1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source.  A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 */
19
20#include <sys/zio_crypt.h>
21#include <sys/dmu.h>
22#include <sys/dmu_objset.h>
23#include <sys/dnode.h>
24#include <sys/fs/zfs.h>
25#include <sys/zio.h>
26#include <sys/zil.h>
27#include <sys/sha2.h>
28#include <sys/hkdf.h>
29#include <sys/qat.h>
30
31/*
32 * This file is responsible for handling all of the details of generating
33 * encryption parameters and performing encryption and authentication.
34 *
35 * BLOCK ENCRYPTION PARAMETERS:
36 * Encryption /Authentication Algorithm Suite (crypt):
37 * The encryption algorithm, mode, and key length we are going to use. We
38 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
39 * keys. All authentication is currently done with SHA512-HMAC.
40 *
41 * Plaintext:
42 * The unencrypted data that we want to encrypt.
43 *
44 * Initialization Vector (IV):
45 * An initialization vector for the encryption algorithms. This is used to
46 * "tweak" the encryption algorithms so that two blocks of the same data are
47 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
48 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
49 * never reused with the same encryption key. This value is stored unencrypted
50 * and must simply be provided to the decryption function. We use a 96 bit IV
51 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
52 * derive the IV randomly. The first 64 bits of the IV are stored in the second
53 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
54 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
55 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
56 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
57 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
58 * format supports at most 2^15 slots per L0 dnode block, because the maximum
59 * block size is 16MB (2^24). In either case, for level 0 blocks this number
60 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
61 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
62 * for the dnode code.
63 *
64 * Master key:
65 * This is the most important secret data of an encrypted dataset. It is used
66 * along with the salt to generate that actual encryption keys via HKDF. We
67 * do not use the master key to directly encrypt any data because there are
68 * theoretical limits on how much data can actually be safely encrypted with
69 * any encryption mode. The master key is stored encrypted on disk with the
70 * user's wrapping key. Its length is determined by the encryption algorithm.
71 * For details on how this is stored see the block comment in dsl_crypt.c
72 *
73 * Salt:
74 * Used as an input to the HKDF function, along with the master key. We use a
75 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
76 * can be used for encrypting many blocks, so we cache the current salt and the
77 * associated derived key in zio_crypt_t so we do not need to derive it again
78 * needlessly.
79 *
80 * Encryption Key:
81 * A secret binary key, generated from an HKDF function used to encrypt and
82 * decrypt data.
83 *
84 * Message Authentication Code (MAC)
85 * The MAC is an output of authenticated encryption modes such as AES-GCM and
86 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
87 * data on disk and return garbage to the application. Effectively, it is a
88 * checksum that can not be reproduced by an attacker. We store the MAC in the
89 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
90 * regular checksum of the ciphertext which can be used for scrubbing.
91 *
92 * OBJECT AUTHENTICATION:
93 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
94 * they contain some info that always needs to be readable. To prevent this
95 * data from being altered, we authenticate this data using SHA512-HMAC. This
96 * will produce a MAC (similar to the one produced via encryption) which can
97 * be used to verify the object was not modified. HMACs do not require key
98 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
99 * data.
100 *
101 * ZIL ENCRYPTION:
102 * ZIL blocks have their bp written to disk ahead of the associated data, so we
103 * cannot store the MAC there as we normally do. For these blocks the MAC is
104 * stored in the embedded checksum within the zil_chain_t header. The salt and
105 * IV are generated for the block on bp allocation instead of at encryption
106 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
107 * for claiming even though all of the sensitive user data still needs to be
108 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
109 * pieces of the block need to be encrypted. All data that is not encrypted is
110 * authenticated using the AAD mechanisms that the supported encryption modes
111 * provide for. In order to preserve the semantics of the ZIL for encrypted
112 * datasets, the ZIL is not protected at the objset level as described below.
113 *
114 * DNODE ENCRYPTION:
115 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
116 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
117 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
118 * which pieces of the block need to be encrypted. For more details about
119 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
120 *
121 * OBJECT SET AUTHENTICATION:
122 * Up to this point, everything we have encrypted and authenticated has been
123 * at level 0 (or -2 for the ZIL). If we did not do any further work the
124 * on-disk format would be susceptible to attacks that deleted or rearranged
125 * the order of level 0 blocks. Ideally, the cleanest solution would be to
126 * maintain a tree of authentication MACs going up the bp tree. However, this
127 * presents a problem for raw sends. Send files do not send information about
128 * indirect blocks so there would be no convenient way to transfer the MACs and
129 * they cannot be recalculated on the receive side without the master key which
130 * would defeat one of the purposes of raw sends in the first place. Instead,
131 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
132 * from the level below. We also include some portable fields from blk_prop such
133 * as the lsize and compression algorithm to prevent the data from being
134 * misinterpreted.
135 *
136 * At the objset level, we maintain 2 separate 256 bit MACs in the
137 * objset_phys_t. The first one is "portable" and is the logical root of the
138 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
139 * used as the root MAC for the user accounting objects, which are also not
140 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
141 * of the send file. The useraccounting code ensures that the useraccounting
142 * info is not present upon a receive, so the local MAC can simply be cleared
143 * out at that time. For more info about objset_phys_t authentication, see
144 * zio_crypt_do_objset_hmacs().
145 *
146 * CONSIDERATIONS FOR DEDUP:
147 * In order for dedup to work, blocks that we want to dedup with one another
148 * need to use the same IV and encryption key, so that they will have the same
149 * ciphertext. Normally, one should never reuse an IV with the same encryption
150 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
151 * blocks. In this case, however, since we are using the same plaintext as
152 * well all that we end up with is a duplicate of the original ciphertext we
153 * already had. As a result, an attacker with read access to the raw disk will
154 * be able to tell which blocks are the same but this information is given away
155 * by dedup anyway. In order to get the same IVs and encryption keys for
156 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
157 * here so that a reproducible checksum of the plaintext is never available to
158 * the attacker. The HMAC key is kept alongside the master key, encrypted on
159 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
160 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
161 * will only work within a clone family since encrypted dedup requires use of
162 * the same master and HMAC keys.
163 */
164
165/*
166 * After encrypting many blocks with the same key we may start to run up
167 * against the theoretical limits of how much data can securely be encrypted
168 * with a single key using the supported encryption modes. The most obvious
169 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
170 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
171 * This risk actually grows surprisingly quickly over time according to the
172 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
173 * generated n IVs with a cryptographically secure RNG, the approximate
174 * probability p(n) of a collision is given as:
175 *
176 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
177 *
178 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
179 *
180 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
181 * we must not write more than 398,065,730 blocks with the same encryption key.
182 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
183 * generating a new random 64 bit salt for our HKDF encryption key generation
184 * function.
185 */
186#define	ZFS_KEY_MAX_SALT_USES_DEFAULT	400000000
187#define	ZFS_CURRENT_MAX_SALT_USES	\
188	(MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
189static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
190
191typedef struct blkptr_auth_buf {
192	uint64_t bab_prop;			/* blk_prop - portable mask */
193	uint8_t bab_mac[ZIO_DATA_MAC_LEN];	/* MAC from blk_cksum */
194	uint64_t bab_pad;			/* reserved for future use */
195} blkptr_auth_buf_t;
196
197const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
198	{"",			ZC_TYPE_NONE,	0,	"inherit"},
199	{"",			ZC_TYPE_NONE,	0,	"on"},
200	{"",			ZC_TYPE_NONE,	0,	"off"},
201	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	16,	"aes-128-ccm"},
202	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	24,	"aes-192-ccm"},
203	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	32,	"aes-256-ccm"},
204	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	16,	"aes-128-gcm"},
205	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	24,	"aes-192-gcm"},
206	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	32,	"aes-256-gcm"}
207};
208
209void
210zio_crypt_key_destroy(zio_crypt_key_t *key)
211{
212	rw_destroy(&key->zk_salt_lock);
213
214	/* free crypto templates */
215	crypto_destroy_ctx_template(key->zk_current_tmpl);
216	crypto_destroy_ctx_template(key->zk_hmac_tmpl);
217
218	/* zero out sensitive data */
219	memset(key, 0, sizeof (zio_crypt_key_t));
220}
221
222int
223zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
224{
225	int ret;
226	crypto_mechanism_t mech = {0};
227	uint_t keydata_len;
228
229	ASSERT(key != NULL);
230	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
231
232/*
233 * Workaround for GCC 12+ with UBSan enabled deficencies.
