1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 * Copyright 2023 Alexander Stetsenko <alex.stetsenko@gmail.com>
26 * Copyright (c) 2023, Klara Inc.
27 */
28
29/*
30 * This file contains the top half of the zfs directory structure
31 * implementation. The bottom half is in zap_leaf.c.
32 *
33 * The zdir is an extendable hash data structure. There is a table of
34 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
35 * each a constant size and hold a variable number of directory entries.
36 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
37 *
38 * The pointer table holds a power of 2 number of pointers.
39 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len).  The bucket pointed to
40 * by the pointer at index i in the table holds entries whose hash value
41 * has a zd_prefix_len - bit prefix
42 */
43
44#include <sys/spa.h>
45#include <sys/dmu.h>
46#include <sys/dnode.h>
47#include <sys/zfs_context.h>
48#include <sys/zfs_znode.h>
49#include <sys/fs/zfs.h>
50#include <sys/zap.h>
51#include <sys/zap_impl.h>
52#include <sys/zap_leaf.h>
53
54/*
55 * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
56 * (all leaf blocks) when we start iterating over it.
57 *
58 * For zap_cursor_init(), the callers all intend to iterate through all the
59 * entries.  There are a few cases where an error (typically i/o error) could
60 * cause it to bail out early.
61 *
62 * For zap_cursor_init_serialized(), there are callers that do the iteration
63 * outside of ZFS.  Typically they would iterate over everything, but we
64 * don't have control of that.  E.g. zfs_ioc_snapshot_list_next(),
65 * zcp_snapshots_iter(), and other iterators over things in the MOS - these
66 * are called by /sbin/zfs and channel programs.  The other example is
67 * zfs_readdir() which iterates over directory entries for the getdents()
68 * syscall.  /sbin/ls iterates to the end (unless it receives a signal), but
69 * userland doesn't have to.
70 *
71 * Given that the ZAP entries aren't returned in a specific order, the only
72 * legitimate use cases for partial iteration would be:
73 *
74 * 1. Pagination: e.g. you only want to display 100 entries at a time, so you
75 *    get the first 100 and then wait for the user to hit "next page", which
76 *    they may never do).
77 *
78 * 2. You want to know if there are more than X entries, without relying on
79 *    the zfs-specific implementation of the directory's st_size (which is
80 *    the number of entries).
81 */
82static int zap_iterate_prefetch = B_TRUE;
83
84/*
85 * Enable ZAP shrinking. When enabled, empty sibling leaf blocks will be
86 * collapsed into a single block.
87 */
88int zap_shrink_enabled = B_TRUE;
89
90int fzap_default_block_shift = 14; /* 16k blocksize */
91
92static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
93static int zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx);
94
95void
96fzap_byteswap(void *vbuf, size_t size)
97{
98	uint64_t block_type = *(uint64_t *)vbuf;
99
100	if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
101		zap_leaf_byteswap(vbuf, size);
102	else {
103		/* it's a ptrtbl block */
104		byteswap_uint64_array(vbuf, size);
105	}
106}
107
108void
109fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
110{
111	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
112	zap->zap_ismicro = FALSE;
113
114	zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
115	zap->zap_dbu.dbu_evict_func_async = NULL;
116
117	mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
118	zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
119
120	zap_phys_t *zp = zap_f_phys(zap);
121	/*
122	 * explicitly zero it since it might be coming from an
123	 * initialized microzap
124	 */
125	memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size);
126	zp->zap_block_type = ZBT_HEADER;
127	zp->zap_magic = ZAP_MAGIC;
128
129	zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
130
131	zp->zap_freeblk = 2;		/* block 1 will be the first leaf */
132	zp->zap_num_leafs = 1;
133	zp->zap_num_entries = 0;
134	zp->zap_salt = zap->zap_salt;
135	zp->zap_normflags = zap->zap_normflags;
136	zp->zap_flags = flags;
137
138	/* block 1 will be the first leaf */
139	for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
140		ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
141
142	/*
143	 * set up block 1 - the first leaf
144	 */
145	dmu_buf_t *db;
146	VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
147	    1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
148	dmu_buf_will_dirty(db, tx);
149
150	zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
151	l->l_dbuf = db;
152
153	zap_leaf_init(l, zp->zap_normflags != 0);
154
155	kmem_free(l, sizeof (zap_leaf_t));
156	dmu_buf_rele(db, FTAG);
157}
158
159static int
160zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
161{
162	if (RW_WRITE_HELD(&zap->zap_rwlock))
163		return (1);
164	if (rw_tryupgrade(&zap->zap_rwlock)) {
165		dmu_buf_will_dirty(zap->zap_dbuf, tx);
166		return (1);
167	}
168	return (0);
169}
170
171/*
172 * Generic routines for dealing with the pointer & cookie tables.
173 */
174
175static int
176zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
177    void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
178    dmu_tx_t *tx)
179{
180	uint64_t newblk;
181	int bs = FZAP_BLOCK_SHIFT(zap);
182	int hepb = 1<<(bs-4);
183	/* hepb = half the number of entries in a block */
184
185	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
186	ASSERT(tbl->zt_blk != 0);
187	ASSERT(tbl->zt_numblks > 0);
188
189	if (tbl->zt_nextblk != 0) {
190		newblk = tbl->zt_nextblk;
191	} else {
192		newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
193		tbl->zt_nextblk = newblk;
194		ASSERT0(tbl->zt_blks_copied);
195		dmu_prefetch_by_dnode(zap->zap_dnode, 0,
196		    tbl->zt_blk << bs, tbl->zt_numblks << bs,
197		    ZIO_PRIORITY_SYNC_READ);
198	}
199
200	/*
201	 * Copy the ptrtbl from the old to new location.
