1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source.  A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2016, 2018 by Delphix. All rights reserved.
18 */
19
20/*
21 * ZFS Channel Programs (ZCP)
22 *
23 * The ZCP interface allows various ZFS commands and operations ZFS
24 * administrative operations (e.g. creating and destroying snapshots, typically
25 * performed via an ioctl to /dev/zfs by the zfs(8) command and
26 * libzfs/libzfs_core) to be run * programmatically as a Lua script.  A ZCP
27 * script is run as a dsl_sync_task and fully executed during one transaction
28 * group sync.  This ensures that no other changes can be written concurrently
29 * with a running Lua script.  Combining multiple calls to the exposed ZFS
30 * functions into one script gives a number of benefits:
31 *
32 * 1. Atomicity.  For some compound or iterative operations, it's useful to be
33 * able to guarantee that the state of a pool has not changed between calls to
34 * ZFS.
35 *
36 * 2. Performance.  If a large number of changes need to be made (e.g. deleting
37 * many filesystems), there can be a significant performance penalty as a
38 * result of the need to wait for a transaction group sync to pass for every
39 * single operation.  When expressed as a single ZCP script, all these changes
40 * can be performed at once in one txg sync.
41 *
42 * A modified version of the Lua 5.2 interpreter is used to run channel program
43 * scripts. The Lua 5.2 manual can be found at:
44 *
45 *      http://www.lua.org/manual/5.2/
46 *
47 * If being run by a user (via an ioctl syscall), executing a ZCP script
48 * requires root privileges in the global zone.
49 *
50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51 * zcp_eval_sync().  Arguments can be passed into the Lua script as an nvlist,
52 * which will be converted to a Lua table.  Similarly, values returned from
53 * a ZCP script will be converted to an nvlist.  See zcp_lua_to_nvlist_impl()
54 * for details on exact allowed types and conversion.
55 *
56 * ZFS functionality is exposed to a ZCP script as a library of function calls.
57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58 * iterators and synctasks, respectively.  Each of these submodules resides in
59 * its own source file, with a zcp_*_info structure describing each library
60 * call in the submodule.
61 *
62 * Error handling in ZCP scripts is handled by a number of different methods
63 * based on severity:
64 *
65 * 1. Memory and time limits are in place to prevent a channel program from
66 * consuming excessive system or running forever.  If one of these limits is
67 * hit, the channel program will be stopped immediately and return from
68 * zcp_eval() with an error code. No attempt will be made to roll back or undo
69 * any changes made by the channel program before the error occurred.
70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71 * limit of 0, disabling the time limit.
72 *
73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74 * library function with incorrect arguments, invoking the error() function,
75 * failing an assert(), or other runtime errors.  In these cases the channel
76 * program will stop executing and return from zcp_eval() with an error code.
77 * In place of a return value, an error message will also be returned in the
78 * 'result' nvlist containing information about the error. No attempt will be
79 * made to roll back or undo any changes made by the channel program before the
80 * error occurred.
81 *
82 * 3. If an error occurs inside a ZFS library call which returns an error code,
83 * the error is returned to the Lua script to be handled as desired.
84 *
85 * In the first two cases, Lua's error-throwing mechanism is used, which
86 * longjumps out of the script execution with luaL_error() and returns with the
87 * error.
88 *
89 * See zfs-program(8) for more information on high level usage.
90 */
91
92#include <sys/lua/lua.h>
93#include <sys/lua/lualib.h>
94#include <sys/lua/lauxlib.h>
95
96#include <sys/dsl_prop.h>
97#include <sys/dsl_synctask.h>
98#include <sys/dsl_dataset.h>
99#include <sys/zcp.h>
100#include <sys/zcp_iter.h>
101#include <sys/zcp_prop.h>
102#include <sys/zcp_global.h>
103#include <sys/zvol.h>
104
105#ifndef KM_NORMALPRI
106#define	KM_NORMALPRI	0
107#endif
108
109#define	ZCP_NVLIST_MAX_DEPTH 20
110
111static const uint64_t zfs_lua_check_instrlimit_interval = 100;
112uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
113uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
114
115/*
116 * Forward declarations for mutually recursive functions
117 */
118static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
119static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
120    int);
121
122/*
123 * The outer-most error callback handler for use with lua_pcall(). On
124 * error Lua will call this callback with a single argument that
125 * represents the error value. In most cases this will be a string
126 * containing an error message, but channel programs can use Lua's
127 * error() function to return arbitrary objects as errors. This callback
128 * returns (on the Lua stack) the original error object along with a traceback.
129 *
130 * Fatal Lua errors can occur while resources are held, so we also call any
131 * registered cleanup function here.
132 */
133static int
134zcp_error_handler(lua_State *state)
135{
136	const char *msg;
137
138	zcp_cleanup(state);
139
140	VERIFY3U(1, ==, lua_gettop(state));
141	msg = lua_tostring(state, 1);
142	luaL_traceback(state, state, msg, 1);
143	return (1);
144}
145
146int
147zcp_argerror(lua_State *state, int narg, const char *msg, ...)
148{
149	va_list alist;
150
151	va_start(alist, msg);
152	const char *buf = lua_pushvfstring(state, msg, alist);
153	va_end(alist);
154
155	return (luaL_argerror(state, narg, buf));
156}
157
158/*
159 * Install a new cleanup function, which will be invoked with the given
160 * opaque argument if a fatal error causes the Lua interpreter to longjump out
161 * of a function call.
162 *
163 * If an error occurs, the cleanup function will be invoked exactly once and
164 * then unregistered.
165 *
166 * Returns the registered cleanup handler so the caller can deregister it
167 * if no error occurs.
168 */
169zcp_cleanup_handler_t *
170zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
171{
172	zcp_run_info_t *ri = zcp_run_info(state);
173
174	zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
175	zch->zch_cleanup_func = cleanfunc;
176	zch->zch_cleanup_arg = cleanarg;
177	list_insert_head(&ri->zri_cleanup_handlers, zch);
178
179	return (zch);
180}
181
182void
183zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
184{
185	zcp_run_info_t *ri = zcp_run_info(state);
186	list_remove(&ri->zri_cleanup_handlers, zch);
187	kmem_free(zch, sizeof (*zch));
188}
189
190/*
191 * Execute the currently registered cleanup handlers then free them and
192 * destroy the handler list.
