1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2004 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5210/ar5210.h"
25#include "ar5210/ar5210reg.h"
26#include "ar5210/ar5210phy.h"
27
28#include "ah_eeprom_v1.h"
29
30typedef struct {
31	uint32_t	Offset;
32	uint32_t	Value;
33} REGISTER_VAL;
34
35static const REGISTER_VAL ar5k0007_init[] = {
36#include "ar5210/ar5k_0007.ini"
37};
38
39/* Default Power Settings for channels outside of EEPROM range */
40static const uint8_t ar5k0007_pwrSettings[17] = {
41/*	gain delta			pc dac */
42/* 54  48  36  24  18  12   9   54  48  36  24  18  12   9   6  ob  db	  */
43    9,  9,  0,  0,  0,  0,  0,   2,  2,  6,  6,  6,  6,  6,  6,  2,  2
44};
45
46/*
47 * The delay, in usecs, between writing AR_RC with a reset
48 * request and waiting for the chip to settle.  If this is
49 * too short then the chip does not come out of sleep state.
50 * Note this value was empirically derived and may be dependent
51 * on the host machine (don't know--the problem was identified
52 * on an IBM 570e laptop; 10us delays worked on other systems).
53 */
54#define	AR_RC_SETTLE_TIME	20000
55
56static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57		uint32_t resetMask, u_int delay);
58static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
59static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
60
61/*
62 * Places the device in and out of reset and then places sane
63 * values in the registers based on EEPROM config, initialization
64 * vectors (as determined by the mode), and station configuration
65 *
66 * bChannelChange is used to preserve DMA/PCU registers across
67 * a HW Reset during channel change.
68 */
69HAL_BOOL
70ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
72	HAL_RESET_TYPE resetType,
73	HAL_STATUS *status)
74{
75#define	N(a)	(sizeof (a) /sizeof (a[0]))
76#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
77	struct ath_hal_5210 *ahp = AH5210(ah);
78	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
79	HAL_CHANNEL_INTERNAL *ichan;
80	HAL_STATUS ecode;
81	uint32_t ledstate;
82	int i, q;
83
84	HALDEBUG(ah, HAL_DEBUG_RESET,
85	    "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
86	    opmode, chan->ic_freq, chan->ic_flags,
87	    bChannelChange ? "change" : "same");
88
89	if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
90		/* Only 11a mode */
91		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
92		FAIL(HAL_EINVAL);
93	}
94	/*
95	 * Map public channel to private.
96	 */
97	ichan = ath_hal_checkchannel(ah, chan);
98	if (ichan == AH_NULL) {
99		HALDEBUG(ah, HAL_DEBUG_ANY,
100		    "%s: invalid channel %u/0x%x; no mapping\n",
101		    __func__, chan->ic_freq, chan->ic_flags);
102		FAIL(HAL_EINVAL);
103	}
104	switch (opmode) {
105	case HAL_M_STA:
106	case HAL_M_IBSS:
107	case HAL_M_HOSTAP:
108	case HAL_M_MONITOR:
109		break;
110	default:
111		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
112		    __func__, opmode);
113		FAIL(HAL_EINVAL);
114		break;
115	}
116
117	ledstate = OS_REG_READ(ah, AR_PCICFG) &
118		(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
119
120	if (!ar5210ChipReset(ah, chan)) {
121		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
122		    __func__);
123		FAIL(HAL_EIO);
124	}
125
126	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
127	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
128	ar5210SetOperatingMode(ah, opmode);
129
130	switch (opmode) {
131	case HAL_M_HOSTAP:
132		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
133		OS_REG_WRITE(ah, AR_PCICFG,
134			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
135		break;
136	case HAL_M_IBSS:
137		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
138		OS_REG_WRITE(ah, AR_PCICFG,
139			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
140		break;
141	case HAL_M_STA:
142		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
143		OS_REG_WRITE(ah, AR_PCICFG,
144			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
145		break;
146	case HAL_M_MONITOR:
147		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
148		OS_REG_WRITE(ah, AR_PCICFG,
149			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
150		break;
151	}
152
153	/* Restore previous led state */
154	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
155
156#if 0
157	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
158	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
159#endif
160	/* BSSID, association id, ps-poll */
161	ar5210WriteAssocid(ah, ahp->ah_bssid, ahp->ah_associd);
162
163	OS_REG_WRITE(ah, AR_TXDP0, 0);
164	OS_REG_WRITE(ah, AR_TXDP1, 0);
165	OS_REG_WRITE(ah, AR_RXDP, 0);
166
167	/*
168	 * Initialize interrupt state.