202	 */
203
204	uint64_t b = tbl->zt_blks_copied;
205	dmu_buf_t *db_old;
206	int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
207	    (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
208	if (err != 0)
209		return (err);
210
211	/* first half of entries in old[b] go to new[2*b+0] */
212	dmu_buf_t *db_new;
213	VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
214	    (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
215	dmu_buf_will_dirty(db_new, tx);
216	transfer_func(db_old->db_data, db_new->db_data, hepb);
217	dmu_buf_rele(db_new, FTAG);
218
219	/* second half of entries in old[b] go to new[2*b+1] */
220	VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
221	    (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
222	dmu_buf_will_dirty(db_new, tx);
223	transfer_func((uint64_t *)db_old->db_data + hepb,
224	    db_new->db_data, hepb);
225	dmu_buf_rele(db_new, FTAG);
226
227	dmu_buf_rele(db_old, FTAG);
228
229	tbl->zt_blks_copied++;
230
231	dprintf("copied block %llu of %llu\n",
232	    (u_longlong_t)tbl->zt_blks_copied,
233	    (u_longlong_t)tbl->zt_numblks);
234
235	if (tbl->zt_blks_copied == tbl->zt_numblks) {
236		(void) dmu_free_range(zap->zap_objset, zap->zap_object,
237		    tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
238
239		tbl->zt_blk = newblk;
240		tbl->zt_numblks *= 2;
241		tbl->zt_shift++;
242		tbl->zt_nextblk = 0;
243		tbl->zt_blks_copied = 0;
244
245		dprintf("finished; numblocks now %llu (%uk entries)\n",
246		    (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10));
247	}
248
249	return (0);
250}
251
252static int
253zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
254    dmu_tx_t *tx)
255{
256	int bs = FZAP_BLOCK_SHIFT(zap);
257
258	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
259	ASSERT(tbl->zt_blk != 0);
260
261	dprintf("storing %llx at index %llx\n", (u_longlong_t)val,
262	    (u_longlong_t)idx);
263
264	uint64_t blk = idx >> (bs-3);
265	uint64_t off = idx & ((1<<(bs-3))-1);
266
267	dmu_buf_t *db;
268	int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
269	    (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
270	if (err != 0)
271		return (err);
272	dmu_buf_will_dirty(db, tx);
273
274	if (tbl->zt_nextblk != 0) {
275		uint64_t idx2 = idx * 2;
276		uint64_t blk2 = idx2 >> (bs-3);
277		uint64_t off2 = idx2 & ((1<<(bs-3))-1);
278		dmu_buf_t *db2;
279
280		err = dmu_buf_hold_by_dnode(zap->zap_dnode,
281		    (tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
282		    DMU_READ_NO_PREFETCH);
283		if (err != 0) {
284			dmu_buf_rele(db, FTAG);
285			return (err);
286		}
287		dmu_buf_will_dirty(db2, tx);
288		((uint64_t *)db2->db_data)[off2] = val;
289		((uint64_t *)db2->db_data)[off2+1] = val;
290		dmu_buf_rele(db2, FTAG);
291	}
292
293	((uint64_t *)db->db_data)[off] = val;
294	dmu_buf_rele(db, FTAG);
295
296	return (0);
297}
298
299static int
300zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
301{
302	int bs = FZAP_BLOCK_SHIFT(zap);
303
304	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
305
306	uint64_t blk = idx >> (bs-3);
307	uint64_t off = idx & ((1<<(bs-3))-1);
308
309	dmu_buf_t *db;
310	int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
311	    (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
312	if (err != 0)
313		return (err);
314	*valp = ((uint64_t *)db->db_data)[off];
315	dmu_buf_rele(db, FTAG);
316
317	if (tbl->zt_nextblk != 0) {
318		/*
319		 * read the nextblk for the sake of i/o error checking,
320		 * so that zap_table_load() will catch errors for
321		 * zap_table_store.
322		 */
323		blk = (idx*2) >> (bs-3);
324
325		err = dmu_buf_hold_by_dnode(zap->zap_dnode,
326		    (tbl->zt_nextblk + blk) << bs, FTAG, &db,
327		    DMU_READ_NO_PREFETCH);
328		if (err == 0)
329			dmu_buf_rele(db, FTAG);
330	}
331	return (err);
332}
333
334/*
335 * Routines for growing the ptrtbl.
336 */
337
338static void
339zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
340{
341	for (int i = 0; i < n; i++) {
342		uint64_t lb = src[i];
343		dst[2 * i + 0] = lb;
344		dst[2 * i + 1] = lb;
345	}
346}
347
348static int
349zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
350{
351	/*
352	 * The pointer table should never use more hash bits than we
353	 * have (otherwise we'd be using useless zero bits to index it).
354	 * If we are within 2 bits of running out, stop growing, since
355	 * this is already an aberrant condition.
356	 */
357	if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
358		return (SET_ERROR(ENOSPC));
359
360	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
361		/*
362		 * We are outgrowing the "embedded" ptrtbl (the one
363		 * stored in the header block).  Give it its own entire
364		 * block, which will double the size of the ptrtbl.
365		 */
366		ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
367		    ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
368		ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
369
370		uint64_t newblk = zap_allocate_blocks(zap, 1);
371		dmu_buf_t *db_new;
372		int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
373		    newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
374		    DMU_READ_NO_PREFETCH);
375		if (err != 0)
376			return (err);
377		dmu_buf_will_dirty(db_new, tx);
378		zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
379		    db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
380		dmu_buf_rele(db_new, FTAG);
381
382		zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
383		zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
384		zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
385
386		ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
387		    zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
388		    (FZAP_BLOCK_SHIFT(zap)-3));
389
390		return (0);
391	} else {
392		return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
393		    zap_ptrtbl_transfer, tx));
394	}
395}
396
397static void
398zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
399{
400	dmu_buf_will_dirty(zap->zap_dbuf, tx);
401	mutex_enter(&zap->zap_f.zap_num_entries_mtx);
402	ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
403	zap_f_phys(zap)->zap_num_entries += delta;
404	mutex_exit(&zap->zap_f.zap_num_entries_mtx);
405}
406
407static uint64_t
408zap_allocate_blocks(zap_t *zap, int nblocks)
409{
410	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
411	uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
412	zap_f_phys(zap)->zap_freeblk += nblocks;
413	return (newblk);
414}
415
416static void
417zap_leaf_evict_sync(void *dbu)
418{
419	zap_leaf_t *l = dbu;
420
421	rw_destroy(&l->l_rwlock);
422	kmem_free(l, sizeof (zap_leaf_t));
423}
424
425static zap_leaf_t *
426zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
427{
428	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
429
430	uint64_t blkid = zap_allocate_blocks(zap, 1);
431	dmu_buf_t *db = NULL;
432
433	VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
434	    blkid << FZAP_BLOCK_SHIFT(zap), NULL, &db,
435	    DMU_READ_NO_PREFETCH));
436
437	/*
438	 * Create the leaf structure and stash it on the dbuf. If zap was
439	 * recent shrunk or truncated, the dbuf might have been sitting in the
440	 * cache waiting to be evicted, and so still have the old leaf attached
441	 * to it. If so, just reuse it.
