1/******************************************************************************
2 * xen.h
3 *
4 * Guest OS interface to Xen.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Copyright (c) 2004, K A Fraser
25 */
26
27#ifndef __XEN_PUBLIC_XEN_H__
28#define __XEN_PUBLIC_XEN_H__
29
30#include "xen-compat.h"
31
32#if defined(__i386__) || defined(__x86_64__)
33#include "arch-x86/xen.h"
34#elif defined(__arm__) || defined (__aarch64__)
35#include "arch-arm.h"
36#else
37#error "Unsupported architecture"
38#endif
39
40#ifndef __ASSEMBLY__
41/* Guest handles for primitive C types. */
42DEFINE_XEN_GUEST_HANDLE(char);
43__DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
44DEFINE_XEN_GUEST_HANDLE(int);
45__DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
46#if __XEN_INTERFACE_VERSION__ < 0x00040300
47DEFINE_XEN_GUEST_HANDLE(long);
48__DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
49#endif
50DEFINE_XEN_GUEST_HANDLE(void);
51
52DEFINE_XEN_GUEST_HANDLE(uint64_t);
53DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
54DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
55
56/* Define a variable length array (depends on compiler). */
57#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
58#define XEN_FLEX_ARRAY_DIM
59#elif defined(__GNUC__)
60#define XEN_FLEX_ARRAY_DIM  0
61#else
62#define XEN_FLEX_ARRAY_DIM  1 /* variable size */
63#endif
64
65/* Turn a plain number into a C unsigned (long (long)) constant. */
66#define __xen_mk_uint(x)  x ## U
67#define __xen_mk_ulong(x) x ## UL
68#ifndef __xen_mk_ullong
69# define __xen_mk_ullong(x) x ## ULL
70#endif
71#define xen_mk_uint(x)    __xen_mk_uint(x)
72#define xen_mk_ulong(x)   __xen_mk_ulong(x)
73#define xen_mk_ullong(x)  __xen_mk_ullong(x)
74
75#else
76
77/* In assembly code we cannot use C numeric constant suffixes. */
78#define xen_mk_uint(x)   x
79#define xen_mk_ulong(x)  x
80#define xen_mk_ullong(x) x
81
82#endif
83
84/*
85 * HYPERCALLS
86 */
87
88/* `incontents 100 hcalls List of hypercalls
89 * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
90 */
91
92#define __HYPERVISOR_set_trap_table        0
93#define __HYPERVISOR_mmu_update            1
94#define __HYPERVISOR_set_gdt               2
95#define __HYPERVISOR_stack_switch          3
96#define __HYPERVISOR_set_callbacks         4
97#define __HYPERVISOR_fpu_taskswitch        5
98#define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
99#define __HYPERVISOR_platform_op           7
100#define __HYPERVISOR_set_debugreg          8
101#define __HYPERVISOR_get_debugreg          9
102#define __HYPERVISOR_update_descriptor    10
103#define __HYPERVISOR_memory_op            12
104#define __HYPERVISOR_multicall            13
105#define __HYPERVISOR_update_va_mapping    14
106#define __HYPERVISOR_set_timer_op         15
107#define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
108#define __HYPERVISOR_xen_version          17
109#define __HYPERVISOR_console_io           18
110#define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
111#define __HYPERVISOR_grant_table_op       20
112#define __HYPERVISOR_vm_assist            21
113#define __HYPERVISOR_update_va_mapping_otherdomain 22
114#define __HYPERVISOR_iret                 23 /* x86 only */
115#define __HYPERVISOR_vcpu_op              24
116#define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
117#define __HYPERVISOR_mmuext_op            26
118#define __HYPERVISOR_xsm_op               27
119#define __HYPERVISOR_nmi_op               28
120#define __HYPERVISOR_sched_op             29
121#define __HYPERVISOR_callback_op          30
122#define __HYPERVISOR_xenoprof_op          31
123#define __HYPERVISOR_event_channel_op     32
124#define __HYPERVISOR_physdev_op           33
125#define __HYPERVISOR_hvm_op               34
126#define __HYPERVISOR_sysctl               35
127#define __HYPERVISOR_domctl               36
128#define __HYPERVISOR_kexec_op             37
129#define __HYPERVISOR_tmem_op              38
130#define __HYPERVISOR_argo_op              39
131#define __HYPERVISOR_xenpmu_op            40
132#define __HYPERVISOR_dm_op                41
133#define __HYPERVISOR_hypfs_op             42
134
135/* Architecture-specific hypercall definitions. */
136#define __HYPERVISOR_arch_0               48
137#define __HYPERVISOR_arch_1               49
138#define __HYPERVISOR_arch_2               50
139#define __HYPERVISOR_arch_3               51
140#define __HYPERVISOR_arch_4               52
141#define __HYPERVISOR_arch_5               53
142#define __HYPERVISOR_arch_6               54
143#define __HYPERVISOR_arch_7               55
144
145/* ` } */
146
147/*
148 * HYPERCALL COMPATIBILITY.