169	 */
170	(void) OS_REG_READ(ah, AR_ISR);		/* cleared on read */
171	OS_REG_WRITE(ah, AR_IMR, 0);
172	OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
173	ahp->ah_maskReg = 0;
174
175	(void) OS_REG_READ(ah, AR_BSR);		/* cleared on read */
176	OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
177	OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
178
179	OS_REG_WRITE(ah, AR_TOPS, 8);		/* timeout prescale */
180	OS_REG_WRITE(ah, AR_RXNOFRM, 8);	/* RX no frame timeout */
181	OS_REG_WRITE(ah, AR_RPGTO, 0);		/* RX frame gap timeout */
182	OS_REG_WRITE(ah, AR_TXNOFRM, 0);	/* TX no frame timeout */
183
184	OS_REG_WRITE(ah, AR_SFR, 0);
185	OS_REG_WRITE(ah, AR_MIBC, 0);		/* unfreeze ctrs + clr state */
186	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
187	OS_REG_WRITE(ah, AR_CFP_DUR, 0);
188
189	ar5210SetRxFilter(ah, 0);		/* nothing for now */
190	OS_REG_WRITE(ah, AR_MCAST_FIL0, 0);	/* multicast filter */
191	OS_REG_WRITE(ah, AR_MCAST_FIL1, 0);	/* XXX was 2 */
192
193	OS_REG_WRITE(ah, AR_TX_MASK0, 0);
194	OS_REG_WRITE(ah, AR_TX_MASK1, 0);
195	OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
196	OS_REG_WRITE(ah, AR_TRIG_LEV, 1);	/* minimum */
197
198	ar5210UpdateDiagReg(ah, 0);
199
200	OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
201	OS_REG_WRITE(ah, AR_TIMER0, 0);		/* next beacon time */
202	OS_REG_WRITE(ah, AR_TSF_L32, 0);	/* local clock */
203	OS_REG_WRITE(ah, AR_TIMER1, ~0);	/* next DMA beacon alert */
204	OS_REG_WRITE(ah, AR_TIMER2, ~0);	/* next SW beacon alert */
205	OS_REG_WRITE(ah, AR_TIMER3, 1);		/* next ATIM window */
206
207	/* Write the INI values for PHYreg initialization */
208	for (i = 0; i < N(ar5k0007_init); i++) {
209		uint32_t reg = ar5k0007_init[i].Offset;
210		/* On channel change, don't reset the PCU registers */
211		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
212			OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
213	}
214
215	/* Setup the transmit power values for cards since 0x0[0-2]05 */
216	if (!ar5210SetTransmitPower(ah, chan)) {
217		HALDEBUG(ah, HAL_DEBUG_ANY,
218		    "%s: error init'ing transmit power\n", __func__);
219		FAIL(HAL_EIO);
220	}
221
222	OS_REG_WRITE(ah, AR_PHY(10),
223		(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
224		(ee->ee_xlnaOn << 8));
225	OS_REG_WRITE(ah, AR_PHY(13),
226		(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
227		(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
228	OS_REG_WRITE(ah, AR_PHY(17),
229		(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
230		((ee->ee_antenna >> 1) & 0x3F80));
231	OS_REG_WRITE(ah, AR_PHY(18),
232		(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
233		((ee->ee_antenna << 10) & 0x3F000));
234	OS_REG_WRITE(ah, AR_PHY(25),
235		(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
236		((ee->ee_thresh62 << 12) & 0x7F000));
237	OS_REG_WRITE(ah, AR_PHY(68),
238		(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
239		(ee->ee_antenna & 0x3));
240
241	if (!ar5210SetChannel(ah, chan)) {
242		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
243		    __func__);
244		FAIL(HAL_EIO);
245	}
246	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
247		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
248
249	/* Activate the PHY */