442	 */
443	zap_leaf_t *l = dmu_buf_get_user(db);
444	if (l == NULL) {
445		l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
446		l->l_blkid = blkid;
447		l->l_dbuf = db;
448		rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
449		dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL,
450		    &l->l_dbuf);
451		dmu_buf_set_user(l->l_dbuf, &l->l_dbu);
452	} else {
453		ASSERT3U(l->l_blkid, ==, blkid);
454		ASSERT3P(l->l_dbuf, ==, db);
455	}
456
457	rw_enter(&l->l_rwlock, RW_WRITER);
458	dmu_buf_will_dirty(l->l_dbuf, tx);
459
460	zap_leaf_init(l, zap->zap_normflags != 0);
461
462	zap_f_phys(zap)->zap_num_leafs++;
463
464	return (l);
465}
466
467int
468fzap_count(zap_t *zap, uint64_t *count)
469{
470	ASSERT(!zap->zap_ismicro);
471	mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
472	*count = zap_f_phys(zap)->zap_num_entries;
473	mutex_exit(&zap->zap_f.zap_num_entries_mtx);
474	return (0);
475}
476
477/*
478 * Routines for obtaining zap_leaf_t's
479 */
480
481void
482zap_put_leaf(zap_leaf_t *l)
483{
484	rw_exit(&l->l_rwlock);
485	dmu_buf_rele(l->l_dbuf, NULL);
486}
487
488static zap_leaf_t *
489zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
490{
491	ASSERT(blkid != 0);
492
493	zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
494	rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
495	rw_enter(&l->l_rwlock, RW_WRITER);
496	l->l_blkid = blkid;
497	l->l_bs = highbit64(db->db_size) - 1;
498	l->l_dbuf = db;
499
500	dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
501	zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
502
503	rw_exit(&l->l_rwlock);
504	if (winner != NULL) {
505		/* someone else set it first */
506		zap_leaf_evict_sync(&l->l_dbu);
507		l = winner;
508	}
509
510	/*
511	 * lhr_pad was previously used for the next leaf in the leaf
512	 * chain.  There should be no chained leafs (as we have removed
513	 * support for them).
514	 */
515	ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
516
517	/*
518	 * There should be more hash entries than there can be
519	 * chunks to put in the hash table
520	 */
521	ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
522
523	/* The chunks should begin at the end of the hash table */
524	ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
525	    &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
526
527	/* The chunks should end at the end of the block */
528	ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
529	    (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
530
531	return (l);
532}
533
534static int
535zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
536    zap_leaf_t **lp)
537{
538	dmu_buf_t *db;
539
540	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
541
542	/*
543	 * If system crashed just after dmu_free_long_range in zfs_rmnode, we
544	 * would be left with an empty xattr dir in delete queue. blkid=0
545	 * would be passed in when doing zfs_purgedir. If that's the case we
546	 * should just return immediately. The underlying objects should
547	 * already be freed, so this should be perfectly fine.
548	 */
549	if (blkid == 0)
550		return (SET_ERROR(ENOENT));
551
552	int bs = FZAP_BLOCK_SHIFT(zap);
553	int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
554	    blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
555	if (err != 0)
556		return (err);
557
558	ASSERT3U(db->db_object, ==, zap->zap_object);
559	ASSERT3U(db->db_offset, ==, blkid << bs);
560	ASSERT3U(db->db_size, ==, 1 << bs);
561	ASSERT(blkid != 0);
562
563	zap_leaf_t *l = dmu_buf_get_user(db);
564
565	if (l == NULL)
566		l = zap_open_leaf(blkid, db);
567
568	rw_enter(&l->l_rwlock, lt);
569	/*
570	 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
571	 * causing ASSERT below to fail.
572	 */
573	if (lt == RW_WRITER)
574		dmu_buf_will_dirty(db, tx);
575	ASSERT3U(l->l_blkid, ==, blkid);
576	ASSERT3P(l->l_dbuf, ==, db);
577	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
578	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
579
580	*lp = l;
581	return (0);
582}
583
584static int
585zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
586{
587	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
588
589	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
590		ASSERT3U(idx, <,
591		    (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
592		*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
593		return (0);
594	} else {
595		return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
596		    idx, valp));
597	}
598}
599
600static int
601zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
602{
603	ASSERT(tx != NULL);
604	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
605
606	if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
607		ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
608		return (0);
609	} else {
610		return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
611		    idx, blk, tx));
612	}
613}
614
615static int
616zap_set_idx_range_to_blk(zap_t *zap, uint64_t idx, uint64_t nptrs, uint64_t blk,
617    dmu_tx_t *tx)
618{
619	int bs = FZAP_BLOCK_SHIFT(zap);
620	int epb = bs >> 3; /* entries per block */
621	int err = 0;
622
623	ASSERT(tx != NULL);
624	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
625
626	/*
627	 * Check for i/o errors
628	 */
629	for (int i = 0; i < nptrs; i += epb) {
630		uint64_t blk;
631		err = zap_idx_to_blk(zap, idx + i, &blk);
632		if (err != 0) {
633			return (err);
634		}
635	}
636
637	for (int i = 0; i < nptrs; i++) {
638		err = zap_set_idx_to_blk(zap, idx + i, blk, tx);
639		ASSERT0(err); /* we checked for i/o errors above */
640		if (err != 0)
641			break;
642	}
643
644	return (err);
645}
646
647#define	ZAP_PREFIX_HASH(pref, pref_len)	((pref) << (64 - (pref_len)))
648
649/*
650 * Each leaf has single range of entries (block pointers) in the ZAP ptrtbl.
651 * If two leaves are siblings, their ranges are adjecent and contain the same
652 * number of entries. In order to find out if a leaf has a sibling, we need to
653 * check the range corresponding to the sibling leaf. There is no need to check
654 * all entries in the range, we only need to check the frist and the last one.