234 *
235 * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
236 * below as violating -Warray-bounds
237 */
238#if defined(__GNUC__) && !defined(__clang__) && \
239	((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
240	    defined(CONFIG_UBSAN))
241#pragma GCC diagnostic push
242#pragma GCC diagnostic ignored "-Warray-bounds"
243#endif
244	keydata_len = zio_crypt_table[crypt].ci_keylen;
245#if defined(__GNUC__) && !defined(__clang__) && \
246	((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
247	    defined(CONFIG_UBSAN))
248#pragma GCC diagnostic pop
249#endif
250	memset(key, 0, sizeof (zio_crypt_key_t));
251	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
252
253	/* fill keydata buffers and salt with random data */
254	ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
255	if (ret != 0)
256		goto error;
257
258	ret = random_get_bytes(key->zk_master_keydata, keydata_len);
259	if (ret != 0)
260		goto error;
261
262	ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
263	if (ret != 0)
264		goto error;
265
266	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
267	if (ret != 0)
268		goto error;
269
270	/* derive the current key from the master key */
271	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
272	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
273	    keydata_len);
274	if (ret != 0)
275		goto error;
276
277	/* initialize keys for the ICP */
278	key->zk_current_key.ck_data = key->zk_current_keydata;
279	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
280
281	key->zk_hmac_key.ck_data = &key->zk_hmac_key;
282	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
283
284	/*
285	 * Initialize the crypto templates. It's ok if this fails because
286	 * this is just an optimization.
287	 */
288	mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
289	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
290	    &key->zk_current_tmpl);
291	if (ret != CRYPTO_SUCCESS)
292		key->zk_current_tmpl = NULL;
293
294	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
295	ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
296	    &key->zk_hmac_tmpl);
297	if (ret != CRYPTO_SUCCESS)
298		key->zk_hmac_tmpl = NULL;
299
300	key->zk_crypt = crypt;
301	key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
302	key->zk_salt_count = 0;
303
304	return (0);
305
306error:
307	zio_crypt_key_destroy(key);
308	return (ret);
309}
310
311static int
312zio_crypt_key_change_salt(zio_crypt_key_t *key)
313{
314	int ret = 0;
315	uint8_t salt[ZIO_DATA_SALT_LEN];
316	crypto_mechanism_t mech;
317	uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
318
319	/* generate a new salt */
320	ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
321	if (ret != 0)
322		goto error;
323
324	rw_enter(&key->zk_salt_lock, RW_WRITER);
325
326	/* someone beat us to the salt rotation, just unlock and return */
327	if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
328		goto out_unlock;
329
330	/* derive the current key from the master key and the new salt */
331	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
332	    salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
333	if (ret != 0)
334		goto out_unlock;
335
336	/* assign the salt and reset the usage count */
337	memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
338	key->zk_salt_count = 0;
339
340	/* destroy the old context template and create the new one */
341	crypto_destroy_ctx_template(key->zk_current_tmpl);
342	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
343	    &key->zk_current_tmpl);
344	if (ret != CRYPTO_SUCCESS)
345		key->zk_current_tmpl = NULL;
346
347	rw_exit(&key->zk_salt_lock);
348
349	return (0);
350
351out_unlock:
352	rw_exit(&key->zk_salt_lock);
353error:
354	return (ret);
355}
356
357/* See comment above zfs_key_max_salt_uses definition for details */
358int
359zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
360{
361	int ret;
362	boolean_t salt_change;
363
364	rw_enter(&key->zk_salt_lock, RW_READER);
365
366	memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
367	salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
368	    ZFS_CURRENT_MAX_SALT_USES);
369
370	rw_exit(&key->zk_salt_lock);
371
372	if (salt_change) {
373		ret = zio_crypt_key_change_salt(key);
374		if (ret != 0)
375			goto error;
376	}
377
378	return (0);
379
380error:
381	return (ret);
382}
383
384/*
385 * This function handles all encryption and decryption in zfs. When
386 * encrypting it expects puio to reference the plaintext and cuio to
387 * reference the ciphertext. cuio must have enough space for the
388 * ciphertext + room for a MAC. datalen should be the length of the
389 * plaintext / ciphertext alone.
390 */
391static int
392zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
393    crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
394    zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
395{
396	int ret;
397	crypto_data_t plaindata, cipherdata;
398	CK_AES_CCM_PARAMS ccmp;
399	CK_AES_GCM_PARAMS gcmp;
400	crypto_mechanism_t mech;
401	zio_crypt_info_t crypt_info;
402	uint_t plain_full_len, maclen;
403
404	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
405
406	/* lookup the encryption info */
407	crypt_info = zio_crypt_table[crypt];
408
409	/* the mac will always be the last iovec_t in the cipher uio */
410	maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
411
412	ASSERT(maclen <= ZIO_DATA_MAC_LEN);
413
414	/* setup encryption mechanism (same as crypt) */
415	mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
416
417	/*
418	 * Strangely, the ICP requires that plain_full_len must include
419	 * the MAC length when decrypting, even though the UIO does not
420	 * need to have the extra space allocated.
421	 */
422	if (encrypt) {
423		plain_full_len = datalen;
424	} else {
425		plain_full_len = datalen + maclen;
426	}
427
428	/*
429	 * setup encryption params (currently only AES CCM and AES GCM
430	 * are supported)
431	 */
432	if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
433		ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
434		ccmp.ulAuthDataSize = auth_len;
435		ccmp.authData = authbuf;
436		ccmp.ulMACSize = maclen;
437		ccmp.nonce = ivbuf;
438		ccmp.ulDataSize = plain_full_len;
439
440		mech.cm_param = (char *)(&ccmp);
441		mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
442	} else {
443		gcmp.ulIvLen = ZIO_DATA_IV_LEN;
444		gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
445		gcmp.ulAADLen = auth_len;
446		gcmp.pAAD = authbuf;
447		gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
448		gcmp.pIv = ivbuf;
449
450		mech.cm_param = (char *)(&gcmp);
451		mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
452	}
453
454	/* populate the cipher and plain data structs. */
455	plaindata.cd_format = CRYPTO_DATA_UIO;
456	plaindata.cd_offset = 0;
457	plaindata.cd_uio = puio;
458	plaindata.cd_length = plain_full_len;
459
460	cipherdata.cd_format = CRYPTO_DATA_UIO;
461	cipherdata.cd_offset = 0;
462	cipherdata.cd_uio = cuio;
463	cipherdata.cd_length = datalen + maclen;
464
465	/* perform the actual encryption */
466	if (encrypt) {
467		ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
468		if (ret != CRYPTO_SUCCESS) {
469			ret = SET_ERROR(EIO);
470			goto error;
471		}
472	} else {
473		ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
474		if (ret != CRYPTO_SUCCESS) {
475			ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
476			ret = SET_ERROR(ECKSUM);
477			goto error;
478		}
479	}
480
481	return (0);
482
483error:
484	return (ret);
485}
486
487int
488zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
489    uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
490{
491	int ret;
492	zfs_uio_t puio, cuio;
493	uint64_t aad[3];
494	iovec_t plain_iovecs[2], cipher_iovecs[3];
495	uint64_t crypt = key->zk_crypt;
496	uint_t enc_len, keydata_len, aad_len;
497
498	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
499
500	keydata_len = zio_crypt_table[crypt].ci_keylen;
501
502	/* generate iv for wrapping the master and hmac key */
503	ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
504	if (ret != 0)
505		goto error;
506
507	/* initialize zfs_uio_ts */
508	plain_iovecs[0].iov_base = key->zk_master_keydata;
509	plain_iovecs[0].iov_len = keydata_len;
510	plain_iovecs[1].iov_base = key->zk_hmac_keydata;
511	plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
512
513	cipher_iovecs[0].iov_base = keydata_out;
514	cipher_iovecs[0].iov_len = keydata_len;
515	cipher_iovecs[1].iov_base = hmac_keydata_out;
516	cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
517	cipher_iovecs[2].iov_base = mac;
518	cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
519
520	/*
521	 * Although we don't support writing to the old format, we do
522	 * support rewrapping the key so that the user can move and
523	 * quarantine datasets on the old format.