250	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
251
252	OS_DELAY(1000);		/* Wait a bit (1 msec) */
253
254	/* calibrate the HW and poll the bit going to 0 for completion */
255	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
256		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
257	(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
258
259	/* Perform noise floor calibration and set status */
260	if (!ar5210CalNoiseFloor(ah, ichan)) {
261		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
262		HALDEBUG(ah, HAL_DEBUG_ANY,
263		    "%s: noise floor calibration failed\n", __func__);
264		FAIL(HAL_EIO);
265	}
266
267	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
268		ar5210ResetTxQueue(ah, q);
269
270	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
271		ar5210EnableRfKill(ah);
272
273	/*
274	 * Writing to AR_BEACON will start timers. Hence it should be
275	 * the last register to be written. Do not reset tsf, do not
276	 * enable beacons at this point, but preserve other values
277	 * like beaconInterval.
278	 */
279	OS_REG_WRITE(ah, AR_BEACON,
280		(OS_REG_READ(ah, AR_BEACON) &
281			~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
282
283	/* Restore user-specified slot time and timeouts */
284	if (ahp->ah_sifstime != (u_int) -1)
285		ar5210SetSifsTime(ah, ahp->ah_sifstime);
286	if (ahp->ah_slottime != (u_int) -1)
287		ar5210SetSlotTime(ah, ahp->ah_slottime);
288	if (ahp->ah_acktimeout != (u_int) -1)
289		ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
290	if (ahp->ah_ctstimeout != (u_int) -1)
291		ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
292	if (AH_PRIVATE(ah)->ah_diagreg != 0)
293		ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
294
295	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
296
297	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
298
299	return AH_TRUE;
300bad:
301	if (status != AH_NULL)
302		*status = ecode;
303	return AH_FALSE;
304#undef FAIL
305#undef N
306}
307
308static void
309ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
310{
311	struct ath_hal_5210 *ahp = AH5210(ah);
312	uint32_t val;
313
314	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
315	switch (opmode) {
316	case HAL_M_HOSTAP:
317		OS_REG_WRITE(ah, AR_STA_ID1, val
318			| AR_STA_ID1_AP
319			| AR_STA_ID1_NO_PSPOLL
320			| AR_STA_ID1_DESC_ANTENNA
321			| ahp->ah_staId1Defaults);
322		break;
323	case HAL_M_IBSS:
324		OS_REG_WRITE(ah, AR_STA_ID1, val
325			| AR_STA_ID1_ADHOC
326			| AR_STA_ID1_NO_PSPOLL
327			| AR_STA_ID1_DESC_ANTENNA
328			| ahp->ah_staId1Defaults);
329		break;
330	case HAL_M_STA:
331		OS_REG_WRITE(ah, AR_STA_ID1, val
332			| AR_STA_ID1_NO_PSPOLL
333			| AR_STA_ID1_PWR_SV
334			| ahp->ah_staId1Defaults);
335		break;
336	case HAL_M_MONITOR:
337		OS_REG_WRITE(ah, AR_STA_ID1, val
338			| AR_STA_ID1_NO_PSPOLL
339			| ahp->ah_staId1Defaults);
340		break;
341	}
342}
343
344void
345ar5210SetPCUConfig(struct ath_hal *ah)
346{
347	ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
348}
349
350/*
351 * Places the PHY and Radio chips into reset.  A full reset
352 * must be called to leave this state.  The PCI/MAC/PCU are
353 * not placed into reset as we must receive interrupt to
354 * re-enable the hardware.
