee_txFrameToXPAOn[arrayMode]);
1258	OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1259		(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1260		(ee->ee_txEndToXLNAOn[arrayMode] << 8));
1261	OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1262		(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1263		((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1264
1265#define NO_FALSE_DETECT_BACKOFF   2
1266#define CB22_FALSE_DETECT_BACKOFF 6
1267	/*
1268	 * False detect backoff - suspected 32 MHz spur causes
1269	 * false detects in OFDM, causing Tx Hangs.  Decrease
1270	 * weak signal sensitivity for this card.
1271	 */
1272	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1273	if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1274		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1275		    IEEE80211_IS_CHAN_OFDM(chan))
1276			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1277	} else {
1278		uint16_t freq = ath_hal_gethwchannel(ah, chan);
1279		uint32_t remainder = freq % 32;
1280
1281		if (remainder && (remainder < 10 || remainder > 22))
1282			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1283	}
1284	OS_REG_WRITE(ah, 0x9924,
1285		(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1286		| ((falseDectectBackoff << 1) & 0xF7));
1287
1288	return AH_TRUE;
1289#undef NO_FALSE_DETECT_BACKOFF
1290#undef CB22_FALSE_DETECT_BACKOFF
1291}
1292
1293/*
1294 * Set the limit on the overall output power.  Used for dynamic
1295 * transmit power control and the like.
1296 *
1297 * NOTE: The power is passed in is in units of 0.5 dBm.
1298 */
1299HAL_BOOL
1300ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1301{
1302
1303	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1304	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1305	return AH_TRUE;
1306}
1307
1308/*
1309 * Sets the transmit power in the baseband for the given
1310 * operating channel and mode.
1311 */
1312static HAL_BOOL
1313ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
1314{
1315	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1316	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1317	TRGT_POWER_INFO *pi;
1318	RD_EDGES_POWER *rep;
1319	PCDACS_EEPROM eepromPcdacs;
1320	u_int nchan, cfgCtl;
1321	int i;
1322
1323	/* setup the pcdac struct to point to the correct info, based on mode */
1324	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1325	case IEEE80211_CHAN_A:
1326		eepromPcdacs.numChannels = ee->ee_numChannels11a;
1327		eepromPcdacs.pChannelList= ee->ee_channels11a;
1328		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1329		nchan = ee->ee_numTargetPwr_11a;
1330		pi = ee->ee_trgtPwr_11a;
1331		break;
1332	case IEEE80211_CHAN_PUREG:
1333		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1334		eepromPcdacs.pChannelList= ee->ee_channels11g;
1335		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1336		nchan = ee->ee_numTargetPwr_11g;
1337		pi = ee->ee_trgtPwr_11g;
1338		break;
1339	case IEEE80211_CHAN_B:
1340		eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1341		eepromPcdacs.pChannelList= ee->ee_channels11b;
1342		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1343		nchan = ee->ee_numTargetPwr_11b;
1344		pi = ee->ee_trgtPwr_11b;
1345		break;
1346	default:
1347		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1348		    __func__, chan->ic_flags);
1349		return AH_FALSE;
1350	}
1351
1352	ar5211SetPowerTable(ah, &eepromPcdacs, freq);
1353
1354	rep = AH_NULL;
1355	/* Match CTL to EEPROM value */
1356	cfgCtl = ath_hal_getctl(ah, chan);
1357	for (i = 0; i < ee->ee_numCtls; i++)
1358		if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1359			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1360			break;
1361		}
1362	ar5211SetRateTable(ah, rep, pi, nchan, chan);
1363
1364	return AH_TRUE;
1365}
1366
1367/*
1368 * Read the transmit power levels from the structures taken
1369 * from EEPROM. Interpolate read transmit power values for
1370 * this channel. Organize the transmit power values into a
1371 * table for writing into the hardware.
