1/*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11 /*-*************************************
12 *  Dependencies
13 ***************************************/
14#include "zstd_compress_sequences.h"
15
16/**
17 * -log2(x / 256) lookup table for x in [0, 256).
18 * If x == 0: Return 0
19 * Else: Return floor(-log2(x / 256) * 256)
20 */
21static unsigned const kInverseProbabilityLog256[256] = {
22    0,    2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
23    1130, 1100, 1073, 1047, 1024, 1001, 980,  960,  941,  923,  906,  889,
24    874,  859,  844,  830,  817,  804,  791,  779,  768,  756,  745,  734,
25    724,  714,  704,  694,  685,  676,  667,  658,  650,  642,  633,  626,
26    618,  610,  603,  595,  588,  581,  574,  567,  561,  554,  548,  542,
27    535,  529,  523,  517,  512,  506,  500,  495,  489,  484,  478,  473,
28    468,  463,  458,  453,  448,  443,  438,  434,  429,  424,  420,  415,
29    411,  407,  402,  398,  394,  390,  386,  382,  377,  373,  370,  366,
30    362,  358,  354,  350,  347,  343,  339,  336,  332,  329,  325,  322,
31    318,  315,  311,  308,  305,  302,  298,  295,  292,  289,  286,  282,
32    279,  276,  273,  270,  267,  264,  261,  258,  256,  253,  250,  247,
33    244,  241,  239,  236,  233,  230,  228,  225,  222,  220,  217,  215,
34    212,  209,  207,  204,  202,  199,  197,  194,  192,  190,  187,  185,
35    182,  180,  178,  175,  173,  171,  168,  166,  164,  162,  159,  157,
36    155,  153,  151,  149,  146,  144,  142,  140,  138,  136,  134,  132,
37    130,  128,  126,  123,  121,  119,  117,  115,  114,  112,  110,  108,
38    106,  104,  102,  100,  98,   96,   94,   93,   91,   89,   87,   85,
39    83,   82,   80,   78,   76,   74,   73,   71,   69,   67,   66,   64,
40    62,   61,   59,   57,   55,   54,   52,   50,   49,   47,   46,   44,
41    42,   41,   39,   37,   36,   34,   33,   31,   30,   28,   26,   25,
42    23,   22,   20,   19,   17,   16,   14,   13,   11,   10,   8,    7,
43    5,    4,    2,    1,
44};
45
46static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
47  void const* ptr = ctable;
48  U16 const* u16ptr = (U16 const*)ptr;
49  U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
50  return maxSymbolValue;
51}
52
53/**
54 * Returns true if we should use ncount=-1 else we should
55 * use ncount=1 for low probability symbols instead.
56 */
57static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
58{
59    /* Heuristic: This should cover most blocks <= 16K and
60     * start to fade out after 16K to about 32K depending on
61     * comprssibility.
62     */
63    return nbSeq >= 2048;
64}
65
66/**
67 * Returns the cost in bytes of encoding the normalized count header.
68 * Returns an error if any of the helper functions return an error.
69 */
70static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
71                              size_t const nbSeq, unsigned const FSELog)
72{
73    BYTE wksp[FSE_NCOUNTBOUND];
74    S16 norm[MaxSeq + 1];
75    const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
76    FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
77    return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
78}
79
80/**
81 * Returns the cost in bits of encoding the distribution described by count
82 * using the entropy bound.
83 */
84static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
85{
86    unsigned cost = 0;
87    unsigned s;
88
89    assert(total > 0);
90    for (s = 0; s <= max; ++s) {
91        unsigned norm = (unsigned)((256 * count[s]) / total);
92        if (count[s] != 0 && norm == 0)
93            norm = 1;
94        assert(count[s] < total);
95        cost += count[s] * kInverseProbabilityLog256[norm];
96    }
97    return cost >> 8;
98}
99
100/**
101 * Returns the cost in bits of encoding the distribution in count using ctable.
102 * Returns an error if ctable cannot represent all the symbols in count.