149 */
150
151/* New sched_op hypercall introduced in 0x00030101. */
152#if __XEN_INTERFACE_VERSION__ < 0x00030101
153#undef __HYPERVISOR_sched_op
154#define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
155#endif
156
157/* New event-channel and physdev hypercalls introduced in 0x00030202. */
158#if __XEN_INTERFACE_VERSION__ < 0x00030202
159#undef __HYPERVISOR_event_channel_op
160#define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
161#undef __HYPERVISOR_physdev_op
162#define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
163#endif
164
165/* New platform_op hypercall introduced in 0x00030204. */
166#if __XEN_INTERFACE_VERSION__ < 0x00030204
167#define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
168#endif
169
170/*
171 * VIRTUAL INTERRUPTS
172 *
173 * Virtual interrupts that a guest OS may receive from Xen.
174 *
175 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
176 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
177 * The latter can be allocated only once per guest: they must initially be
178 * allocated to VCPU0 but can subsequently be re-bound.
179 */
180/* ` enum virq { */
181#define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
182#define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
183#define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
184#define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
185#define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
186#define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
187#define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
188#define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
189#define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
190#define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occurred          */
191#define VIRQ_ARGO       11 /* G. Argo interdomain message notification       */
192#define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
193#define VIRQ_XENPMU     13 /* V.  PMC interrupt                              */
194
195/* Architecture-specific VIRQ definitions. */
196#define VIRQ_ARCH_0    16
197#define VIRQ_ARCH_1    17
198#define VIRQ_ARCH_2    18
199#define VIRQ_ARCH_3    19
200#define VIRQ_ARCH_4    20
201#define VIRQ_ARCH_5    21
202#define VIRQ_ARCH_6    22
203#define VIRQ_ARCH_7    23
204/* ` } */
205
206#define NR_VIRQS       24
207
208/*
209 * ` enum neg_errnoval
210 * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
211 * `                       unsigned count, unsigned *done_out,
212 * `                       unsigned foreigndom)
213 * `
214 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
215 * @count is the length of the above array.
216 * @pdone is an output parameter indicating number of completed operations
217 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
218 *                    hypercall invocation. Can be DOMID_SELF.
219 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
220 *                     in this hypercall invocation. The value of this field
221 *                     (x) encodes the PFD as follows:
222 *                     x == 0 => PFD == DOMID_SELF
223 *                     x != 0 => PFD == x - 1
224 *
225 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
226 * -------------
227 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
228 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
229 * and the new table entry is valid/present, the mapped frame must belong to
230 * FD. If attempting to map an I/O page then the caller assumes the privilege
231 * of the FD.
232 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
233 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
234 * ptr[:2]  -- Machine address of the page-table entry to modify.
235 * val      -- Value to write.
236 *
237 * There also certain implicit requirements when using this hypercall. The
238 * pages that make up a pagetable must be mapped read-only in the guest.
239 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
240 * enforces this, and will disallow any pagetable update which will end up
241 * mapping pagetable page RW, and will disallow using any writable page as a
242 * pagetable. In practice it means that when constructing a page table for a
243 * process, thread, etc, we MUST be very dilligient in following these rules:
244 *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
245 *      the entries.
246 *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
247 *      or L2).
248 *  3). Start filling out the PTE table (L1) with the PTE entries. Once
249 *  	done, make sure to set each of those entries to RO (so writeable bit
250 *  	is unset). Once that has been completed, set the PMD (L2) for this
251 *  	PTE table as RO.
252 *  4). When completed with all of the PMD (L2) entries, and all of them have
253 *  	been set to RO, make sure to set RO the PUD (L3). Do the same
254 *  	operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
255 *  5). Now before you can use those pages (so setting the cr3), you MUST also
256 *      pin them so that the hypervisor can verify the entries. This is done
257 *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
258 *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
259 *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
260 *      issued.
261 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
262 * instead use L3.
263 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
264 * hypercall. Also if so desired the OS can also try to write to the PTE
265 * and be trapped by the hypervisor (as the PTE entry is RO).
266 *
267 * To deallocate the pages, the operations are the reverse of the steps
268 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
269 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
270 *
271 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
272 * Updates an entry in the machine->pseudo-physical mapping table.
273 * ptr[:2]  -- Machine address within the frame whose mapping to modify.
274 *             The frame must belong to the FD, if one is specified.
275 * val      -- Value to write into the mapping entry.
276 *
277 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
278 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
279 * with those in @val.
280 *
281 * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
282 * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
283 * page tables.