1372 */
1373void
1374ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
1375	uint16_t channel)
1376{
1377	static FULL_PCDAC_STRUCT pcdacStruct;
1378	static uint16_t pcdacTable[PWR_TABLE_SIZE];
1379
1380	uint16_t	 i, j;
1381	uint16_t	 *pPcdacValues;
1382	int16_t	  *pScaledUpDbm;
1383	int16_t	  minScaledPwr;
1384	int16_t	  maxScaledPwr;
1385	int16_t	  pwr;
1386	uint16_t	 pcdacMin = 0;
1387	uint16_t	 pcdacMax = 63;
1388	uint16_t	 pcdacTableIndex;
1389	uint16_t	 scaledPcdac;
1390	uint32_t	 addr;
1391	uint32_t	 temp32;
1392
1393	OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1394	OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1395	pPcdacValues = pcdacStruct.PcdacValues;
1396	pScaledUpDbm = pcdacStruct.PwrValues;
1397
1398	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1399	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1400		pPcdacValues[j] = i;
1401
1402	pcdacStruct.numPcdacValues = j;
1403	pcdacStruct.pcdacMin = PCDAC_START;
1404	pcdacStruct.pcdacMax = PCDAC_STOP;
1405
1406	/* Fill out the power values for this channel */
1407	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1408		pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1409
1410	/* Now scale the pcdac values to fit in the 64 entry power table */
1411	minScaledPwr = pScaledUpDbm[0];
1412	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1413
1414	/* find minimum and make monotonic */
1415	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1416		if (minScaledPwr >= pScaledUpDbm[j]) {
1417			minScaledPwr = pScaledUpDbm[j];
1418			pcdacMin = j;
1419		}
1420		/*
1421		 * Make the full_hsh monotonically increasing otherwise
1422		 * interpolation algorithm will get fooled gotta start
1423		 * working from the top, hence i = 63 - j.
1424		 */
1425		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1426		if (i == 0)
1427			break;
1428		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1429			/*
1430			 * It could be a glitch, so make the power for
1431			 * this pcdac the same as the power from the
1432			 * next highest pcdac.
1433			 */
1434			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1435		}
1436	}
1437
1438	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1439		if (maxScaledPwr < pScaledUpDbm[j]) {
1440			maxScaledPwr = pScaledUpDbm[j];
1441			pcdacMax = j;
1442		}
1443
1444	/* Find the first power level with a pcdac */
1445	pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP)  + PWR_MIN);
1446
1447	/* Write all the first pcdac entries based off the pcdacMin */
1448	pcdacTableIndex = 0;
1449	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1450		pcdacTable[pcdacTableIndex++] = pcdacMin;
1451
1452	i = 0;
1453	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1454		pwr += PWR_STEP;
1455		/* stop if dbM > max_power_possible */
1456		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1457		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1458			i++;
1459		/* scale by 2 and add 1 to enable round up or down as needed */
1460		scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1461				pScaledUpDbm[i], pScaledUpDbm[i+1],
1462				(uint16_t)(pPcdacValues[i] * 2),
1463				(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1464
1465		pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1466		if (pcdacTable[pcdacTableIndex] > pcdacMax)
1467			pcdacTable[pcdacTableIndex] = pcdacMax;
1468		pcdacTableIndex++;
1469	}
1470
1471	/* Write all the last pcdac entries based off the last valid pcdac */
1472	while (pcdacTableIndex < PWR_TABLE_SIZE) {
1473		pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1474		pcdacTableIndex++;
1475	}
1476
1477	/* Finally, write the power values into the baseband power table */
1478	addr = AR_PHY_BASE + (608 << 2);
1479	for (i = 0; i < 32; i++) {
1480		temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1481		temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1482		OS_REG_WRITE(ah, addr, temp32);
1483		addr += 4;
1484	}
1485
1486}
1487
1488/*
1489 * Set the transmit power in the baseband for the given
1490 * operating channel and mode.