524	 */
525	if (key->zk_version == 0) {
526		aad_len = sizeof (uint64_t);
527		aad[0] = LE_64(key->zk_guid);
528	} else {
529		ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
530		aad_len = sizeof (uint64_t) * 3;
531		aad[0] = LE_64(key->zk_guid);
532		aad[1] = LE_64(crypt);
533		aad[2] = LE_64(key->zk_version);
534	}
535
536	enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
537	puio.uio_iov = plain_iovecs;
538	puio.uio_iovcnt = 2;
539	puio.uio_segflg = UIO_SYSSPACE;
540	cuio.uio_iov = cipher_iovecs;
541	cuio.uio_iovcnt = 3;
542	cuio.uio_segflg = UIO_SYSSPACE;
543
544	/* encrypt the keys and store the resulting ciphertext and mac */
545	ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
546	    &puio, &cuio, (uint8_t *)aad, aad_len);
547	if (ret != 0)
548		goto error;
549
550	return (0);
551
552error:
553	return (ret);
554}
555
556int
557zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
558    uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
559    uint8_t *mac, zio_crypt_key_t *key)
560{
561	crypto_mechanism_t mech;
562	zfs_uio_t puio, cuio;
563	uint64_t aad[3];
564	iovec_t plain_iovecs[2], cipher_iovecs[3];
565	uint_t enc_len, keydata_len, aad_len;
566	int ret;
567
568	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
569
570	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
571
572	keydata_len = zio_crypt_table[crypt].ci_keylen;
573
574	/* initialize zfs_uio_ts */
575	plain_iovecs[0].iov_base = key->zk_master_keydata;
576	plain_iovecs[0].iov_len = keydata_len;
577	plain_iovecs[1].iov_base = key->zk_hmac_keydata;
578	plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
579
580	cipher_iovecs[0].iov_base = keydata;
581	cipher_iovecs[0].iov_len = keydata_len;
582	cipher_iovecs[1].iov_base = hmac_keydata;
583	cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
584	cipher_iovecs[2].iov_base = mac;
585	cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
586
587	if (version == 0) {
588		aad_len = sizeof (uint64_t);
589		aad[0] = LE_64(guid);
590	} else {
591		ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
592		aad_len = sizeof (uint64_t) * 3;
593		aad[0] = LE_64(guid);
594		aad[1] = LE_64(crypt);
595		aad[2] = LE_64(version);
596	}
597
598	enc_len = keydata_len + SHA512_HMAC_KEYLEN;
599	puio.uio_iov = plain_iovecs;
600	puio.uio_segflg = UIO_SYSSPACE;
601	puio.uio_iovcnt = 2;
602	cuio.uio_iov = cipher_iovecs;
603	cuio.uio_iovcnt = 3;
604	cuio.uio_segflg = UIO_SYSSPACE;
605
606	/* decrypt the keys and store the result in the output buffers */
607	ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
608	    &puio, &cuio, (uint8_t *)aad, aad_len);
609	if (ret != 0)
610		goto error;
611
612	/* generate a fresh salt */
613	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
614	if (ret != 0)
615		goto error;
616
617	/* derive the current key from the master key */
618	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
619	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
620	    keydata_len);
621	if (ret != 0)
622		goto error;
623
624	/* initialize keys for ICP */
625	key->zk_current_key.ck_data = key->zk_current_keydata;
626	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
627
628	key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
629	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
630
631	/*
632	 * Initialize the crypto templates. It's ok if this fails because
633	 * this is just an optimization.
634	 */
635	mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
636	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
637	    &key->zk_current_tmpl);
638	if (ret != CRYPTO_SUCCESS)
639		key->zk_current_tmpl = NULL;
640
641	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
642	ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
643	    &key->zk_hmac_tmpl);
644	if (ret != CRYPTO_SUCCESS)
645		key->zk_hmac_tmpl = NULL;
646
647	key->zk_crypt = crypt;
648	key->zk_version = version;
649	key->zk_guid = guid;
650	key->zk_salt_count = 0;
651
652	return (0);
653
654error:
655	zio_crypt_key_destroy(key);
656	return (ret);
657}
658
659int
660zio_crypt_generate_iv(uint8_t *ivbuf)
661{
662	int ret;
663
664	/* randomly generate the IV */
665	ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
666	if (ret != 0)
667		goto error;
668
669	return (0);
670
671error:
672	memset(ivbuf, 0, ZIO_DATA_IV_LEN);
673	return (ret);
674}
675
676int
677zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
678    uint8_t *digestbuf, uint_t digestlen)
679{
680	int ret;
681	crypto_mechanism_t mech;
682	crypto_data_t in_data, digest_data;
683	uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
684
685	ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
686
687	/* initialize sha512-hmac mechanism and crypto data */
688	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
689	mech.cm_param = NULL;
690	mech.cm_param_len = 0;
691
692	/* initialize the crypto data */
693	in_data.cd_format = CRYPTO_DATA_RAW;
694	in_data.cd_offset = 0;
695	in_data.cd_length = datalen;
696	in_data.cd_raw.iov_base = (char *)data;
697	in_data.cd_raw.iov_len = in_data.cd_length;
698
699	digest_data.cd_format = CRYPTO_DATA_RAW;
700	digest_data.cd_offset = 0;
701	digest_data.cd_length = SHA512_DIGEST_LENGTH;
702	digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
703	digest_data.cd_raw.iov_len = digest_data.cd_length;
704
705	/* generate the hmac */
706	ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
707	    &digest_data);
708	if (ret != CRYPTO_SUCCESS) {
709		ret = SET_ERROR(EIO);
710		goto error;
711	}
712
713	memcpy(digestbuf, raw_digestbuf, digestlen);
714
715	return (0);
716
717error:
718	memset(digestbuf, 0, digestlen);
719	return (ret);
720}
721
722int
723zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
724    uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
725{
726	int ret;
727	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
728
729	ret = zio_crypt_do_hmac(key, data, datalen,
730	    digestbuf, SHA512_DIGEST_LENGTH);
731	if (ret != 0)
732		return (ret);
733
734	memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
735	memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
736
737	return (0);
738}
739
740/*
741 * The following functions are used to encode and decode encryption parameters
742 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
743 * byte strings, which normally means that these strings would not need to deal
744 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
745 * byteswapped by lower layers and so we must "undo" that byteswap here upon
746 * decoding and encoding in a non-native byteorder. These functions require
747 * that the byteorder bit is correct before being called.