284 *
285 * @val is usually the machine frame number along with some attributes.
286 * The attributes by default follow the architecture defined bits. Meaning that
287 * if this is a X86_64 machine and four page table layout is used, the layout
288 * of val is:
289 *  - 63 if set means No execute (NX)
290 *  - 46-13 the machine frame number
291 *  - 12 available for guest
292 *  - 11 available for guest
293 *  - 10 available for guest
294 *  - 9 available for guest
295 *  - 8 global
296 *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
297 *  - 6 dirty
298 *  - 5 accessed
299 *  - 4 page cached disabled
300 *  - 3 page write through
301 *  - 2 userspace accessible
302 *  - 1 writeable
303 *  - 0 present
304 *
305 *  The one bits that does not fit with the default layout is the PAGE_PSE
306 *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
307 *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
308 *  (or 2MB) instead of using the PAGE_PSE bit.
309 *
310 *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
311 *  using it as the Page Attribute Table (PAT) bit - for details on it please
312 *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
313 *  pages instead of using MTRRs.
314 *
315 *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
316 *                    PAT4                 PAT0
317 *  +-----+-----+----+----+----+-----+----+----+
318 *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
319 *  +-----+-----+----+----+----+-----+----+----+
320 *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
321 *  +-----+-----+----+----+----+-----+----+----+
322 *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
323 *  +-----+-----+----+----+----+-----+----+----+
324 *
325 *  The lookup of this index table translates to looking up
326 *  Bit 7, Bit 4, and Bit 3 of val entry:
327 *
328 *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
329 *
330 *  If all bits are off, then we are using PAT0. If bit 3 turned on,
331 *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
332 *
333 *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
334 *  that if a guest that follows Linux's PAT setup and would like to set Write
335 *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
336 *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
337 *  caching as:
338 *
339 *   WB = none (so PAT0)
340 *   WC = PWT (bit 3 on)
341 *   UC = PWT | PCD (bit 3 and 4 are on).
342 *
343 * To make it work with Xen, it needs to translate the WC bit as so:
344 *
345 *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
346 *
347 * And to translate back it would:
348 *
349 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
350 */
351#define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
352#define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
353#define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
354#define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
355                                     /* val never translated.                 */
356
357/*
358 * MMU EXTENDED OPERATIONS
359 *
360 * ` enum neg_errnoval
361 * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
362 * `                      unsigned int count,
363 * `                      unsigned int *pdone,
364 * `                      unsigned int foreigndom)
365 */
366/* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
367 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
368 * Where the FD has some effect, it is described below.
369 *
370 * cmd: MMUEXT_(UN)PIN_*_TABLE
371 * mfn: Machine frame number to be (un)pinned as a p.t. page.
372 *      The frame must belong to the FD, if one is specified.
373 *
374 * cmd: MMUEXT_NEW_BASEPTR
375 * mfn: Machine frame number of new page-table base to install in MMU.
376 *
377 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
378 * mfn: Machine frame number of new page-table base to install in MMU
379 *      when in user space.
380 *
381 * cmd: MMUEXT_TLB_FLUSH_LOCAL
382 * No additional arguments. Flushes local TLB.
383 *
384 * cmd: MMUEXT_INVLPG_LOCAL
385 * linear_addr: Linear address to be flushed from the local TLB.
386 *
387 * cmd: MMUEXT_TLB_FLUSH_MULTI
388 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
389 *
390 * cmd: MMUEXT_INVLPG_MULTI
391 * linear_addr: Linear address to be flushed.
392 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
393 *
394 * cmd: MMUEXT_TLB_FLUSH_ALL
395 * No additional arguments. Flushes all VCPUs' TLBs.
396 *
397 * cmd: MMUEXT_INVLPG_ALL
398 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
399 *
400 * cmd: MMUEXT_FLUSH_CACHE
401 * No additional arguments. Writes back and flushes cache contents.
402 *
403 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
404 * No additional arguments. Writes back and flushes cache contents
405 * on all CPUs in the system.
406 *
407 * cmd: MMUEXT_SET_LDT
408 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
409 * nr_ents: Number of entries in LDT.
410 *
411 * cmd: MMUEXT_CLEAR_PAGE
412 * mfn: Machine frame number to be cleared.
413 *
414 * cmd: MMUEXT_COPY_PAGE
415 * mfn: Machine frame number of the destination page.
416 * src_mfn: Machine frame number of the source page.
417 *
418 * cmd: MMUEXT_[UN]MARK_SUPER
419 * mfn: Machine frame number of head of superpage to be [un]marked.