103 */
104size_t ZSTD_fseBitCost(
105    FSE_CTable const* ctable,
106    unsigned const* count,
107    unsigned const max)
108{
109    unsigned const kAccuracyLog = 8;
110    size_t cost = 0;
111    unsigned s;
112    FSE_CState_t cstate;
113    FSE_initCState(&cstate, ctable);
114    if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
115        DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
116                    ZSTD_getFSEMaxSymbolValue(ctable), max);
117        return ERROR(GENERIC);
118    }
119    for (s = 0; s <= max; ++s) {
120        unsigned const tableLog = cstate.stateLog;
121        unsigned const badCost = (tableLog + 1) << kAccuracyLog;
122        unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
123        if (count[s] == 0)
124            continue;
125        if (bitCost >= badCost) {
126            DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
127            return ERROR(GENERIC);
128        }
129        cost += (size_t)count[s] * bitCost;
130    }
131    return cost >> kAccuracyLog;
132}
133
134/**
135 * Returns the cost in bits of encoding the distribution in count using the
136 * table described by norm. The max symbol support by norm is assumed >= max.
137 * norm must be valid for every symbol with non-zero probability in count.
138 */
139size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
140                             unsigned const* count, unsigned const max)
141{
142    unsigned const shift = 8 - accuracyLog;
143    size_t cost = 0;
144    unsigned s;
145    assert(accuracyLog <= 8);
146    for (s = 0; s <= max; ++s) {
147        unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
148        unsigned const norm256 = normAcc << shift;
149        assert(norm256 > 0);
150        assert(norm256 < 256);
151        cost += count[s] * kInverseProbabilityLog256[norm256];
152    }
153    return cost >> 8;
154}
155
156symbolEncodingType_e
157ZSTD_selectEncodingType(
158        FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
159        size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
160        FSE_CTable const* prevCTable,
161        short const* defaultNorm, U32 defaultNormLog,
162        ZSTD_defaultPolicy_e const isDefaultAllowed,
163        ZSTD_strategy const strategy)
164{
165    ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
166    if (mostFrequent == nbSeq) {
167        *repeatMode = FSE_repeat_none;
168        if (isDefaultAllowed && nbSeq <= 2) {
169            /* Prefer set_basic over set_rle when there are 2 or less symbols,
170             * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
171             * If basic encoding isn't possible, always choose RLE.
172             */
173            DEBUGLOG(5, "Selected set_basic");
174            return set_basic;
175        }
176        DEBUGLOG(5, "Selected set_rle");
177        return set_rle;
178    }
179    if (strategy < ZSTD_lazy) {
180        if (isDefaultAllowed) {
181            size_t const staticFse_nbSeq_max = 1000;
182            size_t const mult = 10 - strategy;
183            size_t const baseLog = 3;
184            size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog;  /* 28-36 for offset, 56-72 for lengths */
185            assert(defaultNormLog >= 5 && defaultNormLog <= 6);  /* xx_DEFAULTNORMLOG */
186            assert(mult <= 9 && mult >= 7);
187            if ( (*repeatMode == FSE_repeat_valid)
188              && (nbSeq < staticFse_nbSeq_max) ) {
189                DEBUGLOG(5, "Selected set_repeat");
190                return set_repeat;
191            }
192            if ( (nbSeq < dynamicFse_nbSeq_min)
193              || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
194                DEBUGLOG(5, "Selected set_basic");
195                /* The format allows default tables to be repeated, but it isn't useful.
196                 * When using simple heuristics to select encoding type, we don't want
197                 * to confuse these tables with dictionaries. When running more careful
198                 * analysis, we don't need to waste time checking both repeating tables
199                 * and default tables.