655 */
656static uint64_t
657check_sibling_ptrtbl_range(zap_t *zap, uint64_t prefix, uint64_t prefix_len)
658{
659	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
660
661	uint64_t h = ZAP_PREFIX_HASH(prefix, prefix_len);
662	uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
663	uint64_t pref_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - prefix_len;
664	uint64_t nptrs = (1 << pref_diff);
665	uint64_t first;
666	uint64_t last;
667
668	ASSERT3U(idx+nptrs, <=, (1UL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
669
670	if (zap_idx_to_blk(zap, idx, &first) != 0)
671		return (0);
672
673	if (zap_idx_to_blk(zap, idx + nptrs - 1, &last) != 0)
674		return (0);
675
676	if (first != last)
677		return (0);
678	return (first);
679}
680
681static int
682zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
683{
684	uint64_t blk;
685
686	ASSERT(zap->zap_dbuf == NULL ||
687	    zap_f_phys(zap) == zap->zap_dbuf->db_data);
688
689	/* Reality check for corrupt zap objects (leaf or header). */
690	if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
691	    zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
692	    zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
693		return (SET_ERROR(EIO));
694	}
695
696	uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
697	int err = zap_idx_to_blk(zap, idx, &blk);
698	if (err != 0)
699		return (err);
700	err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
701
702	ASSERT(err ||
703	    ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
704	    zap_leaf_phys(*lp)->l_hdr.lh_prefix);
705	return (err);
706}
707
708static int
709zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
710    const void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
711{
712	zap_t *zap = zn->zn_zap;
713	uint64_t hash = zn->zn_hash;
714	int err;
715	int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
716
717	ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
718	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
719
720	ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
721	    zap_leaf_phys(l)->l_hdr.lh_prefix);
722
723	if (zap_tryupgradedir(zap, tx) == 0 ||
724	    old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
725		/* We failed to upgrade, or need to grow the pointer table */
726		objset_t *os = zap->zap_objset;
727		uint64_t object = zap->zap_object;
728
729		zap_put_leaf(l);
730		*lp = l = NULL;
731		zap_unlockdir(zap, tag);
732		err = zap_lockdir(os, object, tx, RW_WRITER,
733		    FALSE, FALSE, tag, &zn->zn_zap);
734		zap = zn->zn_zap;
735		if (err != 0)
736			return (err);
737		ASSERT(!zap->zap_ismicro);
738
739		while (old_prefix_len ==
740		    zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
741			err = zap_grow_ptrtbl(zap, tx);
742			if (err != 0)
743				return (err);
744		}
745
746		err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
747		if (err != 0)
748			return (err);
749
750		if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
751			/* it split while our locks were down */
752			*lp = l;
753			return (0);
754		}
755	}
756	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
757	ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
758	ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
759	    zap_leaf_phys(l)->l_hdr.lh_prefix);
760
761	int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
762	    (old_prefix_len + 1);
763	uint64_t sibling =
764	    (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
765
766	/* check for i/o errors before doing zap_leaf_split */
767	for (int i = 0; i < (1ULL << prefix_diff); i++) {
768		uint64_t blk;
769		err = zap_idx_to_blk(zap, sibling + i, &blk);
770		if (err != 0)
771			return (err);
772		ASSERT3U(blk, ==, l->l_blkid);
773	}
774
775	zap_leaf_t *nl = zap_create_leaf(zap, tx);
776	zap_leaf_split(l, nl, zap->zap_normflags != 0);
777
778	/* set sibling pointers */
779	for (int i = 0; i < (1ULL << prefix_diff); i++) {
780		err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
781		ASSERT0(err); /* we checked for i/o errors above */
782	}
783
784	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
785
786	if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
787		/* we want the sibling */
788		zap_put_leaf(l);
789		*lp = nl;
790	} else {
791		zap_put_leaf(nl);
792		*lp = l;
793	}
794
795	return (0);
796}
797
798static void
799zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
800    const void *tag, dmu_tx_t *tx)
801{
802	zap_t *zap = zn->zn_zap;
803	int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
804	int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
805	    zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
806
807	zap_put_leaf(l);
808
809	if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
810		/*
811		 * We are in the middle of growing the pointer table, or
812		 * this leaf will soon make us grow it.
813		 */
814		if (zap_tryupgradedir(zap, tx) == 0) {
815			objset_t *os = zap->zap_objset;
816			uint64_t zapobj = zap->zap_object;
817
818			zap_unlockdir(zap, tag);
819			int err = zap_lockdir(os, zapobj, tx,
820			    RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
821			zap = zn->zn_zap;
822			if (err != 0)
823				return;
824		}
825
826		/* could have finished growing while our locks were down */
827		if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
828			(void) zap_grow_ptrtbl(zap, tx);
829	}
830}
831
832static int
833fzap_checkname(zap_name_t *zn)
834{
835	if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
836		return (SET_ERROR(ENAMETOOLONG));
837	return (0);
838}
839
840static int
841fzap_checksize(uint64_t integer_size, uint64_t num_integers)
842{
843	/* Only integer sizes supported by C */
844	switch (integer_size) {
845	case 1:
846	case 2:
847	case 4:
848	case 8:
849		break;
850	default:
851		return (SET_ERROR(EINVAL));
852	}
853
854	if (integer_size * num_integers > ZAP_MAXVALUELEN)
855		return (SET_ERROR(E2BIG));
856
857	return (0);
858}
859
860static int
861fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
862{
863	int err = fzap_checkname(zn);
864	if (err != 0)
865		return (err);
866	return (fzap_checksize(integer_size, num_integers));
867}
868
869/*
870 * Routines for manipulating attributes.