748 */
749void
750zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
751{
752	uint64_t val64;
753	uint32_t val32;
754
755	ASSERT(BP_IS_ENCRYPTED(bp));
756
757	if (!BP_SHOULD_BYTESWAP(bp)) {
758		memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
759		memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
760		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
761		BP_SET_IV2(bp, val32);
762	} else {
763		memcpy(&val64, salt, sizeof (uint64_t));
764		bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
765
766		memcpy(&val64, iv, sizeof (uint64_t));
767		bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
768
769		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
770		BP_SET_IV2(bp, BSWAP_32(val32));
771	}
772}
773
774void
775zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
776{
777	uint64_t val64;
778	uint32_t val32;
779
780	ASSERT(BP_IS_PROTECTED(bp));
781
782	/* for convenience, so callers don't need to check */
783	if (BP_IS_AUTHENTICATED(bp)) {
784		memset(salt, 0, ZIO_DATA_SALT_LEN);
785		memset(iv, 0, ZIO_DATA_IV_LEN);
786		return;
787	}
788
789	if (!BP_SHOULD_BYTESWAP(bp)) {
790		memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
791		memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
792
793		val32 = (uint32_t)BP_GET_IV2(bp);
794		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
795	} else {
796		val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
797		memcpy(salt, &val64, sizeof (uint64_t));
798
799		val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
800		memcpy(iv, &val64, sizeof (uint64_t));
801
802		val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
803		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
804	}
805}
806
807void
808zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
809{
810	uint64_t val64;
811
812	ASSERT(BP_USES_CRYPT(bp));
813	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
814
815	if (!BP_SHOULD_BYTESWAP(bp)) {
816		memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
817		memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
818		    sizeof (uint64_t));
819	} else {
820		memcpy(&val64, mac, sizeof (uint64_t));
821		bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
822
823		memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
824		bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
825	}
826}
827
828void
829zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
830{
831	uint64_t val64;
832
833	ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
834
835	/* for convenience, so callers don't need to check */
836	if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
837		memset(mac, 0, ZIO_DATA_MAC_LEN);
838		return;
839	}
840
841	if (!BP_SHOULD_BYTESWAP(bp)) {
842		memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
843		memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
844		    sizeof (uint64_t));
845	} else {
846		val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
847		memcpy(mac, &val64, sizeof (uint64_t));
848
849		val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
850		memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
851	}
852}
853
854void
855zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
856{
857	zil_chain_t *zilc = data;
858
859	memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
860	memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
861	    sizeof (uint64_t));
862}
863
864void
865zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
866{
867	/*
868	 * The ZIL MAC is embedded in the block it protects, which will
869	 * not have been byteswapped by the time this function has been called.
870	 * As a result, we don't need to worry about byteswapping the MAC.
871	 */
872	const zil_chain_t *zilc = data;
873
874	memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
875	memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
876	    sizeof (uint64_t));
877}
878
879/*
880 * This routine takes a block of dnodes (src_abd) and copies only the bonus
881 * buffers to the same offsets in the dst buffer. datalen should be the size
882 * of both the src_abd and the dst buffer (not just the length of the bonus
883 * buffers).
884 */
885void
886zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
887{
888	uint_t i, max_dnp = datalen >> DNODE_SHIFT;
889	uint8_t *src;
890	dnode_phys_t *dnp, *sdnp, *ddnp;
891
892	src = abd_borrow_buf_copy(src_abd, datalen);
893
894	sdnp = (dnode_phys_t *)src;
895	ddnp = (dnode_phys_t *)dst;
896
897	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
898		dnp = &sdnp[i];
899		if (dnp->dn_type != DMU_OT_NONE &&
900		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
901		    dnp->dn_bonuslen != 0) {
902			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
903			    DN_MAX_BONUS_LEN(dnp));
904		}
905	}
906
907	abd_return_buf(src_abd, src, datalen);
908}
909
910/*
911 * This function decides what fields from blk_prop are included in
912 * the on-disk various MAC algorithms.
913 */
914static void
915zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
916{
917	/*
918	 * Version 0 did not properly zero out all non-portable fields
919	 * as it should have done. We maintain this code so that we can
920	 * do read-only imports of pools on this version.
921	 */
922	if (version == 0) {
923		BP_SET_DEDUP(bp, 0);
924		BP_SET_CHECKSUM(bp, 0);
925		BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
926		return;
927	}
928
929	ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
930
931	/*
932	 * The hole_birth feature might set these fields even if this bp
933	 * is a hole. We zero them out here to guarantee that raw sends
934	 * will function with or without the feature.
935	 */
936	if (BP_IS_HOLE(bp)) {
937		bp->blk_prop = 0ULL;
938		return;
939	}
940
941	/*
942	 * At L0 we want to verify these fields to ensure that data blocks
943	 * can not be reinterpreted. For instance, we do not want an attacker
944	 * to trick us into returning raw lz4 compressed data to the user
945	 * by modifying the compression bits. At higher levels, we cannot
946	 * enforce this policy since raw sends do not convey any information
947	 * about indirect blocks, so these values might be different on the
948	 * receive side. Fortunately, this does not open any new attack
949	 * vectors, since any alterations that can be made to a higher level
950	 * bp must still verify the correct order of the layer below it.
951	 */
952	if (BP_GET_LEVEL(bp) != 0) {
953		BP_SET_BYTEORDER(bp, 0);
954		BP_SET_COMPRESS(bp, 0);
955
956		/*
957		 * psize cannot be set to zero or it will trigger
958		 * asserts, but the value doesn't really matter as
959		 * long as it is constant.
960		 */
961		BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
962	}
963
964	BP_SET_DEDUP(bp, 0);
965	BP_SET_CHECKSUM(bp, 0);
966}
967
968static void
969zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
970    blkptr_auth_buf_t *bab, uint_t *bab_len)
971{
972	blkptr_t tmpbp = *bp;
973
974	if (should_bswap)
975		byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
976
977	ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
978	ASSERT0(BP_IS_EMBEDDED(&tmpbp));
979
980	zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
981
982	/*
983	 * We always MAC blk_prop in LE to ensure portability. This
984	 * must be done after decoding the mac, since the endianness
985	 * will get zero'd out here.
986	 */
987	zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
988	bab->bab_prop = LE_64(tmpbp.blk_prop);
989	bab->bab_pad = 0ULL;
990
991	/* version 0 did not include the padding */
992	*bab_len = sizeof (blkptr_auth_buf_t);
993	if (version == 0)
994		*bab_len -= sizeof (uint64_t);
995}
996
997static int
998zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
999    boolean_t should_bswap, blkptr_t *bp)
1000{
1001	int ret;
1002	uint_t bab_len;
1003	blkptr_auth_buf_t bab;
1004	crypto_data_t cd;
1005
1006	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1007	cd.cd_format = CRYPTO_DATA_RAW;
1008	cd.cd_offset = 0;
1009	cd.cd_length = bab_len;
1010	cd.cd_raw.iov_base = (char *)&bab;
1011	cd.cd_raw.iov_len = cd.cd_length;
1012
1013	ret = crypto_mac_update(ctx, &cd);
1014	if (ret != CRYPTO_SUCCESS) {
1015		ret = SET_ERROR(EIO);
1016		goto error;
1017	}
1018
1019	return (0);
1020
1021error:
1022	return (ret);
1023}
1024
1025static void
1026zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1027    boolean_t should_bswap, blkptr_t *bp)
1028{
1029	uint_t bab_len;
1030	blkptr_auth_buf_t bab;
1031
1032	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1033	SHA2Update(ctx, &bab, bab_len);
1034}
1035
1036static void
1037zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
1038    boolean_t should_bswap, blkptr_t *bp)
1039{
1040	uint_t bab_len;
1041	blkptr_auth_buf_t bab;
1042
1043	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1044	memcpy(*aadp, &bab, bab_len);
1045	*aadp += bab_len;
1046	*aad_len += bab_len;
1047}
1048
1049static int
1050zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1051    boolean_t should_bswap, dnode_phys_t *dnp)
1052{
1053	int ret, i;
1054	dnode_phys_t *adnp, tmp_dncore;
1055	size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
1056	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1057	crypto_data_t cd;
1058
1059	cd.cd_format = CRYPTO_DATA_RAW;
1060	cd.cd_offset = 0;
1061
1062	/*
1063	 * Authenticate the core dnode (masking out non-portable bits).
1064	 * We only copy the first 64 bytes we operate on to avoid the overhead
1065	 * of copying 512-64 unneeded bytes. The compiler seems to be fine
1066	 * with that.