200                 */
201                *repeatMode = FSE_repeat_none;
202                return set_basic;
203            }
204        }
205    } else {
206        size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
207        size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
208        size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
209        size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
210
211        if (isDefaultAllowed) {
212            assert(!ZSTD_isError(basicCost));
213            assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
214        }
215        assert(!ZSTD_isError(NCountCost));
216        assert(compressedCost < ERROR(maxCode));
217        DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
218                    (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
219        if (basicCost <= repeatCost && basicCost <= compressedCost) {
220            DEBUGLOG(5, "Selected set_basic");
221            assert(isDefaultAllowed);
222            *repeatMode = FSE_repeat_none;
223            return set_basic;
224        }
225        if (repeatCost <= compressedCost) {
226            DEBUGLOG(5, "Selected set_repeat");
227            assert(!ZSTD_isError(repeatCost));
228            return set_repeat;
229        }
230        assert(compressedCost < basicCost && compressedCost < repeatCost);
231    }
232    DEBUGLOG(5, "Selected set_compressed");
233    *repeatMode = FSE_repeat_check;
234    return set_compressed;
235}
236
237typedef struct {
238    S16 norm[MaxSeq + 1];
239    U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
240} ZSTD_BuildCTableWksp;
241
242size_t
243ZSTD_buildCTable(void* dst, size_t dstCapacity,
244                FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
245                unsigned* count, U32 max,
246                const BYTE* codeTable, size_t nbSeq,
247                const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
248                const FSE_CTable* prevCTable, size_t prevCTableSize,
249                void* entropyWorkspace, size_t entropyWorkspaceSize)
250{
251    BYTE* op = (BYTE*)dst;
252    const BYTE* const oend = op + dstCapacity;
253    DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
254
255    switch (type) {
256    case set_rle:
257        FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
258        RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
259        *op = codeTable[0];
260        return 1;
261    case set_repeat:
262        ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
263        return 0;
264    case set_basic:
265        FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), "");  /* note : could be pre-calculated */
266        return 0;
267    case set_compressed: {
268        ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
269        size_t nbSeq_1 = nbSeq;
270        const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
271        if (count[codeTable[nbSeq-1]] > 1) {
272            count[codeTable[nbSeq-1]]--;
273            nbSeq_1--;
274        }
275        assert(nbSeq_1 > 1);
276        assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
277        (void)entropyWorkspaceSize;
278        FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
279        assert(oend >= op);
280        {   size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog);   /* overflow protected */
281            FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
282            FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
283            return NCountSize;
284        }
285    }
286    default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
287    }
288}
289
290FORCE_INLINE_TEMPLATE size_t
291ZSTD_encodeSequences_body(
292            void* dst, size_t dstCapacity,
293            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
294            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
295            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
296            seqDef const* sequences, size_t nbSeq, int longOffsets)
297{
298    BIT_CStream_t blockStream;
299    FSE_CState_t  stateMatchLength;
300    FSE_CState_t  stateOffsetBits;
301    FSE_CState_t  stateLitLength;
302
303    RETURN_ERROR_IF(
304        ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
305        dstSize_tooSmall, "not enough space remaining");
306    DEBUGLOG(6, "available space for bitstream : %i  (dstCapacity=%u)",
307                (int)(blockStream.endPtr - blockStream.startPtr),
308                (unsigned)dstCapacity);
309
310    /* first symbols */
311    FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
312    FSE_initCState2(&stateOffsetBits,  CTable_OffsetBits,  ofCodeTable[nbSeq-1]);
313    FSE_initCState2(&stateLitLength,   CTable_LitLength,   llCodeTable[nbSeq-1]);
314    BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
315    if (MEM_32bits()) BIT_flushBits(&blockStream);
316    BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
317    if (MEM_32bits()) BIT_flushBits(&blockStream);
318    if (longOffsets) {
319        U32 const ofBits = ofCodeTable[nbSeq-1];
320        unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
321        if (extraBits) {
322            BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
323            BIT_flushBits(&blockStream);
324        }
325        BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
326                    ofBits - extraBits);
327    } else {
328        BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
329    }
330    BIT_flushBits(&blockStream);
331
332    {   size_t n;
333        for (n=nbSeq-2 ; n<nbSeq ; n--) {      /* intentional underflow */