193 */
194void
195zcp_cleanup(lua_State *state)
196{
197	zcp_run_info_t *ri = zcp_run_info(state);
198
199	for (zcp_cleanup_handler_t *zch =
200	    list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
201	    zch = list_remove_head(&ri->zri_cleanup_handlers)) {
202		zch->zch_cleanup_func(zch->zch_cleanup_arg);
203		kmem_free(zch, sizeof (*zch));
204	}
205}
206
207/*
208 * Convert the lua table at the given index on the Lua stack to an nvlist
209 * and return it.
210 *
211 * If the table can not be converted for any reason, NULL is returned and
212 * an error message is pushed onto the Lua stack.
213 */
214static nvlist_t *
215zcp_table_to_nvlist(lua_State *state, int index, int depth)
216{
217	nvlist_t *nvl;
218	/*
219	 * Converting a Lua table to an nvlist with key uniqueness checking is
220	 * O(n^2) in the number of keys in the nvlist, which can take a long
221	 * time when we return a large table from a channel program.
222	 * Furthermore, Lua's table interface *almost* guarantees unique keys
223	 * on its own (details below). Therefore, we don't use fnvlist_alloc()
224	 * here to avoid the built-in uniqueness checking.
225	 *
226	 * The *almost* is because it's possible to have key collisions between
227	 * e.g. the string "1" and the number 1, or the string "true" and the
228	 * boolean true, so we explicitly check that when we're looking at a
229	 * key which is an integer / boolean or a string that can be parsed as
230	 * one of those types. In the worst case this could still devolve into
231	 * O(n^2), so we only start doing these checks on boolean/integer keys
232	 * once we've seen a string key which fits this weird usage pattern.
233	 *
234	 * Ultimately, we still want callers to know that the keys in this
235	 * nvlist are unique, so before we return this we set the nvlist's
236	 * flags to reflect that.
237	 */
238	VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
239
240	/*
241	 * Push an empty stack slot where lua_next() will store each
242	 * table key.
243	 */
244	lua_pushnil(state);
245	boolean_t saw_str_could_collide = B_FALSE;
246	while (lua_next(state, index) != 0) {
247		/*
248		 * The next key-value pair from the table at index is
249		 * now on the stack, with the key at stack slot -2 and
250		 * the value at slot -1.
251		 */
252		int err = 0;
253		char buf[32];
254		const char *key = NULL;
255		boolean_t key_could_collide = B_FALSE;
256
257		switch (lua_type(state, -2)) {
258		case LUA_TSTRING:
259			key = lua_tostring(state, -2);
260
261			/* check if this could collide with a number or bool */
262			long long tmp;
263			int parselen;
264			if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
265			    parselen == strlen(key)) ||
266			    strcmp(key, "true") == 0 ||
267			    strcmp(key, "false") == 0) {
268				key_could_collide = B_TRUE;
269				saw_str_could_collide = B_TRUE;
270			}
271			break;
272		case LUA_TBOOLEAN:
273			key = (lua_toboolean(state, -2) == B_TRUE ?
274			    "true" : "false");
275			if (saw_str_could_collide) {
276				key_could_collide = B_TRUE;
277			}
278			break;
279		case LUA_TNUMBER:
280			(void) snprintf(buf, sizeof (buf), "%lld",
281			    (longlong_t)lua_tonumber(state, -2));
282
283			key = buf;
284			if (saw_str_could_collide) {
285				key_could_collide = B_TRUE;
286			}
287			break;
288		default:
289			fnvlist_free(nvl);
290			(void) lua_pushfstring(state, "Invalid key "
291			    "type '%s' in table",
292			    lua_typename(state, lua_type(state, -2)));
293			return (NULL);
294		}
295		/*
296		 * Check for type-mismatched key collisions, and throw an error.
297		 */
298		if (key_could_collide && nvlist_exists(nvl, key)) {
299			fnvlist_free(nvl);
300			(void) lua_pushfstring(state, "Collision of "
301			    "key '%s' in table", key);
302			return (NULL);
303		}
304		/*
305		 * Recursively convert the table value and insert into
306		 * the new nvlist with the parsed key.  To prevent
307		 * stack overflow on circular or heavily nested tables,
308		 * we track the current nvlist depth.
309		 */
310		if (depth >= ZCP_NVLIST_MAX_DEPTH) {
311			fnvlist_free(nvl);
312			(void) lua_pushfstring(state, "Maximum table "
313			    "depth (%d) exceeded for table",
314			    ZCP_NVLIST_MAX_DEPTH);
315			return (NULL);
316		}
317		err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
318		    depth + 1);
319		if (err != 0) {
320			fnvlist_free(nvl);
321			/*
322			 * Error message has been pushed to the lua
323			 * stack by the recursive call.
324			 */
325			return (NULL);
326		}
327		/*
328		 * Pop the value pushed by lua_next().
329		 */
330		lua_pop(state, 1);
331	}
332
333	/*
334	 * Mark the nvlist as having unique keys. This is a little ugly, but we
335	 * ensured above that there are no duplicate keys in the nvlist.
336	 */
337	nvl->nvl_nvflag |= NV_UNIQUE_NAME;
338
339	return (nvl);
340}
341
342/*
343 * Convert a value from the given index into the lua stack to an nvpair, adding
344 * it to an nvlist with the given key.
345 *
346 * Values are converted as follows:
347 *
348 *   string -> string
349 *   number -> int64
350 *   boolean -> boolean
351 *   nil -> boolean (no value)
352 *
353 * Lua tables are converted to nvlists and then inserted. The table's keys
354 * are converted to strings then used as keys in the nvlist to store each table
355 * element.  Keys are converted as follows:
356 *
357 *   string -> no change
358 *   number -> "%lld"
359 *   boolean -> "true" | "false"
360 *   nil -> error
361 *
362 * In the case of a key collision, an error is thrown.
363 *
364 * If an error is encountered, a nonzero error code is returned, and an error
365 * string will be pushed onto the Lua stack.
366 */
367static int
368zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
369    const char *key, int depth)
370{
371	/*
372	 * Verify that we have enough remaining space in the lua stack to parse
373	 * a key-value pair and push an error.