420 */
421/* ` enum mmuext_cmd { */
422#define MMUEXT_PIN_L1_TABLE      0
423#define MMUEXT_PIN_L2_TABLE      1
424#define MMUEXT_PIN_L3_TABLE      2
425#define MMUEXT_PIN_L4_TABLE      3
426#define MMUEXT_UNPIN_TABLE       4
427#define MMUEXT_NEW_BASEPTR       5
428#define MMUEXT_TLB_FLUSH_LOCAL   6
429#define MMUEXT_INVLPG_LOCAL      7
430#define MMUEXT_TLB_FLUSH_MULTI   8
431#define MMUEXT_INVLPG_MULTI      9
432#define MMUEXT_TLB_FLUSH_ALL    10
433#define MMUEXT_INVLPG_ALL       11
434#define MMUEXT_FLUSH_CACHE      12
435#define MMUEXT_SET_LDT          13
436#define MMUEXT_NEW_USER_BASEPTR 15
437#define MMUEXT_CLEAR_PAGE       16
438#define MMUEXT_COPY_PAGE        17
439#define MMUEXT_FLUSH_CACHE_GLOBAL 18
440#define MMUEXT_MARK_SUPER       19
441#define MMUEXT_UNMARK_SUPER     20
442/* ` } */
443
444#ifndef __ASSEMBLY__
445struct mmuext_op {
446    unsigned int cmd; /* => enum mmuext_cmd */
447    union {
448        /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
449         * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
450        xen_pfn_t     mfn;
451        /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
452        unsigned long linear_addr;
453    } arg1;
454    union {
455        /* SET_LDT */
456        unsigned int nr_ents;
457        /* TLB_FLUSH_MULTI, INVLPG_MULTI */
458#if __XEN_INTERFACE_VERSION__ >= 0x00030205
459        XEN_GUEST_HANDLE(const_void) vcpumask;
460#else
461        const void *vcpumask;
462#endif
463        /* COPY_PAGE */
464        xen_pfn_t src_mfn;
465    } arg2;
466};
467typedef struct mmuext_op mmuext_op_t;
468DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
469#endif
470
471/*
472 * ` enum neg_errnoval
473 * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
474 * `                              enum uvm_flags flags)
475 * `
476 * ` enum neg_errnoval
477 * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
478 * `                                          enum uvm_flags flags,
479 * `                                          domid_t domid)
480 * `
481 * ` @va: The virtual address whose mapping we want to change
482 * ` @val: The new page table entry, must contain a machine address
483 * ` @flags: Control TLB flushes
484 */
485/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
486/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
487/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
488/* ` enum uvm_flags { */
489#define UVMF_NONE           (xen_mk_ulong(0)<<0) /* No flushing at all.   */
490#define UVMF_TLB_FLUSH      (xen_mk_ulong(1)<<0) /* Flush entire TLB(s).  */
491#define UVMF_INVLPG         (xen_mk_ulong(2)<<0) /* Flush only one entry. */
492#define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
493#define UVMF_MULTI          (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
494#define UVMF_LOCAL          (xen_mk_ulong(0)<<2) /* Flush local TLB.      */
495#define UVMF_ALL            (xen_mk_ulong(1)<<2) /* Flush all TLBs.       */
496/* ` } */
497
498/*
499 * ` int
500 * ` HYPERVISOR_console_io(unsigned int cmd,
501 * `                       unsigned int count,
502 * `                       char buffer[]);
503 *
504 * @cmd: Command (see below)
505 * @count: Size of the buffer to read/write
506 * @buffer: Pointer in the guest memory
507 *
508 * List of commands:
509 *
510 *  * CONSOLEIO_write: Write the buffer to Xen console.
511 *      For the hardware domain, all the characters in the buffer will
512 *      be written. Characters will be printed directly to the console.
513 *      For all the other domains, only the printable characters will be
514 *      written. Characters may be buffered until a newline (i.e '\n') is
515 *      found.
516 *      @return 0 on success, otherwise return an error code.
517 *  * CONSOLEIO_read: Attempts to read up to @count characters from Xen
518 *      console. The maximum buffer size (i.e. @count) supported is 2GB.
519 *      @return the number of characters read on success, otherwise return
520 *      an error code.
521 */
522#define CONSOLEIO_write         0
523#define CONSOLEIO_read          1
524
525/*
526 * Commands to HYPERVISOR_vm_assist().
527 */
528#define VMASST_CMD_enable                0
529#define VMASST_CMD_disable               1
530
531/* x86/32 guests: simulate full 4GB segment limits. */
532#define VMASST_TYPE_4gb_segments         0
533
534/* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
535#define VMASST_TYPE_4gb_segments_notify  1
536
537/*
538 * x86 guests: support writes to bottom-level PTEs.
539 * NB1. Page-directory entries cannot be written.
540 * NB2. Guest must continue to remove all writable mappings of PTEs.