871 */
872int
873fzap_lookup(zap_name_t *zn,
874    uint64_t integer_size, uint64_t num_integers, void *buf,
875    char *realname, int rn_len, boolean_t *ncp)
876{
877	zap_leaf_t *l;
878	zap_entry_handle_t zeh;
879
880	int err = fzap_checkname(zn);
881	if (err != 0)
882		return (err);
883
884	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
885	if (err != 0)
886		return (err);
887	err = zap_leaf_lookup(l, zn, &zeh);
888	if (err == 0) {
889		if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
890			zap_put_leaf(l);
891			return (err);
892		}
893
894		err = zap_entry_read(&zeh, integer_size, num_integers, buf);
895		(void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
896		if (ncp) {
897			*ncp = zap_entry_normalization_conflict(&zeh,
898			    zn, NULL, zn->zn_zap);
899		}
900	}
901
902	zap_put_leaf(l);
903	return (err);
904}
905
906int
907fzap_add_cd(zap_name_t *zn,
908    uint64_t integer_size, uint64_t num_integers,
909    const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx)
910{
911	zap_leaf_t *l;
912	int err;
913	zap_entry_handle_t zeh;
914	zap_t *zap = zn->zn_zap;
915
916	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
917	ASSERT(!zap->zap_ismicro);
918	ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
919
920	err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
921	if (err != 0)
922		return (err);
923retry:
924	err = zap_leaf_lookup(l, zn, &zeh);
925	if (err == 0) {
926		err = SET_ERROR(EEXIST);
927		goto out;
928	}
929	if (err != ENOENT)
930		goto out;
931
932	err = zap_entry_create(l, zn, cd,
933	    integer_size, num_integers, val, &zeh);
934
935	if (err == 0) {
936		zap_increment_num_entries(zap, 1, tx);
937	} else if (err == EAGAIN) {
938		err = zap_expand_leaf(zn, l, tag, tx, &l);
939		zap = zn->zn_zap;	/* zap_expand_leaf() may change zap */
940		if (err == 0)
941			goto retry;
942	}
943
944out:
945	if (l != NULL) {
946		if (err == ENOSPC)
947			zap_put_leaf(l);
948		else
949			zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
950	}
951	return (err);
952}
953
954int
955fzap_add(zap_name_t *zn,
956    uint64_t integer_size, uint64_t num_integers,
957    const void *val, const void *tag, dmu_tx_t *tx)
958{
959	int err = fzap_check(zn, integer_size, num_integers);
960	if (err != 0)
961		return (err);
962
963	return (fzap_add_cd(zn, integer_size, num_integers,
964	    val, ZAP_NEED_CD, tag, tx));
965}
966
967int
968fzap_update(zap_name_t *zn,
969    int integer_size, uint64_t num_integers, const void *val,
970    const void *tag, dmu_tx_t *tx)
971{
972	zap_leaf_t *l;
973	int err;
974	boolean_t create;
975	zap_entry_handle_t zeh;
976	zap_t *zap = zn->zn_zap;
977
978	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
979	err = fzap_check(zn, integer_size, num_integers);
980	if (err != 0)
981		return (err);
982
983	err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
984	if (err != 0)
985		return (err);
986retry:
987	err = zap_leaf_lookup(l, zn, &zeh);
988	create = (err == ENOENT);
989	ASSERT(err == 0 || err == ENOENT);
990
991	if (create) {
992		err = zap_entry_create(l, zn, ZAP_NEED_CD,
993		    integer_size, num_integers, val, &zeh);
994		if (err == 0)
995			zap_increment_num_entries(zap, 1, tx);
996	} else {
997		err = zap_entry_update(&zeh, integer_size, num_integers, val);
998	}
999
1000	if (err == EAGAIN) {
1001		err = zap_expand_leaf(zn, l, tag, tx, &l);
1002		zap = zn->zn_zap;	/* zap_expand_leaf() may change zap */
1003		if (err == 0)
1004			goto retry;
1005	}
1006
1007	if (l != NULL) {
1008		if (err == ENOSPC)
1009			zap_put_leaf(l);
1010		else
1011			zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
1012	}
1013	return (err);
1014}
1015
1016int
1017fzap_length(zap_name_t *zn,
1018    uint64_t *integer_size, uint64_t *num_integers)
1019{
1020	zap_leaf_t *l;
1021	int err;
1022	zap_entry_handle_t zeh;
1023
1024	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
1025	if (err != 0)
1026		return (err);
1027	err = zap_leaf_lookup(l, zn, &zeh);
1028	if (err != 0)
1029		goto out;
1030
1031	if (integer_size != NULL)
1032		*integer_size = zeh.zeh_integer_size;
1033	if (num_integers != NULL)
1034		*num_integers = zeh.zeh_num_integers;
1035out:
1036	zap_put_leaf(l);
1037	return (err);
1038}
1039
1040int
1041fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
1042{
1043	zap_leaf_t *l;
1044	int err;
1045	zap_entry_handle_t zeh;
1046
1047	err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
1048	if (err != 0)
1049		return (err);
1050	err = zap_leaf_lookup(l, zn, &zeh);
1051	if (err == 0) {
1052		zap_entry_remove(&zeh);
1053		zap_increment_num_entries(zn->zn_zap, -1, tx);
1054
1055		if (zap_leaf_phys(l)->l_hdr.lh_nentries == 0 &&
1056		    zap_shrink_enabled)
1057			return (zap_shrink(zn, l, tx));
1058	}
1059	zap_put_leaf(l);
1060	return (err);
1061}
1062
1063void
1064fzap_prefetch(zap_name_t *zn)
1065{
1066	uint64_t blk;
1067	zap_t *zap = zn->zn_zap;
1068
1069	uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
1070	    zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1071	if (zap_idx_to_blk(zap, idx, &blk) != 0)
1072		return;
1073	int bs = FZAP_BLOCK_SHIFT(zap);
1074	dmu_prefetch_by_dnode(zap->zap_dnode, 0, blk << bs, 1 << bs,
1075	    ZIO_PRIORITY_SYNC_READ);
1076}
1077
1078/*
1079 * Helper functions for consumers.