1067	 */
1068	memcpy(&tmp_dncore, dnp, dn_core_size);
1069	adnp = &tmp_dncore;
1070
1071	if (le_bswap) {
1072		adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1073		adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1074		adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1075		adnp->dn_used = BSWAP_64(adnp->dn_used);
1076	}
1077	adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1078	adnp->dn_used = 0;
1079
1080	cd.cd_length = dn_core_size;
1081	cd.cd_raw.iov_base = (char *)adnp;
1082	cd.cd_raw.iov_len = cd.cd_length;
1083
1084	ret = crypto_mac_update(ctx, &cd);
1085	if (ret != CRYPTO_SUCCESS) {
1086		ret = SET_ERROR(EIO);
1087		goto error;
1088	}
1089
1090	for (i = 0; i < dnp->dn_nblkptr; i++) {
1091		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1092		    should_bswap, &dnp->dn_blkptr[i]);
1093		if (ret != 0)
1094			goto error;
1095	}
1096
1097	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1098		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1099		    should_bswap, DN_SPILL_BLKPTR(dnp));
1100		if (ret != 0)
1101			goto error;
1102	}
1103
1104	return (0);
1105
1106error:
1107	return (ret);
1108}
1109
1110/*
1111 * objset_phys_t blocks introduce a number of exceptions to the normal
1112 * authentication process. objset_phys_t's contain 2 separate HMACS for
1113 * protecting the integrity of their data. The portable_mac protects the
1114 * metadnode. This MAC can be sent with a raw send and protects against
1115 * reordering of data within the metadnode. The local_mac protects the user
1116 * accounting objects which are not sent from one system to another.
1117 *
1118 * In addition, objset blocks are the only blocks that can be modified and
1119 * written to disk without the key loaded under certain circumstances. During
1120 * zil_claim() we need to be able to update the zil_header_t to complete
1121 * claiming log blocks and during raw receives we need to write out the
1122 * portable_mac from the send file. Both of these actions are possible
1123 * because these fields are not protected by either MAC so neither one will
1124 * need to modify the MACs without the key. However, when the modified blocks
1125 * are written out they will be byteswapped into the host machine's native
1126 * endianness which will modify fields protected by the MAC. As a result, MAC
1127 * calculation for objset blocks works slightly differently from other block
1128 * types. Where other block types MAC the data in whatever endianness is
1129 * written to disk, objset blocks always MAC little endian version of their
1130 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1131 * and le_bswap indicates whether a byteswap is needed to get this block
1132 * into little endian format.
1133 */
1134int
1135zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1136    boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1137{
1138	int ret;
1139	crypto_mechanism_t mech;
1140	crypto_context_t ctx;
1141	crypto_data_t cd;
1142	objset_phys_t *osp = data;
1143	uint64_t intval;
1144	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1145	uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1146	uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1147
1148	/* initialize HMAC mechanism */
1149	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1150	mech.cm_param = NULL;
1151	mech.cm_param_len = 0;
1152
1153	cd.cd_format = CRYPTO_DATA_RAW;
1154	cd.cd_offset = 0;
1155
1156	/* calculate the portable MAC from the portable fields and metadnode */
1157	ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1158	if (ret != CRYPTO_SUCCESS) {
1159		ret = SET_ERROR(EIO);
1160		goto error;
1161	}
1162
1163	/* add in the os_type */
1164	intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1165	cd.cd_length = sizeof (uint64_t);
1166	cd.cd_raw.iov_base = (char *)&intval;
1167	cd.cd_raw.iov_len = cd.cd_length;
1168
1169	ret = crypto_mac_update(ctx, &cd);
1170	if (ret != CRYPTO_SUCCESS) {
1171		ret = SET_ERROR(EIO);
1172		goto error;
1173	}
1174
1175	/* add in the portable os_flags */
1176	intval = osp->os_flags;
1177	if (should_bswap)
1178		intval = BSWAP_64(intval);
1179	intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1180	if (!ZFS_HOST_BYTEORDER)
1181		intval = BSWAP_64(intval);
1182
1183	cd.cd_length = sizeof (uint64_t);
1184	cd.cd_raw.iov_base = (char *)&intval;
1185	cd.cd_raw.iov_len = cd.cd_length;
1186
1187	ret = crypto_mac_update(ctx, &cd);
1188	if (ret != CRYPTO_SUCCESS) {
1189		ret = SET_ERROR(EIO);
1190		goto error;
1191	}
1192
1193	/* add in fields from the metadnode */
1194	ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1195	    should_bswap, &osp->os_meta_dnode);
1196	if (ret)
1197		goto error;
1198
1199	/* store the final digest in a temporary buffer and copy what we need */
1200	cd.cd_length = SHA512_DIGEST_LENGTH;
1201	cd.cd_raw.iov_base = (char *)raw_portable_mac;
1202	cd.cd_raw.iov_len = cd.cd_length;
1203
1204	ret = crypto_mac_final(ctx, &cd);
1205	if (ret != CRYPTO_SUCCESS) {
1206		ret = SET_ERROR(EIO);
1207		goto error;
1208	}
1209
1210	memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
1211
1212	/*
1213	 * This is necessary here as we check next whether
1214	 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1215	 * decide if the local_mac should be zeroed out. That flag will always
1216	 * be set by dmu_objset_id_quota_upgrade_cb() and
1217	 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1218	 * completed.
1219	 */
1220	intval = osp->os_flags;
1221	if (should_bswap)
1222		intval = BSWAP_64(intval);
1223	boolean_t uacct_incomplete =
1224	    !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1225
1226	/*
1227	 * The local MAC protects the user, group and project accounting.
1228	 * If these objects are not present, the local MAC is zeroed out.
1229	 */
1230	if (uacct_incomplete ||
1231	    (datalen >= OBJSET_PHYS_SIZE_V3 &&
1232	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1233	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1234	    osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1235	    (datalen >= OBJSET_PHYS_SIZE_V2 &&
1236	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1237	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1238	    (datalen <= OBJSET_PHYS_SIZE_V1)) {
1239		memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1240		return (0);
1241	}
1242
1243	/* calculate the local MAC from the userused and groupused dnodes */
1244	ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1245	if (ret != CRYPTO_SUCCESS) {
1246		ret = SET_ERROR(EIO);
1247		goto error;
1248	}
1249
1250	/* add in the non-portable os_flags */
1251	intval = osp->os_flags;
1252	if (should_bswap)
1253		intval = BSWAP_64(intval);
1254	intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1255	if (!ZFS_HOST_BYTEORDER)
1256		intval = BSWAP_64(intval);
1257
1258	cd.cd_length = sizeof (uint64_t);
1259	cd.cd_raw.iov_base = (char *)&intval;
1260	cd.cd_raw.iov_len = cd.cd_length;
1261
1262	ret = crypto_mac_update(ctx, &cd);
1263	if (ret != CRYPTO_SUCCESS) {
1264		ret = SET_ERROR(EIO);
1265		goto error;
1266	}
1267
1268	/* add in fields from the user accounting dnodes */
1269	if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1270		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1271		    should_bswap, &osp->os_userused_dnode);
1272		if (ret)
1273			goto error;
1274	}
1275
1276	if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1277		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1278		    should_bswap, &osp->os_groupused_dnode);
1279		if (ret)
1280			goto error;
1281	}
1282
1283	if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1284	    datalen >= OBJSET_PHYS_SIZE_V3) {
1285		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1286		    should_bswap, &osp->os_projectused_dnode);
1287		if (ret)
1288			goto error;
1289	}
1290
1291	/* store the final digest in a temporary buffer and copy what we need */
1292	cd.cd_length = SHA512_DIGEST_LENGTH;
1293	cd.cd_raw.iov_base = (char *)raw_local_mac;
1294	cd.cd_raw.iov_len = cd.cd_length;
1295
1296	ret = crypto_mac_final(ctx, &cd);
1297	if (ret != CRYPTO_SUCCESS) {
1298		ret = SET_ERROR(EIO);
1299		goto error;
1300	}
1301
1302	memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
1303
1304	return (0);
1305
1306error:
1307	memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
1308	memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1309	return (ret);
1310}
1311
1312static void
1313zio_crypt_destroy_uio(zfs_uio_t *uio)
1314{
1315	if (uio->uio_iov)
1316		kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1317}
1318
1319/*
1320 * This function parses an uncompressed indirect block and returns a checksum
1321 * of all the portable fields from all of the contained bps. The portable
1322 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1323 * checksum, and psize bits. For an explanation of the purpose of this, see
1324 * the comment block on object set authentication.