374	 */
375	if (!lua_checkstack(state, 3)) {
376		(void) lua_pushstring(state, "Lua stack overflow");
377		return (1);
378	}
379
380	index = lua_absindex(state, index);
381
382	switch (lua_type(state, index)) {
383	case LUA_TNIL:
384		fnvlist_add_boolean(nvl, key);
385		break;
386	case LUA_TBOOLEAN:
387		fnvlist_add_boolean_value(nvl, key,
388		    lua_toboolean(state, index));
389		break;
390	case LUA_TNUMBER:
391		fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
392		break;
393	case LUA_TSTRING:
394		fnvlist_add_string(nvl, key, lua_tostring(state, index));
395		break;
396	case LUA_TTABLE: {
397		nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
398		if (value_nvl == NULL)
399			return (SET_ERROR(EINVAL));
400
401		fnvlist_add_nvlist(nvl, key, value_nvl);
402		fnvlist_free(value_nvl);
403		break;
404	}
405	default:
406		(void) lua_pushfstring(state,
407		    "Invalid value type '%s' for key '%s'",
408		    lua_typename(state, lua_type(state, index)), key);
409		return (SET_ERROR(EINVAL));
410	}
411
412	return (0);
413}
414
415/*
416 * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
417 */
418static void
419zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
420{
421	/*
422	 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
423	 * stack before returning with a nonzero error code. If an error is
424	 * returned, throw a fatal lua error with the given string.
425	 */
426	if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
427		(void) lua_error(state);
428}
429
430static int
431zcp_lua_to_nvlist_helper(lua_State *state)
432{
433	nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
434	const char *key = (const char *)lua_touserdata(state, 1);
435	zcp_lua_to_nvlist(state, 3, nv, key);
436	return (0);
437}
438
439static void
440zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
441    const char *key, int *result)
442{
443	int err;
444	VERIFY3U(1, ==, lua_gettop(state));
445	lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
446	lua_pushlightuserdata(state, (char *)key);
447	lua_pushlightuserdata(state, nvl);
448	lua_pushvalue(state, 1);
449	lua_remove(state, 1);
450	err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
451	if (err != 0) {
452		zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
453		*result = SET_ERROR(ECHRNG);
454	}
455}
456
457/*
458 * Push a Lua table representing nvl onto the stack.  If it can't be
459 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
460 * be specified as NULL, in which case no error string will be output.
461 *
462 * Most nvlists are converted as simple key->value Lua tables, but we make
463 * an exception for the case where all nvlist entries are BOOLEANs (a string
464 * key without a value). In Lua, a table key pointing to a value of Nil
465 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
466 * entry can't be directly converted to a Lua table entry. Nvlists of entirely
467 * BOOLEAN entries are frequently used to pass around lists of datasets, so for
468 * convenience we check for this case, and convert it to a simple Lua array of
469 * strings.
470 */
471int
472zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
473    char *errbuf, int errbuf_len)
474{
475	nvpair_t *pair;
476	lua_newtable(state);
477	boolean_t has_values = B_FALSE;
478	/*
479	 * If the list doesn't have any values, just convert it to a string
480	 * array.
481	 */
482	for (pair = nvlist_next_nvpair(nvl, NULL);
483	    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
484		if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
485			has_values = B_TRUE;
486			break;
487		}
488	}
489	if (!has_values) {
490		int i = 1;
491		for (pair = nvlist_next_nvpair(nvl, NULL);
492		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
493			(void) lua_pushinteger(state, i);
494			(void) lua_pushstring(state, nvpair_name(pair));
495			(void) lua_settable(state, -3);
496			i++;
497		}
498	} else {
499		for (pair = nvlist_next_nvpair(nvl, NULL);
500		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
501			int err = zcp_nvpair_value_to_lua(state, pair,
502			    errbuf, errbuf_len);
503			if (err != 0) {
504				lua_pop(state, 1);
505				return (err);
506			}
507			(void) lua_setfield(state, -2, nvpair_name(pair));
508		}
509	}
510	return (0);
511}
512
513/*
514 * Push a Lua object representing the value of "pair" onto the stack.
515 *
516 * Only understands boolean_value, string, int64, nvlist,
517 * string_array, and int64_array type values.  For other
518 * types, returns EINVAL, fills in errbuf, and pushes nothing.
519 */
520static int
521zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
522    char *errbuf, int errbuf_len)
523{
524	int err = 0;
525
526	if (pair == NULL) {
527		lua_pushnil(state);
528		return (0);
529	}
530
531	switch (nvpair_type(pair)) {
532	case DATA_TYPE_BOOLEAN_VALUE:
533		(void) lua_pushboolean(state,
534		    fnvpair_value_boolean_value(pair));
535		break;
536	case DATA_TYPE_STRING:
537		(void) lua_pushstring(state, fnvpair_value_string(pair));
538		break;
539	case DATA_TYPE_INT64:
540		(void) lua_pushinteger(state, fnvpair_value_int64(pair));
541		break;
542	case DATA_TYPE_NVLIST:
543		err = zcp_nvlist_to_lua(state,
544		    fnvpair_value_nvlist(pair), errbuf, errbuf_len);
545		break;
546	case DATA_TYPE_STRING_ARRAY: {
547		const char **strarr;
548		uint_t nelem;
549		(void) nvpair_value_string_array(pair, &strarr, &nelem);
550		lua_newtable(state);
551		for (int i = 0; i < nelem; i++) {
552			(void) lua_pushinteger(state, i + 1);
553			(void) lua_pushstring(state, strarr[i]);
554			(void) lua_settable(state, -3);
555		}
556		break;
557	}
558	case DATA_TYPE_UINT64_ARRAY: {
559		uint64_t *intarr;
560		uint_t nelem;
561		(void) nvpair_value_uint64_array(pair, &intarr, &nelem);
562		lua_newtable(state);
563		for (int i = 0; i < nelem; i++) {
564			(void) lua_pushinteger(state, i + 1);
565			(void) lua_pushinteger(state, intarr[i]);
566			(void) lua_settable(state, -3);
567		}
568		break;
569	}
570	case DATA_TYPE_INT64_ARRAY: {
571		int64_t *intarr;
572		uint_t nelem;
573		(void) nvpair_value_int64_array(pair, &intarr, &nelem);
574		lua_newtable(state);
575		for (int i = 0; i < nelem; i++) {
576			(void) lua_pushinteger(state, i + 1);
577			(void) lua_pushinteger(state, intarr[i]);
578			(void) lua_settable(state, -3);
579		}
580		break;
581	}
582	default: {
583		if (errbuf != NULL) {
584			(void) snprintf(errbuf, errbuf_len,
585			    "Unhandled nvpair type %d for key '%s'",
586			    nvpair_type(pair), nvpair_name(pair));
587		}
588		return (SET_ERROR(EINVAL));
589	}
590	}
591	return (err);
592}
593
594int
595zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
596    int error)
597{
598	if (error == ENOENT) {
599		(void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
600		return (0); /* not reached; zcp_argerror will longjmp */
601	} else if (error == EXDEV) {
602		(void) zcp_argerror(state, 1,
603		    "dataset '%s' is not in the target pool '%s'",
604		    dsname, spa_name(dp->dp_spa));
605		return (0); /* not reached; zcp_argerror will longjmp */
606	} else if (error == EIO) {
607		(void) luaL_error(state,
608		    "I/O error while accessing dataset '%s'", dsname);
609		return (0); /* not reached; luaL_error will longjmp */
610	} else if (error != 0) {
611		(void) luaL_error(state,
612		    "unexpected error %d while accessing dataset '%s'",
613		    error, dsname);
614		return (0); /* not reached; luaL_error will longjmp */
615	}
616	return (0);
617}
618
619/*
620 * Note: will longjmp (via lua_error()) on error.