355 */
356HAL_BOOL
357ar5210PhyDisable(struct ath_hal *ah)
358{
359	return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
360}
361
362/*
363 * Places all of hardware into reset
364 */
365HAL_BOOL
366ar5210Disable(struct ath_hal *ah)
367{
368#define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
369	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
370		return AH_FALSE;
371
372	/*
373	 * Reset the HW - PCI must be reset after the rest of the
374	 * device has been reset
375	 */
376	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
377		return AH_FALSE;
378	OS_DELAY(1000);
379	(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
380	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
381
382	return AH_TRUE;
383#undef AR_RC_HW
384}
385
386/*
387 * Places the hardware into reset and then pulls it out of reset
388 */
389HAL_BOOL
390ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
391{
392#define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
393
394	HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
395		chan && IEEE80211_IS_CHAN_TURBO(chan) ?
396		"enabled" : "disabled");
397
398	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
399		return AH_FALSE;
400
401	/* Place chip in turbo before reset to cleanly reset clocks */
402	OS_REG_WRITE(ah, AR_PHY_FRCTL,
403		chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
404
405	/*
406	 * Reset the HW.
407	 * PCI must be reset after the rest of the device has been reset.
408	 */
409	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
410		return AH_FALSE;
411	OS_DELAY(1000);
412	if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
413		return AH_FALSE;
414	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
415
416	/*
417	 * Bring out of sleep mode (AGAIN)
418	 *
419	 * WARNING WARNING WARNING
420	 *
421	 * There is a problem with the chip where it doesn't always indicate
422	 * that it's awake, so initializePowerUp() will fail.
423	 */
424	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
425		return AH_FALSE;
426
427	/* Clear warm reset reg */
428	return ar5210SetResetReg(ah, 0, 10);
429#undef AR_RC_HW
430}
431
432enum {
433	FIRPWR_M	= 0x03fc0000,
434	FIRPWR_S	= 18,
435	KCOARSEHIGH_M   = 0x003f8000,
436	KCOARSEHIGH_S   = 15,
437	KCOARSELOW_M	= 0x00007f80,
438	KCOARSELOW_S	= 7,
439	ADCSAT_ICOUNT_M	= 0x0001f800,
440	ADCSAT_ICOUNT_S	= 11,
441	ADCSAT_THRESH_M	= 0x000007e0,
442	ADCSAT_THRESH_S	= 5
443};
444
445/*
446 * Recalibrate the lower PHY chips to account for temperature/environment
447 * changes.
448 */
449HAL_BOOL
450ar5210PerCalibrationN(struct ath_hal *ah,
451	struct ieee80211_channel *chan, u_int chainMask,
452	HAL_BOOL longCal, HAL_BOOL *isCalDone)
453{
454	uint32_t regBeacon;
455	uint32_t reg9858, reg985c, reg9868;
456	HAL_CHANNEL_INTERNAL *ichan;
457
458	ichan = ath_hal_checkchannel(ah, chan);
459	if (ichan == AH_NULL)
460		return AH_FALSE;
461	/* Disable tx and rx */
462	ar5210UpdateDiagReg(ah,
463		OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
464
465	/* Disable Beacon Enable */
466	regBeacon = OS_REG_READ(ah, AR_BEACON);
467	OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
468
469	/* Delay 4ms to ensure that all tx and rx activity has ceased */
470	OS_DELAY(4000);
471
472	/* Disable AGC to radio traffic */
473	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
474	/* Wait for the AGC traffic to cease. */
475	OS_DELAY(10);
476
477	/* Change Channel to relock synth */
478	if (!ar5210SetChannel(ah, chan))
479		return AH_FALSE;
480
481	/* wait for the synthesizer lock to stabilize */
482	OS_DELAY(1000);
483
484	/* Re-enable AGC to radio traffic */
485	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
486
487	/*
488	 * Configure the AGC so that it is highly unlikely (if not
489	 * impossible) for it to send any gain changes to the analog