1325 */
1326static int
1327zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1328    uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1329{
1330	blkptr_t *bp;
1331	int i, epb = datalen >> SPA_BLKPTRSHIFT;
1332	SHA2_CTX ctx;
1333	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1334
1335	/* checksum all of the MACs from the layer below */
1336	SHA2Init(SHA512, &ctx);
1337	for (i = 0, bp = buf; i < epb; i++, bp++) {
1338		zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1339		    byteswap, bp);
1340	}
1341	SHA2Final(digestbuf, &ctx);
1342
1343	if (generate) {
1344		memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
1345		return (0);
1346	}
1347
1348	if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1349		return (SET_ERROR(ECKSUM));
1350
1351	return (0);
1352}
1353
1354int
1355zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1356    uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1357{
1358	int ret;
1359
1360	/*
1361	 * Unfortunately, callers of this function will not always have
1362	 * easy access to the on-disk format version. This info is
1363	 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1364	 * is expected to be verifiable even when the key isn't loaded.
1365	 * Here, instead of doing a ZAP lookup for the version for each
1366	 * zio, we simply try both existing formats.
1367	 */
1368	ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1369	    datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1370	if (ret == ECKSUM) {
1371		ASSERT(!generate);
1372		ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1373		    buf, datalen, 0, byteswap, cksum);
1374	}
1375
1376	return (ret);
1377}
1378
1379int
1380zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1381    uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1382{
1383	int ret;
1384	void *buf;
1385
1386	buf = abd_borrow_buf_copy(abd, datalen);
1387	ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1388	    byteswap, cksum);
1389	abd_return_buf(abd, buf, datalen);
1390
1391	return (ret);
1392}
1393
1394/*
1395 * Special case handling routine for encrypting / decrypting ZIL blocks.
1396 * We do not check for the older ZIL chain because the encryption feature
1397 * was not available before the newer ZIL chain was introduced. The goal
1398 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1399 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1400 */
1401static int
1402zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1403    uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1404    zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1405    boolean_t *no_crypt)
1406{
1407	int ret;
1408	uint64_t txtype, lr_len, nused;
1409	uint_t nr_src, nr_dst, crypt_len;
1410	uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1411	iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1412	uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1413	zil_chain_t *zilc;
1414	lr_t *lr;
1415	uint8_t *aadbuf = zio_buf_alloc(datalen);
1416
1417	/* cipherbuf always needs an extra iovec for the MAC */
1418	if (encrypt) {
1419		src = plainbuf;
1420		dst = cipherbuf;
1421		nr_src = 0;
1422		nr_dst = 1;
1423	} else {
1424		src = cipherbuf;
1425		dst = plainbuf;
1426		nr_src = 1;
1427		nr_dst = 0;
1428	}
1429	memset(dst, 0, datalen);
1430
1431	/* find the start and end record of the log block */
1432	zilc = (zil_chain_t *)src;
1433	slrp = src + sizeof (zil_chain_t);
1434	aadp = aadbuf;
1435	nused = ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1436	ASSERT3U(nused, >=, sizeof (zil_chain_t));
1437	ASSERT3U(nused, <=, datalen);
1438	blkend = src + nused;
1439
1440	/* calculate the number of encrypted iovecs we will need */
1441	for (; slrp < blkend; slrp += lr_len) {
1442		lr = (lr_t *)slrp;
1443
1444		if (!byteswap) {
1445			txtype = lr->lrc_txtype;
1446			lr_len = lr->lrc_reclen;
1447		} else {
1448			txtype = BSWAP_64(lr->lrc_txtype);
1449			lr_len = BSWAP_64(lr->lrc_reclen);
1450		}
1451		ASSERT3U(lr_len, >=, sizeof (lr_t));
1452		ASSERT3U(lr_len, <=, blkend - slrp);
1453
1454		nr_iovecs++;
1455		if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1456			nr_iovecs++;
1457	}
1458
1459	nr_src += nr_iovecs;
1460	nr_dst += nr_iovecs;
1461
1462	/* allocate the iovec arrays */
1463	if (nr_src != 0) {
1464		src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1465		if (src_iovecs == NULL) {
1466			ret = SET_ERROR(ENOMEM);
1467			goto error;
1468		}
1469	}
1470
1471	if (nr_dst != 0) {
1472		dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1473		if (dst_iovecs == NULL) {
1474			ret = SET_ERROR(ENOMEM);
1475			goto error;
1476		}
1477	}
1478
1479	/*
1480	 * Copy the plain zil header over and authenticate everything except
1481	 * the checksum that will store our MAC. If we are writing the data
1482	 * the embedded checksum will not have been calculated yet, so we don't
1483	 * authenticate that.
1484	 */
1485	memcpy(dst, src, sizeof (zil_chain_t));
1486	memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1487	aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1488	aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1489
1490	/* loop over records again, filling in iovecs */
1491	nr_iovecs = 0;
1492	slrp = src + sizeof (zil_chain_t);
1493	dlrp = dst + sizeof (zil_chain_t);
1494
1495	for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1496		lr = (lr_t *)slrp;
1497
1498		if (!byteswap) {
1499			txtype = lr->lrc_txtype;
1500			lr_len = lr->lrc_reclen;
1501		} else {
1502			txtype = BSWAP_64(lr->lrc_txtype);
1503			lr_len = BSWAP_64(lr->lrc_reclen);
1504		}
1505
1506		/* copy the common lr_t */
1507		memcpy(dlrp, slrp, sizeof (lr_t));
1508		memcpy(aadp, slrp, sizeof (lr_t));
1509		aadp += sizeof (lr_t);
1510		aad_len += sizeof (lr_t);
1511
1512		ASSERT3P(src_iovecs, !=, NULL);
1513		ASSERT3P(dst_iovecs, !=, NULL);
1514
1515		/*
1516		 * If this is a TX_WRITE record we want to encrypt everything
1517		 * except the bp if exists. If the bp does exist we want to
1518		 * authenticate it.
1519		 */
1520		if (txtype == TX_WRITE) {
1521			const size_t o = offsetof(lr_write_t, lr_blkptr);
1522			crypt_len = o - sizeof (lr_t);
1523			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1524			src_iovecs[nr_iovecs].iov_len = crypt_len;
1525			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1526			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1527
1528			/* copy the bp now since it will not be encrypted */
1529			memcpy(dlrp + o, slrp + o, sizeof (blkptr_t));
1530			memcpy(aadp, slrp + o, sizeof (blkptr_t));
1531			aadp += sizeof (blkptr_t);
1532			aad_len += sizeof (blkptr_t);
1533			nr_iovecs++;
1534			total_len += crypt_len;
1535
1536			if (lr_len != sizeof (lr_write_t)) {
1537				crypt_len = lr_len - sizeof (lr_write_t);
1538				src_iovecs[nr_iovecs].iov_base =
1539				    slrp + sizeof (lr_write_t);
1540				src_iovecs[nr_iovecs].iov_len = crypt_len;
1541				dst_iovecs[nr_iovecs].iov_base =
1542				    dlrp + sizeof (lr_write_t);
1543				dst_iovecs[nr_iovecs].iov_len = crypt_len;
1544				nr_iovecs++;
1545				total_len += crypt_len;
1546			}
1547		} else if (txtype == TX_CLONE_RANGE) {
1548			const size_t o = offsetof(lr_clone_range_t, lr_nbps);
1549			crypt_len = o - sizeof (lr_t);
1550			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1551			src_iovecs[nr_iovecs].iov_len = crypt_len;
1552			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1553			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1554
1555			/* copy the bps now since they will not be encrypted */
1556			memcpy(dlrp + o, slrp + o, lr_len - o);
1557			memcpy(aadp, slrp + o, lr_len - o);
1558			aadp += lr_len - o;
1559			aad_len += lr_len - o;
1560			nr_iovecs++;
1561			total_len += crypt_len;
1562		} else {
1563			crypt_len = lr_len - sizeof (lr_t);
1564			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1565			src_iovecs[nr_iovecs].iov_len = crypt_len;
1566			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1567			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1568			nr_iovecs++;
1569			total_len += crypt_len;
1570		}
1571	}
1572
1573	*no_crypt = (nr_iovecs == 0);
1574	*enc_len = total_len;
1575	*authbuf = aadbuf;
1576	*auth_len = aad_len;
1577
1578	if (encrypt) {
1579		puio->uio_iov = src_iovecs;
1580		puio->uio_iovcnt = nr_src;
1581		cuio->uio_iov = dst_iovecs;
1582		cuio->uio_iovcnt = nr_dst;
1583	} else {
1584		puio->uio_iov = dst_iovecs;
1585		puio->uio_iovcnt = nr_dst;
1586		cuio->uio_iov = src_iovecs;
1587		cuio->uio_iovcnt = nr_src;
1588	}
1589
1590	return (0);
1591
1592error:
1593	zio_buf_free(aadbuf, datalen);
1594	if (src_iovecs != NULL)
1595		kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1596	if (dst_iovecs != NULL)
1597		kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1598
1599	*enc_len = 0;
1600	*authbuf = NULL;
1601	*auth_len = 0;
1602	*no_crypt = B_FALSE;
1603	puio->uio_iov = NULL;
1604	puio->uio_iovcnt = 0;
1605	cuio->uio_iov = NULL;
1606	cuio->uio_iovcnt = 0;
1607	return (ret);
1608}
1609
1610/*
1611 * Special case handling routine for encrypting / decrypting dnode blocks.