541 */
542#define VMASST_TYPE_writable_pagetables  2
543
544/* x86/PAE guests: support PDPTs above 4GB. */
545#define VMASST_TYPE_pae_extended_cr3     3
546
547/*
548 * x86 guests: Sane behaviour for virtual iopl
549 *  - virtual iopl updated from do_iret() hypercalls.
550 *  - virtual iopl reported in bounce frames.
551 *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
552 */
553#define VMASST_TYPE_architectural_iopl   4
554
555/*
556 * All guests: activate update indicator in vcpu_runstate_info
557 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
558 * vcpu_runstate_info during updates of the runstate information.
559 */
560#define VMASST_TYPE_runstate_update_flag 5
561
562/*
563 * x86/64 guests: strictly hide M2P from user mode.
564 * This allows the guest to control respective hypervisor behavior:
565 * - when not set, L4 tables get created with the respective slot blank,
566 *   and whenever the L4 table gets used as a kernel one the missing
567 *   mapping gets inserted,
568 * - when set, L4 tables get created with the respective slot initialized
569 *   as before, and whenever the L4 table gets used as a user one the
570 *   mapping gets zapped.
571 */
572#define VMASST_TYPE_m2p_strict           32
573
574#if __XEN_INTERFACE_VERSION__ < 0x00040600
575#define MAX_VMASST_TYPE                  3
576#endif
577
578/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
579#define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
580
581/* DOMID_SELF is used in certain contexts to refer to oneself. */
582#define DOMID_SELF           xen_mk_uint(0x7FF0)
583
584/*
585 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
586 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
587 * is useful to ensure that no mappings to the OS's own heap are accidentally
588 * installed. (e.g., in Linux this could cause havoc as reference counts
589 * aren't adjusted on the I/O-mapping code path).
590 * This only makes sense as HYPERVISOR_mmu_update()'s and
591 * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
592 * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
593 * otherwise it's only permitted if the caller is privileged.
594 */
595#define DOMID_IO             xen_mk_uint(0x7FF1)
596
597/*
598 * DOMID_XEN is used to allow privileged domains to map restricted parts of
599 * Xen's heap space (e.g., the machine_to_phys table).
600 * This only makes sense as
601 * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
602 *   HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
603 * - with XENMAPSPACE_gmfn_foreign,
604 * and is only permitted if the caller is privileged.
605 */
606#define DOMID_XEN            xen_mk_uint(0x7FF2)
607
608/*
609 * DOMID_COW is used as the owner of sharable pages */
610#define DOMID_COW            xen_mk_uint(0x7FF3)
611
612/* DOMID_INVALID is used to identify pages with unknown owner. */
613#define DOMID_INVALID        xen_mk_uint(0x7FF4)
614
615/* Idle domain. */
616#define DOMID_IDLE           xen_mk_uint(0x7FFF)
617
618/* Mask for valid domain id values */
619#define DOMID_MASK           xen_mk_uint(0x7FFF)
620
621#ifndef __ASSEMBLY__
622
623typedef uint16_t domid_t;
624
625/*
626 * Send an array of these to HYPERVISOR_mmu_update().
627 * NB. The fields are natural pointer/address size for this architecture.
628 */
629struct mmu_update {
630    uint64_t ptr;       /* Machine address of PTE. */
631    uint64_t val;       /* New contents of PTE.    */
632};
633typedef struct mmu_update mmu_update_t;
634DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
635
636/*
637 * ` enum neg_errnoval
638 * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
639 * `                      uint32_t nr_calls);
640 *
641 * NB. The fields are logically the natural register size for this
642 * architecture. In cases where xen_ulong_t is larger than this then
643 * any unused bits in the upper portion must be zero.
644 */
645struct multicall_entry {
646    xen_ulong_t op, result;
647    xen_ulong_t args[6];
648};
649typedef struct multicall_entry multicall_entry_t;
650DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
651
652#if __XEN_INTERFACE_VERSION__ < 0x00040400
653/*
654 * Event channel endpoints per domain (when using the 2-level ABI):
655 *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
656 */
657#define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
658#endif
659
660struct vcpu_time_info {
661    /*
662     * Updates to the following values are preceded and followed by an
663     * increment of 'version'. The guest can therefore detect updates by
664     * looking for changes to 'version'. If the least-significant bit of
665     * the version number is set then an update is in progress and the guest
666     * must wait to read a consistent set of values.