1491 */
1492static void
1493ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1494	TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1495	const struct ieee80211_channel *chan)
1496{
1497	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1498	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1499	struct ath_hal_5211 *ahp = AH5211(ah);
1500	static uint16_t ratesArray[NUM_RATES];
1501	static const uint16_t tpcScaleReductionTable[5] =
1502		{ 0, 3, 6, 9, MAX_RATE_POWER };
1503
1504	uint16_t	*pRatesPower;
1505	uint16_t	lowerChannel, lowerIndex=0, lowerPower=0;
1506	uint16_t	upperChannel, upperIndex=0, upperPower=0;
1507	uint16_t	twiceMaxEdgePower=63;
1508	uint16_t	twicePower = 0;
1509	uint16_t	i, numEdges;
1510	uint16_t	tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1511	uint16_t	twiceMaxRDPower;
1512	int16_t	 scaledPower = 0;		/* for gcc -O2 */
1513	uint16_t	mask = 0x3f;
1514	HAL_BOOL	  paPreDEnable = 0;
1515	int8_t	  twiceAntennaGain, twiceAntennaReduction = 0;
1516
1517	pRatesPower = ratesArray;
1518	twiceMaxRDPower = chan->ic_maxregpower * 2;
1519
1520	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1521		twiceAntennaGain = ee->ee_antennaGainMax[0];
1522	} else {
1523		twiceAntennaGain = ee->ee_antennaGainMax[1];
1524	}
1525
1526	twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1527
1528	if (pRdEdgesPower) {
1529		/* Get the edge power */
1530		for (i = 0; i < NUM_EDGES; i++) {
1531			if (pRdEdgesPower[i].rdEdge == 0)
1532				break;
1533			tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1534		}
1535		numEdges = i;
1536
1537		ar5211GetLowerUpperValues(freq, tempChannelList,
1538			numEdges, &lowerChannel, &upperChannel);
1539		/* Get the index for this channel */
1540		for (i = 0; i < numEdges; i++)
1541			if (lowerChannel == tempChannelList[i])
1542				break;
1543		HALASSERT(i != numEdges);
1544
1545		if ((lowerChannel == upperChannel &&
1546		     lowerChannel == freq) ||
1547		    pRdEdgesPower[i].flag) {
1548			twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1549			HALASSERT(twiceMaxEdgePower > 0);
1550		}
1551	}
1552
1553	/* extrapolate the power values for the test Groups */
1554	for (i = 0; i < numChannels; i++)
1555		tempChannelList[i] = pPowerInfo[i].testChannel;
1556
1557	ar5211GetLowerUpperValues(freq, tempChannelList,
1558		numChannels, &lowerChannel, &upperChannel);
1559
1560	/* get the index for the channel */
1561	for (i = 0; i < numChannels; i++) {
1562		if (lowerChannel == tempChannelList[i])
1563			lowerIndex = i;
1564		if (upperChannel == tempChannelList[i]) {
1565			upperIndex = i;
1566			break;
1567		}
1568	}
1569
1570	for (i = 0; i < NUM_RATES; i++) {
1571		if (IEEE80211_IS_CHAN_OFDM(chan)) {
1572			/* power for rates 6,9,12,18,24 is all the same */
1573			if (i < 5) {
1574				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1575				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1576			} else if (i == 5) {
1577				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1578				upperPower = pPowerInfo[upperIndex].twicePwr36;
1579			} else if (i == 6) {
1580				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1581				upperPower = pPowerInfo[upperIndex].twicePwr48;
1582			} else if (i == 7) {
1583				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1584				upperPower = pPowerInfo[upperIndex].twicePwr54;
1585			}
1586		} else {
1587			switch (i) {
1588			case 0:
1589			case 1:
1590				lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1591				upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1592				break;
1593			case 2:
1594			case 3:
1595				lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1596				upperPower = pPowerInfo[upperIndex].twicePwr36;
1597				break;
1598			case 4:
1599			case 5:
1600				lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1601				upperPower = pPowerInfo[upperIndex].twicePwr48;
1602				break;
1603			case 6:
1604			case 7:
1605				lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1606				upperPower = pPowerInfo[upperIndex].twicePwr54;
1607				break;
1608			}
1609		}
1610
1611		twicePower = ar5211GetInterpolatedValue(freq,
1612			lowerChannel, upperChannel, lowerPower, upperPower, 0);
1613
1614		/* Reduce power by band edge restrictions */
1615		twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1616
1617		/*
1618		 * If turbo is set, reduce power to keep power
1619		 * consumption under 2 Watts.  Note that we always do
1620		 * this unless specially configured.  Then we limit
1621		 * power only for non-AP operation.