621 * Assumes that the dsname is argument #1 (for error reporting purposes).
622 */
623dsl_dataset_t *
624zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
625    const void *tag)
626{
627	dsl_dataset_t *ds;
628	int error = dsl_dataset_hold(dp, dsname, tag, &ds);
629	(void) zcp_dataset_hold_error(state, dp, dsname, error);
630	return (ds);
631}
632
633static int zcp_debug(lua_State *);
634static const zcp_lib_info_t zcp_debug_info = {
635	.name = "debug",
636	.func = zcp_debug,
637	.pargs = {
638	    { .za_name = "debug string", .za_lua_type = LUA_TSTRING },
639	    {NULL, 0}
640	},
641	.kwargs = {
642	    {NULL, 0}
643	}
644};
645
646static int
647zcp_debug(lua_State *state)
648{
649	const char *dbgstring;
650	zcp_run_info_t *ri = zcp_run_info(state);
651	const zcp_lib_info_t *libinfo = &zcp_debug_info;
652
653	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
654
655	dbgstring = lua_tostring(state, 1);
656
657	zfs_dbgmsg("txg %lld ZCP: %s", (longlong_t)ri->zri_tx->tx_txg,
658	    dbgstring);
659
660	return (0);
661}
662
663static int zcp_exists(lua_State *);
664static const zcp_lib_info_t zcp_exists_info = {
665	.name = "exists",
666	.func = zcp_exists,
667	.pargs = {
668	    { .za_name = "dataset", .za_lua_type = LUA_TSTRING },
669	    {NULL, 0}
670	},
671	.kwargs = {
672	    {NULL, 0}
673	}
674};
675
676static int
677zcp_exists(lua_State *state)
678{
679	zcp_run_info_t *ri = zcp_run_info(state);
680	dsl_pool_t *dp = ri->zri_pool;
681	const zcp_lib_info_t *libinfo = &zcp_exists_info;
682
683	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
684
685	const char *dsname = lua_tostring(state, 1);
686
687	dsl_dataset_t *ds;
688	int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
689	if (error == 0) {
690		dsl_dataset_rele(ds, FTAG);
691		lua_pushboolean(state, B_TRUE);
692	} else if (error == ENOENT) {
693		lua_pushboolean(state, B_FALSE);
694	} else if (error == EXDEV) {
695		return (luaL_error(state, "dataset '%s' is not in the "
696		    "target pool", dsname));
697	} else if (error == EIO) {
698		return (luaL_error(state, "I/O error opening dataset '%s'",
699		    dsname));
700	} else if (error != 0) {
701		return (luaL_error(state, "unexpected error %d", error));
702	}
703
704	return (1);
705}
706
707/*
708 * Allocate/realloc/free a buffer for the lua interpreter.
709 *
710 * When nsize is 0, behaves as free() and returns NULL.
711 *
712 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
713 * at least nsize.
714 *
715 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
716 * Shrinking the buffer size never fails.
717 *
718 * The original allocated buffer size is stored as a uint64 at the beginning of
719 * the buffer to avoid actually reallocating when shrinking a buffer, since lua
720 * requires that this operation never fail.
721 */
722static void *
723zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
724{
725	zcp_alloc_arg_t *allocargs = ud;
726
727	if (nsize == 0) {
728		if (ptr != NULL) {
729			int64_t *allocbuf = (int64_t *)ptr - 1;
730			int64_t allocsize = *allocbuf;
731			ASSERT3S(allocsize, >, 0);
732			ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
733			    allocargs->aa_alloc_limit);
734			allocargs->aa_alloc_remaining += allocsize;
735			vmem_free(allocbuf, allocsize);
736		}
737		return (NULL);
738	} else if (ptr == NULL) {
739		int64_t *allocbuf;
740		int64_t allocsize = nsize + sizeof (int64_t);
741
742		if (!allocargs->aa_must_succeed &&
743		    (allocsize <= 0 ||
744		    allocsize > allocargs->aa_alloc_remaining)) {
745			return (NULL);
746		}
747
748		allocbuf = vmem_alloc(allocsize, KM_SLEEP);
749		allocargs->aa_alloc_remaining -= allocsize;
750
751		*allocbuf = allocsize;
752		return (allocbuf + 1);
753	} else if (nsize <= osize) {
754		/*
755		 * If shrinking the buffer, lua requires that the reallocation
756		 * never fail.