1612 */
1613static int
1614zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1615    uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1616    zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1617    uint_t *auth_len, boolean_t *no_crypt)
1618{
1619	int ret;
1620	uint_t nr_src, nr_dst, crypt_len;
1621	uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1622	uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1623	iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1624	uint8_t *src, *dst, *aadp;
1625	dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1626	uint8_t *aadbuf = zio_buf_alloc(datalen);
1627
1628	if (encrypt) {
1629		src = plainbuf;
1630		dst = cipherbuf;
1631		nr_src = 0;
1632		nr_dst = 1;
1633	} else {
1634		src = cipherbuf;
1635		dst = plainbuf;
1636		nr_src = 1;
1637		nr_dst = 0;
1638	}
1639
1640	sdnp = (dnode_phys_t *)src;
1641	ddnp = (dnode_phys_t *)dst;
1642	aadp = aadbuf;
1643
1644	/*
1645	 * Count the number of iovecs we will need to do the encryption by
1646	 * counting the number of bonus buffers that need to be encrypted.
1647	 */
1648	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1649		/*
1650		 * This block may still be byteswapped. However, all of the
1651		 * values we use are either uint8_t's (for which byteswapping
1652		 * is a noop) or a * != 0 check, which will work regardless
1653		 * of whether or not we byteswap.
1654		 */
1655		if (sdnp[i].dn_type != DMU_OT_NONE &&
1656		    DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1657		    sdnp[i].dn_bonuslen != 0) {
1658			nr_iovecs++;
1659		}
1660	}
1661
1662	nr_src += nr_iovecs;
1663	nr_dst += nr_iovecs;
1664
1665	if (nr_src != 0) {
1666		src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1667		if (src_iovecs == NULL) {
1668			ret = SET_ERROR(ENOMEM);
1669			goto error;
1670		}
1671	}
1672
1673	if (nr_dst != 0) {
1674		dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1675		if (dst_iovecs == NULL) {
1676			ret = SET_ERROR(ENOMEM);
1677			goto error;
1678		}
1679	}
1680
1681	nr_iovecs = 0;
1682
1683	/*
1684	 * Iterate through the dnodes again, this time filling in the uios
1685	 * we allocated earlier. We also concatenate any data we want to
1686	 * authenticate onto aadbuf.
1687	 */
1688	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1689		dnp = &sdnp[i];
1690
1691		/* copy over the core fields and blkptrs (kept as plaintext) */
1692		memcpy(&ddnp[i], dnp,
1693		    (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1694
1695		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1696			memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
1697			    sizeof (blkptr_t));
1698		}
1699
1700		/*
1701		 * Handle authenticated data. We authenticate everything in
1702		 * the dnode that can be brought over when we do a raw send.
1703		 * This includes all of the core fields as well as the MACs
1704		 * stored in the bp checksums and all of the portable bits
1705		 * from blk_prop. We include the dnode padding here in case it
1706		 * ever gets used in the future. Some dn_flags and dn_used are
1707		 * not portable so we mask those out values out of the
1708		 * authenticated data.
1709		 */
1710		crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1711		memcpy(aadp, dnp, crypt_len);
1712		adnp = (dnode_phys_t *)aadp;
1713		adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1714		adnp->dn_used = 0;
1715		aadp += crypt_len;
1716		aad_len += crypt_len;
1717
1718		for (j = 0; j < dnp->dn_nblkptr; j++) {
1719			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1720			    version, byteswap, &dnp->dn_blkptr[j]);
1721		}
1722
1723		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1724			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1725			    version, byteswap, DN_SPILL_BLKPTR(dnp));
1726		}
1727
1728		/*
1729		 * If this bonus buffer needs to be encrypted, we prepare an
1730		 * iovec_t. The encryption / decryption functions will fill
1731		 * this in for us with the encrypted or decrypted data.
1732		 * Otherwise we add the bonus buffer to the authenticated
1733		 * data buffer and copy it over to the destination. The
1734		 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1735		 * we can guarantee alignment with the AES block size
1736		 * (128 bits).
1737		 */
1738		crypt_len = DN_MAX_BONUS_LEN(dnp);
1739		if (dnp->dn_type != DMU_OT_NONE &&
1740		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1741		    dnp->dn_bonuslen != 0) {
1742			ASSERT3U(nr_iovecs, <, nr_src);
1743			ASSERT3U(nr_iovecs, <, nr_dst);
1744			ASSERT3P(src_iovecs, !=, NULL);
1745			ASSERT3P(dst_iovecs, !=, NULL);
1746			src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1747			src_iovecs[nr_iovecs].iov_len = crypt_len;
1748			dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1749			dst_iovecs[nr_iovecs].iov_len = crypt_len;
1750
1751			nr_iovecs++;
1752			total_len += crypt_len;
1753		} else {
1754			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
1755			memcpy(aadp, DN_BONUS(dnp), crypt_len);
1756			aadp += crypt_len;
1757			aad_len += crypt_len;
1758		}
1759	}
1760
1761	*no_crypt = (nr_iovecs == 0);
1762	*enc_len = total_len;
1763	*authbuf = aadbuf;
1764	*auth_len = aad_len;
1765
1766	if (encrypt) {
1767		puio->uio_iov = src_iovecs;
1768		puio->uio_iovcnt = nr_src;
1769		cuio->uio_iov = dst_iovecs;
1770		cuio->uio_iovcnt = nr_dst;
1771	} else {
1772		puio->uio_iov = dst_iovecs;
1773		puio->uio_iovcnt = nr_dst;
1774		cuio->uio_iov = src_iovecs;
1775		cuio->uio_iovcnt = nr_src;
1776	}
1777
1778	return (0);
1779
1780error:
1781	zio_buf_free(aadbuf, datalen);
1782	if (src_iovecs != NULL)
1783		kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1784	if (dst_iovecs != NULL)
1785		kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1786
1787	*enc_len = 0;
1788	*authbuf = NULL;
1789	*auth_len = 0;
1790	*no_crypt = B_FALSE;
1791	puio->uio_iov = NULL;
1792	puio->uio_iovcnt = 0;
1793	cuio->uio_iov = NULL;
1794	cuio->uio_iovcnt = 0;
1795	return (ret);
1796}
1797
1798static int
1799zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1800    uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
1801    uint_t *enc_len)
1802{
1803	(void) encrypt;
1804	int ret;
1805	uint_t nr_plain = 1, nr_cipher = 2;
1806	iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1807
1808	/* allocate the iovecs for the plain and cipher data */
1809	plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1810	    KM_SLEEP);
1811	if (!plain_iovecs) {
1812		ret = SET_ERROR(ENOMEM);
1813		goto error;
1814	}
1815
1816	cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1817	    KM_SLEEP);
1818	if (!cipher_iovecs) {
1819		ret = SET_ERROR(ENOMEM);
1820		goto error;
1821	}
1822
1823	plain_iovecs[0].iov_base = plainbuf;
1824	plain_iovecs[0].iov_len = datalen;
1825	cipher_iovecs[0].iov_base = cipherbuf;
1826	cipher_iovecs[0].iov_len = datalen;
1827
1828	*enc_len = datalen;
1829	puio->uio_iov = plain_iovecs;
1830	puio->uio_iovcnt = nr_plain;
1831	cuio->uio_iov = cipher_iovecs;
1832	cuio->uio_iovcnt = nr_cipher;
1833
1834	return (0);
1835
1836error:
1837	if (plain_iovecs != NULL)
1838		kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1839	if (cipher_iovecs != NULL)
1840		kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1841
1842	*enc_len = 0;
1843	puio->uio_iov = NULL;
1844	puio->uio_iovcnt = 0;
1845	cuio->uio_iov = NULL;
1846	cuio->uio_iovcnt = 0;
1847	return (ret);
1848}
1849
1850/*
1851 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1852 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1853 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1854 * requiring special handling to parse out pieces that are to be encrypted. The
1855 * authbuf is used by these special cases to store additional authenticated
1856 * data (AAD) for the encryption modes.