1622		 */
1623		if (IEEE80211_IS_CHAN_TURBO(chan) &&
1624		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1625#ifdef AH_ENABLE_AP_SUPPORT
1626		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1627#endif
1628		) {
1629			twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1630		}
1631
1632		/* Reduce power by max regulatory domain allowed restrictions */
1633		pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1634
1635		/* Use 6 Mb power level for transmit power scaling reduction */
1636		/* We don't want to reduce higher rates if its not needed */
1637		if (i == 0) {
1638			scaledPower = pRatesPower[0] -
1639				(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1640			if (scaledPower < 1)
1641				scaledPower = 1;
1642		}
1643
1644		pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1645	}
1646
1647	/* Record txPower at Rate 6 for info gathering */
1648	ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1649
1650#ifdef AH_DEBUG
1651	HALDEBUG(ah, HAL_DEBUG_RESET,
1652	    "%s: final output power setting %d MHz:\n",
1653	    __func__, chan->ic_freq);
1654	HALDEBUG(ah, HAL_DEBUG_RESET,
1655	    "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1656	    scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1657	HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1658	    tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1659	    twiceAntennaReduction / 2);
1660	if (IEEE80211_IS_CHAN_TURBO(chan) &&
1661	    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1662		HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1663		    ee->ee_turbo2WMaxPower5);
1664	HALDEBUG(ah, HAL_DEBUG_RESET,
1665	    "  %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1666	    pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1667	    pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1668	    pRatesPower[6] / 2, pRatesPower[7] / 2);
1669#endif /* AH_DEBUG */
1670
1671	/* Write the power table into the hardware */
1672	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1673		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1674		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1675		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1676		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[0] & mask));
1677	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1678		 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1679		 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1680		 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1681		 ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[4] & mask));
1682
1683	/* set max power to the power value at rate 6 */
1684	ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1685
1686	AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1687}
1688
1689/*
1690 * Get or interpolate the pcdac value from the calibrated data
1691 */
1692uint16_t
1693ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
1694	const PCDACS_EEPROM *pSrcStruct)
1695{
1696	uint16_t powerValue;
1697	uint16_t lFreq, rFreq;		/* left and right frequency values */
1698	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
1699	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
1700	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
1701	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1702
1703	if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1704		/* value was copied from srcStruct */
1705		return powerValue;
1706
1707	ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1708		pSrcStruct->numChannels, &lFreq, &rFreq);
1709	ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1710		&llPcdac, &ulPcdac);
1711	ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1712		&lrPcdac, &urPcdac);
1713
1714	/* get the power index for the pcdac value */
1715	ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1716	ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1717	lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1718				llPcdac, ulPcdac, lPwr, uPwr, 0);
1719