757		 */
758		return (ptr);
759	} else {
760		ASSERT3U(nsize, >, osize);
761
762		uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
763		if (luabuf == NULL) {
764			return (NULL);
765		}
766		(void) memcpy(luabuf, ptr, osize);
767		VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
768		return (luabuf);
769	}
770}
771
772static void
773zcp_lua_counthook(lua_State *state, lua_Debug *ar)
774{
775	(void) ar;
776	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
777	zcp_run_info_t *ri = lua_touserdata(state, -1);
778
779	/*
780	 * Check if we were canceled while waiting for the
781	 * txg to sync or from our open context thread
782	 */
783	if (ri->zri_canceled || (!ri->zri_sync && issig())) {
784		ri->zri_canceled = B_TRUE;
785		(void) lua_pushstring(state, "Channel program was canceled.");
786		(void) lua_error(state);
787		/* Unreachable */
788	}
789
790	/*
791	 * Check how many instructions the channel program has
792	 * executed so far, and compare against the limit.
793	 */
794	ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
795	if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
796		ri->zri_timed_out = B_TRUE;
797		(void) lua_pushstring(state,
798		    "Channel program timed out.");
799		(void) lua_error(state);
800		/* Unreachable */
801	}
802}
803
804static int
805zcp_panic_cb(lua_State *state)
806{
807	panic("unprotected error in call to Lua API (%s)\n",
808	    lua_tostring(state, -1));
809	return (0);
810}
811
812static void
813zcp_eval_impl(dmu_tx_t *tx, zcp_run_info_t *ri)
814{
815	int err;
816	lua_State *state = ri->zri_state;
817
818	VERIFY3U(3, ==, lua_gettop(state));
819
820	/* finish initializing our runtime state */
821	ri->zri_pool = dmu_tx_pool(tx);
822	ri->zri_tx = tx;
823	list_create(&ri->zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
824	    offsetof(zcp_cleanup_handler_t, zch_node));
825
826	/*
827	 * Store the zcp_run_info_t struct for this run in the Lua registry.
828	 * Registry entries are not directly accessible by the Lua scripts but
829	 * can be accessed by our callbacks.
830	 */
831	lua_pushlightuserdata(state, ri);
832	lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
833	VERIFY3U(3, ==, lua_gettop(state));
834
835	/*
836	 * Tell the Lua interpreter to call our handler every count
837	 * instructions. Channel programs that execute too many instructions
838	 * should die with ETIME.
839	 */
840	(void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
841	    zfs_lua_check_instrlimit_interval);
842
843	/*
844	 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
845	 * off control to the channel program. Channel programs that use too
846	 * much memory should die with ENOSPC.
847	 */
848	ri->zri_allocargs->aa_must_succeed = B_FALSE;
849
850	/*
851	 * Call the Lua function that open-context passed us. This pops the
852	 * function and its input from the stack and pushes any return
853	 * or error values.
854	 */
855	err = lua_pcall(state, 1, LUA_MULTRET, 1);
856
857	/*
858	 * Let Lua use KM_SLEEP while we interpret the return values.
859	 */
860	ri->zri_allocargs->aa_must_succeed = B_TRUE;
861
862	/*
863	 * Remove the error handler callback from the stack. At this point,
864	 * there shouldn't be any cleanup handler registered in the handler
865	 * list (zri_cleanup_handlers), regardless of whether it ran or not.
866	 */
867	list_destroy(&ri->zri_cleanup_handlers);
868	lua_remove(state, 1);
869
870	switch (err) {
871	case LUA_OK: {
872		/*
873		 * Lua supports returning multiple values in a single return
874		 * statement.  Return values will have been pushed onto the
875		 * stack:
876		 * 1: Return value 1
877		 * 2: Return value 2
878		 * 3: etc...
879		 * To simplify the process of retrieving a return value from a
880		 * channel program, we disallow returning more than one value
881		 * to ZFS from the Lua script, yielding a singleton return
882		 * nvlist of the form { "return": Return value 1 }.
883		 */
884		int return_count = lua_gettop(state);
885
886		if (return_count == 1) {
887			ri->zri_result = 0;
888			zcp_convert_return_values(state, ri->zri_outnvl,
889			    ZCP_RET_RETURN, &ri->zri_result);
890		} else if (return_count > 1) {
891			ri->zri_result = SET_ERROR(ECHRNG);
892			lua_settop(state, 0);
893			(void) lua_pushfstring(state, "Multiple return "
894			    "values not supported");
895			zcp_convert_return_values(state, ri->zri_outnvl,
896			    ZCP_RET_ERROR, &ri->zri_result);
897		}
898		break;
899	}
900	case LUA_ERRRUN:
901	case LUA_ERRGCMM: {
902		/*
903		 * The channel program encountered a fatal error within the
904		 * script, such as failing an assertion, or calling a function
905		 * with incompatible arguments. The error value and the
906		 * traceback generated by zcp_error_handler() should be on the
907		 * stack.
908		 */
909		VERIFY3U(1, ==, lua_gettop(state));
910		if (ri->zri_timed_out) {
911			ri->zri_result = SET_ERROR(ETIME);
912		} else if (ri->zri_canceled) {
913			ri->zri_result = SET_ERROR(EINTR);
914		} else {
915			ri->zri_result = SET_ERROR(ECHRNG);
916		}
917
918		zcp_convert_return_values(state, ri->zri_outnvl,
919		    ZCP_RET_ERROR, &ri->zri_result);
920
921		if (ri->zri_result == ETIME && ri->zri_outnvl != NULL) {
922			(void) nvlist_add_uint64(ri->zri_outnvl,
923			    ZCP_ARG_INSTRLIMIT, ri->zri_curinstrs);
924		}
925		break;
926	}
927	case LUA_ERRERR: {
928		/*
929		 * The channel program encountered a fatal error within the
930		 * script, and we encountered another error while trying to
931		 * compute the traceback in zcp_error_handler(). We can only
932		 * return the error message.
933		 */
934		VERIFY3U(1, ==, lua_gettop(state));
935		if (ri->zri_timed_out) {
936			ri->zri_result = SET_ERROR(ETIME);
937		} else if (ri->zri_canceled) {
938			ri->zri_result = SET_ERROR(EINTR);
939		} else {
940			ri->zri_result = SET_ERROR(ECHRNG);
941		}
942
943		zcp_convert_return_values(state, ri->zri_outnvl,
944		    ZCP_RET_ERROR, &ri->zri_result);
945		break;
946	}
947	case LUA_ERRMEM:
948		/*
949		 * Lua ran out of memory while running the channel program.