490	 * chip.  We store off the current values so that they can
491	 * be rewritten below. Setting the following values:
492	 * firpwr	 = -1
493	 * Kcoursehigh   = -1
494	 * Kcourselow	 = -127
495	 * ADCsat_icount = 2
496	 * ADCsat_thresh = 12
497	 */
498	reg9858 = OS_REG_READ(ah, 0x9858);
499	reg985c = OS_REG_READ(ah, 0x985c);
500	reg9868 = OS_REG_READ(ah, 0x9868);
501
502	OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
503					 ((-1 << FIRPWR_S) & FIRPWR_M));
504	OS_REG_WRITE(ah, 0x985c,
505		 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
506		 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
507		 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
508	OS_REG_WRITE(ah, 0x9868,
509		 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
510		 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
511		 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
512
513	/* Wait for AGC changes to be enacted */
514	OS_DELAY(20);
515
516	/*
517	 * We disable RF mix/gain stages for the PGA to avoid a
518	 * race condition that will occur with receiving a frame
519	 * and performing the AGC calibration.  This will be
520	 * re-enabled at the end of offset cal.  We turn off AGC
521	 * writes during this write as it will go over the analog bus.
522	 */
523	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
524	OS_DELAY(10);		 /* wait for the AGC traffic to cease */
525	OS_REG_WRITE(ah, 0x98D4, 0x21);
526	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
527
528	/* wait to make sure that additional AGC traffic has quiesced */
529	OS_DELAY(1000);
530
531	/* AGC calibration (this was added to make the NF threshold check work) */
532	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
533		 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
534	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
535		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
536		    __func__);
537	}
538
539	/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
540	OS_REG_WRITE(ah, 0x9858, reg9858);
541	OS_REG_WRITE(ah, 0x985c, reg985c);
542	OS_REG_WRITE(ah, 0x9868, reg9868);
543
544	/* Perform noise floor and set status */
545	if (!ar5210CalNoiseFloor(ah, ichan)) {
546		/*
547		 * Delay 5ms before retrying the noise floor -
548		 * just to make sure.  We're in an error
549		 * condition here
550		 */
551		HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
552		    "%s: Performing 2nd Noise Cal\n", __func__);
553		OS_DELAY(5000);
554		if (!ar5210CalNoiseFloor(ah, ichan))
555			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
556	}
557
558	/* Clear tx and rx disable bit */
559	ar5210UpdateDiagReg(ah,
560		 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
561
562	/* Re-enable Beacons */
563	OS_REG_WRITE(ah, AR_BEACON, regBeacon);
564
565	*isCalDone = AH_TRUE;
566
567	return AH_TRUE;
568}
569
570HAL_BOOL
571ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
572	HAL_BOOL *isIQdone)
573{
574	return ar5210PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
575}
576
577HAL_BOOL
578ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
579{
580	return AH_TRUE;
581}
582
583/*
584 * Writes the given reset bit mask into the reset register
585 */
586static HAL_BOOL
587ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
588{
589	uint32_t mask = resetMask ? resetMask : ~0;
590	HAL_BOOL rt;
591
592	OS_REG_WRITE(ah, AR_RC, resetMask);
593	/* need to wait at least 128 clocks when reseting PCI before read */
594	OS_DELAY(delay);
595
596	resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
597	mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
598	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
599        if ((resetMask & AR_RC_RMAC) == 0) {
600		if (isBigEndian()) {
601			/*
602			 * Set CFG, little-endian for descriptor accesses.