1720	ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1721	ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1722	rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1723				lrPcdac, urPcdac, lPwr, uPwr, 0);
1724
1725	return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1726		lScaledPwr, rScaledPwr, 0);
1727}
1728
1729/*
1730 * Find the value from the calibrated source data struct
1731 */
1732HAL_BOOL
1733ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1734	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1735{
1736	const DATA_PER_CHANNEL *pChannelData;
1737	const uint16_t *pPcdac;
1738	uint16_t i, j;
1739
1740	pChannelData = pSrcStruct->pDataPerChannel;
1741	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1742		if (pChannelData->channelValue == channel) {
1743			pPcdac = pChannelData->PcdacValues;
1744			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1745				if (*pPcdac == pcdacValue) {
1746					*powerValue = pChannelData->PwrValues[j];
1747					return AH_TRUE;
1748				}
1749				pPcdac++;
1750			}
1751		}
1752		pChannelData++;
1753	}
1754	return AH_FALSE;
1755}
1756
1757/*
1758 * Returns interpolated or the scaled up interpolated value
1759 */
1760uint16_t
1761ar5211GetInterpolatedValue(uint16_t target,
1762	uint16_t srcLeft, uint16_t srcRight,
1763	uint16_t targetLeft, uint16_t targetRight,
1764	HAL_BOOL scaleUp)
1765{
1766	uint16_t rv;
1767	int16_t lRatio;
1768	uint16_t scaleValue = EEP_SCALE;
1769
1770	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1771	if ((targetLeft * targetRight) == 0)
1772		return 0;
1773	if (scaleUp)
1774		scaleValue = 1;
1775
1776	if (srcRight != srcLeft) {
1777		/*
1778		 * Note the ratio always need to be scaled,
1779		 * since it will be a fraction.
1780		 */
1781		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1782		if (lRatio < 0) {
1783		    /* Return as Left target if value would be negative */
1784		    rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1785		} else if (lRatio > EEP_SCALE) {
1786		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
1787		    rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1788		} else {
1789			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1790					targetLeft) / scaleValue;
1791		}
1792	} else {
1793		rv = targetLeft;
1794		if (scaleUp)
1795			rv *= EEP_SCALE;
1796	}
1797	return rv;
1798}
1799
1800/*
1801 *  Look for value being within 0.1 of the search values
1802 *  however, NDIS can't do float calculations, so multiply everything
1803 *  up by EEP_SCALE so can do integer arithmatic
1804 *
1805 * INPUT  value	   -value to search for
1806 * INPUT  pList	   -ptr to the list to search
1807 * INPUT  listSize	-number of entries in list
1808 * OUTPUT pLowerValue -return the lower value
1809 * OUTPUT pUpperValue -return the upper value
1810 */
1811void
1812ar5211GetLowerUpperValues(uint16_t value,
1813	const uint16_t *pList, uint16_t listSize,
1814	uint16_t *pLowerValue, uint16_t *pUpperValue)
1815{
1816	const uint16_t listEndValue = *(pList + listSize - 1);
1817	uint32_t target = value * EEP_SCALE;
1818	int i;
1819
1820	/*
1821	 * See if value is lower than the first value in the list
1822	 * if so return first value
1823	 */
1824	if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1825		*pLowerValue = *pList;
1826		*pUpperValue = *pList;
1827		return;
1828	}
1829
1830	/*
1831	 * See if value is greater than last value in list
1832	 * if so return last value
1833	 */
1834	if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1835		*pLowerValue = listEndValue;
1836		*pUpperValue = listEndValue;
1837		return;
1838	}
1839
1840	/* look for value being near or between 2 values in list */
1841	for (i = 0; i < listSize; i++) {
1842		/*
1843		 * If value is close to the current value of the list
1844		 * then target is not between values, it is one of the values
1845		 */
1846		if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1847			*pLowerValue = pList[i];
1848			*pUpperValue = pList[i];
1849			return;
1850		}
1851
1852		/*
1853		 * Look for value being between current value and next value
1854		 * if so return these 2 values
1855		 */
1856		if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1857			*pLowerValue = pList[i];