950		 * There's not much we can do.
951		 */
952		ri->zri_result = SET_ERROR(ENOSPC);
953		break;
954	default:
955		VERIFY0(err);
956	}
957}
958
959static void
960zcp_pool_error(zcp_run_info_t *ri, const char *poolname, int error)
961{
962	ri->zri_result = SET_ERROR(ECHRNG);
963	lua_settop(ri->zri_state, 0);
964	(void) lua_pushfstring(ri->zri_state, "Could not open pool: %s "
965	    "errno: %d", poolname, error);
966	zcp_convert_return_values(ri->zri_state, ri->zri_outnvl,
967	    ZCP_RET_ERROR, &ri->zri_result);
968
969}
970
971/*
972 * This callback is called when txg_wait_synced_sig encountered a signal.
973 * The txg_wait_synced_sig will continue to wait for the txg to complete
974 * after calling this callback.
975 */
976static void
977zcp_eval_sig(void *arg, dmu_tx_t *tx)
978{
979	(void) tx;
980	zcp_run_info_t *ri = arg;
981
982	ri->zri_canceled = B_TRUE;
983}
984
985static void
986zcp_eval_sync(void *arg, dmu_tx_t *tx)
987{
988	zcp_run_info_t *ri = arg;
989
990	/*
991	 * Open context should have setup the stack to contain:
992	 * 1: Error handler callback
993	 * 2: Script to run (converted to a Lua function)
994	 * 3: nvlist input to function (converted to Lua table or nil)
995	 */
996	VERIFY3U(3, ==, lua_gettop(ri->zri_state));
997
998	zcp_eval_impl(tx, ri);
999}
1000
1001static void
1002zcp_eval_open(zcp_run_info_t *ri, const char *poolname)
1003{
1004	int error;
1005	dsl_pool_t *dp;
1006	dmu_tx_t *tx;
1007
1008	/*
1009	 * See comment from the same assertion in zcp_eval_sync().
1010	 */
1011	VERIFY3U(3, ==, lua_gettop(ri->zri_state));
1012
1013	error = dsl_pool_hold(poolname, FTAG, &dp);
1014	if (error != 0) {
1015		zcp_pool_error(ri, poolname, error);
1016		return;
1017	}
1018
1019	/*
1020	 * As we are running in open-context, we have no transaction associated
1021	 * with the channel program. At the same time, functions from the
1022	 * zfs.check submodule need to be associated with a transaction as
1023	 * they are basically dry-runs of their counterparts in the zfs.sync
1024	 * submodule. These functions should be able to run in open-context.
1025	 * Therefore we create a new transaction that we later abort once
1026	 * the channel program has been evaluated.
1027	 */
1028	tx = dmu_tx_create_dd(dp->dp_mos_dir);
1029
1030	zcp_eval_impl(tx, ri);
1031
1032	dmu_tx_abort(tx);
1033
1034	dsl_pool_rele(dp, FTAG);
1035}
1036
1037int
1038zcp_eval(const char *poolname, const char *program, boolean_t sync,
1039    uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
1040{
1041	int err;
1042	lua_State *state;
1043	zcp_run_info_t runinfo;
1044
1045	if (instrlimit > zfs_lua_max_instrlimit)
1046		return (SET_ERROR(EINVAL));
1047	if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1048		return (SET_ERROR(EINVAL));
1049
1050	zcp_alloc_arg_t allocargs = {
1051		.aa_must_succeed = B_TRUE,
1052		.aa_alloc_remaining = (int64_t)memlimit,
1053		.aa_alloc_limit = (int64_t)memlimit,
1054	};
1055
1056	/*
1057	 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1058	 * This should never fail.
1059	 */
1060	state = lua_newstate(zcp_lua_alloc, &allocargs);
1061	VERIFY(state != NULL);
1062	(void) lua_atpanic(state, zcp_panic_cb);
1063
1064	/*
1065	 * Load core Lua libraries we want access to.
1066	 */
1067	VERIFY3U(1, ==, luaopen_base(state));
1068	lua_pop(state, 1);
1069	VERIFY3U(1, ==, luaopen_coroutine(state));
1070	lua_setglobal(state, LUA_COLIBNAME);
1071	VERIFY0(lua_gettop(state));
1072	VERIFY3U(1, ==, luaopen_string(state));
1073	lua_setglobal(state, LUA_STRLIBNAME);
1074	VERIFY0(lua_gettop(state));
1075	VERIFY3U(1, ==, luaopen_table(state));
1076	lua_setglobal(state, LUA_TABLIBNAME);
1077	VERIFY0(lua_gettop(state));
1078
1079	/*
1080	 * Load globally visible variables such as errno aliases.
1081	 */
1082	zcp_load_globals(state);
1083	VERIFY0(lua_gettop(state));
1084
1085	/*
1086	 * Load ZFS-specific modules.
1087	 */
1088	lua_newtable(state);
1089	VERIFY3U(1, ==, zcp_load_list_lib(state));
1090	lua_setfield(state, -2, "list");
1091	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1092	lua_setfield(state, -2, "check");
1093	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1094	lua_setfield(state, -2, "sync");
1095	VERIFY3U(1, ==, zcp_load_get_lib(state));
1096	lua_pushcclosure(state, zcp_debug_info.func, 0);
1097	lua_setfield(state, -2, zcp_debug_info.name);
1098	lua_pushcclosure(state, zcp_exists_info.func, 0);
1099	lua_setfield(state, -2, zcp_exists_info.name);
1100	lua_setglobal(state, "zfs");
1101	VERIFY0(lua_gettop(state));
1102
1103	/*
1104	 * Push the error-callback that calculates Lua stack traces on
1105	 * unexpected failures.
1106	 */
1107	lua_pushcfunction(state, zcp_error_handler);
1108	VERIFY3U(1, ==, lua_gettop(state));
1109
1110	/*
1111	 * Load the actual script as a function onto the stack as text ("t").
1112	 * The only valid error condition is a syntax error in the script.