334            BYTE const llCode = llCodeTable[n];
335            BYTE const ofCode = ofCodeTable[n];
336            BYTE const mlCode = mlCodeTable[n];
337            U32  const llBits = LL_bits[llCode];
338            U32  const ofBits = ofCode;
339            U32  const mlBits = ML_bits[mlCode];
340            DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
341                        (unsigned)sequences[n].litLength,
342                        (unsigned)sequences[n].mlBase + MINMATCH,
343                        (unsigned)sequences[n].offBase);
344                                                                            /* 32b*/  /* 64b*/
345                                                                            /* (7)*/  /* (7)*/
346            FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode);       /* 15 */  /* 15 */
347            FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode);      /* 24 */  /* 24 */
348            if (MEM_32bits()) BIT_flushBits(&blockStream);                  /* (7)*/
349            FSE_encodeSymbol(&blockStream, &stateLitLength, llCode);        /* 16 */  /* 33 */
350            if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
351                BIT_flushBits(&blockStream);                                /* (7)*/
352            BIT_addBits(&blockStream, sequences[n].litLength, llBits);
353            if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
354            BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
355            if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
356            if (longOffsets) {
357                unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
358                if (extraBits) {
359                    BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
360                    BIT_flushBits(&blockStream);                            /* (7)*/
361                }
362                BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
363                            ofBits - extraBits);                            /* 31 */
364            } else {
365                BIT_addBits(&blockStream, sequences[n].offBase, ofBits);     /* 31 */
366            }
367            BIT_flushBits(&blockStream);                                    /* (7)*/
368            DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
369    }   }
370
371    DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
372    FSE_flushCState(&blockStream, &stateMatchLength);
373    DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
374    FSE_flushCState(&blockStream, &stateOffsetBits);
375    DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
376    FSE_flushCState(&blockStream, &stateLitLength);
377
378    {   size_t const streamSize = BIT_closeCStream(&blockStream);
379        RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
380        return streamSize;
381    }
382}
383
384static size_t
385ZSTD_encodeSequences_default(
386            void* dst, size_t dstCapacity,
387            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
388            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
389            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
390            seqDef const* sequences, size_t nbSeq, int longOffsets)
391{
392    return ZSTD_encodeSequences_body(dst, dstCapacity,
393                                    CTable_MatchLength, mlCodeTable,
394                                    CTable_OffsetBits, ofCodeTable,
395                                    CTable_LitLength, llCodeTable,
396                                    sequences, nbSeq, longOffsets);
397}
398
399
400#if DYNAMIC_BMI2
401
402static BMI2_TARGET_ATTRIBUTE size_t
403ZSTD_encodeSequences_bmi2(
404            void* dst, size_t dstCapacity,
405            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
406            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
407            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
408            seqDef const* sequences, size_t nbSeq, int longOffsets)
409{
410    return ZSTD_encodeSequences_body(dst, dstCapacity,
411                                    CTable_MatchLength, mlCodeTable,
412                                    CTable_OffsetBits, ofCodeTable,
413                                    CTable_LitLength, llCodeTable,
414                                    sequences, nbSeq, longOffsets);
415}
416
417#endif
418
419size_t ZSTD_encodeSequences(
420            void* dst, size_t dstCapacity,
421            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
422            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
423            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
424            seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
425{
426    DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
427#if DYNAMIC_BMI2
428    if (bmi2) {
429        return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
430                                         CTable_MatchLength, mlCodeTable,
431                                         CTable_OffsetBits, ofCodeTable,
432                                         CTable_LitLength, llCodeTable,
433                                         sequences, nbSeq, longOffsets);
434    }
435#endif
436    (void)bmi2;
437    return ZSTD_encodeSequences_default(dst, dstCapacity,
438                                        CTable_MatchLength, mlCodeTable,
439                                        CTable_OffsetBits, ofCodeTable,
440                                        CTable_LitLength, llCodeTable,
441                                        sequences, nbSeq, longOffsets);
442}
443