1858			*pUpperValue = pList[i + 1];
1859			return;
1860		}
1861	}
1862}
1863
1864/*
1865 * Get the upper and lower pcdac given the channel and the pcdac
1866 * used in the search
1867 */
1868void
1869ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1870	const PCDACS_EEPROM *pSrcStruct,
1871	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1872{
1873	const DATA_PER_CHANNEL *pChannelData;
1874	int i;
1875
1876	/* Find the channel information */
1877	pChannelData = pSrcStruct->pDataPerChannel;
1878	for (i = 0; i < pSrcStruct->numChannels; i++) {
1879		if (pChannelData->channelValue == channel)
1880			break;
1881		pChannelData++;
1882	}
1883	ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1884		pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1885}
1886
1887#define	DYN_ADJ_UP_MARGIN	15
1888#define	DYN_ADJ_LO_MARGIN	20
1889
1890static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1891	9,					/* numStepsInLadder */
1892	4,					/* defaultStepNum */
1893	{ { {4, 1, 1, 1},  6, "FG8"},
1894	  { {4, 0, 1, 1},  4, "FG7"},
1895	  { {3, 1, 1, 1},  3, "FG6"},
1896	  { {4, 0, 0, 1},  1, "FG5"},
1897	  { {4, 1, 1, 0},  0, "FG4"},	/* noJack */
1898	  { {4, 0, 1, 0}, -2, "FG3"},	/* halfJack */
1899	  { {3, 1, 1, 0}, -3, "FG2"},	/* clip3 */
1900	  { {4, 0, 0, 0}, -4, "FG1"},	/* noJack */
1901	  { {2, 1, 1, 0}, -6, "FG0"} 	/* clip2 */
1902	}
1903};
1904
1905/*
1906 * Initialize the gain structure to good values
1907 */
1908void
1909ar5211InitializeGainValues(struct ath_hal *ah)
1910{
1911	struct ath_hal_5211 *ahp = AH5211(ah);
1912	GAIN_VALUES *gv = &ahp->ah_gainValues;
1913
1914	/* initialize gain optimization values */
1915	gv->currStepNum = gainLadder.defaultStepNum;
1916	gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1917	gv->active = AH_TRUE;
1918	gv->loTrig = 20;
1919	gv->hiTrig = 35;
1920}
1921
1922static HAL_BOOL
1923ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1924{
1925	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1926	uint32_t gStep, g;
1927	uint32_t L1, L2, L3, L4;
1928
1929	if (IEEE80211_IS_CHAN_CCK(chan)) {
1930		gStep = 0x18;
1931		L1 = 0;
1932		L2 = gStep + 4;
1933		L3 = 0x40;
1934		L4 = L3 + 50;
1935
1936		gv->loTrig = L1;
1937		gv->hiTrig = L4+5;
1938	} else {
1939		gStep = 0x3f;
1940		L1 = 0;
1941		L2 = 50;
1942		L3 = L1;
1943		L4 = L3 + 50;
1944
1945		gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1946		gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1947	}
1948	g = gv->currGain;
1949
1950	return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1951}
1952
1953/*
1954 * Enable the probe gain check on the next packet
1955 */
1956static void
1957ar5211RequestRfgain(struct ath_hal *ah)
1958{
1959	struct ath_hal_5211 *ahp = AH5211(ah);
1960
1961	/* Enable the gain readback probe */
1962	OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1963		  SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1964		| AR_PHY_PAPD_PROBE_NEXT_TX);
1965
1966	ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1967}
1968
1969/*
1970 * Exported call to check for a recent gain reading and return
1971 * the current state of the thermal calibration gain engine.
1972 */
1973HAL_RFGAIN
1974ar5211GetRfgain(struct ath_hal *ah)
1975{
1976	struct ath_hal_5211 *ahp = AH5211(ah);
1977	GAIN_VALUES *gv = &ahp->ah_gainValues;
1978	uint32_t rddata;
1979
1980	if (!gv->active)
1981		return HAL_RFGAIN_INACTIVE;
1982
1983	if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
1984		/* Caller had asked to setup a new reading. Check it. */
1985		rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
1986
1987		if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
1988			/* bit got cleared, we have a new reading. */
1989			gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
1990			/* inactive by default */
1991			ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
1992
1993			if (!ar5211InvalidGainReadback(ah, gv) &&
1994			    ar5211IsGainAdjustNeeded(ah, gv) &&
1995			    ar5211AdjustGain(ah, gv) > 0) {
1996				/*
1997				 * Change needed. Copy ladder info
1998				 * into eeprom info.