1113	 * ERRMEM should not be possible because our allocator is using
1114	 * KM_SLEEP.  ERRGCMM should not be possible because we have not added
1115	 * any objects with __gc metamethods to the interpreter that could
1116	 * fail.
1117	 */
1118	err = luaL_loadbufferx(state, program, strlen(program),
1119	    "channel program", "t");
1120	if (err == LUA_ERRSYNTAX) {
1121		fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1122		    lua_tostring(state, -1));
1123		lua_close(state);
1124		return (SET_ERROR(EINVAL));
1125	}
1126	VERIFY0(err);
1127	VERIFY3U(2, ==, lua_gettop(state));
1128
1129	/*
1130	 * Convert the input nvlist to a Lua object and put it on top of the
1131	 * stack.
1132	 */
1133	char errmsg[128];
1134	err = zcp_nvpair_value_to_lua(state, nvarg,
1135	    errmsg, sizeof (errmsg));
1136	if (err != 0) {
1137		fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1138		lua_close(state);
1139		return (SET_ERROR(EINVAL));
1140	}
1141	VERIFY3U(3, ==, lua_gettop(state));
1142
1143	runinfo.zri_state = state;
1144	runinfo.zri_allocargs = &allocargs;
1145	runinfo.zri_outnvl = outnvl;
1146	runinfo.zri_result = 0;
1147	runinfo.zri_cred = CRED();
1148	runinfo.zri_proc = curproc;
1149	runinfo.zri_timed_out = B_FALSE;
1150	runinfo.zri_canceled = B_FALSE;
1151	runinfo.zri_sync = sync;
1152	runinfo.zri_space_used = 0;
1153	runinfo.zri_curinstrs = 0;
1154	runinfo.zri_maxinstrs = instrlimit;
1155	runinfo.zri_new_zvols = fnvlist_alloc();
1156
1157	if (sync) {
1158		err = dsl_sync_task_sig(poolname, NULL, zcp_eval_sync,
1159		    zcp_eval_sig, &runinfo, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
1160		if (err != 0)
1161			zcp_pool_error(&runinfo, poolname, err);
1162	} else {
1163		zcp_eval_open(&runinfo, poolname);
1164	}
1165	lua_close(state);
1166
1167	/*
1168	 * Create device minor nodes for any new zvols.
1169	 */
1170	for (nvpair_t *pair = nvlist_next_nvpair(runinfo.zri_new_zvols, NULL);
1171	    pair != NULL;
1172	    pair = nvlist_next_nvpair(runinfo.zri_new_zvols, pair)) {
1173		zvol_create_minor(nvpair_name(pair));
1174	}
1175	fnvlist_free(runinfo.zri_new_zvols);
1176
1177	return (runinfo.zri_result);
1178}
1179
1180/*
1181 * Retrieve metadata about the currently running channel program.
1182 */
1183zcp_run_info_t *
1184zcp_run_info(lua_State *state)
1185{
1186	zcp_run_info_t *ri;
1187
1188	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1189	ri = lua_touserdata(state, -1);
1190	lua_pop(state, 1);
1191	return (ri);
1192}
1193
1194/*
1195 * Argument Parsing
1196 * ================
1197 *
1198 * The Lua language allows methods to be called with any number
1199 * of arguments of any type. When calling back into ZFS we need to sanitize
1200 * arguments from channel programs to make sure unexpected arguments or
1201 * arguments of the wrong type result in clear error messages. To do this
1202 * in a uniform way all callbacks from channel programs should use the
1203 * zcp_parse_args() function to interpret inputs.
1204 *
1205 * Positional vs Keyword Arguments
1206 * ===============================
1207 *
1208 * Every callback function takes a fixed set of required positional arguments
1209 * and optional keyword arguments. For example, the destroy function takes
1210 * a single positional string argument (the name of the dataset to destroy)
1211 * and an optional "defer" keyword boolean argument. When calling lua functions
1212 * with parentheses, only positional arguments can be used:
1213 *
1214 *     zfs.sync.snapshot("rpool@snap")
1215 *
1216 * To use keyword arguments functions should be called with a single argument
1217 * that is a lua table containing mappings of integer -> positional arguments
1218 * and string -> keyword arguments:
1219 *
1220 *     zfs.sync.snapshot({1="rpool@snap", defer=true})
1221 *
1222 * The lua language allows curly braces to be used in place of parenthesis as
1223 * syntactic sugar for this calling convention:
1224 *
1225 *     zfs.sync.snapshot{"rpool@snap", defer=true}
1226 */
1227
1228/*
1229 * Throw an error and print the given arguments.  If there are too many
1230 * arguments to fit in the output buffer, only the error format string is
1231 * output.
1232 */
1233static void
1234zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1235    const zcp_arg_t *kwargs, const char *fmt, ...)
1236{
1237	int i;
1238	char errmsg[512];
1239	size_t len = sizeof (errmsg);
1240	size_t msglen = 0;
1241	va_list argp;
1242
1243	va_start(argp, fmt);
1244	VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1245	va_end(argp);
1246
1247	/*
1248	 * Calculate the total length of the final string, including extra
1249	 * formatting characters. If the argument dump would be too large,
1250	 * only print the error string.