1080 */
1081
1082uint64_t
1083zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
1084    const char *name, dmu_tx_t *tx)
1085{
1086	return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
1087}
1088
1089uint64_t
1090zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
1091    const char *name, int dnodesize, dmu_tx_t *tx)
1092{
1093	uint64_t new_obj;
1094
1095	new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
1096	VERIFY(new_obj != 0);
1097	VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
1098	    tx));
1099
1100	return (new_obj);
1101}
1102
1103int
1104zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
1105    char *name)
1106{
1107	zap_cursor_t zc;
1108	int err;
1109
1110	if (mask == 0)
1111		mask = -1ULL;
1112
1113	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1114	for (zap_cursor_init(&zc, os, zapobj);
1115	    (err = zap_cursor_retrieve(&zc, za)) == 0;
1116	    zap_cursor_advance(&zc)) {
1117		if ((za->za_first_integer & mask) == (value & mask)) {
1118			(void) strlcpy(name, za->za_name, MAXNAMELEN);
1119			break;
1120		}
1121	}
1122	zap_cursor_fini(&zc);
1123	kmem_free(za, sizeof (*za));
1124	return (err);
1125}
1126
1127int
1128zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
1129{
1130	zap_cursor_t zc;
1131	int err = 0;
1132
1133	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1134	for (zap_cursor_init(&zc, os, fromobj);
1135	    zap_cursor_retrieve(&zc, za) == 0;
1136	    (void) zap_cursor_advance(&zc)) {
1137		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1138			err = SET_ERROR(EINVAL);
1139			break;
1140		}
1141		err = zap_add(os, intoobj, za->za_name,
1142		    8, 1, &za->za_first_integer, tx);
1143		if (err != 0)
1144			break;
1145	}
1146	zap_cursor_fini(&zc);
1147	kmem_free(za, sizeof (*za));
1148	return (err);
1149}
1150
1151int
1152zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1153    uint64_t value, dmu_tx_t *tx)
1154{
1155	zap_cursor_t zc;
1156	int err = 0;
1157
1158	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1159	for (zap_cursor_init(&zc, os, fromobj);
1160	    zap_cursor_retrieve(&zc, za) == 0;
1161	    (void) zap_cursor_advance(&zc)) {
1162		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1163			err = SET_ERROR(EINVAL);
1164			break;
1165		}
1166		err = zap_add(os, intoobj, za->za_name,
1167		    8, 1, &value, tx);
1168		if (err != 0)
1169			break;
1170	}
1171	zap_cursor_fini(&zc);
1172	kmem_free(za, sizeof (*za));
1173	return (err);
1174}
1175
1176int
1177zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1178    dmu_tx_t *tx)
1179{
1180	zap_cursor_t zc;
1181	int err = 0;
1182
1183	zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
1184	for (zap_cursor_init(&zc, os, fromobj);
1185	    zap_cursor_retrieve(&zc, za) == 0;
1186	    (void) zap_cursor_advance(&zc)) {
1187		uint64_t delta = 0;
1188
1189		if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1190			err = SET_ERROR(EINVAL);
1191			break;
1192		}
1193
1194		err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
1195		if (err != 0 && err != ENOENT)
1196			break;
1197		delta += za->za_first_integer;
1198		err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
1199		if (err != 0)
1200			break;
1201	}
1202	zap_cursor_fini(&zc);
1203	kmem_free(za, sizeof (*za));
1204	return (err);
1205}
1206
1207int
1208zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1209{
1210	char name[20];
1211
1212	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1213	return (zap_add(os, obj, name, 8, 1, &value, tx));
1214}
1215
1216int
1217zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1218{
1219	char name[20];
1220
1221	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1222	return (zap_remove(os, obj, name, tx));
1223}
1224
1225int
1226zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
1227{
1228	char name[20];
1229
1230	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1231	return (zap_lookup(os, obj, name, 8, 1, &value));
1232}
1233
1234int
1235zap_add_int_key(objset_t *os, uint64_t obj,
1236    uint64_t key, uint64_t value, dmu_tx_t *tx)
1237{
1238	char name[20];
1239
1240	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1241	return (zap_add(os, obj, name, 8, 1, &value, tx));
1242}
1243
1244int
1245zap_update_int_key(objset_t *os, uint64_t obj,
1246    uint64_t key, uint64_t value, dmu_tx_t *tx)
1247{
1248	char name[20];
1249
1250	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1251	return (zap_update(os, obj, name, 8, 1, &value, tx));
1252}
1253
1254int
1255zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
1256{
1257	char name[20];
1258
1259	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1260	return (zap_lookup(os, obj, name, 8, 1, valuep));
1261}
1262
1263int
1264zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
1265    dmu_tx_t *tx)
1266{
1267	uint64_t value = 0;
1268
1269	if (delta == 0)
1270		return (0);
1271
1272	int err = zap_lookup(os, obj, name, 8, 1, &value);
1273	if (err != 0 && err != ENOENT)
1274		return (err);
1275	value += delta;
1276	if (value == 0)
1277		err = zap_remove(os, obj, name, tx);
1278	else
1279		err = zap_update(os, obj, name, 8, 1, &value, tx);
1280	return (err);
1281}
1282
1283int
1284zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
1285    dmu_tx_t *tx)
1286{
1287	char name[20];
1288
1289	(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1290	return (zap_increment(os, obj, name, delta, tx));
1291}
1292
1293/*
1294 * Routines for iterating over the attributes.
1295 */
1296
1297int
1298fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
1299{
1300	int err = ENOENT;
1301	zap_entry_handle_t zeh;
1302	zap_leaf_t *l;
1303
1304	/* retrieve the next entry at or after zc_hash/zc_cd */
1305	/* if no entry, return ENOENT */
1306
1307	/*
1308	 * If we are reading from the beginning, we're almost certain to
1309	 * iterate over the entire ZAP object.  If there are multiple leaf
1310	 * blocks (freeblk > 2), prefetch the whole object (up to
1311	 * dmu_prefetch_max bytes), so that we read the leaf blocks
1312	 * concurrently. (Unless noprefetch was requested via
1313	 * zap_cursor_init_noprefetch()).
1314	 */
1315	if (zc->zc_hash == 0 && zap_iterate_prefetch &&
1316	    zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
1317		dmu_prefetch_by_dnode(zap->zap_dnode, 0, 0,
1318		    zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
1319		    ZIO_PRIORITY_ASYNC_READ);
1320	}
1321
1322	if (zc->zc_leaf) {
1323		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1324
1325		/*
1326		 * The leaf was either shrunk or split.