667     * The correct way to interact with the version number is similar to
668     * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
669     */
670    uint32_t version;
671    uint32_t pad0;
672    uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
673    uint64_t system_time;     /* Time, in nanosecs, since boot.    */
674    /*
675     * Current system time:
676     *   system_time +
677     *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
678     * CPU frequency (Hz):
679     *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
680     */
681    uint32_t tsc_to_system_mul;
682    int8_t   tsc_shift;
683#if __XEN_INTERFACE_VERSION__ > 0x040600
684    uint8_t  flags;
685    uint8_t  pad1[2];
686#else
687    int8_t   pad1[3];
688#endif
689}; /* 32 bytes */
690typedef struct vcpu_time_info vcpu_time_info_t;
691
692#define XEN_PVCLOCK_TSC_STABLE_BIT     (1 << 0)
693#define XEN_PVCLOCK_GUEST_STOPPED      (1 << 1)
694
695struct vcpu_info {
696    /*
697     * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
698     * a pending notification for a particular VCPU. It is then cleared
699     * by the guest OS /before/ checking for pending work, thus avoiding
700     * a set-and-check race. Note that the mask is only accessed by Xen
701     * on the CPU that is currently hosting the VCPU. This means that the
702     * pending and mask flags can be updated by the guest without special
703     * synchronisation (i.e., no need for the x86 LOCK prefix).
704     * This may seem suboptimal because if the pending flag is set by
705     * a different CPU then an IPI may be scheduled even when the mask
706     * is set. However, note:
707     *  1. The task of 'interrupt holdoff' is covered by the per-event-
708     *     channel mask bits. A 'noisy' event that is continually being
709     *     triggered can be masked at source at this very precise
710     *     granularity.
711     *  2. The main purpose of the per-VCPU mask is therefore to restrict
712     *     reentrant execution: whether for concurrency control, or to
713     *     prevent unbounded stack usage. Whatever the purpose, we expect
714     *     that the mask will be asserted only for short periods at a time,
715     *     and so the likelihood of a 'spurious' IPI is suitably small.
716     * The mask is read before making an event upcall to the guest: a
717     * non-zero mask therefore guarantees that the VCPU will not receive
718     * an upcall activation. The mask is cleared when the VCPU requests
719     * to block: this avoids wakeup-waiting races.
720     */
721    uint8_t evtchn_upcall_pending;
722#ifdef XEN_HAVE_PV_UPCALL_MASK
723    uint8_t evtchn_upcall_mask;
724#else /* XEN_HAVE_PV_UPCALL_MASK */
725    uint8_t pad0;
726#endif /* XEN_HAVE_PV_UPCALL_MASK */
727    xen_ulong_t evtchn_pending_sel;
728    struct arch_vcpu_info arch;
729    vcpu_time_info_t time;
730}; /* 64 bytes (x86) */
731#ifndef __XEN__
732typedef struct vcpu_info vcpu_info_t;
733#endif
734
735/*
736 * `incontents 200 startofday_shared Start-of-day shared data structure
737 * Xen/kernel shared data -- pointer provided in start_info.
738 *
739 * This structure is defined to be both smaller than a page, and the
740 * only data on the shared page, but may vary in actual size even within
741 * compatible Xen versions; guests should not rely on the size
742 * of this structure remaining constant.
743 */
744struct shared_info {
745    struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
746
747    /*
748     * A domain can create "event channels" on which it can send and receive
749     * asynchronous event notifications. There are three classes of event that
750     * are delivered by this mechanism:
751     *  1. Bi-directional inter- and intra-domain connections. Domains must
752     *     arrange out-of-band to set up a connection (usually by allocating
753     *     an unbound 'listener' port and avertising that via a storage service
754     *     such as xenstore).
755     *  2. Physical interrupts. A domain with suitable hardware-access
756     *     privileges can bind an event-channel port to a physical interrupt
757     *     source.
758     *  3. Virtual interrupts ('events'). A domain can bind an event-channel
759     *     port to a virtual interrupt source, such as the virtual-timer
760     *     device or the emergency console.
761     *
762     * Event channels are addressed by a "port index". Each channel is
763     * associated with two bits of information:
764     *  1. PENDING -- notifies the domain that there is a pending notification
765     *     to be processed. This bit is cleared by the guest.
766     *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
767     *     will cause an asynchronous upcall to be scheduled. This bit is only
768     *     updated by the guest. It is read-only within Xen. If a channel
769     *     becomes pending while the channel is masked then the 'edge' is lost
770     *     (i.e., when the channel is unmasked, the guest must manually handle
771     *     pending notifications as no upcall will be scheduled by Xen).
772     *
773     * To expedite scanning of pending notifications, any 0->1 pending
774     * transition on an unmasked channel causes a corresponding bit in a
775     * per-vcpu selector word to be set. Each bit in the selector covers a
776     * 'C long' in the PENDING bitfield array.
777     */
778    xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
779    xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
780
781    /*
782     * Wallclock time: updated by control software or RTC emulation.
783     * Guests should base their gettimeofday() syscall on this
784     * wallclock-base value.
785     * The values of wc_sec and wc_nsec are offsets from the Unix epoch
786     * adjusted by the domain's 'time offset' (in seconds) as set either
787     * by XEN_DOMCTL_settimeoffset, or adjusted via a guest write to the
788     * emulated RTC.