1251	 */
1252	msglen = strlen(errmsg);
1253	msglen += strlen(fname) + 4; /* : + {} + null terminator */
1254	for (i = 0; pargs[i].za_name != NULL; i++) {
1255		msglen += strlen(pargs[i].za_name);
1256		msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1257		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1258			msglen += 5; /* < + ( + )> + , */
1259		else
1260			msglen += 4; /* < + ( + )> */
1261	}
1262	for (i = 0; kwargs[i].za_name != NULL; i++) {
1263		msglen += strlen(kwargs[i].za_name);
1264		msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1265		if (kwargs[i + 1].za_name != NULL)
1266			msglen += 4; /* =( + ) + , */
1267		else
1268			msglen += 3; /* =( + ) */
1269	}
1270
1271	if (msglen >= len)
1272		(void) luaL_error(state, errmsg);
1273
1274	VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1275	VERIFY3U(len, >, strlcat(errmsg, fname, len));
1276	VERIFY3U(len, >, strlcat(errmsg, "{", len));
1277	for (i = 0; pargs[i].za_name != NULL; i++) {
1278		VERIFY3U(len, >, strlcat(errmsg, "<", len));
1279		VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1280		VERIFY3U(len, >, strlcat(errmsg, "(", len));
1281		VERIFY3U(len, >, strlcat(errmsg,
1282		    lua_typename(state, pargs[i].za_lua_type), len));
1283		VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1284		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1285			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1286		}
1287	}
1288	for (i = 0; kwargs[i].za_name != NULL; i++) {
1289		VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1290		VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1291		VERIFY3U(len, >, strlcat(errmsg,
1292		    lua_typename(state, kwargs[i].za_lua_type), len));
1293		VERIFY3U(len, >, strlcat(errmsg, ")", len));
1294		if (kwargs[i + 1].za_name != NULL) {
1295			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1296		}
1297	}
1298	VERIFY3U(len, >, strlcat(errmsg, "}", len));
1299
1300	(void) luaL_error(state, errmsg);
1301	panic("unreachable code");
1302}
1303
1304static void
1305zcp_parse_table_args(lua_State *state, const char *fname,
1306    const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1307{
1308	int i;
1309	int type;
1310
1311	for (i = 0; pargs[i].za_name != NULL; i++) {
1312		/*
1313		 * Check the table for this positional argument, leaving it
1314		 * on the top of the stack once we finish validating it.
1315		 */
1316		lua_pushinteger(state, i + 1);
1317		lua_gettable(state, 1);
1318
1319		type = lua_type(state, -1);
1320		if (type == LUA_TNIL) {
1321			zcp_args_error(state, fname, pargs, kwargs,
1322			    "too few arguments");
1323			panic("unreachable code");
1324		} else if (type != pargs[i].za_lua_type) {
1325			zcp_args_error(state, fname, pargs, kwargs,
1326			    "arg %d wrong type (is '%s', expected '%s')",
1327			    i + 1, lua_typename(state, type),
1328			    lua_typename(state, pargs[i].za_lua_type));
1329			panic("unreachable code");
1330		}
1331
1332		/*
1333		 * Remove the positional argument from the table.
1334		 */
1335		lua_pushinteger(state, i + 1);
1336		lua_pushnil(state);
1337		lua_settable(state, 1);
1338	}
1339
1340	for (i = 0; kwargs[i].za_name != NULL; i++) {
1341		/*
1342		 * Check the table for this keyword argument, which may be
1343		 * nil if it was omitted. Leave the value on the top of
1344		 * the stack after validating it.
1345		 */
1346		lua_getfield(state, 1, kwargs[i].za_name);
1347
1348		type = lua_type(state, -1);
1349		if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1350			zcp_args_error(state, fname, pargs, kwargs,
1351			    "kwarg '%s' wrong type (is '%s', expected '%s')",
1352			    kwargs[i].za_name, lua_typename(state, type),
1353			    lua_typename(state, kwargs[i].za_lua_type));
1354			panic("unreachable code");
1355		}
1356
1357		/*
1358		 * Remove the keyword argument from the table.
1359		 */
1360		lua_pushnil(state);
1361		lua_setfield(state, 1, kwargs[i].za_name);
1362	}
1363
1364	/*
1365	 * Any entries remaining in the table are invalid inputs, print
1366	 * an error message based on what the entry is.
1367	 */
1368	lua_pushnil(state);
1369	if (lua_next(state, 1)) {
1370		if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1371			zcp_args_error(state, fname, pargs, kwargs,
1372			    "too many positional arguments");
1373		} else if (lua_isstring(state, -2)) {
1374			zcp_args_error(state, fname, pargs, kwargs,
1375			    "invalid kwarg '%s'", lua_tostring(state, -2));
1376		} else {
1377			zcp_args_error(state, fname, pargs, kwargs,
1378			    "kwarg keys must be strings");
1379		}
1380		panic("unreachable code");
1381	}
1382
1383	lua_remove(state, 1);
1384}
1385
1386static void
1387zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1388    const zcp_arg_t *kwargs)
1389{
1390	int i;
1391	int type;
1392
1393	for (i = 0; pargs[i].za_name != NULL; i++) {
1394		type = lua_type(state, i + 1);
1395		if (type == LUA_TNONE) {
1396			zcp_args_error(state, fname, pargs, kwargs,
1397			    "too few arguments");
1398			panic("unreachable code");
1399		} else if (type != pargs[i].za_lua_type) {
1400			zcp_args_error(state, fname, pargs, kwargs,
1401			    "arg %d wrong type (is '%s', expected '%s')",
1402			    i + 1, lua_typename(state, type),
1403			    lua_typename(state, pargs[i].za_lua_type));
1404			panic("unreachable code");
1405		}
1406	}
1407	if (lua_gettop(state) != i) {
1408		zcp_args_error(state, fname, pargs, kwargs,
1409		    "too many positional arguments");
1410		panic("unreachable code");
1411	}
1412
1413	for (i = 0; kwargs[i].za_name != NULL; i++) {
1414		lua_pushnil(state);
1415	}
1416}
1417
1418/*
1419 * Checks the current Lua stack against an expected set of positional and
1420 * keyword arguments. If the stack does not match the expected arguments
1421 * aborts the current channel program with a useful error message, otherwise
1422 * it re-arranges the stack so that it contains the positional arguments
1423 * followed by the keyword argument values in declaration order. Any missing
1424 * keyword argument will be represented by a nil value on the stack.
1425 *
1426 * If the stack contains exactly one argument of type LUA_TTABLE the curly
1427 * braces calling convention is assumed, otherwise the stack is parsed for
1428 * positional arguments only.
1429 *
1430 * This function should be used by every function callback. It should be called
1431 * before the callback manipulates the Lua stack as it assumes the stack
1432 * represents the function arguments.
1433 */
1434void
1435zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1436    const zcp_arg_t *kwargs)
1437{
1438	if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1439		zcp_parse_table_args(state, fname, pargs, kwargs);
1440	} else {
1441		zcp_parse_pos_args(state, fname, pargs, kwargs);
1442	}
1443}
1444
1445ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_instrlimit, U64, ZMOD_RW,
1446	"Max instruction limit that can be specified for a channel program");
1447
1448ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_memlimit, U64, ZMOD_RW,
1449	"Max memory limit that can be specified for a channel program");
1450