1327		 */
1328		if ((zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_block_type == 0) ||
1329		    (ZAP_HASH_IDX(zc->zc_hash,
1330		    zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
1331		    zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
1332			zap_put_leaf(zc->zc_leaf);
1333			zc->zc_leaf = NULL;
1334		}
1335	}
1336
1337again:
1338	if (zc->zc_leaf == NULL) {
1339		err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
1340		    &zc->zc_leaf);
1341		if (err != 0)
1342			return (err);
1343	}
1344	l = zc->zc_leaf;
1345
1346	err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
1347
1348	if (err == ENOENT) {
1349		if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
1350			zc->zc_hash = -1ULL;
1351			zc->zc_cd = 0;
1352		} else {
1353			uint64_t nocare = (1ULL <<
1354			    (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
1355
1356			zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
1357			zc->zc_cd = 0;
1358
1359			if (zc->zc_hash == 0) {
1360				zc->zc_hash = -1ULL;
1361			} else {
1362				zap_put_leaf(zc->zc_leaf);
1363				zc->zc_leaf = NULL;
1364				goto again;
1365			}
1366		}
1367	}
1368
1369	if (err == 0) {
1370		zc->zc_hash = zeh.zeh_hash;
1371		zc->zc_cd = zeh.zeh_cd;
1372		za->za_integer_length = zeh.zeh_integer_size;
1373		za->za_num_integers = zeh.zeh_num_integers;
1374		if (zeh.zeh_num_integers == 0) {
1375			za->za_first_integer = 0;
1376		} else {
1377			err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
1378			ASSERT(err == 0 || err == EOVERFLOW);
1379		}
1380		err = zap_entry_read_name(zap, &zeh,
1381		    sizeof (za->za_name), za->za_name);
1382		ASSERT(err == 0);
1383
1384		za->za_normalization_conflict =
1385		    zap_entry_normalization_conflict(&zeh,
1386		    NULL, za->za_name, zap);
1387	}
1388	rw_exit(&zc->zc_leaf->l_rwlock);
1389	return (err);
1390}
1391
1392static void
1393zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
1394{
1395	uint64_t lastblk = 0;
1396
1397	/*
1398	 * NB: if a leaf has more pointers than an entire ptrtbl block
1399	 * can hold, then it'll be accounted for more than once, since
1400	 * we won't have lastblk.
1401	 */
1402	for (int i = 0; i < len; i++) {
1403		zap_leaf_t *l;
1404
1405		if (tbl[i] == lastblk)
1406			continue;
1407		lastblk = tbl[i];
1408
1409		int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
1410		if (err == 0) {
1411			zap_leaf_stats(zap, l, zs);
1412			zap_put_leaf(l);
1413		}
1414	}
1415}
1416
1417void
1418fzap_get_stats(zap_t *zap, zap_stats_t *zs)
1419{
1420	int bs = FZAP_BLOCK_SHIFT(zap);
1421	zs->zs_blocksize = 1ULL << bs;
1422
1423	/*
1424	 * Set zap_phys_t fields
1425	 */
1426	zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
1427	zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
1428	zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
1429	zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
1430	zs->zs_magic = zap_f_phys(zap)->zap_magic;
1431	zs->zs_salt = zap_f_phys(zap)->zap_salt;
1432
1433	/*
1434	 * Set zap_ptrtbl fields
1435	 */
1436	zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1437	zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
1438	zs->zs_ptrtbl_blks_copied =
1439	    zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
1440	zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
1441	zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1442	zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1443
1444	if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
1445		/* the ptrtbl is entirely in the header block. */
1446		zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1447		    1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
1448	} else {
1449		dmu_prefetch_by_dnode(zap->zap_dnode, 0,
1450		    zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
1451		    zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
1452		    ZIO_PRIORITY_SYNC_READ);
1453
1454		for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1455		    b++) {
1456			dmu_buf_t *db;
1457			int err;
1458
1459			err = dmu_buf_hold_by_dnode(zap->zap_dnode,
1460			    (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
1461			    FTAG, &db, DMU_READ_NO_PREFETCH);
1462			if (err == 0) {
1463				zap_stats_ptrtbl(zap, db->db_data,
1464				    1<<(bs-3), zs);
1465				dmu_buf_rele(db, FTAG);
1466			}
1467		}
1468	}
1469}
1470
1471/*
1472 * Find last allocated block and update freeblk.
1473 */
1474static void
1475zap_trunc(zap_t *zap)
1476{
1477	uint64_t nentries;
1478	uint64_t lastblk;
1479
1480	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1481
1482	if (zap_f_phys(zap)->zap_ptrtbl.zt_blk > 0) {
1483		/* External ptrtbl */
1484		nentries = (1 << zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1485		lastblk = zap_f_phys(zap)->zap_ptrtbl.zt_blk +
1486		    zap_f_phys(zap)->zap_ptrtbl.zt_numblks - 1;
1487	} else {
1488		/* Embedded ptrtbl */
1489		nentries = (1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
1490		lastblk = 0;
1491	}
1492
1493	for (uint64_t idx = 0; idx < nentries; idx++) {
1494		uint64_t blk;
1495		if (zap_idx_to_blk(zap, idx, &blk) != 0)
1496			return;
1497		if (blk > lastblk)
1498			lastblk = blk;
1499	}
1500
1501	ASSERT3U(lastblk, <, zap_f_phys(zap)->zap_freeblk);
1502
1503	zap_f_phys(zap)->zap_freeblk = lastblk + 1;
1504}
1505
1506/*
1507 * ZAP shrinking algorithm.
1508 *
1509 * We shrink ZAP recuresively removing empty leaves. We can remove an empty leaf
1510 * only if it has a sibling. Sibling leaves have the same prefix length and
1511 * their prefixes differ only by the least significant (sibling) bit. We require
1512 * both siblings to be empty. This eliminates a need to rehash the non-empty
1513 * remaining leaf. When we have removed one of two empty sibling, we set ptrtbl
1514 * entries of the removed leaf to point out to the remaining leaf. Prefix length
1515 * of the remaining leaf is decremented. As a result, it has a new prefix and it
1516 * might have a new sibling. So, we repeat the process.
1517 *
1518 * Steps:
1519 * 1. Check if a sibling leaf (sl) exists and it is empty.
1520 * 2. Release the leaf (l) if it has the sibling bit (slbit) equal to 1.
1521 * 3. Release the sibling (sl) to derefer it again with WRITER lock.
1522 * 4. Upgrade zapdir lock to WRITER (once).
1523 * 5. Derefer released leaves again.
1524 * 6. If it is needed, recheck whether both leaves are still siblings and empty.
1525 * 7. Set ptrtbl pointers of the removed leaf (slbit 1) to point out to blkid of
1526 * the remaining leaf (slbit 0).
1527 * 8. Free disk block of the removed leaf (dmu_free_range).
1528 * 9. Decrement prefix_len of the remaining leaf.
1529 * 10. Repeat the steps.