1999				 */
2000				ar5211SetRfgain(ah, gv);
2001				ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2002			}
2003		}
2004	}
2005	return ahp->ah_rfgainState;
2006}
2007
2008/*
2009 * Check to see if our readback gain level sits within the linear
2010 * region of our current variable attenuation window
2011 */
2012static HAL_BOOL
2013ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2014{
2015	return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2016}
2017
2018/*
2019 * Move the rabbit ears in the correct direction.
2020 */
2021static int32_t
2022ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2023{
2024	/* return > 0 for valid adjustments. */
2025	if (!gv->active)
2026		return -1;
2027
2028	gv->currStep = &gainLadder.optStep[gv->currStepNum];
2029	if (gv->currGain >= gv->hiTrig) {
2030		if (gv->currStepNum == 0) {
2031			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2032			    "%s: Max gain limit.\n", __func__);
2033			return -1;
2034		}
2035		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2036		    "%s: Adding gain: currG=%d [%s] --> ",
2037		    __func__, gv->currGain, gv->currStep->stepName);
2038		gv->targetGain = gv->currGain;
2039		while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2040			gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2041				gv->currStep->stepGain);
2042			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2043		}
2044		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2045		    gv->targetGain, gv->currStep->stepName);
2046		return 1;
2047	}
2048	if (gv->currGain <= gv->loTrig) {
2049		if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2050			HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2051			    "%s: Min gain limit.\n", __func__);
2052			return -2;
2053		}
2054		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2055		    "%s: Deducting gain: currG=%d [%s] --> ",
2056		    __func__, gv->currGain, gv->currStep->stepName);
2057		gv->targetGain = gv->currGain;
2058		while (gv->targetGain <= gv->loTrig &&
2059		      gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2060			gv->targetGain -= 2 *
2061				(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2062			gv->currStep = &gainLadder.optStep[gv->currStepNum];
2063		}
2064		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2065		    gv->targetGain, gv->currStep->stepName);
2066		return 2;
2067	}
2068	return 0;		/* caller didn't call needAdjGain first */
2069}
2070
2071/*
2072 * Adjust the 5GHz EEPROM information with the desired calibration values.
2073 */
2074static void
2075ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2076{
2077	HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2078
2079	if (!gv->active)
2080		return;
2081	ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2082	ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2083	ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2084	ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2085}
2086
2087static void
2088ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2089{
2090	struct ath_hal_5211 *ahp = AH5211(ah);
2091	uint32_t val;
2092
2093	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2094	switch (opmode) {
2095	case HAL_M_HOSTAP:
2096		OS_REG_WRITE(ah, AR_STA_ID1, val
2097			| AR_STA_ID1_STA_AP
2098			| AR_STA_ID1_RTS_USE_DEF
2099			| ahp->ah_staId1Defaults);
2100		break;
2101	case HAL_M_IBSS:
2102		OS_REG_WRITE(ah, AR_STA_ID1, val
2103			| AR_STA_ID1_ADHOC
2104			| AR_STA_ID1_DESC_ANTENNA
2105			| ahp->ah_staId1Defaults);
2106		break;
2107	case HAL_M_STA:
2108	case HAL_M_MONITOR:
2109		OS_REG_WRITE(ah, AR_STA_ID1, val
2110			| AR_STA_ID1_DEFAULT_ANTENNA
2111			| ahp->ah_staId1Defaults);
2112		break;
2113	}
2114}
2115
2116void
2117ar5211SetPCUConfig(struct ath_hal *ah)
2118{
2119	ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
2120}
2121