603			 */
604			mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
605			OS_REG_WRITE(ah, AR_CFG, mask);
606		} else
607			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
608	}
609	return rt;
610}
611
612/*
613 * Returns: the pcdac value
614 */
615static uint8_t
616getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
617{
618	int32_t	 i;
619	int useNextEntry = AH_FALSE;
620	uint32_t interp;
621
622	for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
623		/* Check for exact entry */
624		if (dBm == AR_I2DBM(i)) {
625			if (pRD->pcdac[i] != 63)
626				return pRD->pcdac[i];
627			useNextEntry = AH_TRUE;
628		} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
629			/* Interpolate for between entry with a logish scale */
630			if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
631				interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
632				interp = (interp / 1000) + pRD->pcdac[i-1];
633				return interp;
634			}
635			useNextEntry = AH_TRUE;
636		} else if (useNextEntry == AH_TRUE) {
637			/* Grab the next lowest */
638			if (pRD->pcdac[i] != 63)
639				return pRD->pcdac[i];
640		}
641	}
642
643	/* Return the lowest Entry if we haven't returned */
644	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
645		if (pRD->pcdac[i] != 63)
646			return pRD->pcdac[i];
647
648	/* No value to return from table */
649#ifdef AH_DEBUG
650	ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
651#endif
652	return 1;
653}
654
655/*
656 * Find or interpolates the gainF value from the table ptr.
657 */
658static uint8_t
659getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
660	uint8_t pcdac, uint8_t *dBm)
661{
662	uint32_t interp;
663	int low, high, i;
664
665	low = high = -1;
666
667	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
668		if(pRD->pcdac[i] == 63)
669			continue;
670		if (pcdac == pRD->pcdac[i]) {
671			*dBm = AR_I2DBM(i);
672			return pRD->gainF[i];  /* Exact Match */
673		}
674		if (pcdac > pRD->pcdac[i])
675			low = i;
676		if (pcdac < pRD->pcdac[i]) {
677			high = i;
678			if (low == -1) {
679				*dBm = AR_I2DBM(i);
680				/* PCDAC is lower than lowest setting */
681				return pRD->gainF[i];
682			}
683			break;
684		}
685	}
686	if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
687		/* No settings were found */
688#ifdef AH_DEBUG
689		ath_hal_printf(ah,
690			"%s: no valid entries in the pcdac table: %d\n",
691			__func__, pcdac);
692#endif
693		return 63;
694	}
695	if (i >= AR_TP_SCALING_ENTRIES) {
696		/* PCDAC setting was above the max setting in the table */
697		*dBm = AR_I2DBM(low);
698		return pRD->gainF[low];
699	}
700	/* Only exact if table has no missing entries */
701	*dBm = (low + high) + 3;
702
703	/*
704	 * Perform interpolation between low and high values to find gainF
705	 * linearly scale the pcdac between low and high
706	 */
707	interp = ((pcdac - pRD->pcdac[low]) * 1000) /
708		  (pRD->pcdac[high] - pRD->pcdac[low]);
709	/*
710	 * Multiply the scale ratio by the gainF difference
711	 * (plus a rnd up factor)
712	 */
713	interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
714
715	/* Add ratioed gain_f to low gain_f value */
716	return interp + pRD->gainF[low];
717}
718
719HAL_BOOL
720ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
721{
722	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
723	/* XXX flush to h/w */
724	return AH_TRUE;
725}
726
727/*
728 * Get TXPower values and set them in the radio
729 */
730static HAL_BOOL
731setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
732	uint8_t cp[17])
733{
734	uint16_t freq = ath_hal_gethwchannel(ah, chan);
735	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
736	uint8_t gainFRD, gainF36, gainF48, gainF54;
737	uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
738	uint32_t rd, group;
739	const struct tpcMap  *pRD;
740
741	/* Set OB/DB Values regardless of channel */
742	cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
743	cp[16] = ee->ee_biasCurrents & 0x7;
744
745	if (freq < 5170 || freq > 5320) {
746		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
747		    __func__, freq);