1530 */
1531static int
1532zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx)
1533{
1534	zap_t *zap = zn->zn_zap;
1535	int64_t zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1536	uint64_t hash = zn->zn_hash;
1537	uint64_t prefix = zap_leaf_phys(l)->l_hdr.lh_prefix;
1538	uint64_t prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
1539	boolean_t trunc = B_FALSE;
1540	int err = 0;
1541
1542	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0);
1543	ASSERT3U(prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1544	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
1545	ASSERT3U(ZAP_HASH_IDX(hash, prefix_len), ==, prefix);
1546
1547	boolean_t writer = B_FALSE;
1548
1549	/*
1550	 * To avoid deadlock always deref leaves in the same order -
1551	 * sibling 0 first, then sibling 1.
1552	 */
1553	while (prefix_len) {
1554		zap_leaf_t *sl;
1555		int64_t prefix_diff = zt_shift - prefix_len;
1556		uint64_t sl_prefix = prefix ^ 1;
1557		uint64_t sl_hash = ZAP_PREFIX_HASH(sl_prefix, prefix_len);
1558		int slbit = prefix & 1;
1559
1560		ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0);
1561
1562		/*
1563		 * Check if there is a sibling by reading ptrtbl ptrs.
1564		 */
1565		if (check_sibling_ptrtbl_range(zap, sl_prefix, prefix_len) == 0)
1566			break;
1567
1568		/*
1569		 * sibling 1, unlock it - we haven't yet dereferenced sibling 0.
1570		 */
1571		if (slbit == 1) {
1572			zap_put_leaf(l);
1573			l = NULL;
1574		}
1575
1576		/*
1577		 * Dereference sibling leaf and check if it is empty.
1578		 */
1579		if ((err = zap_deref_leaf(zap, sl_hash, tx, RW_READER,
1580		    &sl)) != 0)
1581			break;
1582
1583		ASSERT3U(ZAP_HASH_IDX(sl_hash, prefix_len), ==, sl_prefix);
1584
1585		/*
1586		 * Check if we have a sibling and it is empty.
1587		 */
1588		if (zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len ||
1589		    zap_leaf_phys(sl)->l_hdr.lh_nentries != 0) {
1590			zap_put_leaf(sl);
1591			break;
1592		}
1593
1594		zap_put_leaf(sl);
1595
1596		/*
1597		 * If there two empty sibling, we have work to do, so
1598		 * we need to lock ZAP ptrtbl as WRITER.
1599		 */
1600		if (!writer && (writer = zap_tryupgradedir(zap, tx)) == 0) {
1601			/* We failed to upgrade */
1602			if (l != NULL) {
1603				zap_put_leaf(l);
1604				l = NULL;
1605			}
1606
1607			/*
1608			 * Usually, the right way to upgrade from a READER lock
1609			 * to a WRITER lock is to call zap_unlockdir() and
1610			 * zap_lockdir(), but we do not have a tag. Instead,
1611			 * we do it in more sophisticated way.
1612			 */
1613			rw_exit(&zap->zap_rwlock);
1614			rw_enter(&zap->zap_rwlock, RW_WRITER);
1615			dmu_buf_will_dirty(zap->zap_dbuf, tx);
1616
1617			zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1618			writer = B_TRUE;
1619		}
1620
1621		/*
1622		 * Here we have WRITER lock for ptrtbl.
1623		 * Now, we need a WRITER lock for both siblings leaves.
1624		 * Also, we have to recheck if the leaves are still siblings
1625		 * and still empty.
1626		 */
1627		if (l == NULL) {
1628			/* sibling 0 */
1629			if ((err = zap_deref_leaf(zap, (slbit ? sl_hash : hash),
1630			    tx, RW_WRITER, &l)) != 0)
1631				break;
1632
1633			/*
1634			 * The leaf isn't empty anymore or
1635			 * it was shrunk/split while our locks were down.
1636			 */
1637			if (zap_leaf_phys(l)->l_hdr.lh_nentries != 0 ||
1638			    zap_leaf_phys(l)->l_hdr.lh_prefix_len != prefix_len)
1639				break;
1640		}
1641
1642		/* sibling 1 */
1643		if ((err = zap_deref_leaf(zap, (slbit ? hash : sl_hash), tx,
1644		    RW_WRITER, &sl)) != 0)
1645			break;
1646
1647		/*
1648		 * The leaf isn't empty anymore or
1649		 * it was shrunk/split while our locks were down.
1650		 */
1651		if (zap_leaf_phys(sl)->l_hdr.lh_nentries != 0 ||
1652		    zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len) {
1653			zap_put_leaf(sl);
1654			break;
1655		}
1656
1657		/* If we have gotten here, we have a leaf to collapse */
1658		uint64_t idx = (slbit ? prefix : sl_prefix) << prefix_diff;
1659		uint64_t nptrs = (1ULL << prefix_diff);
1660		uint64_t sl_blkid = sl->l_blkid;
1661
1662		/*
1663		 * Set ptrtbl entries to point out to the slibling 0 blkid
1664		 */
1665		if ((err = zap_set_idx_range_to_blk(zap, idx, nptrs, l->l_blkid,
1666		    tx)) != 0) {
1667			zap_put_leaf(sl);
1668			break;
1669		}
1670
1671		/*
1672		 * Free sibling 1 disk block.
1673		 */
1674		int bs = FZAP_BLOCK_SHIFT(zap);
1675		if (sl_blkid == zap_f_phys(zap)->zap_freeblk - 1)
1676			trunc = B_TRUE;
1677
1678		(void) dmu_free_range(zap->zap_objset, zap->zap_object,
1679		    sl_blkid << bs, 1 << bs, tx);
1680		zap_put_leaf(sl);
1681
1682		zap_f_phys(zap)->zap_num_leafs--;
1683
1684		/*
1685		 * Update prefix and prefix_len.
1686		 */
1687		zap_leaf_phys(l)->l_hdr.lh_prefix >>= 1;
1688		zap_leaf_phys(l)->l_hdr.lh_prefix_len--;
1689
1690		prefix = zap_leaf_phys(l)->l_hdr.lh_prefix;
1691		prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
1692	}
1693
1694	if (trunc)
1695		zap_trunc(zap);
1696
1697	if (l != NULL)
1698		zap_put_leaf(l);
1699
1700	return (err);
1701}
1702
1703/* CSTYLED */
1704ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW,
1705	"When iterating ZAP object, prefetch it");
1706
1707/* CSTYLED */
1708ZFS_MODULE_PARAM(zfs, , zap_shrink_enabled, INT, ZMOD_RW,
1709	"Enable ZAP shrinking");
1710