789     */
790    uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
791    uint32_t wc_sec;
792    uint32_t wc_nsec;
793#if !defined(__i386__)
794    uint32_t wc_sec_hi;
795# define xen_wc_sec_hi wc_sec_hi
796#elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
797# define xen_wc_sec_hi arch.wc_sec_hi
798#endif
799
800    struct arch_shared_info arch;
801
802};
803#ifndef __XEN__
804typedef struct shared_info shared_info_t;
805#endif
806
807/*
808 * `incontents 200 startofday Start-of-day memory layout
809 *
810 *  1. The domain is started within contiguous virtual-memory region.
811 *  2. The contiguous region ends on an aligned 4MB boundary.
812 *  3. This the order of bootstrap elements in the initial virtual region:
813 *      a. relocated kernel image
814 *      b. initial ram disk              [mod_start, mod_len]
815 *         (may be omitted)
816 *      c. list of allocated page frames [mfn_list, nr_pages]
817 *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
818 *      d. start_info_t structure        [register rSI (x86)]
819 *         in case of dom0 this page contains the console info, too
820 *      e. unless dom0: xenstore ring page
821 *      f. unless dom0: console ring page
822 *      g. bootstrap page tables         [pt_base and CR3 (x86)]
823 *      h. bootstrap stack               [register ESP (x86)]
824 *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
825 *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
826 *     layout for the domain. In particular, the bootstrap virtual-memory
827 *     region is a 1:1 mapping to the first section of the pseudo-physical map.
828 *  6. All bootstrap elements are mapped read-writable for the guest OS. The
829 *     only exception is the bootstrap page table, which is mapped read-only.
830 *  7. There is guaranteed to be at least 512kB padding after the final
831 *     bootstrap element. If necessary, the bootstrap virtual region is
832 *     extended by an extra 4MB to ensure this.
833 *
834 * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
835 * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
836 * to the start of the guest page tables (it was offset by two pages).
837 * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
838 * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
839 * allocated in the order: 'first L1','first L2', 'first L3', so the offset
840 * to the page table base is by two pages back. The initial domain if it is
841 * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
842 * pages preceding pt_base and mark them as reserved/unused.
843 */
844#ifdef XEN_HAVE_PV_GUEST_ENTRY
845struct start_info {
846    /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
847    char magic[32];             /* "xen-<version>-<platform>".            */
848    unsigned long nr_pages;     /* Total pages allocated to this domain.  */
849    unsigned long shared_info;  /* MACHINE address of shared info struct. */
850    uint32_t flags;             /* SIF_xxx flags.                         */
851    xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
852    uint32_t store_evtchn;      /* Event channel for store communication. */
853    union {
854        struct {
855            xen_pfn_t mfn;      /* MACHINE page number of console page.   */
856            uint32_t  evtchn;   /* Event channel for console page.        */
857        } domU;
858        struct {
859            uint32_t info_off;  /* Offset of console_info struct.         */
860            uint32_t info_size; /* Size of console_info struct from start.*/
861        } dom0;
862    } console;
863    /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
864    unsigned long pt_base;      /* VIRTUAL address of page directory.     */
865    unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
866    unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
867    unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
868                                /* (PFN of pre-loaded module if           */
869                                /*  SIF_MOD_START_PFN set in flags).      */
870    unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
871#define MAX_GUEST_CMDLINE 1024
872    int8_t cmd_line[MAX_GUEST_CMDLINE];
873    /* The pfn range here covers both page table and p->m table frames.   */
874    unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
875    unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
876};
877typedef struct start_info start_info_t;
878
879/* New console union for dom0 introduced in 0x00030203. */
880#if __XEN_INTERFACE_VERSION__ < 0x00030203
881#define console_mfn    console.domU.mfn
882#define console_evtchn console.domU.evtchn
883#endif
884#endif /* XEN_HAVE_PV_GUEST_ENTRY */
885
886/* These flags are passed in the 'flags' field of start_info_t. */
887#define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
888#define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
889#define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
890#define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
891#define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
892                                   /* P->M making the 3 level tree obsolete? */
893#define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
894
895/*
896 * A multiboot module is a package containing modules very similar to a
897 * multiboot module array. The only differences are:
898 * - the array of module descriptors is by convention simply at the beginning
899 *   of the multiboot module,
900 * - addresses in the module descriptors are based on the beginning of the
901 *   multiboot module,
902 * - the number of modules is determined by a termination descriptor that has
903 *   mod_start == 0.
904 *
905 * This permits to both build it statically and reference it in a configuration
906 * file, and let the PV guest easily rebase the addresses to virtual addresses
907 * and at the same time count the number of modules.