748		return AH_FALSE;
749	}
750
751	HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
752	    ee->ee_version < AR_EEPROM_VER3);
753
754	/* Match regulatory domain */
755	for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
756		if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
757			break;
758	if (rd == AR_REG_DOMAINS_MAX) {
759#ifdef AH_DEBUG
760		ath_hal_printf(ah,
761			"%s: no calibrated regulatory domain matches the "
762			"current regularly domain (0x%0x)\n", __func__,
763			AH_PRIVATE(ah)->ah_currentRD);
764#endif
765		return AH_FALSE;
766	}
767	group = ((freq - 5170) / 10);
768
769	if (group > 11) {
770		/* Pull 5.29 into the 5.27 group */
771		group--;
772	}
773
774	/* Integer divide will set group from 0 to 4 */
775	group = group / 3;
776	pRD   = &ee->ee_tpc[group];
777
778	/* Set PC DAC Values */
779	cp[14] = pRD->regdmn[rd];
780	cp[9]  = AH_MIN(pRD->regdmn[rd], pRD->rate36);
781	cp[8]  = AH_MIN(pRD->regdmn[rd], pRD->rate48);
782	cp[7]  = AH_MIN(pRD->regdmn[rd], pRD->rate54);
783
784	/* Find Corresponding gainF values for RD, 36, 48, 54 */
785	gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
786	gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
787	gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
788	gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
789
790	/* Power Scale if requested */
791	if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
792		static const uint16_t tpcScaleReductionTable[5] =
793			{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
794		uint16_t tpScale;
795
796		tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
797		if (dBmRD < tpScale+3)
798			dBmRD = 3;		/* min */
799		else
800			dBmRD -= tpScale;
801		cp[14]  = getPcdac(ah, pRD, dBmRD);
802		gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
803		dBm36   = AH_MIN(dBm36, dBmRD);
804		cp[9]   = getPcdac(ah, pRD, dBm36);
805		gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
806		dBm48   = AH_MIN(dBm48, dBmRD);
807		cp[8]   = getPcdac(ah, pRD, dBm48);
808		gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
809		dBm54   = AH_MIN(dBm54, dBmRD);
810		cp[7]   = getPcdac(ah, pRD, dBm54);
811		gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
812	}
813	/* Record current dBm at rate 6 */
814	AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
815
816	cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
817
818	/* Set GainF Values */
819	cp[0] = gainFRD - gainF54;
820	cp[1] = gainFRD - gainF48;
821	cp[2] = gainFRD - gainF36;
822	/* 9, 12, 18, 24 have no gain_delta from 6 */
823	cp[3] = cp[4] = cp[5] = cp[6] = 0;
824	return AH_TRUE;
825}
826
827/*
828 * Places the device in and out of reset and then places sane
829 * values in the registers based on EEPROM config, initialization
830 * vectors (as determined by the mode), and station configuration
831 */
832HAL_BOOL
833ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
834{
835#define	N(a)	(sizeof (a) / sizeof (a[0]))
836	static const uint32_t pwr_regs_start[17] = {
837		0x00000000, 0x00000000, 0x00000000,
838		0x00000000, 0x00000000, 0xf0000000,
839		0xcc000000, 0x00000000, 0x00000000,
840		0x00000000, 0x0a000000, 0x000000e2,
841		0x0a000020, 0x01000002, 0x01000018,
842		0x40000000, 0x00000418
843	};
844	uint16_t i;
845	uint8_t cp[sizeof(ar5k0007_pwrSettings)];
846	uint32_t pwr_regs[17];
847
848	OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
849	OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
850
851	/* Check the EEPROM tx power calibration settings */
852	if (!setupPowerSettings(ah, chan, cp)) {
853#ifdef AH_DEBUG
854		ath_hal_printf(ah, "%s: unable to setup power settings\n",
855			__func__);
856#endif
857		return AH_FALSE;
858	}
859	if (cp[15] < 1 || cp[15] > 5) {
860#ifdef AH_DEBUG
861		ath_hal_printf(ah, "%s: OB out of range (%u)\n",
862			__func__, cp[15]);
863#endif
864		return AH_FALSE;
865	}
866	if (cp[16] < 1 || cp[16] > 5) {
867#ifdef AH_DEBUG
868		ath_hal_printf(ah, "%s: DB out of range (%u)\n",
869			__func__, cp[16]);
870#endif
871		return AH_FALSE;
872	}
873
874	/* reverse bits of the transmit power array */