1857 */
1858static int
1859zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1860    uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1861    uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1862    uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1863{
1864	int ret;
1865	iovec_t *mac_iov;
1866
1867	ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1868
1869	/* route to handler */
1870	switch (ot) {
1871	case DMU_OT_INTENT_LOG:
1872		ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1873		    datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1874		    no_crypt);
1875		break;
1876	case DMU_OT_DNODE:
1877		ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1878		    cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1879		    auth_len, no_crypt);
1880		break;
1881	default:
1882		ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1883		    datalen, puio, cuio, enc_len);
1884		*authbuf = NULL;
1885		*auth_len = 0;
1886		*no_crypt = B_FALSE;
1887		break;
1888	}
1889
1890	if (ret != 0)
1891		goto error;
1892
1893	/* populate the uios */
1894	puio->uio_segflg = UIO_SYSSPACE;
1895	cuio->uio_segflg = UIO_SYSSPACE;
1896
1897	mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1898	mac_iov->iov_base = mac;
1899	mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1900
1901	return (0);
1902
1903error:
1904	return (ret);
1905}
1906
1907/*
1908 * Primary encryption / decryption entrypoint for zio data.
1909 */
1910int
1911zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1912    dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1913    uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1914    boolean_t *no_crypt)
1915{
1916	int ret;
1917	boolean_t locked = B_FALSE;
1918	uint64_t crypt = key->zk_crypt;
1919	uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1920	uint_t enc_len, auth_len;
1921	zfs_uio_t puio, cuio;
1922	uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1923	crypto_key_t tmp_ckey, *ckey = NULL;
1924	crypto_ctx_template_t tmpl;
1925	uint8_t *authbuf = NULL;
1926
1927	memset(&puio, 0, sizeof (puio));
1928	memset(&cuio, 0, sizeof (cuio));
1929
1930	/*
1931	 * If the needed key is the current one, just use it. Otherwise we
1932	 * need to generate a temporary one from the given salt + master key.
1933	 * If we are encrypting, we must return a copy of the current salt
1934	 * so that it can be stored in the blkptr_t.
1935	 */
1936	rw_enter(&key->zk_salt_lock, RW_READER);
1937	locked = B_TRUE;
1938
1939	if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1940		ckey = &key->zk_current_key;
1941		tmpl = key->zk_current_tmpl;
1942	} else {
1943		rw_exit(&key->zk_salt_lock);
1944		locked = B_FALSE;
1945
1946		ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1947		    salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1948		if (ret != 0)
1949			goto error;
1950
1951		tmp_ckey.ck_data = enc_keydata;
1952		tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1953
1954		ckey = &tmp_ckey;
1955		tmpl = NULL;
1956	}
1957
1958	/*
1959	 * Attempt to use QAT acceleration if we can. We currently don't
1960	 * do this for metadnode and ZIL blocks, since they have a much
1961	 * more involved buffer layout and the qat_crypt() function only
1962	 * works in-place.
1963	 */
1964	if (qat_crypt_use_accel(datalen) &&
1965	    ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
1966		uint8_t *srcbuf, *dstbuf;
1967
1968		if (encrypt) {
1969			srcbuf = plainbuf;
1970			dstbuf = cipherbuf;
1971		} else {
1972			srcbuf = cipherbuf;
1973			dstbuf = plainbuf;
1974		}
1975
1976		ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
1977		    dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
1978		if (ret == CPA_STATUS_SUCCESS) {
1979			if (locked) {
1980				rw_exit(&key->zk_salt_lock);
1981				locked = B_FALSE;
1982			}
1983
1984			return (0);
1985		}
1986		/* If the hardware implementation fails fall back to software */
1987	}
1988
1989	/* create uios for encryption */
1990	ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1991	    cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1992	    &authbuf, &auth_len, no_crypt);
1993	if (ret != 0)
1994		goto error;
1995
1996	/* perform the encryption / decryption in software */
1997	ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1998	    &puio, &cuio, authbuf, auth_len);
1999	if (ret != 0)
2000		goto error;
2001
2002	if (locked) {
2003		rw_exit(&key->zk_salt_lock);
2004	}
2005
2006	if (authbuf != NULL)
2007		zio_buf_free(authbuf, datalen);
2008	if (ckey == &tmp_ckey)
2009		memset(enc_keydata, 0, keydata_len);
2010	zio_crypt_destroy_uio(&puio);
2011	zio_crypt_destroy_uio(&cuio);
2012
2013	return (0);
2014
2015error:
2016	if (locked)
2017		rw_exit(&key->zk_salt_lock);
2018	if (authbuf != NULL)
2019		zio_buf_free(authbuf, datalen);
2020	if (ckey == &tmp_ckey)
2021		memset(enc_keydata, 0, keydata_len);
2022	zio_crypt_destroy_uio(&puio);
2023	zio_crypt_destroy_uio(&cuio);
2024
2025	return (ret);
2026}
2027
2028/*
2029 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
2030 * linear buffers.
2031 */
2032int
2033zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
2034    boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
2035    uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
2036{
2037	int ret;
2038	void *ptmp, *ctmp;
2039
2040	if (encrypt) {
2041		ptmp = abd_borrow_buf_copy(pabd, datalen);
2042		ctmp = abd_borrow_buf(cabd, datalen);
2043	} else {
2044		ptmp = abd_borrow_buf(pabd, datalen);
2045		ctmp = abd_borrow_buf_copy(cabd, datalen);
2046	}
2047
2048	ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
2049	    datalen, ptmp, ctmp, no_crypt);
2050	if (ret != 0)
2051		goto error;
2052
2053	if (encrypt) {
2054		abd_return_buf(pabd, ptmp, datalen);
2055		abd_return_buf_copy(cabd, ctmp, datalen);
2056	} else {
2057		abd_return_buf_copy(pabd, ptmp, datalen);
2058		abd_return_buf(cabd, ctmp, datalen);
2059	}
2060
2061	return (0);
2062
2063error:
2064	if (encrypt) {
2065		abd_return_buf(pabd, ptmp, datalen);
2066		abd_return_buf_copy(cabd, ctmp, datalen);
2067	} else {
2068		abd_return_buf_copy(pabd, ptmp, datalen);
2069		abd_return_buf(cabd, ctmp, datalen);
2070	}
2071
2072	return (ret);
2073}
2074
2075#if defined(_KERNEL)
2076/* CSTYLED */
2077module_param(zfs_key_max_salt_uses, ulong, 0644);
2078MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
2079	"can be used for generating encryption keys before it is rotated");
2080#endif
2081