908 */
909struct xen_multiboot_mod_list
910{
911    /* Address of first byte of the module */
912    uint32_t mod_start;
913    /* Address of last byte of the module (inclusive) */
914    uint32_t mod_end;
915    /* Address of zero-terminated command line */
916    uint32_t cmdline;
917    /* Unused, must be zero */
918    uint32_t pad;
919};
920/*
921 * `incontents 200 startofday_dom0_console Dom0_console
922 *
923 * The console structure in start_info.console.dom0
924 *
925 * This structure includes a variety of information required to
926 * have a working VGA/VESA console.
927 */
928typedef struct dom0_vga_console_info {
929    uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
930#define XEN_VGATYPE_TEXT_MODE_3 0x03
931#define XEN_VGATYPE_VESA_LFB    0x23
932#define XEN_VGATYPE_EFI_LFB     0x70
933
934    union {
935        struct {
936            /* Font height, in pixels. */
937            uint16_t font_height;
938            /* Cursor location (column, row). */
939            uint16_t cursor_x, cursor_y;
940            /* Number of rows and columns (dimensions in characters). */
941            uint16_t rows, columns;
942        } text_mode_3;
943
944        struct {
945            /* Width and height, in pixels. */
946            uint16_t width, height;
947            /* Bytes per scan line. */
948            uint16_t bytes_per_line;
949            /* Bits per pixel. */
950            uint16_t bits_per_pixel;
951            /* LFB physical address, and size (in units of 64kB). */
952            uint32_t lfb_base;
953            uint32_t lfb_size;
954            /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
955            uint8_t  red_pos, red_size;
956            uint8_t  green_pos, green_size;
957            uint8_t  blue_pos, blue_size;
958            uint8_t  rsvd_pos, rsvd_size;
959#if __XEN_INTERFACE_VERSION__ >= 0x00030206
960            /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
961            uint32_t gbl_caps;
962            /* Mode attributes (offset 0x0, VESA command 0x4f01). */
963            uint16_t mode_attrs;
964            uint16_t pad;
965#endif
966#if __XEN_INTERFACE_VERSION__ >= 0x00040d00
967            /* high 32 bits of lfb_base */
968            uint32_t ext_lfb_base;
969#endif
970        } vesa_lfb;
971    } u;
972} dom0_vga_console_info_t;
973#define xen_vga_console_info dom0_vga_console_info
974#define xen_vga_console_info_t dom0_vga_console_info_t
975
976typedef uint8_t xen_domain_handle_t[16];
977
978__DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
979__DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
980__DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
981__DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
982
983typedef struct {
984    uint8_t a[16];
985} xen_uuid_t;
986
987/*
988 * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
989 *                 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
990 * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
991 * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
992 * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
993 *
994 * NB: This is compatible with Linux kernel and with libuuid, but it is not
995 * compatible with Microsoft, as they use mixed-endian encoding (some
996 * components are little-endian, some are big-endian).
997 */
998#define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)            \
999    {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF,                           \
1000      ((a) >>  8) & 0xFF, ((a) >>  0) & 0xFF,                           \
1001      ((b) >>  8) & 0xFF, ((b) >>  0) & 0xFF,                           \
1002      ((c) >>  8) & 0xFF, ((c) >>  0) & 0xFF,                           \
1003      ((d) >>  8) & 0xFF, ((d) >>  0) & 0xFF,                           \
1004                e1, e2, e3, e4, e5, e6}}
1005
1006#if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
1007#define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
1008    ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
1009#else
1010#define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
1011    XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
1012#endif /* __STDC_VERSION__ / __GNUC__ */
1013
1014#endif /* !__ASSEMBLY__ */
1015
1016/* Default definitions for macros used by domctl/sysctl. */
1017#if defined(__XEN__) || defined(__XEN_TOOLS__)
1018
1019#ifndef int64_aligned_t
1020#define int64_aligned_t int64_t
1021#endif
1022#ifndef uint64_aligned_t
1023#define uint64_aligned_t uint64_t
1024#endif
1025#ifndef XEN_GUEST_HANDLE_64
1026#define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
1027#endif
1028
1029#ifndef __ASSEMBLY__
1030struct xenctl_bitmap {
1031    XEN_GUEST_HANDLE_64(uint8) bitmap;
1032    uint32_t nr_bits;
1033};
1034typedef struct xenctl_bitmap xenctl_bitmap_t;
1035#endif
1036
1037#endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
1038
1039#endif /* __XEN_PUBLIC_XEN_H__ */
1040
1041/*
1042 * Local variables:
1043 * mode: C
1044 * c-file-style: "BSD"
1045 * c-basic-offset: 4
1046 * tab-width: 4
1047 * indent-tabs-mode: nil
1048 * End:
1049 */
1050