875	for (i = 0; i < 7; i++)
876		cp[i] = ath_hal_reverseBits(cp[i], 5);
877	for (i = 7; i < 15; i++)
878		cp[i] = ath_hal_reverseBits(cp[i], 6);
879
880	/* merge transmit power values into the register - quite gross */
881	pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
882	pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
883			((cp[1] >> 3) & 0x03);
884	pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
885	pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
886		       ((cp[4] >> 4) & 0x01);
887	pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
888	pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
889			((cp[7] >> 5) & 0x01);
890	pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
891	pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
892	pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
893	pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
894	pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
895	pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
896
897	/* Set OB */
898	pwr_regs[8] |=  (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
899	pwr_regs[9] |=  (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
900
901	/* Set DB */
902	pwr_regs[9] |=  (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
903
904	/* Write the registers */
905	for (i = 0; i < N(pwr_regs)-1; i++)
906		OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
907	/* last write is a flush */
908	OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
909
910	return AH_TRUE;
911#undef N
912}
913
914/*
915 * Takes the MHz channel value and sets the Channel value
916 *
917 * ASSUMES: Writes enabled to analog bus before AGC is active
918 *   or by disabling the AGC.
919 */
920static HAL_BOOL
921ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
922{
923	uint16_t freq = ath_hal_gethwchannel(ah, chan);
924	uint32_t data;
925
926	/* Set the Channel */
927	data = ath_hal_reverseBits((freq - 5120)/10, 5);
928	data = (data << 1) | 0x41;
929	OS_REG_WRITE(ah, AR_PHY(0x27), data);
930	OS_REG_WRITE(ah, AR_PHY(0x30), 0);
931	AH_PRIVATE(ah)->ah_curchan = chan;
932	return AH_TRUE;
933}
934
935int16_t
936ar5210GetNoiseFloor(struct ath_hal *ah)
937{
938	int16_t nf;
939
940	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
941	if (nf & 0x100)
942		nf = 0 - ((nf ^ 0x1ff) + 1);
943	return nf;
944}
945
946#define NORMAL_NF_THRESH (-72)
947/*
948 * Peform the noisefloor calibration and check for
949 * any constant channel interference
950 *
951 * Returns: TRUE for a successful noise floor calibration; else FALSE
952 */
953HAL_BOOL
954ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
955{
956	int32_t nf, nfLoops;
957
958	/* Calibrate the noise floor */
959	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
960		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
961
962	/* Do not read noise floor until it has done the first update */
963	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
964#ifdef ATH_HAL_DEBUG
965		ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
966			OS_REG_READ(ah, AR_PHY_AGCCTL));
967		ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
968			OS_REG_READ(ah, AR_RC));
969		ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
970			OS_REG_READ(ah, AR_PHY_ACTIVE));
971#endif /* ATH_HAL_DEBUG */
972		return AH_FALSE;
973	}
974
975	nf = 0;
976	/* Keep checking until the floor is below the threshold or the nf is done */
977	for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
978		OS_DELAY(1000); /* Sleep for 1 ms */
979		nf = ar5210GetNoiseFloor(ah);
980	}
981
982	if (nf > NORMAL_NF_THRESH) {
983		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
984		    __func__, nf);
985		ichan->rawNoiseFloor = 0;
986		return AH_FALSE;
987	}
988	ichan->rawNoiseFloor = nf;
989	return AH_TRUE;
990}
991
992/*
993 * Adjust NF based on statistical values for 5GHz frequencies.
994 */
995int16_t
996ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
997{
998	return 0;
999}
1000
1001HAL_RFGAIN
1002ar5210GetRfgain(struct ath_hal *ah)
1003{
1004	return HAL_RFGAIN_INACTIVE;
1005}
1006